JP2686191B2 - Direction distance relay - Google Patents

Direction distance relay

Info

Publication number
JP2686191B2
JP2686191B2 JP19483391A JP19483391A JP2686191B2 JP 2686191 B2 JP2686191 B2 JP 2686191B2 JP 19483391 A JP19483391 A JP 19483391A JP 19483391 A JP19483391 A JP 19483391A JP 2686191 B2 JP2686191 B2 JP 2686191B2
Authority
JP
Japan
Prior art keywords
output
voltage
input
direction distance
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19483391A
Other languages
Japanese (ja)
Other versions
JPH0522844A (en
Inventor
康明 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19483391A priority Critical patent/JP2686191B2/en
Publication of JPH0522844A publication Critical patent/JPH0522844A/en
Application granted granted Critical
Publication of JP2686191B2 publication Critical patent/JP2686191B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電力系統における送配
電線の保護に用いられる方向距離継電装置(以下単にリ
レーと称す)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a directional distance relay device (hereinafter simply referred to as a relay) used for protecting transmission and distribution lines in a power system.

【0002】[0002]

【従来の技術】従来のリレー動作原理ブロック図例を図
2に示す。図2においてEは被保護系統の電圧、Iは前
記系統に流れる電流、TEは電圧入力トランス、TCは
電流入力トランス、FFE,FCは基本波(当該電力系
統の商用周波数、例えば50Hz)を抽出し基本波以外
の成分を除去するフィルタ、ADE,ADCはアナログ
ディジタル変換器。
2. Description of the Related Art An example of a conventional relay operation principle block diagram is shown in FIG. In FIG. 2, E is the voltage of the protected system, I is the current flowing in the system, TE is the voltage input transformer, TC is the current input transformer, and FFE and FC are the fundamental wave (commercial frequency of the power system, for example, 50 Hz). The filters for removing components other than the fundamental wave, ADE and ADC are analog-digital converters.

【0003】ZSETは電流フィルタFCの出力と整定
インピーダンスZの積ZIを演算する手段、Mはメモリ
ー手段で至近点故障発生で入力電圧Eがゼロになっても
所定の時間(例えば120ms)故障発生以前の電圧を
記憶する手段、DZは下記の二つの電圧ベクトルV1,
V2の位相差を演算することにより故障点の方向及び距
離を演算する方向距離演算手段で、以下の方法で方向及
び距離を演算する。
ZSET is a means for calculating a product ZI of the output of the current filter FC and the settling impedance Z, and M is a memory means, and a failure occurs for a predetermined time (for example, 120 ms) even if the input voltage E becomes zero due to a near-point failure. Means for storing the previous voltage, DZ is the following two voltage vectors V1,
The direction and distance calculation means calculates the direction and distance of the failure point by calculating the phase difference of V2, and calculates the direction and distance by the following method.

【0004】 V1=EM (EMは上記メモリー手段Mの出力) V2=ZI−E の積V1・V2=V1(t−T).V2(t−T)+V1(t)V2(t) =V1・V2・COSθ 従って、積V1・V2≧0ならば二つのベクトルV1,
V2の位相差θ≦±90°と判断し出力有り積V1・V
2≦0ならば二つのベクトルV1,V2の位相差θ≧9
0°と判断し出力無しの判別をする。Lは電流入力Iが
所定値以上の時出力する過電流手段でこのリレーの動作
電流感度を決定する。AN1はAND回路である。
V1 = EM (EM is the output of the memory means M) V2 = ZI-E product V1 * V2 = V1 (t-T). V2 (t−T) + V1 (t) V2 (t) = V1 · V2 · COSθ Therefore, if the product V1 · V2 ≧ 0, then two vectors V1,
It is judged that the phase difference of V2 is θ ≦ ± 90 °, and the product with output V1 · V
If 2 ≦ 0, the phase difference θ ≧ 9 between the two vectors V1 and V2
Judge as 0 ° and determine no output. L is an overcurrent means that outputs when the current input I is above a predetermined value, and determines the operating current sensitivity of this relay. AN1 is an AND circuit.

【0005】この様に構成された従来のリレーの動作
を、図3の電力系統図、図4の動作原理ベクトル図によ
り説明する。図3において、PA,PBは電源、TLは
被保護送電線、PDはコンデンサ型電圧変成器、CTは
変流器、RYはリレー、F1,F2,F3,F4は各故
障点を示す。図4において、E1,E2,E3,E4は
各故障点F1,F2,F3,F4に対応する入力電圧E
1M,E2M,E3M,E4Mは入力電圧E1,E2,
E3,E4からメモリー手段Mにより加工されたメモリ
ー電圧である。
The operation of the conventional relay thus configured will be described with reference to the power system diagram of FIG. 3 and the operation principle vector diagram of FIG. In FIG. 3, PA and PB are power supplies, TL is a protected transmission line, PD is a capacitor type voltage transformer, CT is a current transformer, RY is a relay, and F1, F2, F3, and F4 are failure points. In FIG. 4, E1, E2, E3 and E4 are input voltages E corresponding to the respective fault points F1, F2, F3 and F4.
1M, E2M, E3M, E4M are input voltages E1, E2,
It is a memory voltage processed by the memory means M from E3 and E4.

【0006】故障点F1.前方外部故障の場合 V101=E1M V201=ZI−E1 位相差θ1>90°で方向距離演算手段DZが不動作Failure point F1. In the case of front external failure V101 = E1M V201 = ZI-E1 The phase distance θ1> 90 ° and the direction distance calculating means DZ does not operate.

【0007】故障点F2.限界点故障の場合 V102=E2M V202=ZI−E2 位相差θ2=90°で方向距離演算手段DZが動作限界 この時過電流手段Lが動作している条件でAND回路A
N1から出力される。
Failure point F2. In case of limit point failure V102 = E2M V202 = ZI-E2 Operation limit of direction distance calculation means DZ with phase difference θ2 = 90 ° AND circuit A under the condition that overcurrent means L is operating at this time
It is output from N1.

【0008】故障点F3.内部故障の場合 V103=E3M V203=ZI−E3 位相差θ3<90°で方向距離演算手段DZが動作 この時過電流手段Lが動作している条件でAND回路A
N1から出力される。
Failure point F3. In case of internal failure V103 = E3M V203 = ZI-E3 The direction distance calculation means DZ operates with the phase difference θ3 <90 ° At this time, the AND circuit A is operated under the condition that the overcurrent means L operates.
It is output from N1.

【0009】故障点F4.後方至近点外部故障(故障電
圧E4≒0)の場合 V104=E4M V204=ZI−E4 故障電圧E4≒0であるが前記のメモリー手段Mにより
所定時間保持されているので方向距離演算手段DZによ
り方向判別も可能である。 位相差θ4≒180°>90°で方向距離演算手段DZ
が不動作
Failure point F4. In the case of a rear close point external failure (fault voltage E4≈0) V104 = E4M V204 = ZI−E4 Although the fault voltage E4≈0, the direction is calculated by the direction distance calculation means DZ because the memory means M holds it for a predetermined time. Discrimination is also possible. Direction difference calculation means DZ with phase difference θ4≈180 °> 90 °
Is not working

【0010】上記の説明から明らかなようにこのリレー
の特性はインピーダンスZIを直径とする円特性(モー
特性)として表され二つの電圧ベクトルV1(上記V1
01,V102,V103,V104),V2(上記V
201,V202,V203,V204)の位相差θ<
±90°及び過電流手段Lが出力有りの条件で動作し、
うでない時不動作となるものである。なお、過電流手
段Lの設定は故障検出感度をできるだけ高感度にするた
め例えば定格電流の5%即ちCTの2次定格電流が5A
の場合は0.25A程度である。
As is apparent from the above description, the characteristic of this relay is represented as a circular characteristic (Moh characteristic) having the impedance ZI as a diameter, and two voltage vectors V1 (V1 above).
01, V102, V103, V104), V2 (V above)
201, V202, V203, V204) phase difference θ <
Operates under the condition of ± 90 ° and output of overcurrent means L ,
Its and serves as a non-operating time not you. In order to make the fault detection sensitivity as high as possible, the setting of the overcurrent means L is, for example, 5% of the rated current, that is, the secondary rated current of CT is 5A.
In the case of, it is about 0.25A.

【0011】[0011]

【発明が解決しようとする課題】図5に故障点F4後方
至近点外部故障発生時の各部の入力波形例を示す。系統
の電圧がコンデンサ型電圧変成器PDを通して得られる
場合(一般に上位系送電線ではほとんどの場合コンデン
サ型電圧変成器PDが使用されている。)コンデンサ型
電圧変成器PDののトランジェット現象で至近点故障発
生直後に故障発生位相によって電圧入力Eに図5のED
のような直流分が含まれることが知られている。電圧入
力E、または電流入力Iに基本波以外の周波数成分すな
わち直流成分、高調波成分が含まれた場合は、フィルタ
FE,FC及び方向距離演算手段DZ内に設けられたデ
ィジタルフィルタにより概ね除去される。
FIG. 5 shows an example of the input waveform of each part at the time of an external failure at the failure point F4 rear near point. When the voltage of the system is obtained through the capacitor type voltage transformer PD (generally, the upper type transmission line generally uses the capacitor type voltage transformer PD.) It is very close to the transient phenomenon of the capacitor type voltage transformer PD. ED in FIG. 5 to failure position phase depending on the voltage input E immediately after the point failure
It is known that a DC component such as When the voltage input E or the current input I contains a frequency component other than the fundamental wave, that is, a DC component and a harmonic component, they are almost removed by the filters FE and FC and the digital filter provided in the direction distance calculation means DZ. It

【0012】しかし図5のEDのような時間的に減衰す
る直流分(時間的に全く変化しない直流ではない。)を
完全に除去することは困難で、残った直流分EDFがベ
クトルV2=ZI−EDFとして方向距離演算手段DZ
に入力されると、従来のリレーは後方至近点外部故障
(故障点F4)にもかかわらず基本波成分を演算の対象
とする方向距離演算手段DZが方向判別不能となり不要
動作してしまうという大きな欠点があった。
However, it is difficult to completely remove a direct current component that decays in time (not a direct current that does not change at all) like the ED of FIG. 5, and the remaining direct current component EDF is a vector V2 = ZI. -Direction distance calculation means DZ as EDF
If the input is input to the conventional relay, the directional distance calculating means DZ for calculating the fundamental wave component cannot perform the direction determination despite the external failure at the rear close point (fault point F4), and the relay operates unnecessarily. There was a flaw.

【0013】この発明は、上記不具合点を解決するため
になされたもので、後方至近点外部故障で基本波以外の
直流分が含まれる場合でも不要動作しない信頼度の高い
方向距離継電装置を提供することを目的とする。
The present invention has been made to solve the above problems, and provides a highly reliable directional distance relay device which does not perform unnecessary operation even when a direct current component other than the fundamental wave is included due to an external failure at the rear closest point. The purpose is to provide.

【0014】[0014]

【課題を解決するための手段】この発明に係る方向距離
継電装置は、電力系統の電圧を導入する電圧入力トラン
スと、上記電力系統の電流を導入する電流入力トランス
と、該導入した電流入力と整定インピーダンスの積を演
算する演算手段と、上記入力電圧と演算された積値を用
いて故障点までの方向及び距離を演算する方向距離演算
手段と、該方向距離演算手段からの出力信号を一定時間
遅延させて出力する遅延手段と、上記演算された積値が
所定値以上であることが検出された時に出力信号を出力
する電圧検出手段と、上記方向距離演算手段からの出力
信号を入力時に、上記電圧検出手段より出力信号を入力
すると上記方向距離演算手段からの出力信号を上記遅延
手段を経由することなく即座に出力するアンドゲート回
路と、上記電圧検出手段より出力信号を入力時に、上記
遅延手段よりの出力あるいは上記遅延手段に先立って上
記アンドゲート回路より出された出力を、装置出力とし
て出力するオアーゲート回路とを設けたものである。
SUMMARY OF THE INVENTION A directional distance relay device according to the present invention is a voltage input transformer for introducing a voltage of a power system, a current input transformer for introducing a current of the power system, and the introduced current input. And a settling impedance, a calculation means for calculating a product of the input voltage and the directional distance calculation means for calculating a direction and a distance to the failure point using the calculated product value, and an output signal from the directional distance calculation means. A certain time
Delay means for delaying and outputting, and outputting an output signal when it is detected that the calculated product value is a predetermined value or more
A voltage detection means, the output from the direction distance calculating means
When inputting a signal, input the output signal from the voltage detection means
Then, the output signal from the direction distance calculation means is delayed by the delay
AND gate circuit for immediate output without passing through the means, and when the output signal is input from the voltage detecting means,
The output from the delay means or the
The output from the AND gate circuit is used as the device output.
And an OR gate circuit for outputting the output .

【0015】[0015]

【作用】この発明によれば、電力系統より導入された入
力電圧に混入する直流電圧成分の影響により積値が所定
値以下の場合は、方向距離演算手段からの出力は、該出
力に含まれる直流成分が減衰するのに等しい時間設定を
行った遅延手段を通して外部へ出力するため、混入した
直流成分によって事故点方向判別に不具合が生じること
がない。
According to the present invention, when the product value is equal to or less than the predetermined value due to the influence of the DC voltage component mixed in the input voltage introduced from the power system, the output from the direction distance calculating means is included in the output. Since the direct current component is output to the outside through the delay means that is set to the same time as the attenuation, the mixed direct current component does not cause a trouble in the direction determination of the accident point.

【0016】[0016]

【実施例】先ず、本発明の動作を説明する前に、本発明
の概要を説明するならば、図5から明らかなように電流
入力Iと整定インピーダンスZの積ZIに比べて入力電
圧Eに含まれる直流成分EDが大きい時ほど直流分のE
Dの影響が大きく誤動作の可能性が高くなる。
First, before explaining the operation of the present invention, the outline of the present invention will be described. As apparent from FIG. 5, the input voltage E is compared with the product ZI of the current input I and the settling impedance Z. The larger the included DC component ED, the E of the DC component
The influence of D is large and the possibility of malfunction increases.

【0017】即ち、仮に直流成分EDを固定して考えれ
ば、積ZIが小さいときが問題となる。この発明は、こ
の点に着目したもので積ZIが所定値以下の時に限り、
直流分EDが問題のないレベルまで減衰してしまうまで
リレーの動作時間を必要最小限遅らせることである。
That is, assuming that the DC component ED is fixed, a problem occurs when the product ZI is small. The present invention focuses on this point, and only when the product ZI is less than or equal to a predetermined value,
This is to delay the relay operation time to the minimum necessary until the DC component ED is attenuated to a level that does not cause a problem.

【0018】以下、この発明の動作を図1について説明
する。図において、Hは電流入力Iと整定インピーダン
スZの積ZIが所定値以上の時出力する電圧検出手段で
例えば直流分EDの最大値が2Vの場合は設定を4V程
度にする。Tは積ZIが所定値より小さい場合のための
遅延手段で直流分EDの減衰時間よりも長い時間、例え
ば60msに設定、OR1はオア回路、AN2はアンド
回路で電圧検出手段Hと方向距離演算要素DZの両方の
出力有りで遅延手段Tをバイパスしてオア回路OR1を
通して出力するようになっている。即ち、積ZIが4V
以上の故障は方向距離演算要素DZの出力を遅延手段T
を通さずに直接出力する。
The operation of the present invention will be described below with reference to FIG. In Figure, H is the product ZI current input I and settling impedance Z maximum value of, for example, a DC component ED to that electrostatic pressure detecting means outputs when the predetermined value or more in the case of 2V to set to approximately 4V. T is a delay means for the case where the product ZI is smaller than a predetermined value, and is set to a time longer than the decay time of the direct current component ED, for example, 60 ms. With both outputs of the element DZ, the delay means T is bypassed and output through the OR circuit OR1. That is, the product ZI is 4V
For the above failures, the output of the direction distance calculation element DZ is delayed by the delay means T.
Output directly without passing.

【0019】ここで直流分EDの最大値が2Vの場合に
電圧検出手段Hの設定を4V程度に設定する考え方は、
フィルタFEの入力直流分EDが2Vの場合、フィルタ
FE及び方向距離演算手段DZ内に設けられたディジタ
ルフィルタ通過後の直流分はかなり減衰して、例えば1
/10、即ちEDF=0.2V程度で積ZIが4V以上
あればEDF=0.2V≪ZI=4Vで方向距離演算手
段DZの方向判別におよぼす影響は無視できるというこ
とからである。
Here, the idea of setting the voltage detecting means H to about 4V when the maximum value of the DC component ED is 2V is as follows.
When the input DC component ED of the filter FE is 2V, the DC component after passing through the digital filter provided in the filter FE and the direction distance calculating means DZ is considerably attenuated, for example, 1
/ 10, that is, if the product ZI is 4 V or more at EDF = 0.2 V and EDF = 0.2 V << ZI = 4 V , the influence on the direction determination of the direction distance calculation means DZ can be ignored.

【0020】このように構成されたリレーにおいては、
後方至近点外部故障で電圧入力に基本波以外に直流分が
含まれても、積ZIの大きさに関せず不要動作すること
はない。 また前方内部故障でZI≧4Vの場合 上記の遅延手段Tは関係ないので方向距離演算手段DZ
の本来の動作時間のみの高速度(例えば30ms)でリ
レーが動作する。
In the relay thus constructed,
Be included DC component to at voltage input rearward closest point outside the failure other than the fundamental wave, it is not to be unnecessary operation without Kanse to the size of the product ZI. Further, in the case of ZI ≧ 4V due to an internal failure in the front direction, the above-mentioned delay means T is irrelevant, so the direction distance calculation means DZ
The relay operates at a high speed (for example, 30 ms) only for the original operation time of.

【0021】さらに前方内部故障でZI≦4Vの場合 ZI≦4Vの場合は、前方、後方故障の如何に関せず上
記の遅延手段T=60msが方向距離演算手段DZの出
力に接続されるので動作時間が60ms遅れることにな
る(全体として30ms+60ms=90ms)。しか
し、ZI≦4Vの故障は以下に示すように故障電流が小
さいので(下記のように定格電流以下の故障電流)この
程度の動作時間遅れは電力系統の機器の損傷防止また系
統安定度確保上からも全く問題がないと言える。
Further, in the case of ZI≤4V due to the internal front failure: In the case of ZI≤4V, the delay means T = 60 ms is connected to the output of the direction distance calculation means DZ regardless of the forward or backward failure. The operation time is delayed by 60 ms (30 ms + 60 ms = 90 ms as a whole). However, since a fault current of ZI ≦ 4V has a small fault current as shown below (fault current below the rated current as shown below), this kind of operation time delay is important for preventing damage to equipment in the power system and ensuring system stability. It can be said that there is no problem at all.

【0022】ZI=4Vの時の整定インピーダンスZと
入力電流Iの関係(CT2次電流5) Zオーム 1 2 4 8 16 IA 4 2 1 0.5 0.25
Relation between settling impedance Z and input current I when ZI = 4V (CT secondary current 5) Z ohm 1 2 4 8 16 IA 4 2 1 0.5 0.25

【0023】以上の説明ではこの発明を円特性(モー特
性)の方向距離継電装置に適用する場合について述べた
が、他の特性の継電装置、例えば矩形特性方向距離継電
装置等でも有効なことは言うまでもない。
In the above description, the present invention is applied to a directional distance relay having a circular characteristic (Moh characteristic), but it is also effective for a relay having another characteristic, such as a rectangular characteristic directional distance relay. Needless to say.

【0024】[0024]

【発明の効果】この発明は、以上説明したように整定イ
ンピーダンスと入力電流の積が所定値以下の時のみ若干
動作時間を遅らすと言う方法により他の特性を犠牲にす
ることなく、保護区間の後方至近点外部故障でコンデン
サ型変成器PDから電圧入力として基本波以外の直流分
が入力される場合でも不要動作することのない信頼度の
高い方向距離継電装置が得られる効果がある。
As described above, according to the present invention, the operation time is slightly delayed only when the product of the settling impedance and the input current is less than a predetermined value, without sacrificing other characteristics. Even if a direct current component other than the fundamental wave is input as the voltage input from the capacitor-type transformer PD due to an external failure at the rear near point, there is an effect that a highly reliable directional distance relay device that does not perform unnecessary operation can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例を示す動作原理ブロック図で
ある。
FIG. 1 is a block diagram of an operation principle showing an embodiment of the present invention.

【図2】従来のリレー(方向距離継電装置)を示す動作
原理ブロック図である。
FIG. 2 is a block diagram of an operation principle showing a conventional relay (directional distance relay device).

【図3】リレー(方向距離継電装置)が適用された電力
系統図である。
FIG. 3 is a power system diagram to which a relay (direction distance relay device) is applied.

【図4】リレー(方向距離継電装置)の動作原理ベクト
ル図である。
FIG. 4 is a vector diagram of an operating principle of a relay (direction distance relay device).

【図5】故障点F4故障発生時の各部の入力波形例を示
す波形図である。
FIG. 5 is a waveform diagram showing an input waveform example of each unit when a failure at a failure point F4 occurs.

【符号の説明】[Explanation of symbols]

E 被保護系統の電圧 I 被保護系統の電流 TE 電圧入力トランス TC 電流入力トランス ZSET ZIを演算する手段 M メモリー演算をする手段 DZ 方向距離演算手段 H 電圧検出手段 T 遅延手段 RY リレー方向距離継電装置 E Voltage of protected system I Current of protected system TE Voltage input transformer TC Current input transformer ZSET Means for calculating ZI M Means for calculating memory DZ direction distance calculating means H Voltage detecting means T Delay means RY Relay direction Distance relay apparatus

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電力系統の電圧を導入する電圧入力トラ
ンスと、上記電力系統の電流を導入する電流入力トラン
スと、該導入した電流入力と整定インピーダンスの積を
演算する演算手段と、上記入力電圧と演算された積値を
用いて故障点までの方向及び距離を演算する方向距離演
算手段と、該方向距離演算手段からの出力信号を一定時
間遅延させて出力する遅延手段と、上記演算された積値
が所定値以上であることが検出された時に出力信号を出
力する電圧検出手段と、上記方向距離演算手段からの出
力信号を入力時に、上記電圧検出手段より出力信号を入
力すると上記方向距離演算手段からの出力信号を上記遅
延手段を経由することなく即座に出力するアンドゲート
回路と、上記遅延手段よりの出力、あるいは上記電圧検
出手段より出力信号を入力時に上記遅延手段に先立って
上記アンドゲート回路より出された出力を、装置出力と
して出力するオアーゲート回路とを備えたことを特徴と
する方向距離継電装置。
1. A voltage input transformer for introducing a voltage of a power system, a current input transformer for introducing a current of the power system, a calculating means for calculating a product of the introduced current input and a settling impedance, and the input voltage. constant time and direction distance calculating means for calculating the direction and distance to the fault point, the output signal from the direction distance calculating means using been product value calculation and
And a delay means for delaying the output and outputting an output signal when it is detected that the calculated product value is equal to or more than a predetermined value.
A voltage detecting means for force out from the direction distance calculating means
When inputting the input signal, input the output signal from the above voltage detection means.
When the force is applied, the output signal from the direction distance calculation means is delayed.
AND gate that outputs immediately without going through the delay means
Output from the circuit and the delay means, or the voltage detection
Before inputting the output signal from the output means, before the delay means
The output from the AND gate circuit is referred to as the device output.
And an OR gate circuit that outputs the directional distance relay device.
JP19483391A 1991-07-09 1991-07-09 Direction distance relay Expired - Fee Related JP2686191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19483391A JP2686191B2 (en) 1991-07-09 1991-07-09 Direction distance relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19483391A JP2686191B2 (en) 1991-07-09 1991-07-09 Direction distance relay

Publications (2)

Publication Number Publication Date
JPH0522844A JPH0522844A (en) 1993-01-29
JP2686191B2 true JP2686191B2 (en) 1997-12-08

Family

ID=16331025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19483391A Expired - Fee Related JP2686191B2 (en) 1991-07-09 1991-07-09 Direction distance relay

Country Status (1)

Country Link
JP (1) JP2686191B2 (en)

Also Published As

Publication number Publication date
JPH0522844A (en) 1993-01-29

Similar Documents

Publication Publication Date Title
EP0098721A2 (en) Differential protection relay device
KR20030019113A (en) Protective relay system
US4560922A (en) Method for determining the direction of the origin of a disturbance affecting an element of an electrical energy transfer network
GB2050093A (en) Digital distance relay system
EP0657991B1 (en) Signal detecting circuit for digital controller
EP0641496B1 (en) Method and device for preventing understabilization of longitudinal differential protection in case of external fault and current transformer saturation
US4450497A (en) Ultra-high-speed relay
JP2686191B2 (en) Direction distance relay
US3976920A (en) Filtering arrangement for relay protection devices
US4409636A (en) Device for detecting faulty phases in a multi-phase electrical network
KR102249379B1 (en) Leakage alarm relay using detection of voltage variation of electric line for motor and its relay system
JPS6356121A (en) Ratio differential relay
EP0161403B1 (en) Protective relay for a power system
EP0087700A1 (en) System for detecting a predetermined phase relation between two input electrical quantities detected from an electric power system
JP3128584B2 (en) Ground fault line detection method and ground fault line cutoff method
JP3656824B2 (en) Ground fault direction relay device
JP3378418B2 (en) Leakage protection method
JPH0438118A (en) Variation width detector
JPH06313780A (en) Detecting device of ground fault
JP3257143B2 (en) How to extend the dynamic range of protection relays
SU972624A1 (en) Device for monitoring absence of losing in phase disconnected in cycle of single-phase reconnection of power transmission line
JP2002118954A (en) Directional ground relay
JP2642349B2 (en) Transmission line protection relay
JP3338250B2 (en) Protective relay
JPH03270633A (en) Ground relay device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370