JP2005167429A - Current/voltage conversion circuit - Google Patents

Current/voltage conversion circuit Download PDF

Info

Publication number
JP2005167429A
JP2005167429A JP2003400928A JP2003400928A JP2005167429A JP 2005167429 A JP2005167429 A JP 2005167429A JP 2003400928 A JP2003400928 A JP 2003400928A JP 2003400928 A JP2003400928 A JP 2003400928A JP 2005167429 A JP2005167429 A JP 2005167429A
Authority
JP
Japan
Prior art keywords
current
voltage
circuit
voltage conversion
conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003400928A
Other languages
Japanese (ja)
Other versions
JP4184245B2 (en
Inventor
Fujio Ozawa
富士男 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003400928A priority Critical patent/JP4184245B2/en
Publication of JP2005167429A publication Critical patent/JP2005167429A/en
Application granted granted Critical
Publication of JP4184245B2 publication Critical patent/JP4184245B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a current/voltage conversion circuit having a large dynamic range and exhibiting high accuracy and resolution even for a current varying at a high rate. <P>SOLUTION: In a circuit provided with a current bypass passage by proving I/V conversion resistors for current/voltage conversion in series in the order of resistance for required number of ranges such that each I/V conversion resistor can be turned on/off by a switching element, a current is bypassed for the I/V conversion resistor passing a current lower than a range when a current exceeding a set level in that range flows through that I/V conversion resistor and the current of the I/V conversion resistor lower than that range is brought to a rated level or below. Voltage across each I/V conversion resistor is detected by means of a differential amplifier and then operated through an operating circuit thus detecting the current level. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ダイナミックレンジが大きく、かつ高速に変化する電流でも精度良く電圧に変換できる電流/電圧変換回路に関するものである。   The present invention relates to a current / voltage conversion circuit having a large dynamic range and capable of converting a current changing at high speed into a voltage with high accuracy.

電流の大きさ、または電流に関連した電気量や電力量等のような物理量を測定する場合、電流を電圧に変換するためにI/V変換抵抗を用いる。従来は対象とする電流の大きさに応じて抵抗値の異なる数種類の電流/電圧変換抵抗を、スイッチまたはリレーまたは半導体等のスイッチング素子で切り替えて測定していた。これは一般的にはレンジ切り替えと言われる。   When measuring a physical quantity such as the magnitude of current or the amount of electricity or power related to the current, an I / V conversion resistor is used to convert the current into a voltage. Conventionally, several types of current / voltage conversion resistors having different resistance values depending on the magnitude of the target current have been measured by switching with a switching element such as a switch, a relay, or a semiconductor. This is generally referred to as range switching.

図2は一般的に知られている、演算増幅器1を用いた電流/電圧変換回路である。I/V変換抵抗3の抵抗値をRとすると、入力電流Iに対して出力電圧Vは
V=−I・R
になる。従って、入力電流Iは
I=−V/R
で求められる。この時、演算増幅器1がリニアに増幅作用をしている間は+、−の入力端子間電圧eはほぼ0Vになる。
FIG. 2 shows a generally known current / voltage conversion circuit using an operational amplifier 1. When the resistance value of the I / V conversion resistor 3 is R, the output voltage V is V = −I · R with respect to the input current I.
become. Therefore, the input current I is I = −V / R
Is required. At this time, the voltage e between the input terminals of + and − is substantially 0 V while the operational amplifier 1 is linearly amplifying.

図3は図2の電流/電圧変換回路を、測定する電流の大きさに応じてレンジ切り替えを行なえるように、異なる値R1、R2、R3のI/V変換抵抗3、4、5をそれぞれ35、36、37のスイッチ、またはリレー接点、または半導体等によるスイッチング素子SW1、SW2、SW3で切り替えるものである。   FIG. 3 shows I / V conversion resistors 3, 4, and 5 having different values R 1, R 2, and R 3, respectively, so that the current / voltage conversion circuit shown in FIG. 2 can be switched according to the magnitude of the current to be measured. Switching is performed by switches 35, 36, and 37, relay contacts, or switching elements SW1, SW2, and SW3 made of a semiconductor or the like.

図4は演算増幅器を用いずに、図3と同様に、測定する電流の大きさに応じてレンジ切り替えを行なえるようにした電流/電圧変換回路である。   FIG. 4 shows a current / voltage conversion circuit in which range switching can be performed according to the magnitude of the current to be measured without using an operational amplifier, as in FIG.

SW1、SW2、SW3の何れか1つをオンにして、この時のI/V変換抵抗の抵抗値をRとすると、入力電流Iに対して出力電圧Vは
V=I・R
になる。従って、入力電流Iは
I=V/R
で求められる。
When any one of SW1, SW2, and SW3 is turned on and the resistance value of the I / V conversion resistor at this time is R, the output voltage V is V = I · R with respect to the input current I.
become. Therefore, the input current I is I = V / R
Is required.

ところが以上のスイッチ等によるレンジ切り替えは、比較的動作スピードが遅く、且つ電流回路を一瞬でもオープンにしないために、I/V変換抵抗切り替え時には、切り替え前のI/V変換抵抗と切り替え後のI/V変換抵抗とをオーバーラップさせる必要があるので、その制御が煩雑になり、かつその間の測定値には誤差が入るという欠点があった。   However, the range switching by the above switches, etc. is relatively slow and the current circuit is not opened even for a moment. Therefore, when switching the I / V conversion resistor, the I / V conversion resistor before switching and the I after switching are switched. Since it is necessary to overlap with the / V conversion resistor, there is a drawback that the control becomes complicated and an error occurs in the measured value during that time.

以上の理由から、ダイナミックレンジが大きく、かつ高速に変化する電流についてはレンジ切り替えは困難であり、電流の最大値に対応するレンジで測定していた。従って、電流値が小さい場合のS/N比、分解能が悪く、測定精度を落としていた。   For the above reasons, it is difficult to switch the range of a current having a large dynamic range and changing at high speed, and the current is measured in a range corresponding to the maximum value of the current. Therefore, when the current value is small, the S / N ratio and resolution are poor and the measurement accuracy is lowered.

また、これらの欠点を解決する方法が特許文献1で公開されているが、回路の電力損失が大きいという欠点もあった。
特開2002−098718広報 特願2002−039917
Further, although a method for solving these drawbacks is disclosed in Patent Document 1, there is a disadvantage that the power loss of the circuit is large.
JP 2002-098718 PR Japanese Patent Application No. 2002-039917

解決しようとする問題点は、交流やパルス電流のように、ダイナミックレンジが大きく、かつ高速に変化する電流入力でも精度と分解能高く、かつ回路の電力損失が少ない電流/電圧変換を可能にしようとするものである。   The problem to be solved is to enable current / voltage conversion, such as AC and pulse current, which has a large dynamic range and high-speed current input with high accuracy and resolution and low circuit power loss. To do.

請求項1に関わる電流/電圧変換回路は、電流入力に対して、電流/電圧変換の為のI/V変換抵抗を必要レンジ数分、抵抗値の大きさの順番に直列に設け、各I/V変換抵抗間をスイッチング素子でオン−オフ可能にして、電流のバイパス経路を設けた回路において、当該レンジのI/V変換抵抗にそのレンジにおける設定値以上の電流が流れたら当該レンジ以下のレンジのI/V変換抵抗に対して電流をバイパスさせて当該レンジ以下のI/V変換抵抗の電流をゼロまたは小さくするようにし、差動増幅器で各I/V変換抵抗の両端の電圧を検出した後、演算回路で演算して電流値を検出することを特徴とするものである。   In the current / voltage conversion circuit according to claim 1, I / V conversion resistors for current / voltage conversion are provided in series in the order of the resistance value for the number of necessary ranges with respect to the current input. In a circuit in which a switching element can be turned on / off between the / V conversion resistors and a current bypass path is provided, if a current equal to or higher than the set value in the range flows through the I / V conversion resistor of the range, By bypassing the current to the I / V conversion resistor of the range, the current of the I / V conversion resistor below the range is made zero or small, and the voltage across each I / V conversion resistor is detected by the differential amplifier After that, the current value is detected by calculating with an arithmetic circuit.

請求項2に関わる電流/電圧変換回路は、請求項1の電流/電圧変換回路と電流/電圧変換用の演算増幅器を組み合わせて入力インピーダンスが小さく、ダイナミックレンジが広いことを特徴とするものである。   A current / voltage conversion circuit according to claim 2 is characterized in that the current / voltage conversion circuit according to claim 1 and the operational amplifier for current / voltage conversion are combined to reduce input impedance and wide dynamic range. .

請求項3に関わる電流/電圧変換回路は、請求項2の電流/電圧変換回路と電流/電圧変換用の演算増幅器を組み合わせた電流/電圧変換回路において、I/V変換抵抗間をスイッチング素子のオン−オフで電流をバイパスさせる代わりに当該レンジの大きさの電流を駆動できる電流ブースタと、これの出力部にダイオード、入力部にボルティージフォロワ構成にした演算増幅器とスイッチ回路を設けて、大きな電流のオン−オフ制御を容易にし、且つオフ時の漏れ電流を小さくして誤差を小さくし、電力損失を小さくしたことを特徴とするものである。   According to a third aspect of the present invention, there is provided a current / voltage conversion circuit comprising a combination of the current / voltage conversion circuit of claim 2 and an operational amplifier for current / voltage conversion. A current booster that can drive a current of the size of the range instead of bypassing the current on and off, a diode at the output, and an operational amplifier and switch circuit with a voltage follower configuration at the input, It is characterized by facilitating the on / off control of the current, reducing the leakage current at the time of turning off, reducing the error, and reducing the power loss.

請求項4に関わる電流/電圧変換回路は、請求項3の電流/電圧変換回路において、電流ブースタの入力部と電流/電圧変換用の演算増幅器の出力との間に電流/電圧特性が非線形の素子を設けて、レンジ切り替え時の電流/電圧変換用の演算増幅器のオーバーシュートやアンダーシュートを小さくして誤差を小さくすることを特徴とするものである。   The current / voltage conversion circuit according to claim 4 is the current / voltage conversion circuit according to claim 3, wherein the current / voltage characteristic is nonlinear between the input portion of the current booster and the output of the operational amplifier for current / voltage conversion. An element is provided to reduce the error by reducing the overshoot and undershoot of the operational amplifier for current / voltage conversion at the time of range switching.

本発明の電流/電圧変換回路は電流回路をオープンにすることが無く、その為のI/V変換抵抗のオーバーラップ制御が不要の為ダイナミックレンジが大きく高速にレンジ切り替えが可能であるという利点がある。   The current / voltage conversion circuit of the present invention does not open the current circuit, and does not require overlap control of the I / V conversion resistor. Therefore, there is an advantage that the dynamic range is large and the range can be switched at high speed. is there.

また、不要なI/V変換抵抗をバイパスするのでI/V変換抵抗またはスイッチ回路の電力ロスが少ないという利点もある。   Further, since an unnecessary I / V conversion resistor is bypassed, there is an advantage that power loss of the I / V conversion resistor or the switch circuit is small.

電力損失が小さく、入力インピーダンスが小さく、高速で切り替え誤差の少ないレンジ切り替え機能を持つ、大きなダイナミックレンジの、電流の入力及び出力の両方向に容易に対応可能な電流/電圧変換回路を実現した。   We realized a large dynamic range current / voltage conversion circuit that has low power loss, low input impedance, high speed and low switching error, and can easily handle both current input and output directions.

図5は、本発明の請求項1を用いた、電流/電圧変換回路の実施例である。
3、4、5は抵抗値がそれぞれR1、R2、R3のI/V変換抵抗であり、抵抗値の大きさはR1>R2>R3であり、R1が最小レンジ、R2が中レンジ、R3が最大レンジに対応する。
説明の為に最小レンジのフルスケールの電流値をI1FS、中レンジのフルスケールの電流値をI2FS、最大レンジのフルスケール電流値をI3FSとする。
FIG. 5 shows an embodiment of a current / voltage conversion circuit using claim 1 of the present invention.
3, 4, and 5 are I / V conversion resistors having resistance values R1, R2, and R3, respectively. The resistance values are R1>R2> R3, R1 is the minimum range, R2 is the middle range, and R3 is R3. Corresponds to the maximum range.
For the purpose of explanation, the full-scale current value of the minimum range is I1FS, the full-scale current value of the middle range is I2FS, and the full-scale current value of the maximum range is I3FS.

なお、本発明の回路では正負何れの電流、電圧対しても符号が異なるのみで全く同じように動作するので、以下の説明における電流、電圧の値は絶対値で説明するものとする。   Since the circuit of the present invention operates in exactly the same way with only positive and negative currents and voltages with different signs, the current and voltage values in the following description will be described as absolute values.

6はスイッチング素子であり、I2がI1FSを越えた時にオンになるようにし、7はIがI2FSを越えた時にオンになるようにするものとし、両端が所定の電圧を越えると導通するスイッチング素子であるダイオード、またはツェナーダイオードやバリスタ等の非線形の受動素子や、トランジスタやFET等の外部からオン−オフ制御させる能動素子として、そのオン−オフを演算回路で制御しても良い。図5では例としそれぞれ演算回路2の出力する制御信号11と12で制御する場合で示している。   6 is a switching element, which is turned on when I2 exceeds I1FS, and 7 is turned on when I exceeds I2FS. A switching element which conducts when both ends exceed a predetermined voltage. As a non-linear passive element such as a Zener diode or a varistor, or an active element that is controlled to be turned on and off from the outside, such as a transistor or FET, the on / off state may be controlled by an arithmetic circuit. FIG. 5 shows an example in which the control signals 11 and 12 output from the arithmetic circuit 2 are used for control.

なおスイッチング素子のオン−オフ切り替わり時の電流は、説明を判り易くする為にI1FS、I2FSとしたが、例えばI1FSの110%にする等、実際のシステムに適用する際には必要に応じて任意の値に設定すれば良いものである。   It should be noted that the current at switching on and off of the switching element is I1FS or I2FS for ease of explanation, but it may be set as required when applied to an actual system, for example, 110% of I1FS. It can be set to the value of.

8、9、10は各I/V変換抵抗3、4、5の両端の電圧V1、V2、V3を検出する為の差動増幅器であり、ここでは説明を判り易くするために電圧ゲインは1とする。   Reference numerals 8, 9, and 10 denote differential amplifiers for detecting voltages V1, V2, and V3 at both ends of each of the I / V conversion resistors 3, 4, and 5. Here, the voltage gain is 1 for easy understanding. And

2は各差動増幅器8、9、10で検出した電圧値V1、V2、V3から演算で入力電流値を求めるための演算回路であり、スイッチング素子6、7のオン−オフ制御も行なう。   Reference numeral 2 denotes an arithmetic circuit for obtaining an input current value by calculation from the voltage values V1, V2, and V3 detected by the differential amplifiers 8, 9, and 10, and also performs on / off control of the switching elements 6 and 7.

以下に図5の動作について説明する。
Iは入力端子から流れ込むか、流れ出るか方向は任意の入力電流、I1はR1に流れる電流、I2はR2に流れる電流、I3はR3に流れる電流であり、I1Xはスイッチング素子6に流れる電流、I2Xはスイッチング素子7に流れる電流である。
The operation of FIG. 5 will be described below.
I is flowing in or out of the input terminal, the direction is arbitrary input current, I1 is current flowing in R1, I2 is current flowing in R2, I3 is current flowing in R3, I1X is current flowing in the switching element 6, and I2X Is a current flowing through the switching element 7.

V1、V2、V3はそれぞれ差動増幅器8、9、10のグランドに対する出力電圧であり、3、4、5の両端子間の電圧でもある。   V1, V2, and V3 are output voltages with respect to the ground of the differential amplifiers 8, 9, and 10, respectively, and are voltages between the terminals of 3, 4, and 5, respectively.

スイッチング素子6はIがI1FS以下ではオフ、IがI1FS以上ではオンになるようにし、スイッチング素子7はIがI2FS以下ではオフ、IがI2FS以上ではオンになるようにする。   The switching element 6 is turned off when I is I1FS or less, turned on when I is I1FS or more, and the switching element 7 is turned off when I is I2FS or less, and turned on when I is I2FS or more.

以上の記号を用いると、各部の電流、電圧は以下の関係になる。
I1=V1/R1 ・・・(1)
I2=V2/R2 ・・・(2)
I=V3/R3 ・・・(3)
I=I2+I2X ・・・(4)
I2=I1+I1X ・・・(5)
When the above symbols are used, the current and voltage of each part have the following relationship.
I1 = V1 / R1 (1)
I2 = V2 / R2 (2)
I = V3 / R3 (3)
I = I2 + I2X (4)
I2 = I1 + I1X (5)

IがI1FS以下の場合は、スイッチング素子6、7はオフになるようにしているのでI1X、I2Xは0になり、(4)、(5)から
I=I1 ・・・(6)
になり、(1)と(6)より
I=V1/R1 ・・・(7)
を得るので、電流値Iを演算回路2で求めることができる。
When I is equal to or less than I1FS, the switching elements 6 and 7 are turned off, so that I1X and I2X become 0. From (4) and (5), I = I1 (6)
From (1) and (6) I = V1 / R1 (7)
Therefore, the current value I can be obtained by the arithmetic circuit 2.

IがI1FS以上でI2FS以下の場合は6はオンになり3の電流はバイパスされて0またはそのフルスケール値以下になる。7はオフになるのでI2Xは0になり、(4)から
I=I2 ・・・(8)
になり、(2)と(8)より
I=V2/R2 ・・・(9)
を得るので、電流値Iを演算回路2で求めることができる。
When I is greater than or equal to I1FS and less than or equal to I2FS, 6 is turned on and the current of 3 is bypassed to 0 or less than its full scale value. 7 is turned off, so I2X becomes 0. From (4), I = I2 (8)
From (2) and (8) I = V2 / R2 (9)
Therefore, the current value I can be obtained by the arithmetic circuit 2.

IがI2FS以上の場合はスイッチング素子6、7共にオンなるようにしているので3、4の電流はバイパスされて0または各フルスケール値以下になる。
電流Iは5を通り(3)で表わされるので、電流値Iを演算回路2で求めることができる。
When I is greater than or equal to I2FS, the switching elements 6 and 7 are both turned on, so that the currents 3 and 4 are bypassed to 0 or less than each full-scale value.
Since the current I passes through 5 and is represented by (3), the current value I can be obtained by the arithmetic circuit 2.

以上から図5の回路により電流Iの大きさを求めることができることが判る。 演算回路2は一般的に知られている演算増幅器による反転加算回路やコンパレータ等を用いて容易に作ることができる。   From the above, it can be seen that the magnitude of the current I can be obtained by the circuit of FIG. The arithmetic circuit 2 can be easily made using a generally known inverting adder circuit or comparator using an operational amplifier.

別法として、演算回路内にA/D変換器、または電圧/周波数変換器とカウンタ等を組み込み、各I/V変換抵抗毎の電圧出力をディジタル値に変換してから (7)、(9)、(3)式をソフトウェアで演算して電流Iを求めることもできる。   Alternatively, an A / D converter or a voltage / frequency converter and a counter are incorporated in the arithmetic circuit, and the voltage output for each I / V conversion resistor is converted to a digital value, then (7), (9 ) And (3) can be calculated by software to determine the current I.

また、V1、V2の大きさ、即ちI1、I2の大きさに応じて3、4に流れるそれぞれの電流I1、I2がオン−オフする上記の動作は、入力電流Iに応じて自動的にレンジ切り替えを行なっている事に相当する。   In addition, the above-described operation in which the currents I1 and I2 flowing in 3 and 4 according to the magnitudes of V1 and V2, that is, the magnitudes of I1 and I2, are turned on and off automatically according to the input current I. This is equivalent to switching.

本方法はレンジ切り替えの為のI/V変換抵抗のオーバーラップ制御等の複雑な制御が不要なので、高速動作が可能であり、且つレンジ切り替えに伴う誤差も少ない。これにより、交流やパルス電流のように、ダイナミックレンジが大きく、かつ高速に変化する電流入力でも精度と分解能高く電流/電圧変換できるようになる。   Since this method does not require complicated control such as overlap control of I / V conversion resistors for range switching, high-speed operation is possible and there are few errors associated with range switching. As a result, current / voltage conversion can be performed with high accuracy and resolution even with current inputs that have a large dynamic range and change at high speed, such as alternating current and pulse current.

また、図5の実施例では3レンジであるが、I/V変換抵抗とスイッチング素子を増やせば、より多段のレンジをもつ電流/電圧変換回路を構成できる。   In the embodiment shown in FIG. 5, there are three ranges. However, if the number of I / V conversion resistors and switching elements is increased, a current / voltage conversion circuit having more stages can be configured.

なお、6、7をトランジスタやFET等の能動素子を用いる場合に、演算回路2で制御信号11、12を介して制御する為のIとI1FS、I2FSとの大小関係の判定はV2、V3の電圧レベルと基準電圧をコンパレータで比較する等の手段で容易に可能である。   When active elements such as transistors 7 and FETs are used for 6 and 7, the magnitude relationship between I and I1FS and I2FS for controlling the arithmetic circuit 2 via the control signals 11 and 12 is determined by V2 and V3. This can be easily done by means such as comparing the voltage level and the reference voltage with a comparator.

図6は、本発明の請求項2に関する請求項1を用いた、電流/電圧変換回路の実施例であり、1は電流/電圧変換用の演算増幅器である。その他の各回路の番号は実施例1と同じであり、動作も同じである。   FIG. 6 shows an embodiment of a current / voltage conversion circuit using claim 1 relating to claim 2 of the present invention, wherein 1 is an operational amplifier for current / voltage conversion. The other circuit numbers are the same as those in the first embodiment, and the operations are also the same.

eは演算増幅器1の−入力端子と+入力端子間電圧であり、演算増幅器がリニアに動作する領域ではほぼ0Vであり、図6の回路では演算増幅器の+入力端子はグランドに接続されているので、リニア動作領域では−入力端子も0Vでありeは0Vになる。   e is a voltage between the negative input terminal and the positive input terminal of the operational amplifier 1 and is approximately 0 V in a region where the operational amplifier operates linearly. In the circuit of FIG. 6, the positive input terminal of the operational amplifier is connected to the ground. Therefore, in the linear operation region, the − input terminal is also 0V and e becomes 0V.

従って図6の回路では、必ず演算増幅器1の−入力端子が0になるように制御され、図5の動作と同様にして電流値IがI1FS以下の場合は、スイッチング素子6、7はオフになり、Iは(7)で求められ、IがI1FS以上でI2FS以下の場合は6はオンになりIは(9)で求められ、IがI2FS以上の場合はスイッチング素子6、7共にオンなり、Iは(3)で求められるので、全体として電流値Iを演算回路2で求めることが可能になる。   Accordingly, in the circuit of FIG. 6, the negative input terminal of the operational amplifier 1 is always controlled to be 0. When the current value I is equal to or less than I1FS as in the operation of FIG. 5, the switching elements 6 and 7 are turned off. I is obtained in (7). When I is greater than or equal to I1FS and less than or equal to I2FS, 6 is turned on, and I is obtained in (9). When I is greater than or equal to I2FS, both switching elements 6 and 7 are turned on. , I is obtained in (3), so that the current value I can be obtained by the arithmetic circuit 2 as a whole.

図6の特長は実施例1の自動レンジ切り替え機能に加えて、入力インピーダンスがほぼ0になるという点である。   The feature of FIG. 6 is that, in addition to the automatic range switching function of the first embodiment, the input impedance becomes almost zero.

なお、図6の実施例では3レンジであるが、I/V変換抵抗とスイッチング素子を増やせば、より多段のレンジをもつ電流/電圧変換回路を構成できる。   Although there are three ranges in the embodiment of FIG. 6, if the number of I / V conversion resistors and switching elements is increased, a current / voltage conversion circuit having a multistage range can be configured.

図7は、本発明の請求項3に関する請求項2を応用した、電流/電圧変換回路の実施例であり、13、14は入力インピーダンスが充分に高い電流ブースタであり、説明の為に電圧ゲインを1とし、電流は各レンジのフルスケールの電流を充分駆動できるものとする。
15、16は演算増幅器を電圧ゲイン1で高入力インピーダンスであるボルティージフォロワ回路としたものである。
FIG. 7 shows an embodiment of a current / voltage conversion circuit to which claim 2 relating to claim 3 of the present invention is applied. Reference numerals 13 and 14 denote current boosters having a sufficiently high input impedance. Is assumed to be 1, and the current can sufficiently drive the full-scale current of each range.
Reference numerals 15 and 16 represent operational amplifiers that are voltage follower circuits having a voltage gain of 1 and a high input impedance.

19、20は6、7がオンになって15、16の出力が演算増幅器1の出力と接続された時にその出力電圧差を背負わせるためのものである。
23、24はその両端電圧が一定値以下の場合は高インピーダンスで電流が流れ難く、一定の電圧を越えると低インピーダンスになって電流が流れ易くなる非線形の電圧−電流特性をもつ素子であり、図7ではダイオードとしているが、同等の特性であればそれ以外のツェナーダイオードやバリスタ等でも良い。
その他の各回路の番号は実施例2と同じであり、動作も同じとする。
19 and 20 are for carrying the output voltage difference when the outputs of 15 and 16 are connected to the output of the operational amplifier 1 when 6 and 7 are turned on.
23 and 24 are elements having a non-linear voltage-current characteristic in which current is difficult to flow with high impedance when the voltage at both ends thereof is below a certain value, and current is easily flowed with low impedance when exceeding a certain voltage. Although a diode is shown in FIG. 7, other Zener diodes, varistors, or the like may be used as long as they have equivalent characteristics.
The other circuit numbers are the same as those in the second embodiment, and the operation is also the same.

以下に図7の動作について説明する。
スイッチング素子6はIがI1FS以下ではオフ、IがI1FS以上ではオンになるようにし、スイッチング素子7はIがI2FS以下ではオフ、IがI2FS以上ではオンになるようにしておく。
The operation of FIG. 7 will be described below.
The switching element 6 is turned off when I is I1FS or less, turned on when I is I1FS or more, and the switching element 7 is turned off when I is I2FS or less, and turned on when I is I2FS or more.

IがI1FS以下の場合、15は電圧ゲイン1なので入力電圧V4に対し、出力電圧もV4になるが、スイッチング素子6はオフであり、13の入力インピーダンスは充分高いので、13の入力電圧V5もV4になる。ここで13は電圧ゲインが1なのでその出力電圧V6もV4に等しくなる。   When I is equal to or less than I1FS, 15 is a voltage gain 1, so the output voltage is also V4 with respect to the input voltage V4. However, the switching element 6 is off and the input impedance of 13 is sufficiently high. V4. Here, since the voltage gain of 13 is 1, its output voltage V6 is also equal to V4.

その結果23の両端の電圧は共にV4になり23の両端子間電圧V22は0になるのでその電流I1Xは精度に影響を与える漏れ電流も殆ど無い、ほぼ完全に近い0になる為、このバイパス回路は理想的なオフ状態になる。   As a result, the voltage at both ends of 23 becomes V4, and the voltage V22 between both terminals of 23 becomes 0. Therefore, the current I1X has almost no leakage current affecting the accuracy, and becomes almost completely 0. The circuit is in an ideal off state.

7もオフになるので、I1Xと同様にしてI2Xも0になり、そのバイパス回路も理想的なオフ状態になる。   7 is also turned off, so that I2X is also set to 0 in the same manner as I1X, and the bypass circuit is also in an ideal off state.

従って、Iは全て3を通るので、(7)式を用いて演算回路2でIを求めることができる。   Therefore, since I passes through all 3, I can be obtained by the arithmetic circuit 2 using equation (7).

IがI1FS以上でI2FS以下の場合は6はオンになり13の入力電圧V5と出力電圧V6は1の出力電圧V0に等しくなり、23の両端子間電圧V22は
V22=V4−V0 ・・・(10)
になるので、これが23がオンになる電圧以上になって23はオン状態になり、13は電流I1Xをドライブし、3の電流がバイパスされて0またはそのフルスケール値以下になる。
When I is greater than or equal to I1FS and less than or equal to I2FS, 6 is turned on, the input voltage V5 and the output voltage V6 of 13 are equal to the output voltage V0 of 1, and the voltage V22 between both terminals is V22 = V4−V0. (10)
Therefore, when this exceeds the voltage at which 23 is turned on, 23 is turned on, 13 drives the current I1X, and the current of 3 is bypassed to 0 or less than its full scale value.

7はオフであり、IがI1FS以下の場合と同様にI2Xは理想的な0である。
この時Iは全て4を通るので、(9)式を用いて演算回路2でIを求めることができる。
7 is off, and I2X is an ideal 0 as in the case where I is equal to or less than I1FS.
At this time, since I passes through all 4, I can be obtained by the arithmetic circuit 2 using equation (9).

IがI2FS以上の場合はスイッチング素子6、7共にオンなるようにしているので、IがI1FS以上でI2FS以下の場合にI1Xがバイパス電流として流れるのと同様の仕組みでI1X、I2Xが流れるので、3、4の電流はバイパスされて0または各フルスケール値以下になる。   When I is equal to or greater than I2FS, both switching elements 6 and 7 are turned on. Therefore, when I is equal to or greater than I1FS and equal to or less than I2FS, I1X and I2X flow in the same mechanism as when I1X flows as a bypass current. The currents 3 and 4 are bypassed to 0 or less than each full scale value.

電流Iは5を通り(3)で求められるので、電流値Iを演算回路2で求めることができる。   Since the current I passes through 5 and is obtained in (3), the current value I can be obtained by the arithmetic circuit 2.

以上から図7の回路により電流Iの大きさを求めることができることが判る。
また、V1、V2の大きさ、即ちI1、I2の大きさに応じて3、4に流れるそれぞれの電流I1、I2がオン−オフする上記の動作は、入力電流Iに応じて自動的にレンジ切り替えを行なっている事に相当する。
From the above, it can be seen that the magnitude of the current I can be obtained by the circuit of FIG.
In addition, the above-described operation in which the currents I1 and I2 flowing in 3 and 4 according to the magnitudes of V1 and V2, that is, the magnitudes of I1 and I2, are turned on and off automatically according to the input current I. This is equivalent to switching.

また、図7の実施例では3レンジであるが、I/V変換抵抗とスイッチング素子を増やせば、より多段のレンジをもつ電流/電圧変換回路を構成できる。   In the embodiment of FIG. 7, there are three ranges. However, if the number of I / V conversion resistors and switching elements is increased, a current / voltage conversion circuit having more stages can be configured.

本方法はレンジ切り替えの為のI/V変換抵抗のオーバーラップ制御等の複雑な制御が不要なので、高速動作が可能であり、且つレンジ切り替えに伴う誤差も少ない。これにより、交流やパルス電流のように、ダイナミックレンジが大きく、かつ高速に変化する電流入力でも精度と分解能高く電流/電圧変換できるようになる。   Since this method does not require complicated control such as overlap control of I / V conversion resistors for range switching, high-speed operation is possible and there are few errors associated with range switching. As a result, current / voltage conversion can be performed with high accuracy and resolution even with current inputs that have a large dynamic range and change at high speed, such as alternating current and pulse current.

バイパスすべき電流が大きくなると図5、図6の実施例の場合は6、7の電流容量も大きい素子が必要となるが、測定誤差の要因となるオフ時の漏れ電流は小さい必要があり、実際にそのような素子の入手は困難である場合が多いが、本実施例の回路ではスイッチング素子6、7は電圧をオン−オフさせるもので、殆ど電流を流す必要なく、その他の素子も含めて、一般的に入手が容易な素子のみで大電流駆動、小漏れ電流の回路が容易に構成できるのが大きな特長である。   5 and 6, when the current to be bypassed is increased, an element having a large current capacity of 6 and 7 is required. However, the leakage current at the off time that causes measurement error must be small. Actually, it is often difficult to obtain such an element, but in the circuit of this embodiment, the switching elements 6 and 7 are for turning on and off the voltage, and it is not necessary to pass a current, and other elements are included. The main feature is that a circuit with a large current drive and a small leakage current can be easily configured with only elements that are generally easily available.

さらに、図7の回路によると13、14の電流ブースタの電源を他の回路とは独立させることができるので、例えば14の出力はV3とV32と電流ブースタ内部の電圧降下をカバーできるだけの必要最小限の電圧を電流ブースタの電源として電力損失を小さくする事ができるのも長所である。   Further, according to the circuit of FIG. 7, the power supplies of the current boosters 13 and 14 can be made independent of the other circuits. For example, the output of 14 is the minimum necessary to cover the voltage drop inside the current booster V3 and V32. It is also an advantage that the power loss can be reduced by using a limited voltage as a power source for the current booster.

なお、小さい電流レンジでは図6のように直接スイッチング素子でバイパス回路をオン−オフさせ、大きな電流レンジでは図7の様な電流ブースタを用いるというような図6、図7の折衷回路も可能である。   In the small current range, the circuit shown in FIG. 6 and FIG. 7 can be used in which the bypass circuit is turned on and off with a direct switching element as shown in FIG. 6 and the current booster as shown in FIG. 7 is used in the large current range. is there.

また、目的の動作を達成するには例えば6と19、7と20の位置を入れ替える等のように、これらは必ずしも図7の位置でなくても良く、種々のバリエーションが考えられる。   Further, in order to achieve the target operation, for example, the positions of 6 and 19 and 7 and 20 are exchanged, and these are not necessarily the positions shown in FIG. 7, and various variations are conceivable.

図1は、本発明の請求項4に関する請求項3を応用した、電流/電圧変換回路の実施例である。
図6、図7の回路例では対象とする電流値の大きさによってはスイッチ6、7のオン−オフの際に演算増幅器1の出力にオーバーシュートやアンダーシュートが発生して誤差要因となる場合があるが、図1の回路例はこれを防止するものである。
FIG. 1 shows an embodiment of a current / voltage conversion circuit to which claim 3 relating to claim 4 of the present invention is applied.
In the circuit examples of FIGS. 6 and 7, overshoot or undershoot occurs in the output of the operational amplifier 1 when the switches 6 and 7 are turned on and off depending on the magnitude of the target current value, causing an error factor. However, the circuit example of FIG. 1 prevents this.

図1において6、7はそれぞれ19、20の両端を短絡させる為のスイッチであり、演算回路2でオン−オフ制御される。6、7は共に電圧をオン−オフし、電流は殆ど流す必要がないので小電流用の一般的なアナログスイッチ等で充分である。   In FIG. 1, 6 and 7 are switches for short-circuiting both ends of 19 and 20, respectively, and are ON / OFF controlled by the arithmetic circuit 2. 6 and 7 both turn on and off the voltage, and almost no current needs to flow, so a general analog switch for a small current is sufficient.

19、20は6、7がオフ時に13、14の入力電圧V5、V8には影響を与えない程17と21、18と22の合計インピーダンスより充分高いインピーダンスを持つ抵抗とする。   19 and 20 are resistors having impedances sufficiently higher than the total impedance of 17 and 21, 18 and 22 so that the input voltages V5 and V8 of 13 and 14 are not affected when 6 and 7 are off.

実施例2と同様にeは電流/電圧変換用の演算増幅器1の−入力端子と+入力端子間電圧であり、演算増幅器がリニアに動作する領域ではほぼ0Vであり、図1の回路では1の+入力端子はグランドに接続されているので、1のリニア動作領域では−入力端子は常に0Vになるように1の出力電圧V0が制御される。   As in the second embodiment, e is the voltage between the negative input terminal and the positive input terminal of the operational amplifier 1 for current / voltage conversion, and is approximately 0 V in the region where the operational amplifier operates linearly. In the circuit of FIG. Since the + input terminal of 1 is connected to the ground, the output voltage V 0 of 1 is controlled so that the − input terminal is always 0 V in one linear operation region.

21、22は抵抗であり、スイッチ6、7がオンの場合に15、16の出力端子と1の出力端子が低インピーダンス状態の17、18を介して直接接続されるのを回避する為のもので、不要の場合もあり、以下では説明を判り易くする為に抵抗値R5、R7を0として説明する。   21 and 22 are resistors for avoiding the direct connection between the output terminals 15 and 16 and the output terminal 1 through the low impedance states 17 and 18 when the switches 6 and 7 are turned on. In the following description, the resistance values R5 and R7 are assumed to be 0 for ease of understanding.

17、18はバイパス回路がオン状態の際に1の出力電圧V0と、13、14の入力電圧V5、V8と電位差V21、V31を持たせるためのもので、その両端の電圧がそれぞれV21、V31以下では高インピーダンスで電流を流さず、V21、V31以上では低インピーダンスになって電流を流し、且つ電圧はV21、V31で一定であるような非線形の電流−電圧特性を持つ素子であり、図1ではツェナーダイオードで示しているが、同様の特性を持つものであれば他の非線形素子でも良い。
その他の各回路の番号は実施例3と同じであり、動作も同じとする。
Reference numerals 17 and 18 are used to provide an output voltage V0 of 1 and input voltages V5 and V8 of 13 and 14 and potential differences V21 and V31 when the bypass circuit is in an ON state. In the following, it is an element having a non-linear current-voltage characteristic in which no current flows at high impedance, current flows at a low impedance above V21 and V31, and the voltage is constant at V21 and V31. In the figure, a zener diode is shown, but other nonlinear elements may be used as long as they have similar characteristics.
The other circuit numbers are the same as those in the third embodiment, and the operation is also the same.

以下に図1の動作について説明する。
スイッチ6はIがI1FS以下ではオン、IがI1FS以上ではオフになるようにし、スイッチ7はIがI2FS以下ではオン、IがI2FS以上ではオフになるようにしておく。
The operation of FIG. 1 will be described below.
The switch 6 is turned on when I is I1FS or less, turned off when I is I1FS or more, and the switch 7 is turned on when I is I2FS or less, and is turned off when I is I2FS or more.

IがI1FS以下の場合、実施例3と同様の回路動作によりI1XとI2Xは0になり、このバイパス回路は共に理想的なオフ状態になって、Iは全て3を通るので、(7)式を用いて演算回路2でIを求めることができる。   When I is equal to or less than I1FS, I1X and I2X become 0 by the same circuit operation as in the third embodiment, and both bypass circuits are in an ideal off state. I can be obtained by the arithmetic circuit 2 using.

IがI1FS以上でI2FS以下の場合は6はオフ、7はオンになる。6がオンからオフになる前後のIの変化は微小でありその差は無視できるので、V2、V3の値は変化が無いと考えられる。6がオン時の1の出力電圧をV0、オフ時の出力電圧をV0Xとすると
V0=V1+V2+V3 ・・・(11)
V0X=V21+V22+V2+V3 ・・・(12)
になる。(11)、(12)のそれぞれ両辺を減算して整理すると
V0X−V0=V21+V22−V1 ・・・(13)
になる。6がオフからオンになる場合も全く同様である。
If I is greater than or equal to I1FS and less than or equal to I2FS, 6 is off and 7 is on. Since the change in I before and after 6 turns from on to off is minute and the difference can be ignored, the values of V2 and V3 are considered to be unchanged. When the output voltage of 1 when V is ON is V0 and the output voltage when OFF is V0X, V0 = V1 + V2 + V3 (11)
V0X = V21 + V22 + V2 + V3 (12)
become. When subtracting both sides of (11) and (12) and rearranging, V0X−V0 = V21 + V22−V1 (13)
become. The same applies when 6 is turned on from off.

従って(13)はスイッチ6がオン−オフ変化する際の演算増幅器1の出力電圧の変化の大きさを示す事になる。ここで、V21を
V21=V1−V22
=R1・I1FS−V22 ・・・(14)
となるように設定しておけば1の出力変化は0になって、電流Iにオーバーシュートやアンダーシュートが発生しないのでこれらによる誤差要因無くす事ができる。
Therefore, (13) indicates the magnitude of the change in the output voltage of the operational amplifier 1 when the switch 6 changes on and off. Where V21 is V21 = V1-V22
= R1 · I1FS-V22 (14)
If this is set, the output change of 1 becomes 0 and no overshoot or undershoot occurs in the current I, so that it is possible to eliminate the cause of error caused by these.

IがI2FS以上の場合は6、7は共にオフになる。7がオンからオフになる前後のIの変化は微小でありその差は無視できるので、V3の値は変化が無いと考えられる。6がオフの際に、7がオン時の1の出力電圧をV0、オフ時の出力電圧をV0Xとすると
V0=V21+V22+V2+V3 ・・・(15)
V0X=V31+V32+V3 ・・・(16)
になる。(15)、(16)のそれぞれ両辺を減算して整理すると
V0X−V0=V31+V32−V21−V22−V2 ・・・(17)
になる。7がオフからオンになる場合も全く同様である。
When I is equal to or greater than I2FS, both 6 and 7 are turned off. Since the change in I before and after 7 turns from on to off is minute and the difference can be ignored, the value of V3 is considered to be unchanged. When 6 is off and 7 is on, the output voltage of 1 is V0, and the output voltage when off is V0X. V0 = V21 + V22 + V2 + V3 (15)
V0X = V31 + V32 + V3 (16)
become. When subtracting both sides of (15) and (16) and rearranging, V0X−V0 = V31 + V32−V21−V22−V2 (17)
become. The same applies when 7 is turned on from off.

従って(17)はスイッチ6がオン時にスイッチ7がオン−オフ変化する際の演算増幅器1の出力電圧の変化の大きさを示す事になる。ここで、V31を
V31=V21+V22+V2−V32
=V21+V22+R2・I2FS−V32 ・・・(18)
となるように設定しておけば1の出力変化は0になり、電流Iにオーバーシュートやアンダーシュートが発生しないので、これらによる誤差要因を防ぐ事ができる。
Therefore, (17) indicates the magnitude of the change in the output voltage of the operational amplifier 1 when the switch 7 changes on and off when the switch 6 is on. Here, V31 is V31 = V21 + V22 + V2-V32
= V21 + V22 + R2 / I2FS-V32 (18)
If this is set, the output change of 1 becomes 0, and no overshoot or undershoot occurs in the current I. Therefore, it is possible to prevent an error factor due to these.

即ち、図1の回路によれば入力インピーダンスが低く、レンジ切り替え時の電流のオーバーシュート、アンダーシュート等による誤差要因が少なく高速な自動レンジ切り替え可能な電流/電圧変換回路を得ることができる。   That is, according to the circuit of FIG. 1, it is possible to obtain a current / voltage conversion circuit that has a low input impedance and has few error factors due to current overshoot and undershoot at the time of range switching, and can perform automatic range switching at high speed.

なお目的の動作を達成するには、スイッチ6、7は例えば各々21と17、22と18の間に直列に配置する等のように、必ずしも図1の位置でなくても良く、種々のバリエーションが考えられる。   In order to achieve the desired operation, the switches 6 and 7 do not necessarily have to be in the positions shown in FIG. 1, such as being arranged in series between 21 and 17, 22 and 18, respectively. Can be considered.

図8は図7の電流/電圧変換回路の電流発生器への応用例である。81はフィードバック制御の為の演算増幅器、82は出力電流の大きさの設定と、スイッチ6、7をオン−オフ制御する制御回路、83は81の−入力端子への入力抵抗、84は帰還抵抗、85、86、87はI/V変換信号V1、V2、V3の何れを帰還信号として使用するか選択する為のスイッチ、88は82から出力する85、86、87を選択する為の制御信号であり、90は負荷である。   FIG. 8 shows an application example of the current / voltage conversion circuit of FIG. 7 to a current generator. 81 is an operational amplifier for feedback control, 82 is a control circuit for setting the magnitude of the output current and ON / OFF control of the switches 6 and 7, 83 is an input resistance to the -input terminal of 81, and 84 is a feedback resistance 85, 86 and 87 are switches for selecting which of the I / V conversion signals V1, V2 and V3 to use as feedback signals, and 88 is a control signal for selecting 85, 86 and 87 output from 82. 90 is a load.

その他の項目は図7と同じである。ここでは説明を判り易くする為に83と84の抵抗値RS、RFを同じ値とする。   The other items are the same as in FIG. Here, for ease of explanation, the resistance values RS and RF of 83 and 84 are set to the same value.

図8において90に供給すべき電流ILの大きさに応じて、85、86、87をオンにして何れか最適なレンジのI/V変換信号電圧VFを84にフィードバックさせると81により82で出力する設定値VSとVFが逆極性で同じ値になるように81の出力が制御される事は一般的によく知られている。即ち、図8は本発明がフィードバック回路に於ける帰還信号の検出器としても容易に適用可能である事を示している。   In FIG. 8, according to the magnitude of the current IL to be supplied to 90, when 85, 86 and 87 are turned on and the I / V conversion signal voltage VF of any optimum range is fed back to 84, the output at 82 is 81. It is generally well known that the output of 81 is controlled so that the set values VS and VF to be set have the same value with opposite polarities. That is, FIG. 8 shows that the present invention can be easily applied as a feedback signal detector in a feedback circuit.

同様にして
で詳述された負帰還回路にも容易に適用可能である。即ち、本発明の電流/電圧変換回路は大ダイナミックレンジの電流発生器の負帰還信号の検出器として応用が可能である。
In the same way
It can be easily applied to the negative feedback circuit described in detail. That is, the current / voltage conversion circuit of the present invention can be applied as a negative feedback signal detector of a large dynamic range current generator.

交流やパルス電流のように、ダイナミックレンジが大きく、かつ高速に変化する電流入力でも精度と分解能が高く、電力ロスの小さい電流/電圧変換回路を得ることができ、電流の測定のみならず、電流制御分野にも容易に適用可能である。   A current / voltage conversion circuit with high accuracy and resolution and low power loss can be obtained even with current inputs that have a large dynamic range and change at high speed, such as alternating current and pulse current. It can be easily applied to the control field.

演算増幅器と電流ブースタを用いた電流/電圧変換回路である。(実施例4)This is a current / voltage conversion circuit using an operational amplifier and a current booster. (Example 4) 一般的に知られている、演算増幅器を用いた電流/電圧変換回路である。This is a generally known current / voltage conversion circuit using an operational amplifier. 一般的に知られている、演算増幅器を用いたレンジ切り替え機能付き電流/電圧変換回路である。This is a generally known current / voltage conversion circuit with a range switching function using an operational amplifier. 一般的に知られている、レンジ切り替え機能付き電流/電圧変換回路例である。This is an example of a generally known current / voltage conversion circuit with a range switching function. レンジ切り替え機能付き電流/電圧変換回路の基本回路である。(実施例1)This is a basic circuit of a current / voltage conversion circuit with a range switching function. (Example 1) 演算増幅器を用いたレンジ切り替え機能付き電流/電圧変換回路の基本回路である。(実施例2)It is a basic circuit of a current / voltage conversion circuit with a range switching function using an operational amplifier. (Example 2) 演算増幅器と電流ブースタを用いたレンジ切り替え機能付き電流/電圧変換回路の回路例である。(実施例3)It is a circuit example of a current / voltage conversion circuit with a range switching function using an operational amplifier and a current booster. Example 3 レンジ切り替え機能付き電流/電圧変換回路を用いた電流発生器の回路例である。(実施例5)It is a circuit example of a current generator using a current / voltage conversion circuit with a range switching function. (Example 5)

符号の説明Explanation of symbols

2 演算回路
1、15、16、81 演算増幅器
8、9、10 差動増幅器
13、14 電流ブースタ
3、4、5 I/V変換抵抗
19、20、21、22 抵抗
23、24 ダイオード
6、7、17、18、85、86、87 スイッチング素子
11、12、88 スイッチング素子制御信号
35、36、37 スイッチ
82 制御回路
83 演算増幅器入力抵抗
84 負帰還抵抗
90 負荷
2 Arithmetic circuit
1, 15, 16, 81 Operational amplifiers 8, 9, 10 Differential amplifiers 13, 14 Current boosters 3, 4, 5 I / V conversion resistors 19, 20, 21, 22 Resistors 23, 24 Diodes 6, 7, 17, 18, 85, 86, 87 Switching element 11, 12, 88 Switching element control signal 35, 36, 37 Switch 82 Control circuit 83 Operational amplifier input resistance 84 Negative feedback resistance 90 Load

Claims (4)

電流/電圧変換の為のI/V変換抵抗を必要レンジ数分、抵抗値の大きさの順番に直列に設け、各I/V変換抵抗間をスイッチング素子でオン−オフ可能にした電流のバイパス経路を設けた回路において、当該レンジのI/V変換抵抗にそのレンジにおける設定値以上の電流が流れたら当該レンジのバイパス経路のスイッチング素子をオンにして、当該レンジ以下のI/V変換抵抗の電流を0または小さくするようにし、差動増幅器で各I/V変換抵抗の両端の電圧を検出した後、演算回路で演算して電流値を検出することより、ダイナミックレンジが大きく、かつ高速に変化する電流でも精度良く電圧に変換できることを特徴とする電流/電圧変換回路。   I / V conversion resistors for current / voltage conversion are provided in series in the order of the resistance value for the required number of ranges, and each I / V conversion resistor can be turned on and off with a switching element. In a circuit having a path, when a current equal to or greater than the set value in the range flows through the I / V conversion resistor of the range, the switching element of the bypass path of the range is turned on, and the I / V conversion resistance of the range or less is turned on. The current is reduced to 0 or smaller, the voltage across the I / V conversion resistors is detected with a differential amplifier, and then the current value is detected by calculating with an arithmetic circuit, resulting in a large dynamic range and high speed. A current / voltage conversion circuit characterized in that even a changing current can be accurately converted into a voltage. 請求項1の電流/電圧変換回路と電流/電圧変換用の演算増幅器を組み合わせた、ダイナミックレンジが大きく、かつ高速に変化する電流でも精度良く電圧に変換でき、入力インピーダンスが小さいこと特徴とする電流/電圧変換回路。   The current / voltage conversion circuit according to claim 1 and an operational amplifier for current / voltage conversion are combined. The current has a large dynamic range, can be converted into a voltage with high accuracy, and has a small input impedance. / Voltage conversion circuit. 請求項2の電流/電圧変換回路と電流/電圧変換用の演算増幅器を組み合わせた電流/電圧変換回路において、I/V変換抵抗とI/V変換抵抗の間をスイッチング素子のオン−オフで電流をバイパスさせる代わりに、当該レンジの大きさの電流を駆動できる電流ブースタと、これの出力部にダイオード、入力部にボルティージフォロワ構成にした演算増幅器とスイッチによりバイパス回路を構成して、大きな電流のバイパスでも容易にオン−オフが可能で、且つオフ時の漏れ電流を小さくして誤差を小さくしたことを特徴とする電流/電圧変換回路。   3. A current / voltage conversion circuit comprising a combination of the current / voltage conversion circuit of claim 2 and an operational amplifier for current / voltage conversion, wherein the switching element is turned on / off between the I / V conversion resistor and the I / V conversion resistor. Instead of bypassing the circuit, a bypass circuit is configured with a current booster that can drive a current in the range, a diode at the output, and an operational amplifier and switch with a voltage follower at the input. A current / voltage conversion circuit which can be easily turned on and off even by bypass, and has a small error by reducing a leakage current at the time of off. 請求項3の電流/電圧変換回路において、電流/電圧変換用の演算増幅器と電流ブースタの入力部の間に電流/電圧特性が非線形の素子を設けて、レンジ切り替え時の電流/電圧変換用の演算増幅器の出力のオーバーシュートやアンダーシュートを小さくして、それによる誤差を少なくしたことを特徴とする電流/電圧変換回路。   4. The current / voltage conversion circuit according to claim 3, wherein an element having a non-linear current / voltage characteristic is provided between an input part of an operational amplifier for current / voltage conversion and a current booster, for current / voltage conversion at the time of range switching. A current / voltage conversion circuit characterized in that the overshoot and undershoot of the output of the operational amplifier are reduced to thereby reduce errors.
JP2003400928A 2003-12-01 2003-12-01 Current / voltage conversion circuit Expired - Fee Related JP4184245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003400928A JP4184245B2 (en) 2003-12-01 2003-12-01 Current / voltage conversion circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003400928A JP4184245B2 (en) 2003-12-01 2003-12-01 Current / voltage conversion circuit

Publications (2)

Publication Number Publication Date
JP2005167429A true JP2005167429A (en) 2005-06-23
JP4184245B2 JP4184245B2 (en) 2008-11-19

Family

ID=34725003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003400928A Expired - Fee Related JP4184245B2 (en) 2003-12-01 2003-12-01 Current / voltage conversion circuit

Country Status (1)

Country Link
JP (1) JP4184245B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242937A (en) * 2005-02-28 2006-09-14 Keithley Instruments Inc Auto range current shunt circuit
JP2009150762A (en) * 2007-12-20 2009-07-09 Fujitsu Telecom Networks Ltd Current measuring device
JP2012247233A (en) * 2011-05-26 2012-12-13 Fujio Ozawa Current/voltage conversion circuit
US9024686B2 (en) 2011-09-01 2015-05-05 Nf Corporation Amplifier circuit and feedback circuit
WO2022224843A1 (en) * 2021-04-22 2022-10-27 東京エレクトロン株式会社 Device inspection apparatus and device inspection method
JP7403488B2 (en) 2021-02-18 2023-12-22 三菱電機株式会社 Current signal processing device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242937A (en) * 2005-02-28 2006-09-14 Keithley Instruments Inc Auto range current shunt circuit
JP2009150762A (en) * 2007-12-20 2009-07-09 Fujitsu Telecom Networks Ltd Current measuring device
JP2012247233A (en) * 2011-05-26 2012-12-13 Fujio Ozawa Current/voltage conversion circuit
US9024686B2 (en) 2011-09-01 2015-05-05 Nf Corporation Amplifier circuit and feedback circuit
US9252720B2 (en) 2011-09-01 2016-02-02 Nf Corporation Amplifier circuit and feedback circuit
JP7403488B2 (en) 2021-02-18 2023-12-22 三菱電機株式会社 Current signal processing device
WO2022224843A1 (en) * 2021-04-22 2022-10-27 東京エレクトロン株式会社 Device inspection apparatus and device inspection method

Also Published As

Publication number Publication date
JP4184245B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
US7619477B2 (en) Current sense amplifier for voltage converter
CN107607770B (en) Current sampling circuit, switch circuit and current sampling method
EP3179631B1 (en) Class-d audio amplifier comprising a circuit for reading a current supplied by the amplifier to the load, and corresponding reading method
US7576524B2 (en) Constant voltage generating apparatus with simple overcurrent/short-circuit protection circuit
JP4800371B2 (en) Range switching circuit
JP2010093339A (en) Load drive circuit
JP2010085384A5 (en)
JP2014174737A (en) Constant voltage circuit
JP6313036B2 (en) Magnetic detector
US7994771B2 (en) Current measurement circuit, current detection circuit and saturation prevention and recovery circuit for operational amplifier
JP2005167429A (en) Current/voltage conversion circuit
JP5022377B2 (en) Measurement circuit and test equipment
JP3628948B2 (en) Current / voltage conversion circuit
JP2007315980A (en) Current/voltage conversion circuit
JP2011095037A (en) Range switching circuit
JP4888714B2 (en) Voltage applied current measurement circuit
JP2001141753A (en) Current and electric quantity measuring circuit
CN111033988B (en) Power module and DC-DC converter
JP2017519437A (en) Class AB amplifier with bias control
JP4216286B2 (en) Current measuring circuit and integrated circuit element thereof
JPH06265613A (en) Magnetic sensor apparatus
JPH09321587A (en) Comparator with hysteresis adjustment function and current detection circuit
JP2000155139A (en) Current detecting device
JP2002277505A (en) Power unit for dc characteristic measurement and semiconductor tester
CN113179088A (en) PWM DAC with improved linearity and switch resistance insensitivity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060919

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080626

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees