JP2561984B2 - Substation fault section detection system - Google Patents

Substation fault section detection system

Info

Publication number
JP2561984B2
JP2561984B2 JP3270178A JP27017891A JP2561984B2 JP 2561984 B2 JP2561984 B2 JP 2561984B2 JP 3270178 A JP3270178 A JP 3270178A JP 27017891 A JP27017891 A JP 27017891A JP 2561984 B2 JP2561984 B2 JP 2561984B2
Authority
JP
Japan
Prior art keywords
optical
substation
current
detection system
fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3270178A
Other languages
Japanese (ja)
Other versions
JPH0580107A (en
Inventor
芳文 山形
哲郎 緒志
悟 加藤
靖久 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP3270178A priority Critical patent/JP2561984B2/en
Publication of JPH0580107A publication Critical patent/JPH0580107A/en
Application granted granted Critical
Publication of JP2561984B2 publication Critical patent/JP2561984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は送電用変電所や配電用変
電所の内部で地絡または短絡事故が発生した際に、故障
区間を自動的に検出することができる変電所の故障区間
検出システムの改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is capable of automatically detecting a failure section when a ground fault or a short-circuit accident occurs inside a transmission substation or a distribution substation. It concerns the improvement of the system.

【0002】[0002]

【従来の技術】上記のような変電所においては、母線に
対して複数のバンク(変圧器バンク)や負荷線路が接続
してあり、これらのバンクや負荷線路にはそれぞれCT
が設置されているので、変電所の外部で起きた事故はこ
れらのCTにより容易に検出され、その部分を自動的に
切り離して他の部分への送電を続けることができる。し
かし変電所の内部の母線で生じた事故については、事故
点がバンク側人形部(バンクと母線との接続部)、線路
側人形部(負荷線路と母線との接続部)等の人形部の内
部であるのか、あるいは人形部の外側であるのかを判断
することが容易ではなく、作業員が出向いて事故点を発
見するまでは、既設の保護リレーシステムによって停止
した全部の線路を停電させておかねばならなかった。
2. Description of the Related Art In a substation as described above, a plurality of banks (transformer banks) and load lines are connected to a bus bar, and these banks and load lines are each connected to a CT.
Since the CT is installed, an accident that occurred outside the substation can be easily detected by these CTs, and that part can be automatically disconnected to continue power transmission to other parts. However, regarding the accident that occurred on the busbar inside the substation, the accident point is the doll part on the bank side (the connection part between the bank and the busbar), the track side doll part (the connection part between the load line and the busbar), etc. It is not easy to judge whether it is inside or outside the doll part, and until the worker goes out and finds the accident point, power off all the lines stopped by the existing protection relay system. I had to do it.

【0003】従来、変電所の母線を保護する保護継電装
置として、バンクや負荷線路に取り付けられたCTを用
いて、電流差動判別を行う方式が広く適用されている。
この電流差動方式は、複数の保護したい区間ごとに設置
したCTの電流計測値を用いてキルヒホッフの原理に基
づいた次式によって、区間内部の事故か外部の事故かを
判定するものである。 |ΣI|>K1×Σ|I|+K2 |ΣI| :各CTの電流計測値のベクトル和 Σ|I| :各CTの電流計測値の絶対値和 K1,K2:定数 この方式では、3台以上のCTを使用する場合は、変電
所の最大短絡電流領域まで計測する必要がある。またバ
ンクや負荷線路に取り付けられたCTを用いているた
め、事故点がバンク側人形部か線路側人形部かを判断で
きなかった。
Conventionally, as a protective relay device for protecting the busbars of a substation, a method of performing a current differential discrimination using a CT attached to a bank or a load line has been widely applied.
This current differential method is to judge whether the accident is inside or outside the section by the following equation based on Kirchhoff's principle using the measured current value of CT installed for each section to be protected. | ΣI |> K1 × Σ | I | + K2 | ΣI |: vector sum of current measurement values of each CT Σ | I |: sum of absolute value of current measurement values of each CT K1, K2: constant In this method, 3 units When using the above CT, it is necessary to measure up to the maximum short-circuit current region of the substation. Moreover, since the CT attached to the bank or the load line is used, it was not possible to determine whether the accident point was the bank side doll part or the track side doll part.

【0004】一方、事故点が人形部の内部か外部かを判
断できる変電所の故障区間検出システムとして、特開平
2-223334号公報に記載されているように、人形部に光C
Tと電流の方向を検出できる継電器を取り付け、事故発
生時に光CTおよび継電器によって検出される事故電流
およびその方向を演算器に入力して事故が発生した区間
を検出する方法がある。この方法で判別を行うために
は、あらかじめ各人形部の断路器の開閉状態が判ってい
る必要があり、自動で判別を行うためには断路器の開閉
条件の信号を演算器に入力する必要があるという問題が
あった。そこでこの方法と電流差動方式を組み合わせれ
ば、断路器の開閉条件がわからなくても、事故点が人形
部の内部か外部かを判断する事ができる。またこの場
合、電流差動判別器に接続されるCTは2台であるた
め、光CTの計測電流範囲としては変電所の最大短絡電
流領域まで計測する必要はなく、短絡電流の整定値以上
が計測できればよい。ところが光CTは入力が大電流と
なると出力が飽和してしまうクリップ特性を持つので、
デジタル式の電流差動判別器により事故点を判断させよ
うとする場合に次のような問題があった。
On the other hand, as a failure section detection system for a substation, which can determine whether the accident point is inside or outside the doll section,
As described in JP-A-2-223334, the light C is added to the doll part.
There is a method of attaching a relay capable of detecting the direction of T and the current and inputting the fault current and its direction detected by the optical CT and the relay at the time of occurrence of an accident to a calculator to detect the section where the accident occurred. In order to make a distinction by this method, it is necessary to know the open / closed state of the disconnector of each doll part in advance, and in order to make an automatic distinction, it is necessary to input the signal of the open / close condition of the disconnector to the calculator. There was a problem that there is. Therefore, if this method is combined with the current differential method, it is possible to determine whether the accident point is inside or outside the doll part without knowing the switching condition of the disconnector. Further, in this case, since the number of CTs connected to the current differential discriminator is two, it is not necessary to measure up to the maximum short-circuit current region of the substation as the measurement current range of the optical CT. It just needs to be able to measure. However, since the optical CT has a clipping characteristic that the output is saturated when the input becomes a large current,
The following problems have been encountered when trying to determine the fault point with a digital current differential discriminator.

【0005】すなわち、光CTを(バンクや負荷線路
の)磁気CTと組み合わせて使用する場合には、光CT
と磁気CTとの間に大電流領域における特性差がある
と、光CTの出力と磁気CTの出力との和を算出した場
合に図5の下段に示すような特性差に基づく和電流が発
生し、誤動作の原因となる。そこでこれを防止するため
には大電流領域まで計測することができる高価な光CT
が必要となり、コスト高となるという問題があった。ま
た逆に変換器により磁気CTの特性を光CTの特性に合
わせることも考えられるが、アナログ回路の特性のバラ
ツキを完全に消すことができないという問題があった。
That is, when an optical CT is used in combination with a magnetic CT (of a bank or load line), the optical CT is used.
If there is a characteristic difference between the magnetic CT and the magnetic CT in the large current region, when the sum of the output of the optical CT and the output of the magnetic CT is calculated, a sum current based on the characteristic difference as shown in the lower part of FIG. 5 is generated. However, it may cause malfunction. Therefore, in order to prevent this, an expensive optical CT that can measure up to a large current region
However, there is a problem that the cost becomes high. On the contrary, it may be possible to match the characteristics of the magnetic CT with the characteristics of the optical CT by using a converter, but there is a problem that variations in the characteristics of the analog circuit cannot be completely eliminated.

【0006】一方、バンクや負荷線路のCTも光CTと
した場合には、各光CTのクリップ特性に差があるとや
はり誤動作の原因となるため各光CTのクリップ特性を
揃える必要があり、やはりコスト高となるという問題が
あった。
On the other hand, when the CTs of the banks and the load lines are also optical CTs, a difference in the clipping characteristics of the respective optical CTs still causes a malfunction, so it is necessary to make the clipping characteristics of the respective optical CTs uniform. After all, there was a problem that the cost was high.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記した従来
の問題点を解消し、高価な光CTを使用しなくても光C
Tのクリップ特性差による誤動作を生ずることのない変
電所の故障区間検出システムを提供するために完成され
たものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and eliminates the need for optical C without the use of expensive optical CT.
The present invention has been completed in order to provide a failure section detection system for a substation that does not cause a malfunction due to the difference in the clip characteristics of T.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
めになされた本発明は、変電所の母線導体の切離区分ご
とにその区間を囲む位置に事故電流を検出する鉄心と光
磁界センサとで構成した複数個の光CT、もしくは光C
TとブッシングCT、巻線型CTなどの磁気CTとの組
み合わせ(以下、光CT等という)を取付けておき、
光CT等で測定した電流値をデジタル変換し、区間ご
とにベクトル和やスカラー和をとることで事故点が光C
T等で囲まれた区間の内部か外部かを判断する変電所の
故障区間検出システムにおいて、上記のデジタル変換、
ベクトル和やスカラー和の演算、事故点の判断を行う電
流差動判別器のデジタル変換器の入力電圧認識レンジ
を、光CTの出力電圧が飽和する領域よりも狭くしたこ
とを特徴とするものである。
SUMMARY OF THE INVENTION The present invention, which has been made to solve the above problems, provides an iron core and an optical magnetic field sensor for detecting a fault current at a position surrounding each section of a busbar conductor of a substation. A plurality of optical CTs or optical Cs composed of
Combination of T and magnetic CT such as bushing CT and wire wound CT
Seen together (hereinafter, referred to as optical CT, etc.) keep mounting, and this
The current value measured by optical CT etc. is converted into a digital value and the vector sum or scalar sum is taken for each section so that the accident point is the light C
In the fault section detection system of the substation that judges whether the section surrounded by T or the like is inside or outside, the above digital conversion,
Electricity that calculates vector sums and scalar sums and determines accident points
Input Voltage Recognition Range of Digital Converter of Current Differential Discriminator
Is narrower than the region where the output voltage of the optical CT is saturated.

【0009】[0009]

【実施例】以下に本発明を図示の実施例によって更に詳
細に説明する。図1は二重母線方式の送電用変電所の全
体構成を示すものであり、1a、1bは母線、2a〜2
dは1〜4番のバンク、3は多数の負荷線路である。こ
れらのバンク2と負荷線路3にはそれぞれ断路器4、5
と磁気CT6、7が取り付けられている。各バンク2a
〜2dは母線1a、1bの中央部の人形部と呼ばれる部
分から各母線1a、1bに給電できるように接続されて
おり、また各負荷線路3も人形部に接続されていずれの
母線1a、1bからも受電できる構造となっている。し
かしこれらの人形部には母線断路器8、9が取り付けて
あり、いずれかを開とし他方を閉とすることによりいず
れかの母線1a、1bに選択的に接続されるようになっ
ている。
The present invention will be described below in more detail with reference to the illustrated embodiments. FIG. 1 shows the entire structure of a double bus type power transmission substation. 1a and 1b are busbars and 2a to 2a.
Reference numeral d denotes banks 1 to 4, and 3 denotes a large number of load lines. These banks 2 and load lines 3 are respectively provided with disconnectors 4, 5
And magnetic CTs 6 and 7 are attached. Each bank 2a
2d are connected so that power can be supplied to each busbar 1a, 1b from a portion called a doll portion in the central portion of the busbars 1a, 1b, and each load line 3 is also connected to the doll portion to connect to any busbar 1a, 1b. It has a structure that can also receive power from. However, busbar disconnectors 8 and 9 are attached to these dolls, and either one is opened and the other is closed to selectively connect to one of the busbars 1a and 1b.

【0010】図2はその一部を取り出して示したもの
で、人形部に母線断路器8、9と直列に光CT10、11を
取り付けた状態を示している。図2では母線断路器8が
閉、母線断路器9が開であり、また母線1a上の矢印で
示す点で事故が生じた状態が示されている。このような
事故が発生すると、矢印で示すようにバンク2aの磁気
CT6に下向き、バンク側人形部の光CT10に上向きの
事故電流が流れるので、これらの光CT等の出力を図示
しないデジタル式の電流差動判別器に入力し、デジタル
変換及びベクトル和やスカラー和の演算を行うことによ
り、事故点が人形部の内部か外部かを判定する。なお本
発明において光CT10、11は光ファイバを内蔵した碍子
と一体化され、これが人形部に設置される場合には母線
断路器の支持碍子として組み込むことができる。また上
記の磁気CT6、7は既設の磁気CTを使用している
が、光CTを設置して磁気CT6、7のかわりに使用す
ることもできる。
FIG. 2 shows a part of the figure, showing a state in which optical CTs 10 and 11 are attached to the doll part in series with busbar disconnectors 8 and 9. In FIG. 2, the busbar disconnecting switch 8 is closed, the busbar disconnecting switch 9 is open, and a state in which an accident occurs at a point indicated by an arrow on the busbar 1a is shown. When such an accident occurs, as shown by the arrow, an upward accident current flows in the magnetic CT6 of the bank 2a and an upward accident current flows in the optical CT10 of the bank side doll portion. Therefore, the output of these optical CTs is not shown in the digital type. Input to the current differential discriminator and digital
By converting and performing vector sum and scalar sum operations
Therefore, determine whether the accident point is inside or outside the doll section. In the present invention, the optical CTs 10 and 11 are integrated with an insulator having a built-in optical fiber, and when this is installed in a doll part, it can be incorporated as a support insulator for a bus line disconnector. Further, although the existing magnetic CTs are used as the magnetic CTs 6 and 7, an optical CT may be installed and used instead of the magnetic CTs 6 and 7.

【0011】なおこの判定方法は、図2のように事故点
が人形部の外部である場合には磁気CT6と光CT10に
大きさが等しく方向が反対の事故電流が流れるのでその
和がゼロになり、事故点が人形部の内部である場合には
その和がゼロにならないことを利用するものである。こ
の判定を正確に行うためには、光CTのクリップ特性に
よって図5に示すような和電流が生じないようにしてお
く必要がある。
In this determination method, when the accident point is outside the doll part as shown in FIG. 2, since the accident currents of the same magnitude and opposite directions flow to the magnetic CT6 and the optical CT10, the sum thereof becomes zero. If the accident point is inside the doll section, the sum will not be zero. In order to make this determination accurately, it is necessary to prevent the sum current as shown in FIG. 5 from occurring due to the clipping characteristic of the optical CT.

【0012】そこで本発明においては、これらの光CT
及び磁気CTの出力をデジタル信号に変換するための電
流差動判別器のデジタル変換器の入力電圧認識レンジ
を、図3に示すように光CTの飽和領域よりも狭くして
おく。具体的には、この入力電圧認識レンジは光CTの
出力電圧がクリップする電圧より低い範囲で出来るだけ
広くするのが好ましい。またデジタル変換器の入力電圧
認識レンジは、短絡電流整定値以上とする必要がある
発明の電流差動判別器は図4に示すように以下の2式
のAND条件で判別を行う。 |ΣI|≧K1・・・・・・・・・・・・・・ |ΣI|≧K2×Σ|I|+K3・・・・・・ 内部事故時に1箇所から電流が流入した場合を考える
と、事故を検出するためには、式のK1(短絡整定
値)以上の電流が検出できる必要がある。従って光CT
の計測電流範囲、デジタル変換器のレンジは短絡整定値
以上にする必要がある。このようにデジタル変換器の入
力電圧認識レンジを、光CTの飽和領域よりも狭くして
おくことにより、図3の上段に示す磁気CTの出力波形
も、中段に示す通りの飽和領域を持った光CTの出力波
形も、電流差動判別器のデジタル変換器によって大電流
領域がカットされた波形となる。従って両方の波形の和
を取ると、図3の下段に示すようにほぼゼロとなり、図
5に示した従来の場合のような山型の和電流が生ずるこ
とがない。
Therefore, in the present invention, these optical CTs are used.
Also, the input voltage recognition range of the digital converter of the current differential discriminator for converting the output of the magnetic CT into a digital signal is made narrower than the saturation region of the optical CT as shown in FIG. Specifically, it is preferable that the input voltage recognition range be as wide as possible in a range lower than the voltage at which the output voltage of the optical CT clips. Also, the input voltage of the digital converter
The recognition range must be greater than or equal to the short circuit current set value .
As shown in FIG. 4, the current differential discriminator of the present invention discriminates under the following two AND conditions. | ΣI | ≧ K1 ・ ・ ・ ・ ・ ・ ・ ・ ・ | ΣI | ≧ K2 × Σ | I | + K3 ・ ・ ・ ・ Considering the case where the current flows from one location during an internal accident. In order to detect an accident, it is necessary to detect a current equal to or higher than K1 (short-circuit set value) in the equation. Therefore optical CT
The measured current range and the range of the digital converter must be more than the short-circuit set value. In this way, the digital converter
Make the force voltage recognition range narrower than the saturation region of optical CT.
By setting, both the output waveform of the magnetic CT shown in the upper part of FIG. 3 and the output waveform of the optical CT having a saturation region as shown in the middle part are cut in the large current region by the digital converter of the current differential discriminator. It becomes a waveform. Therefore, when the sum of both waveforms is taken, it becomes almost zero as shown in the lower part of FIG. 3, and the mountain-shaped sum current as in the conventional case shown in FIG. 5 does not occur.

【0013】実施例では光CTと磁気CTとを組み合わ
せた例を示したが、バンクや負荷線路のCTをも全て
CTとした場合にも同様に実施することができる。いず
れの場合にも、大電流領域まで計測することができる高
価な光CTを用いたり各光CTの特性を正確に揃えたり
する必要がなく、システムコストを安価とすることがで
きるとともに、誤動作を生ずることなく事故点の判別を
行わせることができる。
In the embodiment, an example in which the optical CT and the magnetic CT are combined is shown, but the same can be done when all the CTs of the banks and the load lines are also optical CTs. In either case, there is no need to use an expensive optical CT that can measure up to a large current region or to accurately align the characteristics of each optical CT, which makes it possible to reduce the system cost and to prevent malfunctions. The accident point can be discriminated without any occurrence.

【0014】[0014]

【発明の効果】以上に説明したように、本発明は電流差
動判別器のデジタル変換器の入力電圧認識レンジを光C
Tの飽和領域よりも狭くしたことにより、高価な光CT
を使用することなく光CTのクリップ特性差による誤動
作を防止したものであり、従来の問題点を解消した変電
所の故障区間検出システムとして、産業の発展に寄与す
るところは極めて大きいものである。
As described above, according to the present invention, the input voltage recognition range of the digital converter of the current differential discriminator is set to the optical C.
By making the area narrower than the saturation region of T, expensive optical CT
It is intended to prevent malfunctions due to the difference in the clip characteristics of the optical CT without using, and to contribute to the industrial development as a fault section detection system for a substation that solves the conventional problems.

【図面の簡単な説明】[Brief description of drawings]

【図1】変電所の故障区間検出システムの全体構成を示
す回路図である。
FIG. 1 is a circuit diagram showing an overall configuration of a fault section detection system in a substation.

【図2】変電所の故障区間検出システムの一部を拡大し
て示す回路図である。
FIG. 2 is an enlarged circuit diagram showing a part of a failure section detection system of a substation.

【図3】本発明の実施例の波形図である。FIG. 3 is a waveform diagram of an example of the present invention.

【図4】電流差動判別器の作動特性を示すグラフであ
る。
FIG. 4 is a graph showing operating characteristics of a current differential discriminator.

【図5】従来例の波形図である。FIG. 5 is a waveform diagram of a conventional example.

【符号の説明】[Explanation of symbols]

6 磁気CT 7 磁気CT 8 光CT 9 光CT 6 Magnetic CT 7 Magnetic CT 8 Optical CT 9 Optical CT

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桜井 靖久 愛知県春日井市柏井町6丁目1番地59号 細井ハイツ302号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhisa Sakurai 59-1-6 Kashiwai-cho, Kasugai-shi, Aichi Hosoi Heights 302

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 変電所の母線導体の切離区分ごとにその
区間を囲む位置に事故電流を検出する鉄心と光磁界セン
サとで構成した複数個の光CT、もしくは光CTとブッ
シングCT、巻線型CTなどの磁気CTとの組み合わせ
(以下、光CT等という)を取付けておき、この光CT
等で測定した電流値をデジタル変換し、区間ごとにベク
トル和やスカラー和をとることで事故点が光CT等で囲
まれた区間の内部か外部かを判断する変電所の故障区間
検出システムにおいて、上記のデジタル変換、ベクトル
和やスカラー和の演算、事故点の判断を行う電流差動判
別器のデジタル変換器の入力電圧認識レンジを、光CT
の出力電圧が飽和する領域よりも狭くしたことを特徴と
する変電所の故障区間検出システム。
1. A plurality of optical CT which is constituted by the core and the optical magnetic field sensor for detecting a fault current in a position surrounding the section for each severing sections of the bus conductor in a substation or optical CT and bushings,
Sing CT, a combination of a magnetic CT, such as wire-wound CT (hereinafter, referred to as optical CT, etc.) previously attached to, the optical CT
In the fault section detection system of the substation, which determines whether the fault point is inside or outside the section surrounded by optical CT etc. by converting the current value measured by , Above digital conversion, vector
Current differential judgment that calculates sums and scalar sums and judges accident points
The input voltage recognition range of the digital converter of another device
A fault section detection system for a substation, characterized in that the output voltage is narrower than the saturated area.
JP3270178A 1991-09-20 1991-09-20 Substation fault section detection system Expired - Fee Related JP2561984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3270178A JP2561984B2 (en) 1991-09-20 1991-09-20 Substation fault section detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3270178A JP2561984B2 (en) 1991-09-20 1991-09-20 Substation fault section detection system

Publications (2)

Publication Number Publication Date
JPH0580107A JPH0580107A (en) 1993-04-02
JP2561984B2 true JP2561984B2 (en) 1996-12-11

Family

ID=17482614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3270178A Expired - Fee Related JP2561984B2 (en) 1991-09-20 1991-09-20 Substation fault section detection system

Country Status (1)

Country Link
JP (1) JP2561984B2 (en)

Also Published As

Publication number Publication date
JPH0580107A (en) 1993-04-02

Similar Documents

Publication Publication Date Title
US6442010B1 (en) Differential protective relay for electrical buses with improved immunity to saturation of current transformers
Eissa et al. A novel digital distance relaying technique for transmission line protection
KR100246203B1 (en) A control system and method for high impedance ground fault of power line in a power system
JP3808624B2 (en) System protection relay device
US4634981A (en) Method for testing a circuit breaker using a three terminal current transformer
JP3836620B2 (en) Protection device for ground fault current suppression device and ground fault suppression method
JP2561984B2 (en) Substation fault section detection system
JP2866172B2 (en) Transmission line fault direction locating method
JPH0343593B2 (en)
JPH033451B2 (en)
JPH0580108A (en) Ground shortcircuit sensing device
JP2001016767A (en) Failure section decision device for transformer station
JP2568097B2 (en) Power cable accident section detection method
JPH02223334A (en) Fault section detection system in substation
JP2578550B2 (en) Ground fault line selection protection relay
JP2953891B2 (en) Digital bus protection device
JP3075607U (en) Ground fault protection device
Maheshwari et al. Adaptive digital relay for comprehensive distance protection of traction overhead equipment
JPH09113544A (en) Current measuring system for substation
JPS59204418A (en) Trestle multichannel ground-fault protecting relay
JPH02106126A (en) Method and apparatus for distinguishing types of failures in transmission line
JPS6199874A (en) Fault current detecting and displaying device
JPH06284556A (en) Grounding current detection method for three-phase four-wire circuit
JPH07236226A (en) Ground protector
SU1198642A1 (en) Device for internal damage protection of capacitor bank with isolated neutral

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees