JPH0458257B2 - - Google Patents
Info
- Publication number
- JPH0458257B2 JPH0458257B2 JP57033930A JP3393082A JPH0458257B2 JP H0458257 B2 JPH0458257 B2 JP H0458257B2 JP 57033930 A JP57033930 A JP 57033930A JP 3393082 A JP3393082 A JP 3393082A JP H0458257 B2 JPH0458257 B2 JP H0458257B2
- Authority
- JP
- Japan
- Prior art keywords
- current
- phase
- zero
- sequence
- terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001514 detection method Methods 0.000 description 8
- 210000004899 c-terminal region Anatomy 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Landscapes
- Emergency Protection Circuit Devices (AREA)
Description
【発明の詳細な説明】
本発明は併架多回線多端子分岐系統の地絡保護
方式に係り、特に回線間の誘導循環電流対策とし
て好適な回線選択リレーに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ground fault protection system for a co-located multi-line multi-terminal branch system, and more particularly to a line selection relay suitable as a countermeasure against induced circulating current between lines.
従来の地絡回線選択リレーは併架による誘導電
流対策として、三相一括した零相電流の変化幅に
応動するもの(例:特公昭56−36648)があるが、
3端子以上の多端子系統の保護に対して演算が複
雑になり、検出性能が不足するおそれがある。 Conventional ground fault line selection relays respond to changes in the zero-sequence current of three phases at once as a measure against induced current caused by parallel installations (e.g., Japanese Patent Publication No. 56-36648).
For protection of multi-terminal systems with three or more terminals, calculations become complicated and detection performance may be insufficient.
本発明の目的は抵抗接地多端子分岐系統におい
て併映系統の誘導電流の影響を軽減し、高感度の
地絡事故検出を行う回線選択リレー装置を提供す
ることにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a line selection relay device that reduces the influence of induced current in a combined system in a resistance-grounded multi-terminal branch system and detects ground faults with high sensitivity.
併架系統からの誘導による保護区間内循環電流
対策として、三相交流系統の1線地絡事故によつ
て変化した事故電流成分と誘導による循環電流成
分の値を事故相以外のいわゆる健全相の電流の変
化分をもとに推定する方法で、健全相の電流変化
分のうちから負荷電流成分の変化分を除いた成分
の変化比を補正係数として零相電流に含まれる誘
導電流成分を消去し、事故電流成分によつてのみ
回線選択の判定を行う。 As a countermeasure against circulating current within the protection zone due to induction from the parallel system, the values of the fault current component that changed due to a single-wire ground fault in a three-phase AC system and the circulating current component due to induction are calculated by comparing the values of the fault current component that has changed due to a one-wire ground fault in a three-phase AC system and the value of the circulating current component due to induction to the so-called healthy phase other than the fault phase. This method is estimated based on the current change, and eliminates the induced current component included in the zero-sequence current by using the change ratio of the component that excludes the load current component change from the healthy phase current change as a correction coefficient. However, line selection is determined only based on the fault current component.
第1図に本発明の保護対象系統の一例を示し、
同図の、記号と動作について以下に説明する。 FIG. 1 shows an example of the system to be protected by the present invention,
The symbols and operations in the figure will be explained below.
第1図において1L,2L,3L,4L,5
L,6Lはそれぞれ保護対象送電線路で三相交流
送電線を三相一括して示すものである。HLは保
護対象系統に併架された高圧三相交流送電線であ
る。CBはしや断器を示し、その添字は場所を示
す。CBHA,CBHBはHLのA端子、B端子をそれ
ぞれ示し、以下同様にCB1,CB2,CB3,CB4,
CB5,CB6は各端子に設けたしや断器の各回線番
号を添字により示す。CTは変流器でその添字は
CBの場合と同様の約束に従う。 In Figure 1, 1L, 2L, 3L, 4L, 5
L and 6L are power transmission lines to be protected, respectively, and indicate three phases of a three-phase AC power transmission line at once. HL is a high-voltage three-phase AC transmission line that runs parallel to the protected system. CB indicates a bridge or disconnection, and its subscript indicates the location. CB HA and CB HB indicate the A terminal and B terminal of HL, respectively, and in the following, CB 1 , CB 2 , CB 3 , CB 4 ,
CB 5 and CB 6 indicate each line number of the disconnector installed at each terminal by subscript. CT is a current transformer and its subscript is
Follow the same commitments as for CB.
CTの極性は保護区間A,B,C端で囲まれた
方向に流れる電流を1L,3L,5Lで正(零相
電圧と零相電流が同方向)となるようにとり、相
隣り合う回線2L,4L,6LのCTもそれぞれ
保護区間内方向への入力電流を正にとる。 The polarity of the CT is set so that the current flowing in the direction surrounded by the protected area A, B, and C ends is positive at 1L, 3L, and 5L (zero-sequence voltage and zero-sequence current are in the same direction), and , 4L, and 6L each have a positive input current in the direction within the protection zone.
50GA,50GB,50GCはそれぞれA,B,
C端子に設置した地絡回線選択リレー装置であ
る。 50G A , 50G B , 50G C are A, B, respectively.
This is a ground fault line selection relay device installed at the C terminal.
PTA,PTB,PTCはそれぞれA,B,C端子に
設置した電圧変成器であり、各々50GA,50
GB,50GCの電流入力の方向を判定するための
基準電圧V〓Rを入力するために用いるもので、そ
の一例として、各端子母線電圧の零相電圧V〓0を
入力してもよい。 PT A , PT B , and PT C are voltage transformers installed at A, B, and C terminals, respectively, and are 50G A , 50G, respectively.
This is used to input the reference voltage V〓 R for determining the direction of current input of G B and 50G C. For example, the zero-sequence voltage V〓 0 of each terminal bus voltage may be input. .
NGRは中性点接地抵抗、E〓A,E〓B,E〓Cは各端の背
後電源、TrfA,TrfB,TrfCは変圧器を示す。 N GR is the neutral point grounding resistance, E〓 A , E〓 B , E〓 C are the back power supplies at each end, and T rfA , T rfB , T rfC are the transformers.
つぎに第1図F点で1線地絡事故が発生したと
きを仮定して本発明のリレー50GA,50GB,
50GCの動作について説明する。F点がB,C
端子に近接しているとすると、故障電流の零相分
I〓雲0Fは、
となり、回線選択可能なるものはB端子のみとな
る。但し、I〓NはA端中性点より流入する零相電流
である。しかし、B端子においても事故前から併
架による誘導電流が通過しており、事故前の時刻
t0における零相分循環電流をI〓0nB(t0)、事故発生
直後の時刻t1においてI〓0nB(t1)とおくと、B端子
における回線間差電流I〓Bの零相分I〓0Bは時刻t1に
おいて、
I〓0B(t1)=2I〓0nB(t1)+I〓N(t1) ……(2)
となる。I〓0nB(t1)は併架系統HLの負荷電流IHLによ
つて誘導されるものであり、I〓Nとは任意の位相差
になりI〓0nB(t1)がI〓N(t1)よりも大きいこともあり、
I〓0nB(t1)の成分を除外しなければ正しい回線選択が
できないおそれがある。 Next, assuming that a one-line ground fault occurs at point F in Figure 1, we will connect the relays 50G A , 50G B ,
The operation of 50G C will be explained. Point F is B, C
If it is close to the terminal, the zero-sequence component of the fault current
I〓Cloud 0F is Therefore, only the B terminal can be selected as a line. However, I〓 N is the zero-sequence current flowing from the A-terminal neutral point. However, the induced current due to the parallel rack has passed through the B terminal even before the accident, and the zero-sequence circulating current at time t0 before the accident is I〓 0nB(t0) , and at time t1 immediately after the accident, I〓 0nB( t1) , the inter-line difference current at terminal B is I〓 The zero-sequence component of B〓 0B is at time t1, I〓 0B(t1) = 2I〓 0nB(t1) +I〓 N(t1) ...( 2) becomes. I〓 0nB(t1) is induced by the load current I HL of the parallel system HL, and has an arbitrary phase difference from I〓 N , so that I〓 0nB(t1) becomes I〓 N(t1) It may be larger than
If the component of I〓 0nB(t1) is not excluded, there is a possibility that correct line selection may not be possible.
この対策として本発明では、I〓0nB(t0)が事故前の
零相電流によつて判別できることから、I〓0nB(t1)に
ついては事故相以外(以下健全相と呼ぶ)の電流
情報をもとに推定し、(2)式からこれを除外する。
これは、I〓0nBの成分はa,b,c各相とも同一回
線においては同じ比率で変化すると見なし、a相
事故時には、b相あるいはc相の循環電流成分は
I〓nb,I〓ncの値の変化があつた場合にそれぞれの変
化比を求めて、その値によつて零相分循環電流
I0nBの成分を除去する。 As a countermeasure for this, in the present invention, since I〓 0nB(t0) can be determined based on the zero-sequence current before the fault, current information on phases other than the faulty phase (hereinafter referred to as healthy phases) is also used for I〓 0nB(t1). and exclude it from equation (2).
This assumes that the I〓 0nB component changes at the same rate in the same line for each phase a, b, and c, and in the event of an a-phase fault, the circulating current component of the b-phase or c-phase will change.
When the values of I〓 nb and I〓 nc change, find the respective change ratios and calculate the zero-sequence circulating current according to that value.
Remove the I 0nB component.
たとえばb相の正常時の回線間差電流I〓bについ
てみると、負荷電流成分I〓Lbと循環電流I〓nbよりな
り
I〓b=I〓Lb+I〓nb ……(3)
で表わされる。ここで、I〓Lbについては正相分の
みであると仮定し、三相の回線間差電流の正相分
をI〓1sとおくとき
I〓nb=I〓b−a2I〓1s ……(4)
で求める。ただし、a2はベクトルオペレータで
a2=−1/2−j√3/2
なる複素数である。 For example, if we look at the inter-line difference current I〓 b during normal phase b, it consists of the load current component I〓 Lb and the circulating current I〓 nb , and is expressed as I〓 b = I〓 Lb + I〓 nb ... (3) . Here, assuming that I〓 Lb is only the positive-sequence component, and let the positive-sequence component of the three-phase line difference current be I〓 1s , I〓 nb = I〓 b −a 2 I〓 1s ... ...(4). However, a 2 is a vector operator and is a complex number of a 2 =-1/2-j√3/2.
I〓nbがt0とt1の時刻にてどのように変化し
たのかを(4)式のt0の電流データとt1の電流デ
ータから求め、変化比K〓b(01)を
K〓b(01)=I〓nb(t1)/Inb(t0)
=I〓b(t1)−a2I〓1s(t1)/Ib(t0)−a2I1s(t0)……(5
)
とおく。K〓b(t0)が判つたことにより、(2)式に示し
た零相電流の循環分I〓0nBの値を
I〓0nB(t1)=K〓b(01)×I〓0nB(t0) ……(6)
とおき、
I〓0B(t1)=2{I〓0nB(t1)+I〓N(t1)/2−K〓
b(01)×I〓0nB(t0)}=2I〓N(t1)……(7)
が求まる。 Find out how I〓 nb changes between the times t0 and t1 from the current data at t0 and the current data at t1 in equation (4), and calculate the change ratio K〓 b(01) as K〓 b(01) =I〓 nb(t1) /I nb(t0) =I〓 b(t1) −a 2 I〓 1s(t1) /I b(t0) −a 2 I 1s(t0) ……(5
) far. By knowing K〓 b(t0) , the value of the zero-sequence current circulating portion I〓 0nB shown in equation (2) can be calculated as I〓 0nB(t1) =K〓 b(01) ×I〓 0nB(t0 ) ...(6) Then, I〓 0B(t1) =2{I〓 0nB(t1) +I〓 N(t1) /2−K〓
b(01) ×I〓 0nB(t0) }=2I〓 N(t1) ...(7) is found.
I〓0nB(t0)とI〓0nB(t1)の比較は商用周波数の整数サ
イ
クル間の差でよく、たとえば50GBリレーの動作
判定に用いる時間を3サイクル以内とすれば、そ
れより長い4、あるいは5サイクル前の値を記憶
しておきこれを基準に、K〓b(01)倍して差し引きを
行えばよい。K〓b(01)を求める(5)式の場合も同様で
ある。 Comparison of I〓 0nB(t0) and I〓 0nB(t1) can be made using the difference between integer cycles of the commercial frequency. For example, if the time used to determine the operation of a 50G B relay is within 3 cycles, the difference between 4, Alternatively, you can memorize the value from 5 cycles ago and use this as a reference to multiply the value by K〓 b(01) and subtract it. The same holds true for equation (5) for finding K〓 b(01) .
この結果、もし、B端子においてI〓0nB(t0)がt1
にても全く変化ない場合にはK〓0b(01)は記憶してい
る間(t1−t0)において常に1.0となり、正しく
(7)式の2I〓N(t1)の値を得ることができる。 As a result, if I〓 0nB(t0) at the B terminal becomes t1
If there is no change at all even if
The value of 2I〓 N(t1) in equation (7) can be obtained.
50GBの電流入力としてI〓0B(t1)=2I〓N(t1)を得て
、
第2図に示すように基準電圧をB端子の零相電圧
V〓0Bとの位相差を比較して、事故回線を選択す
る。第2図において、I〓PはI〓0Bのレベル判定値であ
る。位相特性角θは50GBの不要動作を防止す
るため必要最少限にせまくした方がよい。 As a current input of 50G B , get I〓 0B(t1) = 2I〓 N(t1) ,
As shown in Figure 2, the reference voltage is the zero-sequence voltage of the B terminal.
V〓 Compare the phase difference with 0B and select the fault line. In FIG. 2, I〓P is the level judgment value of I〓0B . It is better to make the phase characteristic angle θ as narrow as necessary to prevent unnecessary operation of 50G B.
以上により、B端子3Lの事故を判定し、しや
断器CB3にしや断指令を与え、これをしや断す
る。3LのCB3しや断後の電流分布は第3図の例
のようになり、この状態における値を時刻t2と
する。t2においてもA端子を通過する事故電流
の成分は1L,2Lでほぼ等しく、したがつて、
C端子でのみ回線選択が可能になる。しかし、C
端子においても、3LのB端子しや断によつて、
時刻t1に対して事故電流の変化があり、しかも
零相循環電流の変化、B端子向け負荷電流の分流
による電流変化が想定され、事故電流分布のみを
正確に導かなければC端子での回線選択は正しく
行なわれない。 Based on the above, it is determined that there is an accident at the B terminal 3L, and a shear breaker command is given to the shear breaker CB 3 to disconnect the shear. The current distribution after the CB 3 of 3L is disconnected is as shown in the example of FIG. 3, and the value in this state is defined as time t2. Even at t2, the components of the fault current passing through the A terminal are approximately equal at 1L and 2L, therefore,
Line selection is possible only with the C terminal. However, C
Also at the terminal, by cutting the 3L B terminal,
There is a change in the fault current with respect to time t1, and it is assumed that there is a change in the zero-sequence circulating current and a current change due to the shunting of the load current for the B terminal.If only the fault current distribution is not accurately derived, it is necessary to select the line at the C terminal. is not done correctly.
したがつて、C端子でもB端子の場合と同様に
事故前のt0における電流信号をもとにt2にお
ける事故電流成分を導き出す。 Therefore, for the C terminal as well as for the B terminal, the fault current component at t2 is derived based on the current signal at t0 before the fault.
すなわち、C端子における回線間差電流の零相
分I〓0cは各時刻において、
I〓0C(t0)=2I〓0nC(t0) ……(8)
I〓0C(t1)=2I〓0nC(t1)+I〓0F5L(t1)
+I〓0F6L(t1)≒2I〓0nC(t1) ……(9)
I〓0C(t2)=2I〓0nC(t2)+I〓0F5L(t2)
+I〓0F6L(t2)
≒2I〓0nC(t2)+I〓N(t2) ……(10)
とする。ここにI〓0nC(t0),I〓0nC(t1),I〓0nC(t2)は
併架系
統の構成によつて変るものと考えると、B端子で
K〓b(t0)を求めたと同様にC端子においても健全相
から変化比を求めることができ、t0からt1,
t2における変化比をそれぞれK〓b(01),K〓b(02)とす
ると、
I〓0C(t2)=2{I〓0nC(t2)+I〓N(t2)/2
−K〓b(02)×I〓0n(t0)}
=I〓N(t2) ……(11)
を得る。(11)式で事故電流成分I〓N(t2)が得られ50
GCにて方向判定を行い、5L側の事故が検出で
きる。したがつて、50GCによつて5LのCB5をし
や断できる。しや断後の時刻t3においてはA端
子において、事故電流成分が1Lのみ通過するか
ら、回線選択が可能になるが、ここでも負荷電
流、零相循環電流の変化量に影響を受けないよう
に判定しなければならないため、B、及びC端子
の場合と同様に健全相の電流信号から零相分の変
化比K〓b(03)を求め補正し、A端子における零相分
回線間差電流
I〓0A(t3)=2{I〓0nA(t3)+I〓N(t3)/2
K〓b(03)×I〓nA(t0)}
I〓N(t3)/2 ……(12)
を得る。(12)式の信号によつてA端子50GAは1
L側の事故と判定し、CB1をしや断する。 In other words, the zero-sequence component of the inter-line difference current at terminal C, I〓 0c , at each time is I〓 0C(t0) = 2I〓 0nC(t0) ……(8) I〓 0C(t1) = 2I〓 0nC( t1) +I〓 0F5L(t1) +I〓 0F6L(t1) ≒2I〓 0nC(t1) ……(9) I〓 0C(t2) =2I〓 0nC(t2) +I〓 0F5L(t2) +I〓 0F6L(t2 ) ≒2I〓 0nC(t2) +I〓 N(t2) ……(10). Here, considering that I〓 0nC(t0) , I〓 0nC(t1) , I〓 0nC(t2) vary depending on the configuration of the parallel system, at the B terminal
In the same way as finding K〓 b(t0), the change ratio can also be found from the healthy phase at the C terminal, and from t0 to t1,
If the change ratio at t2 is K〓 b(01) and K〓 b(02) , then I〓 0C(t2) = 2 {I〓 0nC(t2) +I〓 N(t2) /2 −K〓 b( 02) ×I〓 0n(t0) } =I〓 N(t2) ……(11) is obtained. The fault current component I〓 N(t2) is obtained from equation (11) and is 50
The direction is judged by GC and an accident on the 5L side can be detected. Therefore, 50G C can cut 5L of CB 5 . At time t3 after the shingle failure, only 1L of the fault current component passes through the A terminal, so line selection is possible; Therefore, as in the case of B and C terminals, the zero-phase component change ratio K〓 b(03) is calculated and corrected from the healthy phase current signal, and the zero-phase component line difference current at the A terminal is calculated. I〓 0A(t3) =2 {I〓 0nA(t3) +I〓 N(t3) /2 K〓 b(03) ×I〓 nA(t0) } I〓 N(t3) /2 ......(12) get. According to the signal of equation (12), A terminal 50G A is 1
It was determined that the accident was on the L side, and CB 1 was cut off.
以上によつて、所望の事故除去がt1,t2,
t3と3段階のステツプによつて処置できる。 With the above, the desired accident removal is achieved at t1, t2,
It can be treated by t3 and 3 steps.
第5図には本発明を実施するためのハードウエ
アをブロツク図により示す。同図はデイジタル式
リレーを仮定においたものである。 FIG. 5 shows a block diagram of hardware for implementing the invention. The figure assumes a digital relay.
入力信号I〓は回線間差電流、V〓0は零相電圧信号
であり、51はアナログ量をデイジタル量に変換
するデイジタル変換回路であるが、51には、高
調波信号による誤にデータを発生することのない
ように低域通過フイルタを用いる等対策した商用
周波数を対象にデイジタル化する回路である。 The input signal I〓 is the line difference current, V〓 0 is the zero-phase voltage signal, and 51 is a digital conversion circuit that converts an analog quantity into a digital quantity. This is a circuit that digitizes commercial frequencies using measures such as using a low-pass filter to prevent this from occurring.
52は正相分検出フイルタで入力電流I〓の正相
分を導出する。53は健全相の正相分を除去した
信号I〓nを得る循環電流検出回路である。健全相の
選別は54に示す故障相選別リレーにより行う。
故障相選別リレーとしては、相電圧不足リレーが
1相のみ動作したことにより選別してもよい。 52 is a positive-sequence detection filter that derives the positive-sequence component of the input current I〓. 53 is a circulating current detection circuit that obtains a signal I≓ n from which the positive phase component of the healthy phase is removed. The selection of healthy phases is performed by a faulty phase selection relay shown at 54.
As a failure phase selection relay, a phase voltage shortage relay may be used to select when only one phase is operated.
54の出力によつて52,53の健全相に相当
する信号を選び健全相の循環電流I〓nを検出し、こ
れを記憶回路55でメモリする。メモリの内容は
本発明で述べたI〓n(t0)の値を記憶し、53の出力
I〓n(t1)との比をとり、
K〓b(01)=I〓n(t1)/In(t0) ……(13)
を56の比較回路で演算する。56の出力は循環
電流がt0からt1に達し変化し変化比K〓b(01)で
ある。 Based on the output of 54, signals corresponding to the healthy phases 52 and 53 are selected, the circulating current I〓n of the healthy phase is detected, and this is stored in the memory circuit 55. The contents of the memory store the value of I〓 n(t0) mentioned in the present invention, and output 53.
The ratio with I〓 n(t1) is taken, and K〓 b(01) = I〓 n(t1) /I n(t0) ... (13) is calculated using 56 comparison circuits. The output of 56 changes as the circulating current reaches t1 from t0, and the change ratio is K〓 b(01) .
57は零相電流検出フイルタであり、入力信号
I〓の零相分I〓0を得る。 57 is a zero-phase current detection filter, and the input signal
Obtain the zero phase component of I〓 I〓 0 .
58は記憶回路であり、54の事故検出以前の
I〓0、これを時刻t0とするときI〓0(t0)を記憶する回
路である。59は乗算器で58の出力I〓0(t0)に56
の出力K〓b(01)を乗算しK〓b(01)×I〓0(t0)を出力する
。 58 is a memory circuit, which stores data before the accident detection in 54.
This is a circuit that stores I〓 0 (t0) when I〓 0 is taken as time t0. 59 is a multiplier that outputs 58's output I〓 0(t0) to 56
Multiply the output K〓 b(01) and output K〓 b(01) ×I〓 0(t0) .
60は引算器であつて、57の出力から59の
出力を差し引き事故電流成分を取り出すための回
路である。60の出力は
I〓R0=I〓0(t1)−K〓b(01)I〓0(t0) ……(14)
であつて事故後認意の時刻tnにおいては
I〓R0=I〓0(to)−K〓b(0o)×I〓0(t0) ……(15)
となつて出力できる回路である。 60 is a subtracter, which is a circuit for subtracting the output of 59 from the output of 57 to extract a fault current component. The output of 60 is I〓 R0 = I〓 0(t1) −K〓 b(01) I〓 0(t0) ...(14) and at the time tn of recognition after the accident, I〓 R0 = I〓 This is a circuit that can output 0(to) −K〓 b(0o) ×I〓 0(t0) ...(15).
61は位相判定回路であり、第2図で示した動
作域に入るかどうかを判定する部分である。 61 is a phase determination circuit, which is a part that determines whether or not the operating range shown in FIG. 2 is entered.
第6図には第5図に示した内容を計算機等によ
り処理する場合のフロー図を示す。 FIG. 6 shows a flowchart when the contents shown in FIG. 5 are processed by a computer or the like.
同図A1のブロツクでは入力信号電圧、電流を
サンプリングしデイジタル変換する機能を示す。
A2は入力電圧信号から事故相と健全相を識別す
るブロツクであつて、たとえば、相電圧が健全状
態よりも低下したものを事故相、逆に上昇したも
のを健全相とする。本発明は1線地絡を保護対象
とするものであり、A3は1線地絡事故の判定部
であり1相のみ事故のときに限り、A4以下の処
理を行う。 The block A1 in the figure shows a function of sampling input signal voltage and current and converting them into digital data.
A2 is a block that identifies a fault phase and a healthy phase from an input voltage signal; for example, a phase whose phase voltage has decreased below a normal state is considered a fault phase, and a phase whose voltage has increased is considered a healthy phase. The present invention is intended to protect against one-wire ground faults, and A3 is a one-wire ground fault determination section, which performs the processes following A4 only when only one phase is in fault.
もしもa相1線地絡をA2,A3で検出した場
合A4では回線間差電流I〓入力信号の正相分I〓1,
零相I〓0を求める演算も行う。 If a phase one line ground fault is detected in A2 and A3, in A4, the difference current between lines I〓positive phase component of input signal I〓 1 ,
Also performs calculation to obtain zero phase I〓 0 .
A5では事故前t0時の値I〓0(t0)を記憶する。 A5 stores the value I〓 0(t0) at time t0 before the accident.
A6では健全相(例b相)の循環電流成分I〓nb
を算出するブロツクで、線電流I〓bからA4で計算
した正相分電流I〓1のb相相当分a2I〓1を差引き、b
相の循環電流I〓nbを得る。 In A6, the circulating current component of the healthy phase (e.g. phase b) I〓 nb
In the block that calculates the line current I〓 b , subtract the b-phase equivalent of the positive sequence current I〓 1 calculated in A4, a 2 I〓 1 , and calculate b
Obtain the phase circulating current I〓 nb .
A7ではt0時のI〓nb(0o)を記憶する。 A7 stores I〓nb(0o) at time t0.
A8ではI〓nbの変化比K〓b(0o)を計算するブロツク
で、t0時に対して任意の時刻tn時の値の変化比
K〓b0o=I〓nb(to)/Inb(t0)
によつて求める。 A8 is a block that calculates the change ratio K〓 b(0o) of I〓 nb , and the change ratio of the value at any time tn to time t0 K〓 b0o = I〓 nb(to) /I nb(t0) Find it by.
A9では、A4で計算した零相電流I〓0の変化分
を算出するものでt0時区tn時のデータから
I〓R0=I〓0(to)−K〓b(0o)×I〓0(t0) ……(16)
を算出する。 In A9, the change in the zero-sequence current I〓 0 calculated in A4 is calculated from the data at time t0 in t0: I〓 R0 = I〓 0(to) −K〓 b(0o) ×I〓 0 (t0) ...(16) is calculated.
A10ではV〓0とI〓R0の位相比較を行ない、第2
図の動作域にあるか否かを判定し、その出力を5
0Gリレーの判定出力とする。 A10 compares the phase of V〓 0 and I〓 R0 , and the second
Determine whether or not it is in the operating range shown in the figure, and output the output to 5
This is the judgment output of the 0G relay.
以上の発明により、併架系統における誘導電流
の影響を取り除いた高感度の地絡回線選択ができ
る。 With the above invention, it is possible to select a ground fault line with high sensitivity by removing the influence of induced current in the parallel system.
また、3端子以上の多端子系統の保護にも適用
可能である。 It is also applicable to protection of multi-terminal systems with three or more terminals.
なお、本発明では零相循環電流の変化比K〓bを
a相事故時にb相を健全相として扱つたが、c
相、あるいはb相とc相の値それぞれを用い、場
合によつてはb相とc相の変化比を平均化して用
いてもよい。 In addition, in the present invention, the change ratio of the zero-sequence circulating current K〓 b is treated as the healthy phase when the a-phase fault occurs, but the c
The values of the phases or the b-phase and c-phase may be used, and in some cases, the change ratios of the b-phase and c-phase may be averaged and used.
また、K〓b(0o)はベクトル量を変換する係数であ
るが、誘導電流の位相変化が無視できる系統では
K〓b(0o)をスカラ量として
K〓b(0o)=|I〓nb(to)|/|Inb(t0)| ……(17)
として求めてもよい。 Also, K〓 b(0o) is a coefficient that converts the vector quantity, but in a system where the phase change of the induced current can be ignored,
It may also be obtained as K〓 b( 0o) = |I〓 nb(to) | / |I nb(t0) | ...(17) with K〓 b(0o) as a scalar quantity.
(17)式は絶対値計算なるため計算処理が容易にな
る利点がある。 Equation (17) has the advantage that the calculation process is easy because it is an absolute value calculation.
また、各相毎の回線間差電流において、零相電
流にかわり事故相の負荷電流(正相分)を除いた
あとの変化量について検出し、50Gの判定用電
流信号としてもよい。 Further, in the inter-line difference current for each phase, the amount of change after removing the load current (positive phase portion) of the fault phase instead of the zero-sequence current may be detected, and a 50G current signal for determination may be used.
第1図は本発明の実施例を説明するための全体
構成概念図を示す。第2図は回線選択リレーの位
相特性例を示す。第3図は先行しや断後の電流分
布を示す。第4図は第2段階しや断時の電流分布
を示す。第5図は本発明実施回路構成例を示す。
第6図は本発明の演算処理フロー図を示す。
51…デイジタル変換回路、52…正相分検出
フイルタ、53…循環電流検出回路、54…故障
相選別リレー、55…記憶回路、56…比較回
路、57…零相電流検出フイルタ、58…記憶回
路、59…乗算器、60…引算器、61…位相判
定回路。
FIG. 1 shows a conceptual diagram of the overall configuration for explaining an embodiment of the present invention. FIG. 2 shows an example of phase characteristics of a line selection relay. Figure 3 shows the current distribution before and after the break. FIG. 4 shows the current distribution during the second-stage shunt break. FIG. 5 shows an example of a circuit configuration for implementing the present invention.
FIG. 6 shows an arithmetic processing flow diagram of the present invention. 51... Digital conversion circuit, 52... Positive phase detection filter, 53... Circulating current detection circuit, 54... Fault phase selection relay, 55... Memory circuit, 56... Comparison circuit, 57... Zero phase current detection filter, 58... Memory circuit , 59... Multiplier, 60... Subtractor, 61... Phase determination circuit.
Claims (1)
統の一線地絡事故を検出する地絡回線選択リレー
において、健全相の回線間差電流より正相分を除
去して第1の電流信号を求め、その現在値とT時
間前の値の比とT時間前の零相電流との積を現在
の零相電流から差引いた信号を零相電流とし、こ
の零相電流と零相電圧とから地絡検出することを
特徴とする地絡回線選択リレー。1. In a ground fault line selection relay that uses zero-sequence current and zero-sequence voltage to detect single-line ground faults in parallel two-line systems, the first current signal is obtained by removing the positive phase component from the line difference current of healthy phases. The signal obtained by subtracting the product of the ratio of the current value and the value before T time and the zero-sequence current before T time from the current zero-sequence current is the zero-sequence current, and this zero-sequence current and zero-sequence voltage are A ground fault line selection relay characterized by detecting a ground fault.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3393082A JPS58151819A (en) | 1982-03-05 | 1982-03-05 | Ground-fault channel selecting relay |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3393082A JPS58151819A (en) | 1982-03-05 | 1982-03-05 | Ground-fault channel selecting relay |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58151819A JPS58151819A (en) | 1983-09-09 |
JPH0458257B2 true JPH0458257B2 (en) | 1992-09-17 |
Family
ID=12400228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3393082A Granted JPS58151819A (en) | 1982-03-05 | 1982-03-05 | Ground-fault channel selecting relay |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58151819A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103257304A (en) * | 2013-04-10 | 2013-08-21 | 昆明理工大学 | ANN fault line selection method through CWT coefficient RMS in zero-sequence current feature band |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55160929A (en) * | 1979-05-29 | 1980-12-15 | Meidensha Electric Mfg Co Ltd | Commonly supported circuit grounddfault protection relay |
-
1982
- 1982-03-05 JP JP3393082A patent/JPS58151819A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55160929A (en) * | 1979-05-29 | 1980-12-15 | Meidensha Electric Mfg Co Ltd | Commonly supported circuit grounddfault protection relay |
Also Published As
Publication number | Publication date |
---|---|
JPS58151819A (en) | 1983-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2540851C2 (en) | Method for selection of short-circuited phase and determination of short circuit type | |
US5453903A (en) | Sub-cycle digital distance relay | |
US4281386A (en) | Systems for detecting faults in electric power systems | |
EP0316204B1 (en) | Protective relay | |
US4329727A (en) | Directional power distance relay | |
EP0026620B1 (en) | Method and apparatus for identifying faults in electric power transmission systems | |
JP3808624B2 (en) | System protection relay device | |
US5566082A (en) | Method of detecting a fault section of busbar | |
KR20190110411A (en) | Out of order discrimination apparatus and protective relay apparatus | |
US5710542A (en) | Method of measuring the A.C. current in a conductor in an A.C. power transmission network | |
US3958153A (en) | Method and apparatus for fault detection in a three-phase electric network | |
US20230129666A1 (en) | Coordination of protective elements in an electric power system | |
JPH0458257B2 (en) | ||
JP3792893B2 (en) | Busbar protection relay device | |
KR102115243B1 (en) | Protection relay device | |
US4755903A (en) | Distance measuring relay for line faults | |
US7206177B2 (en) | Device and method for protection against overcurrents in an electrical energy distribution cabinet | |
US6154687A (en) | Modified cosine filters | |
JP2778148B2 (en) | Ground fault line selection relay for shared multi-line system | |
JP3370241B2 (en) | Ground fault line selective protection relaying method and device | |
JP3942137B2 (en) | Transmission line protection device | |
JPH08265957A (en) | Matrix operation type system protector | |
JP2866767B2 (en) | AC feeder circuit failure selection relay for railways | |
JP2577364B2 (en) | 1-line ground fault detection relay system | |
JPH09257854A (en) | Protection relay device |