JP4451415B2 - Current / voltage conversion circuit - Google Patents

Current / voltage conversion circuit Download PDF

Info

Publication number
JP4451415B2
JP4451415B2 JP2006147509A JP2006147509A JP4451415B2 JP 4451415 B2 JP4451415 B2 JP 4451415B2 JP 2006147509 A JP2006147509 A JP 2006147509A JP 2006147509 A JP2006147509 A JP 2006147509A JP 4451415 B2 JP4451415 B2 JP 4451415B2
Authority
JP
Japan
Prior art keywords
voltage
current
circuit
range
conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006147509A
Other languages
Japanese (ja)
Other versions
JP2007315980A (en
Inventor
富士男 小澤
Original Assignee
富士男 小澤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士男 小澤 filed Critical 富士男 小澤
Priority to JP2006147509A priority Critical patent/JP4451415B2/en
Publication of JP2007315980A publication Critical patent/JP2007315980A/en
Application granted granted Critical
Publication of JP4451415B2 publication Critical patent/JP4451415B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

本発明はダイナミックレンジが大きく、且つ高速に変化する電流でも精度良く電圧に変換できる電流/電圧変換回路と電流モニタ電圧信号作成回路、及びそれらを応用した電圧発生器と電流発生器に関するものである。   The present invention relates to a current / voltage conversion circuit and a current monitor voltage signal generation circuit capable of accurately converting a current having a large dynamic range and changing at high speed into a voltage, and a voltage generator and a current generator to which these are applied. .

電流の大きさ、又は電流に関連した電気量や電力量等のような物理量を測定する場合、電流を電圧に変換する為にI/V変換抵抗を用いる。従来は対象とする電流の大きさに応じて抵抗値の異なる数種類のI/V変換抵抗を、スイッチ又はリレー又は半導体等のスイッチング素子で切り替えて測定していた。これは一般的にはレンジ切り替えと言われる。   When measuring a physical quantity such as the magnitude of current or the amount of electricity or power related to the current, an I / V conversion resistor is used to convert the current into a voltage. Conventionally, several types of I / V conversion resistors having different resistance values depending on the magnitude of the target current have been measured by switching with a switching element such as a switch, a relay, or a semiconductor. This is generally referred to as range switching.

一般的にはダイナミックレンジが大きく、且つ高速に変化する電流についてはレンジ切り替えは困難であるが、特許文献1で公開されている方法で実現可能となった。
しかし特許文献1による方法では差動増幅器を必要とし、電流バイパス回路にアナログスイッチを用いていたので関連する信号変化が急激でノイズの影響が出易い等の欠点があった。
特願2003−400928
In general, it is difficult to switch the range for a current that has a large dynamic range and changes at high speed, but it has been realized by the method disclosed in Patent Document 1.
However, the method according to Patent Document 1 requires a differential amplifier and uses an analog switch for the current bypass circuit. Therefore, there is a drawback that the related signal change is abrupt and noise is easily affected.
Japanese Patent Application No. 2003-400908

解決しようとする問題点は、ダイナミックレンジが大きく、且つ高速に変化する電流入力でもレンジ切り替え時のノイズが少ないオートレンジ切り替えが可能な電流/電圧変換回路を得ようとするものである。
さらに全レンジ範囲に渡る入力電流を精度良くモニタできる電流モニタ電圧信号作成回路、及びそれらを応用した電圧発生器と電流発生器を得ようとするものである。
The problem to be solved is to obtain a current / voltage conversion circuit capable of auto-range switching with a large dynamic range and low noise even when the current is changed at high speed.
Furthermore, an object is to obtain a current monitor voltage signal generation circuit capable of accurately monitoring an input current over the entire range, and a voltage generator and a current generator to which these are applied.

請求項1に関わるレンジ切り替え回路は、誤差増幅用の演算増幅器と電流測定に必要なレンジ数分の複数のI/V変換抵抗を有し、それらのI/V変換抵抗を抵抗値の大きさの順番に直列接続した後の両端の内の最小抵抗値のI/V変換抵抗側の端子を前記演算増幅器の反転入力端子に接続し、最大抵抗値側の端子を前記演算増幅器の出力端子に接続して負帰還回路を構成し、前記演算増幅器の反転入力端子から測定対象の電流を入力し、前記複数のI/V変換抵抗の内最小抵抗値のI/V変換抵抗を除くI/V変換抵抗の前記演算増幅器の反転入力端子側を各I/V変換抵抗毎のレンジ切り替え回路接続部とし、レンジ切り替え回路をこれらレンジ切り替え回路接続部と前記演算増幅器の出力端子間に負帰還回路を構成する様に設け、入力電流がフルスケールを越えたレンジのI/V変換抵抗の入力電流を前記レンジ切り替え回路でバイパスする事によりレンジ切り替えを行なう様にした電流/電圧変換回路において、前記レンジ切り替え回路接続部に一方の端子を接続した電流オン/オフ用のダイオードと、前記レンジ切り替え回路接続部の電圧を入力とし各レンジ毎のレンジ切り替え回路をオンにさせる直前の前記レンジ切り替え回路接続部の電圧値をリミット設定電圧とするリミッタ回路と、前記演算増幅器の出力電圧を入力とし各レンジ毎のレンジ切り替え回路をオンにさせる直前の前記演算増幅器の出力電圧値を不感帯設定電圧とする不感帯回路と、これらリミッタ回路と不感帯回路の出力電圧を加算回路で加算しその出力を前記レンジ切り替え回路接続部に接続した前記電流オン/オフ用ダイオードの他方の端子に接続してバイパス電流を吸い込み又は吐き出す様にし、その加算回路の出力能力が不足する場合にはその加算回路の出力部に電流ブースタを追加して出力能力を補強するものとしたレンジ切り替え回路を各レンジ毎に設け、入力電流がフルスケール以下のレンジの前記レンジ切り替え回路の電流オン/オフ用のダイオードの両端が等電位になってバイパス電流がオフになり、入力電流がフルスケールを越えたレンジについては前記レンジ切り替え回路の不感帯回路を経由した前記演算増幅器の出力電圧により電流オン/オフ用のダイオードの両端に電位差が生じてバイパス電流がオンになる事により、オートレンジ切り替え可能で、且つレンジ切り替え時に電流/電圧変換回路各部の信号を連続的に変化させて測定誤差やノイズの影響を少なくした事を特徴とするものである。   The range switching circuit according to claim 1 has an operational amplifier for error amplification and a plurality of I / V conversion resistors corresponding to the number of ranges required for current measurement, and the I / V conversion resistors have a resistance value magnitude. The terminal on the I / V conversion resistance side of the minimum resistance value at both ends after being connected in series in this order is connected to the inverting input terminal of the operational amplifier, and the terminal on the maximum resistance value side is connected to the output terminal of the operational amplifier. Connected to form a negative feedback circuit, the current to be measured is input from the inverting input terminal of the operational amplifier, and the I / V excluding the I / V conversion resistor of the minimum resistance value of the plurality of I / V conversion resistors The inverting input terminal side of the operational amplifier of the conversion resistor is a range switching circuit connection for each I / V conversion resistor, and the range switching circuit is a negative feedback circuit between the range switching circuit connection and the output terminal of the operational amplifier. Provide as configured, input In the current / voltage conversion circuit in which the range switching is performed by bypassing the input current of the I / V conversion resistor in the range where the current exceeds the full scale by the range switching circuit, one of the ranges is connected to the range switching circuit connection section. Input the current on / off diode connected to the terminal and the voltage of the range switching circuit connection unit as input, and the voltage value of the range switching circuit connection unit immediately before turning on the range switching circuit for each range is the limit setting voltage A limiter circuit, a dead band circuit that uses the output voltage of the operational amplifier as an input, and sets the output voltage value of the operational amplifier immediately before turning on the range switching circuit for each range, as a dead band setting voltage, and the limiter circuit and the dead band The output voltage of the circuit is added by the adder circuit, and the output is connected to the range switching circuit connection unit. Connect to the other terminal of the diode for turning on / off the current so that the bypass current can be sucked or discharged. If the output capacity of the adder is insufficient, add a current booster to the output of the adder and output it. A range switching circuit that reinforces the capability is provided for each range, and the bypass current is turned off because both ends of the current on / off diode of the range switching circuit in the range where the input current is less than full scale are equipotential. For the range where the input current exceeds the full scale, the output current of the operational amplifier via the dead zone circuit of the range switching circuit causes a potential difference between both ends of the current on / off diode, and the bypass current is turned on. Therefore, auto range switching is possible, and the signals of each part of the current / voltage conversion circuit are continuously transmitted when the range is switched. It is characterized by the fact that the influence of measurement errors and noise is reduced by changing the frequency.

請求項2に関わるリミッタ回路と加算回路からなる電流モニタ電圧信号作成回路は、誤差増幅用の演算増幅器と電流測定に必要なレンジ数分の複数のI/V変換抵抗を有し、それらのI/V変換抵抗を抵抗値の大きさの順番に直列接続した後の両端の内の最小抵抗値のI/V変換抵抗側の端子を前記演算増幅器の反転入力端子に接続し、最大抵抗値側の端子を前記演算増幅器の出力端子に接続して負帰還回路を構成し、前記演算増幅器の反転入力端子から測定対象の電流を入力し、前記複数のI/V変換抵抗の内最小抵抗値のI/V変換抵抗を除くI/V変換抵抗の前記演算増幅器の反転入力端子側を各I/V変換抵抗毎のレンジ切り替え回路接続部とし、レンジ切り替え回路をこれらレンジ切り替え回路接続部と前記演算増幅器の出力端子間に負帰還回路を構成する様に設け、入力電流がフルスケールを越えたレンジのI/V変換抵抗の入力電流を前記レンジ切り替え回路でバイパスする事によりレンジ切り替えを行なう様にした電流/電圧変換回路において、レンジ切り替え回路を請求項1によるものとし、前記各I/V変換抵抗の前記誤差増幅用の演算増幅器の出力端子側の端子をモニタ信号引き出し部とし、その点の電圧信号を入力としてそのI/V変換抵抗に対応するレンジのレンジ切り替え回路をオンにさせる直前の前記モニタ信号引き出し部の電圧値をリミット設定電圧とするリミッタ回路を各レンジ毎に設け、それら全てのリミッタ回路の出力電圧を加算回路で加算した電圧信号か、又は前記加算回路の入力の内最大レンジについてはリミッタ回路を設けず最大レンジのモニタ信号引き出し部の電圧信号を入力とした加算回路で加算した電圧信号、の何れかを測定対象である入力電流をモニタする為の電圧信号とする事により、全レンジの範囲に渡る入力電流を精度良くモニタできる事を特徴とするものである。   A current monitor voltage signal generation circuit including a limiter circuit and an adder circuit according to claim 2 includes an operational amplifier for error amplification and a plurality of I / V conversion resistors corresponding to the number of ranges required for current measurement. After connecting the / V conversion resistors in series in the order of the resistance value, the terminal on the I / V conversion resistor side of the minimum resistance value at both ends is connected to the inverting input terminal of the operational amplifier, and the maximum resistance value side Is connected to the output terminal of the operational amplifier to form a negative feedback circuit, the current to be measured is input from the inverting input terminal of the operational amplifier, and the minimum resistance value of the plurality of I / V conversion resistors is set. The inverting input terminal side of the operational amplifier of the I / V conversion resistor excluding the I / V conversion resistor is a range switching circuit connection unit for each I / V conversion resistor, and the range switching circuit is connected to the range switching circuit connection unit and the calculation. Amplifier output terminal Current / voltage conversion is provided to configure a negative feedback circuit, and the range switching is performed by bypassing the input current of the I / V conversion resistor in the range where the input current exceeds the full scale by the range switching circuit. In the circuit, the range switching circuit is as defined in claim 1, the terminal on the output terminal side of the operational amplifier for error amplification of each I / V conversion resistor is used as a monitor signal extraction unit, and the voltage signal at that point is input. A limiter circuit is provided for each range in which the voltage value of the monitor signal extraction unit immediately before turning on the range switching circuit of the range corresponding to the I / V conversion resistor is set as a limit setting voltage, and outputs of all the limiter circuits For the voltage signal obtained by adding the voltages by the adder circuit, or for the maximum range of the input of the adder circuit, the limiter circuit is not provided and the maximum Input over the entire range by using any one of the voltage signals added by the adder circuit that receives the voltage signal from the monitor signal lead-out part of the monitor as the voltage signal for monitoring the input current to be measured. It is characterized by being able to monitor current with high accuracy.

請求項3に関わる電圧発生器は、誤差増幅用の演算増幅器の反転入力端子に電圧を印加する対象である負荷を接続し、前記演算増幅器の非反転入力端子に前記負荷に印加する電圧を設定する電圧設定器を接続し、電流測定に必要なレンジ数分の複数のI/V変換抵抗を抵抗値の大きさの順番に直列接続した後の両端の内の最小抵抗値のI/V変換抵抗側の端子を前記負荷に接続し、最大抵抗値側の端子を前記演算増幅器の出力端子に接続して負帰還回路を構成し、前記複数のI/V変換抵抗の内最小抵抗値のI/V変換抵抗を除くI/V変換抵抗の前記演算増幅器の反転入力端子側を各I/V変換抵抗毎のレンジ切り替え回路接続部とし、請求項1によるレンジ切り替え回路をこれらレンジ切り替え回路接続部と前記演算増幅器の出力端子間に設け、各レンジ切り替え回路毎のリミッタ回路のリミット設定電圧と不感帯回路の不感帯設定電圧に前記電圧設定器が出力する設定電圧を加算するか、又は各レンジ毎のリミッタ回路入力電圧と不感帯回路入力電圧から前記電圧設定器が出力する設定電圧を減算する回路構成にした、オートレンジ切り替えで精度高く負荷電流を測定できる事を特徴とするものである。   A voltage generator according to claim 3 connects a load to which voltage is applied to an inverting input terminal of an operational amplifier for error amplification, and sets a voltage to be applied to the load to a non-inverting input terminal of the operational amplifier. I / V conversion of the minimum resistance value at both ends after connecting a plurality of I / V conversion resistors for the number of ranges required for current measurement in series in the order of the resistance value A resistance side terminal is connected to the load, and a maximum resistance value side terminal is connected to the output terminal of the operational amplifier to form a negative feedback circuit, and the minimum resistance value I of the plurality of I / V conversion resistors is formed. 2. An inverting input terminal side of the operational amplifier of an I / V conversion resistor excluding an / V conversion resistor is a range switching circuit connection unit for each I / V conversion resistor, and the range switching circuit according to claim 1 is used as the range switching circuit connection unit. And the output terminal of the operational amplifier Add the set voltage output from the voltage setting device to the limit setting voltage of the limiter circuit and the dead band setting voltage of the dead band circuit for each range switching circuit, or the limiter circuit input voltage and the dead band circuit input voltage for each range The load current can be measured with high accuracy by auto-range switching, which has a circuit configuration for subtracting the set voltage output from the voltage setter.

請求項4に関わる電流発生器は、誤差増幅用の演算増幅器の非反転入力端子に電流を供給する対象である負荷に印加する電流を設定する電流設定器を接続し、電流測定に必要なレンジ数分の複数のI/V変換抵抗を抵抗値の大きさの順番に直列接続した後の両端の内の最小抵抗値のI/V変換抵抗側の端子を前記負荷に接続し、最大抵抗値側の端子を前記演算増幅器の出力端子に接続し、前記複数のI/V変換抵抗の内最小抵抗値のI/V変換抵抗を除くI/V変換抵抗の前記負荷側の端子を各I/V変換抵抗毎のレンジ切り替え回路接続部とし、請求項1によるレンジ切り替え回路をこれらレンジ切り替え回路接続部と前記演算増幅器の出力端子間に設け、請求項2による電流モニタ電圧信号作成回路を用いて前記各I/V変換抵抗から前記負荷の電流をモニタする電圧信号を取り出して前記演算増幅器の反転入力端子に接続して負帰還回路を構成し、各レンジ毎のリミッタ回路のリミット設定電圧と不感帯回路の不感帯設定電圧に前記負荷の電圧を加算するか、又は各レンジ毎のリミッタ回路入力電圧と不感帯回路入力電圧から前記負荷電圧を減算する回路構成にした、広範囲の電流値を精度良く発生できる事を特徴とするものである。 A current generator according to claim 4 is connected to a current setting device for setting a current to be applied to a load to be supplied with current to a non-inverting input terminal of an operational amplifier for error amplification, and a range required for current measurement. After connecting several I / V conversion resistors of several minutes in series in the order of the resistance value, the terminal on the I / V conversion resistance side of the minimum resistance value at both ends is connected to the load, and the maximum resistance value The terminal on the load side is connected to the output terminal of the operational amplifier, and the load side terminals of the I / V conversion resistors excluding the I / V conversion resistor having the minimum resistance value among the plurality of I / V conversion resistors are connected to the I / V conversion resistors. A range switching circuit connection unit for each V conversion resistor is provided, and the range switching circuit according to claim 1 is provided between the range switching circuit connection unit and the output terminal of the operational amplifier, and the current monitor voltage signal generation circuit according to claim 2 is used. Before each I / V conversion resistor A voltage signal for monitoring the load current is taken out and connected to the inverting input terminal of the operational amplifier to form a negative feedback circuit, and the limit setting voltage of each range and the dead band setting voltage of the dead band circuit are set to the load It is characterized in that a wide range of current values can be generated with high accuracy by adding a voltage or subtracting the load voltage from a limiter circuit input voltage and a dead band circuit input voltage for each range.

本発明のレンジ切り替え回路は高速にオートレンジ切り替え可能で、且つレンジ切り替え時に各部の信号が連続的に変化するので、ノイズ等測定に悪影響を及ぼす要因を減らせるという利点がある。   The range switching circuit of the present invention is capable of auto-range switching at high speed and has the advantage that the factors such as noise that adversely affect the measurement can be reduced because the signal of each part changes continuously at the time of range switching.

また、本発明の電流モニタ電圧信号作成回路によれば、入力電流を電圧信号に変換した電流モニタ電圧信号が生成でき、本信号1つで全レンジ範囲に渡る入力電流を精度良くモニタでき、さらにこれと電流/電圧変換回路を組み合わせて高性能の電流発生器の製作が可能になる。   Further, according to the current monitor voltage signal generation circuit of the present invention, a current monitor voltage signal obtained by converting the input current into a voltage signal can be generated, and the input current over the entire range can be accurately monitored with one signal. This can be combined with a current / voltage conversion circuit to produce a high-performance current generator.

簡単な回路で大ダイナミックレンジの高速でノイズ等の誤差要因の少ないオートレンジ切り替え機能を持つ電流/電圧変換回路を実現した。   A simple circuit has realized a current / voltage conversion circuit that has a large dynamic range and high-speed auto-range switching function with less noise and other error factors.

図1は、本発明の請求項1を用いた、電流/電圧変換回路の実施例である。
但し、本書で記述する各発明の回路では正負何れの電流入力又は、電圧入力に対しても対応するものとし、正負の電流、電圧についての回路上の扱いは符号が異なるのみなので、以下の説明における電流、電圧の値は絶対値で説明するものとする。
実際に応用する場合には、正負何れか一方の入力のみに対応すれば良い場合もあるが、その場合は不要側の回路を取り外せるので、回路をより簡単にする事ができる。
また、本書では説明の明快化の為にレンジ数を3レンジとしているが、同様な回路を追加すればより多くのレンジ数にも容易に対応可能である。
なお、本書では以下全てにおいて電圧の単位は[V]、電流の単位は[A]、抵抗の単位は[Ω]であるものとし、説明の明快化の為に単位の記載は省く。
FIG. 1 shows an embodiment of a current / voltage conversion circuit using claim 1 of the present invention.
However, in the circuit of each invention described in this document, both positive and negative current inputs or voltage inputs are supported, and the treatment of positive and negative currents and voltages on the circuit is only different in sign, so the following explanation The current and voltage values in are described as absolute values.
In actual application, it may be necessary to deal with only one of the positive and negative inputs. In that case, the circuit on the unnecessary side can be removed, so that the circuit can be simplified.
In addition, in this document, the number of ranges is set to 3 for clarity of explanation, but a larger number of ranges can be easily accommodated by adding a similar circuit.
In this document, in all of the following, the unit of voltage is [V], the unit of current is [A], and the unit of resistance is [Ω], and the description of the unit is omitted for clarity.

1は演算増幅器による誤差増幅器であり、図中のように+入力端子をグランドに接続するとその−入力端子の電位は入力電流Iの大きさに関わらず常に+入力端子電位に等しくほぼ0Vになるようにその出力電圧V1が制御されるので、1の演算増幅器がリニアに動作する領域では電流入力端子電圧eはほぼ0Vになる。以下本書では説明の明快化の為にeを0Vとして扱う。   An error amplifier 1 is an operational amplifier. When the positive input terminal is connected to the ground as shown in the figure, the potential of the negative input terminal is always equal to the positive input terminal potential and is almost 0 V regardless of the magnitude of the input current I. Since the output voltage V1 is controlled as described above, the current input terminal voltage e is substantially 0 V in a region where one operational amplifier operates linearly. Hereinafter, in this document, e is treated as 0V for the sake of clarity.

2はI/V変換抵抗3、4、5で検出した電圧値V1、V2、V3から演算で現在の有効レンジや入力電流値を求める為の演算回路である。   Reference numeral 2 denotes an arithmetic circuit for obtaining the current effective range and input current value by calculation from the voltage values V1, V2, and V3 detected by the I / V conversion resistors 3, 4, and 5.

3、4、5は抵抗値がそれぞれR1、R2、R3のI/V変換抵抗であり、抵抗値の大きさはR1>R2>R3であり、R1が最小レンジ、R2が中レンジ、R3が最大レンジに対応する。
各I/V変換抵抗の図中における下側の電位をそれぞれV1、V2、V3とする。
演算回路2の入力インピーダンスが低い場合は、必要に応じてこらの信号を図7に示すようなバッファ回路で一旦受けるが、以降も含め本書では説明の明快化の為にバッファ回路の記載は省く。
3, 4, and 5 are I / V conversion resistors having resistance values R1, R2, and R3, respectively. The resistance values are R1>R2> R3, R1 is the minimum range, R2 is the middle range, and R3 is R3. Corresponds to the maximum range.
The lower potentials of the I / V conversion resistors in the figure are V1, V2, and V3, respectively.
When the input impedance of the arithmetic circuit 2 is low, these signals are once received by the buffer circuit as shown in FIG. 7 as necessary. However, the description of the buffer circuit is omitted in this document for the sake of clarity. .

6、7は入力インピーダンスが充分に高い電流ブースタであり、説明の明快化の為に電圧ゲインを1とし、各々バイパスすべき電流を充分駆動できるものとする。
ゲイン1なので電流ブースタ6、7各々の入出力電圧は同じであり、それぞれV23、V33とする。
Reference numerals 6 and 7 are current boosters having sufficiently high input impedances. For the sake of clarity, the voltage gain is set to 1 and each of the currents to be bypassed can be sufficiently driven.
Since the gain is 1, the input / output voltages of the current boosters 6 and 7 are the same and are V23 and V33, respectively.

8、9は不感帯回路である。この入力VIに対する出力VOの関係を
VO=db(VI、E) ・・・(1)
で表わした場合、
VI<−Eの場合、 VO=G・(VI+E)
−E≦VI<+Eの場合、VO=0
+E≦VIの場合、 VO=G・(VI−E)
となる関数回路を示すものとする。
但し、Gはゲインであり、説明の明快化の為に本書では特に断らない限り以降全ての不感帯回路のゲインを1とする。即ち本書では以下全て(1)で示される不感帯回路は
VI<−Eの場合、 VO=VI+E ・・・(2)
−E≦VI<+Eの場合、VO=0 ・・・(3)
+E≦VIの場合、 VO=VI−E ・・・(4)
とする。
Reference numerals 8 and 9 are dead band circuits. The relationship of the output VO to the input VI is expressed as follows: VO = db (VI, E) (1)
In the case of
When VI <-E, VO = G · (VI + E)
When -E ≦ VI <+ E, VO = 0
When + E ≦ VI, VO = G · (VI−E)
A functional circuit is shown as follows.
However, G is a gain, and for the sake of clarity of explanation, the gains of all dead-band circuits are set to 1 unless otherwise specified in this document. In other words, in this document, the dead band circuit indicated by (1) is VO = VI + E (2) when VI <−E.
When −E ≦ VI <+ E, VO = 0 (3)
When + E ≦ VI, VO = VI−E (4)
And

演算増幅器を用いた種々の不感帯回路が一般的に知られており、8、9は(1)を満足する一般的な不感帯回路で良い。図10はその一例であり、図11はその入出力特性である。
なお、同図では一般論として負入力の不感帯電圧を−E1、正入力の不感帯電圧を+E2としているが、(1)の回路は不感帯電圧を絶対値が等しい−E、+Eとしたものである。
Various dead band circuits using operational amplifiers are generally known, and 8 and 9 may be general dead band circuits satisfying (1). FIG. 10 shows an example, and FIG. 11 shows the input / output characteristics.
In this figure, as a general theory, the negative input dead band voltage is -E1 and the positive input dead band voltage is + E2. However, the circuit (1) has the dead band voltage of -E, + E having the same absolute value. .

不感帯回路8の入力電圧、不感帯電圧、出力電圧をそれぞれV1、E21、V21とし、不感帯回路9の入力電圧、不感帯電圧、出力電圧をそれぞれV1、E31、V31とする。   The input voltage, dead band voltage, and output voltage of the dead band circuit 8 are V1, E21, and V21, respectively, and the input voltage, dead band voltage, and output voltage of the dead band circuit 9 are V1, E31, and V31, respectively.

10、11はリミッタ回路である。この入力VIに対する出力VOの関係を
VO=lm(VI、E) ・・・(5)
で表わした場合、
VI<−Eの場合、 VO=−E
−E≦VI<+Eの場合、VO=G・VI
+E≦VIの場合、 VO=+E
となる関数回路を示すものとする。
但し、Gはゲインであり、説明の明快化の為に本書では特に断らない限り以降全てのリミッタ回路のゲインを1とする。即ち本書では以下全て
VI<−Eの場合、 VO=−E
−E≦VI<+Eの場合、VO=VI
+E≦VIの場合、 VO=+E
とする。
Reference numerals 10 and 11 denote limiter circuits. The relationship of the output VO to the input VI is expressed as follows: VO = lm (VI, E) (5)
In the case of
When VI <-E, VO = -E
When -E ≦ VI <+ E, VO = G · VI
When + E ≦ VI, VO = + E
A functional circuit is shown as follows.
However, G is a gain, and for the sake of clarity of explanation, the gains of all the limiter circuits are set to 1 unless otherwise specified in this document. In other words, in this document, when VI <-E, VO = -E
When -E ≦ VI <+ E, VO = VI
When + E ≦ VI, VO = + E
And

演算増幅器を用いた種々のリミッタ回路が一般的に知られており、10、11は(5)を満足する一般的なリミッタ回路で良い。
図12は反転型リミッタ回路の一例であり、図13はその入出力特性である。
図8は一般的に知られている演算増幅器を用いた反転増幅器の一例であり、このゲインを−1にすればインバータになる。
図12は反転型であるのでその出力を図8を用いたインバータで反転させれば(5)のリミッタ回路を容易に得る事ができる。
なお、同図では一般論として負入力のリミット電圧をE1、正入力のリミット電圧を−E2としているが、(5)の回路はリミット電圧を絶対値が等しい+E、−Eとしたものである。
Various limiter circuits using operational amplifiers are generally known, and 10 and 11 may be general limiter circuits satisfying (5).
FIG. 12 shows an example of an inverting type limiter circuit, and FIG. 13 shows its input / output characteristics.
FIG. 8 shows an example of an inverting amplifier using a generally known operational amplifier. When this gain is set to -1, an inverter is formed.
Since FIG. 12 is an inverting type, if the output is inverted by an inverter using FIG. 8, the limiter circuit of (5) can be easily obtained.
In this figure, the negative input limit voltage is E1 and the positive input limit voltage is -E2 as a general theory. However, in the circuit of (5), the limit voltages are + E and -E having the same absolute value. .

リミッタ回路10の入力電圧、リミット電圧、出力電圧をそれぞれV2、E22、V22とし、リミッタ回路11の入力電圧、リミット電圧、出力電圧をそれぞれV3、E32、V32とする。   The input voltage, limit voltage, and output voltage of the limiter circuit 10 are V2, E22, and V22, respectively. The input voltage, limit voltage, and output voltage of the limiter circuit 11 are V3, E32, and V32, respectively.

12、13は複数の入力電圧を加算した電圧を出力する加算回路である。
図9は一般的に知られている演算増幅器を用いた反転加算器の一例である。
図9の反転加算出力を図8を用いたインバータで反転させれば12、13の加算回路を容易に得る事ができる。
Reference numerals 12 and 13 denote addition circuits that output a voltage obtained by adding a plurality of input voltages.
FIG. 9 shows an example of an inverting adder using a generally known operational amplifier.
If the inverted addition output of FIG. 9 is inverted by the inverter using FIG. 8, 12 and 13 addition circuits can be easily obtained.

14、15はそれぞれ2個のダイオードを逆方向に並列接続したものである。
図6は一般的なダイオードの電圧−電流特性である。同図に示すようにダイオードはその両端電圧が一定値以下の場合は高インピーダンスで電流がオフ状態になり、一定の電圧を越えると低インピーダンスになって電流がオン状態になる非線形の電圧−電流特性を持つ。
なお本発明ではダイオードでなくてもツェナーダイオードやバリスタ等同様の特性を持つ他のデバイスでも良い。
ダイオード14、15の端子間電圧をそれぞれVF2、VF3とする。
Reference numerals 14 and 15 are two diodes connected in parallel in the opposite direction.
FIG. 6 shows a voltage-current characteristic of a general diode. As shown in the figure, when the voltage across the diode is below a certain value, the diode is high impedance and the current is turned off, and when the voltage exceeds a certain voltage, the impedance becomes low impedance and the current is turned on. Has characteristics.
In the present invention, other devices having similar characteristics such as a Zener diode and a varistor may be used instead of the diode.
The voltages between the terminals of the diodes 14 and 15 are VF2 and VF3, respectively.

図1の回路で不感帯回路の不感帯電圧、リミッタ回路のリミット電圧を適切に設定すれば、入力電流Iに応じて自動的にレンジ切り替え動作、即ちオートレンジ動作する事を以下に説明する。   When the dead band voltage of the dead band circuit and the limit voltage of the limiter circuit are appropriately set in the circuit of FIG. 1, the automatic range switching operation, that is, the auto range operation according to the input current I will be described below.

ここでは説明の為に最小レンジのフルスケールの電流値をIFS1、中レンジのフルスケールの電流値をIFS2とし、説明の明快化の為に最大レンジのフルスケール電流値はIFS2以上とし上限は規定しないものとする。即ち、
IFS1<IFS2 ・・・(6)
とする。
また、説明の明快化の為に入力電流がIFS1、IFS2でレンジ切り替えを行なうものとしているが、IFS1、IFS2の110%にする等、実際の応用では必要に応じて任意の値に設定する事ができる。
For the sake of explanation, the full-scale current value of the minimum range is IFS1, the full-scale current value of the middle range is IFS2, and the full-scale current value of the maximum range is IFS2 or more for the sake of clarity. Shall not. That is,
IFS1 <IFS2 (6)
And
Also, for clarity of explanation, the input current is assumed to switch the range at IFS1 and IFS2, but it may be set to an arbitrary value as necessary in actual applications such as 110% of IFS1 and IFS2. Can do.

入力電流Iは入力端子から流れ込むか、流れ出るか方向は任意の入力電流、I1はR1に流れる電流、I2はR2に流れる電流であり、I21は電流ブースタ6が駆動するバイパス電流、I31は電流ブースタ7が駆動するバイパス電流である。   The input current I flows in or out from the input terminal, the direction is arbitrary input current, I1 is a current flowing in R1, I2 is a current flowing in R2, I21 is a bypass current driven by the current booster 6, and I31 is a current booster 7 is a bypass current to be driven.

図1の6、8、10、12、14はI/V変換抵抗R1を流れる電流をバイパスするかどうか制御する電流オン−オフ回路であり、以下説明の為にレンジ切り替え回路1と呼ぶ。
図1の7、9、11、13、15はI/V変換抵抗R2を流れる電流をバイパスするかどうか制御する電流オン−オフ回路であり、以下説明の為にレンジ切り替え回路2と呼ぶ。
これらレンジ切り替え回路1、2がレンジ切り替え動作を実現する。
レンジ切り替え回路1、2共にオフ時にレンジ1が有効、レンジ切り替え回路1がオン、レンジ切り替え回路2がオフ時にレンジ2が有効、レンジ切り替え回路1、2が共にオン時レンジ3が有効である。
なお、図1においてV1は演算増幅器1の出力電圧で且つI/V変換抵抗3の演算増幅器出力端子側の電圧でもあり、V2はI/V変換抵抗4の演算増幅器出力端子側の電圧であり、V3はI/V変換抵抗5の演算増幅器出力端子側の電圧である。
Reference numerals 6, 8, 10, 12, and 14 in FIG. 1 denote current on / off circuits that control whether to bypass the current flowing through the I / V conversion resistor R1, and are referred to as a range switching circuit 1 for the following description.
1, 7, 9, 11, 13, and 15 are current on / off circuits that control whether to bypass the current flowing through the I / V conversion resistor R <b> 2, and are referred to as a range switching circuit 2 for the following description.
These range switching circuits 1 and 2 realize the range switching operation.
Range 1 is valid when both range switching circuits 1 and 2 are off, range switching circuit 1 is on, range 2 is valid when range switching circuit 2 is off, and range 3 is valid when both range switching circuits 1 and 2 are on.
In FIG. 1, V1 is the output voltage of the operational amplifier 1 and the voltage on the operational amplifier output terminal side of the I / V conversion resistor 3, and V2 is the voltage on the operational amplifier output terminal side of the I / V conversion resistor 4. , V3 is a voltage on the operational amplifier output terminal side of the I / V conversion resistor 5.

図1の回路においてE21、E22、E31、E32を以下の値に設定する。
E21=IFS1・(R1+R2+R3) ・・・(7)
E22=IFS1・(R2+R3) ・・・(8)
E31= IFS1・R1
+IFS2・(R2+R3)
+ED2 ・・・(9)
E32=IFS2・R3 ・・・(10)
但し(9)の、ED2は入力電流IがIFS2の時のダイオード14の両端子間の電圧とする。
In the circuit of FIG. 1, E21, E22, E31, and E32 are set to the following values.
E21 = IFS1 · (R1 + R2 + R3) (7)
E22 = IFS1 · (R2 + R3) (8)
E31 = IFS1 ・ R1
+ IFS2 ・ (R2 + R3)
+ ED2 (9)
E32 = IFS2 / R3 (10)
However, in (9), ED2 is a voltage between both terminals of the diode 14 when the input current I is IFS2.

レンジ切り替え回路1について図1の記号を用いると
V21=db(V1、E21) ・・・(11)
V22=lm(V2、E22) ・・・(12)
V23=V21+V22 ・・・(13)
VF2=V23−V2 ・・・(14)
である。
When the symbols in FIG. 1 are used for the range switching circuit 1, V21 = db (V1, E21) (11)
V22 = lm (V2, E22) (12)
V23 = V21 + V22 (13)
VF2 = V23−V2 (14)
It is.

レンジ切り替え回路2について図1の記号を用いると
V31=db(V1、E31) ・・・(15)
V32=lm(V3、E32) ・・・(16)
V33=V31+V32 ・・・(17)
VF3=V33−V3 ・・・(18)
である。
When the symbols in FIG. 1 are used for the range switching circuit 2, V31 = db (V1, E31) (15)
V32 = lm (V3, E32) (16)
V33 = V31 + V32 (17)
VF3 = V33−V3 (18)
It is.

図1の記号を用いると
V1−e= I1・(R1+R2+R3)
+I21・(R2+R3)
+I31・R3 ・・・(19)
が成り立つ。
誤差増幅器1は負帰還回路になっているので、常に+入力端子と−入力端子電圧が等しくなるようなV1を出力するように動作するが、+入力端子を0にしてあるのでe≒0になり、V1は入力電流の大きさに関わらず常に
V1= I1・(R1+R2+R3)
+I21・(R2+R3)
+I31・R3 ・・・(20)
になる。
Using the symbols in FIG. 1, V1−e = I1 · (R1 + R2 + R3)
+ I21 ・ (R2 + R3)
+ I31 · R3 (19)
Holds.
Since the error amplifier 1 is a negative feedback circuit, it always operates to output V1 so that the + input terminal voltage and the −input terminal voltage are equal. However, since the + input terminal is set to 0, e≈0. V1 is always regardless of the magnitude of the input current V1 = I1 · (R1 + R2 + R3)
+ I21 ・ (R2 + R3)
+ I31 · R3 (20)
become.

・レンジ1有効時、即ち
0≦I<IFS1 ・・・(21)
の場合の動作をまとめる。
(20)が成り立つV1はI21、I31が0になる場合である。この時
I1=I2=I ・・・(22)
なので
V1=I・(R1+R2+R3) ・・・(23)
V2=I・(R2+R3) ・・・(24)
V3=I・R3 ・・・(25)
である。(7)と(23)を(21)の条件の下で比較すると
V1<E21 ・・・(26)
なので
V21=0 ・・・(27)
である。さらに、(8)と(24)により(21)の範囲では
V22=V2 ・・・(28)
である。(13)、(14)、(27)、(28)をVF2について解くと
VF2=0 ・・・(29)
になるのでI21が0になる事が判る。
・ When range 1 is valid, that is, 0 ≦ I <IFS1 (21)
The operation in the case of is summarized.
V1 where (20) holds is a case where I21 and I31 are 0. At this time, I1 = I2 = I (22)
So V1 = I · (R1 + R2 + R3) (23)
V2 = I · (R2 + R3) (24)
V3 = I · R3 (25)
It is. When (7) and (23) are compared under the condition (21), V1 <E21 (26)
So V21 = 0 (27)
It is. Further, according to (8) and (24), in the range of (21), V22 = V2 (28)
It is. When (13), (14), (27), and (28) are solved for VF2, VF2 = 0 (29)
It turns out that I21 becomes 0.

同様に(9)と(23)を(21)の条件の下で比較すると明らかに
V1<E31 ・・・(30)
であり
V31=0 ・・・(31)
である。さらに、(10)と(25)により(21)の範囲では
V32=V3 ・・・(32)
である。(17)、(18)、(31)、(32)をVF3について解くと
VF3=0 ・・・(33)
になるのでI31が0になる事が判る。
Similarly, when (9) and (23) are compared under the condition (21), it is clear that V1 <E31 (30)
V31 = 0 (31)
It is. Further, according to (10) and (25), in the range of (21), V32 = V3 (32)
It is. When (17), (18), (31), and (32) are solved for VF3, VF3 = 0 (33)
It turns out that I31 becomes 0.

ここでIが限りなくIFS1に近付く場合のV1、V2、V3、I1、I2、I21、I31を求める。
V1、V2、V3は
V1= IFS1・(R1+R2+R3) ・・・(34)
V2= IFS1・(R2+R3) ・・・(35)
V3= IFS1・R3 ・・・(36)
に限りなく近付く。
この時I1、I2、I3は
I1=IFS1 ・・・(37)
I2=IFS1 ・・・(38)
に限りなく近付き、I21、I3は
I21=0 ・・・(39)
I31=0 ・・・(40)
である。
Here, V1, V2, V3, I1, I2, I21, and I31 when I approaches IFS1 indefinitely are obtained.
V1, V2, and V3 are V1 = IFS1 · (R1 + R2 + R3) (34)
V2 = IFS1 · (R2 + R3) (35)
V3 = IFS1 · R3 (36)
Approach as much as possible.
At this time, I1, I2, and I3 are I1 = IFS1 (37)
I2 = IFS1 (38)
I21, I3 is I21 = 0 (39)
I31 = 0 (40)
It is.

・レンジ2有効時、即ち
IFS1≦I<IFS2 ・・・(41)
の場合の動作をまとめる。
(20)が成り立つV1はI31が0になる場合であり、この時レンジ切り替え回路1がオンになってI21が流れ、レンジ切り替え回路2がオフでI31が0になり、以下の式が成り立つ。
I2=I ・・・(42)
V1−V2=I1・R1 ・・・(43)
V2=I・(R2+R3) ・・・(44)
V3=I・R3 ・・・(45)
V2=V1−E21+E22−VF2 ・・・(46)
I2=I1+I21 ・・・(47)
これらの式を解いてV1、I1、I21について整理すると
V1= I・(R2+R3)
+E21+VF2−E22 ・・・(48)
I1=(E21+VF2−E22)/R1 ・・・(49)
I21=I−(E21+VF2−E22)/R1 ・・・(50)
を得る。
・ When range 2 is valid, that is, IFS1 ≦ I <IFS2 (41)
The operation in the case of is summarized.
V1 where (20) is satisfied is a case where I31 becomes 0. At this time, the range switching circuit 1 is turned on and I21 flows, the range switching circuit 2 is turned off and I31 becomes 0, and the following equation is established.
I2 = I (42)
V1−V2 = I1 · R1 (43)
V2 = I · (R2 + R3) (44)
V3 = I · R3 (45)
V2 = V1-E21 + E22-VF2 (46)
I2 = I1 + I21 (47)
Solving these equations and rearranging for V1, I1, and I21, V1 = I · (R2 + R3)
+ E21 + VF2-E22 (48)
I1 = (E21 + VF2-E22) / R1 (49)
I21 = I− (E21 + VF2−E22) / R1 (50)
Get.

(9)と(48)を(41)の条件の下で比較すると
V1<E31 ・・・(51)
なので
V31=0 ・・・(52)
である。さらに、(10)と(45)により(41)の範囲では
V32=V2 ・・・(53)
である。(17)、(18)、(52)、(53)をVF3について解くと
VF3=0 ・・・(54)
になるのでI31が0になる事が判る。
When (9) and (48) are compared under the condition (41), V1 <E31 (51)
So V31 = 0 (52)
It is. Further, according to (10) and (45), in the range of (41), V32 = V2 (53)
It is. When (17), (18), (52), and (53) are solved for VF3, VF3 = 0 (54)
It turns out that I31 becomes 0.

ここでI=IFS1の場合のV1、V2、V3、I1、I2、I21、I31を求める。この場合I21は0に近いのでダイオードの特性により
VF2≒0 ・・・(55)
であり、(54)と(7)、(8)、(44)〜(50)を解いて整理すると
V1=IFS1・(R1+R2+R3) ・・・(56)
V2=IFS1・(R2+R3) ・・・(57)
V3=IFS1・R3 ・・・(58)
I1=IFS1 ・・・(59)
I2=IFS1 ・・・(60)
I21=0 ・・・(61)
I31=0 ・・・(62)
を得る。
Here, V1, V2, V3, I1, I2, I21, and I31 when I = IFS1 are obtained. In this case, since I21 is close to 0, VF2≈0 (55) due to the characteristics of the diode.
And solving (54), (7), (8), (44) to (50) and rearranging V1 = IFS1 · (R1 + R2 + R3) (56)
V2 = IFS1 · (R2 + R3) (57)
V3 = IFS1 · R3 (58)
I1 = IFS1 (59)
I2 = IFS1 (60)
I21 = 0 (61)
I31 = 0 (62)
Get.

IがIFS2に限りなく近付く場合のV1、V2、V3、I1、I2、I21、I31を求める。この場合(9)で定義したように
VF2≒ED2 ・・・(63)
であり、(54)と(7)、(8)、(44)〜(50)、(63)を解いて整理すると
V1= IFS1・R1+IFS2・(R2+R3)
+ED2 ・・・(64)
V2=IFS2・(R2+R3) ・・・(65)
V3=IFS2・R3 ・・・(66)
I1=IFS1+ED2/R1 ・・・(67)
I2=IFS2 ・・・(68)
I21=IFS2−IFS1−ED2/R1 ・・・(69)
I31=0 ・・・(70)
を得る。
V1, V2, V3, I1, I2, I21, and I31 when I approaches IFS2 as much as possible are obtained. In this case, as defined in (9) VF2≈ED2 (63)
And solving (54), (7), (8), (44)-(50), (63) and rearranging V1 = IFS1 · R1 + IFS2 · (R2 + R3)
+ ED2 (64)
V2 = IFS2 · (R2 + R3) (65)
V3 = IFS2 / R3 (66)
I1 = IFS1 + ED2 / R1 (67)
I2 = IFS2 (68)
I21 = IFS2-IFS1-ED2 / R1 (69)
I31 = 0 (70)
Get.

・レンジ3有効時、即ち
IFS2≦I ・・・(71)
の場合の動作をまとめる。
レンジ切り替え回路1、レンジ切り替え回路2共にオンになりI21、I31が流れ、以下の式が成り立つ。
V1−V2=I1・R1 ・・・(72)
V2−V3=I2・R2 ・・・(73)
V3=I・R3 ・・・(74)
V2=V1−E21+E22−VF2 ・・・(75)
V3=V1−E31+E32−VF3 ・・・(76)
I2=I1+I21 ・・・(77)
I=I2+I31 ・・・(78)
これらの式を解いてV1、V2、I1、I21、I31について整理すると
V1= I・R3+(E31+VF3−E32) ・・・(79)
V2= I・R3+(E31+VF3−E32)
−(E21+VF2−E22) ・・・(80)
I1=(E21+VF2−E22)/R1 ・・・(81)
I2= (E31+VF3−E32)/R2
−(E21+VF2−E22)/R2 ・・・(82)
I21= (E31+VF3−E32)/R2
−(E21+VF2−E22)/R2
−(E21+VF2−E22)/R1 ・・・(83)
I31=I−(E31+VF3−E32)/R2
+(E21+VF2−E22)/R2 ・・・(84)
を得る。
・ When range 3 is valid, that is, IFS2 ≦ I (71)
The operation in the case of is summarized.
Both the range switching circuit 1 and the range switching circuit 2 are turned on, I21 and I31 flow, and the following equation is established.
V1−V2 = I1 · R1 (72)
V2−V3 = I2 · R2 (73)
V3 = I · R3 (74)
V2 = V1-E21 + E22-VF2 (75)
V3 = V1-E31 + E32-VF3 (76)
I2 = I1 + I21 (77)
I = I2 + I31 (78)
Solving these equations and organizing V1, V2, I1, I21, and I31 V1 = I · R3 + (E31 + VF3-E32) (79)
V2 = I.R3 + (E31 + VF3-E32)
-(E21 + VF2-E22) (80)
I1 = (E21 + VF2-E22) / R1 (81)
I2 = (E31 + VF3-E32) / R2
-(E21 + VF2-E22) / R2 (82)
I21 = (E31 + VF3-E32) / R2
-(E21 + VF2-E22) / R2
-(E21 + VF2-E22) / R1 (83)
I31 = I- (E31 + VF3-E32) / R2
+ (E21 + VF2-E22) / R2 (84)
Get.

I=FS2の場合のV1、V2、V3、I1、I2、I21、I31を求める。この場合I31は0に近いのでダイオードの特性により
VF3≒0 ・・・(85)
であり、(9)で定義したように(63)が成り立つ。(63)、(85)と(7)〜(10)、(79)〜(84)を解いて整理すると
V1= IFS1・R1+IFS2・(R2+R3)
+ED2 ・・・(86)
V2=IFS2・(R2+R3) ・・・(87)
V3=IFS2・R3 ・・・(88)
I1=IFS1+ED2/R1 ・・・(89)
I2=IFS2 ・・・(90)
I21=IFS2−IFS1−ED2/R1 ・・・(91)
I31=0 ・・・(92)
を得る。
V1, V2, V3, I1, I2, I21, and I31 are obtained when I = FS2. In this case, since I31 is close to 0, VF3≈0 (85) depending on the characteristics of the diode.
And (63) holds as defined in (9). Solving (63), (85) and (7)-(10), (79)-(84), V1 = IFS1 · R1 + IFS2 · (R2 + R3)
+ ED2 (86)
V2 = IFS2 · (R2 + R3) (87)
V3 = IFS2 / R3 (88)
I1 = IFS1 + ED2 / R1 (89)
I2 = IFS2 (90)
I21 = IFS2-IFS1-ED2 / R1 (91)
I31 = 0 (92)
Get.

各レンジにおいてその電流値を求める為に、レンジ1有効時は(23)を変形して
I=V1/(R1+R2+R3) ・・・(93)
を得る。
レンジ2有効時は(44)を変形して
I=V2/(R2+R3) ・・・(94)
を得る。
レンジ有効時は(74)を変形して
I=V3/R3 ・・・(95)
を得る。
In order to obtain the current value in each range, when range 1 is valid, (23) is modified and I = V1 / (R1 + R2 + R3) (93)
Get.
When range 2 is valid, change (44) to change I = V2 / (R2 + R3) (94)
Get.
When the range is valid, change (74) to change I = V3 / R3 (95)
Get.

入力電流Iを求めるには演算回路2で(93)〜(95)を演算し、求めたIがそのレンジの扱う電流範囲に入る電流値を示すレンジの内で最も小さなレンジの値を採用すれば良い。
演算回路2は一般的に知られている演算増幅器による演算回路やコンパレータ等を用いて容易に作る事ができる。
あるいは演算回路2内にA/D変換器、又は電圧/周波数変換器とカウンタ等を組み込み、各I/V変換抵抗毎の電圧出力をディジタル値に変換してから(93)〜(95)をソフトウェアで演算して電流Iを求める事もできる。
In order to obtain the input current I, the arithmetic circuit 2 calculates (93) to (95), and the value of the smallest range is adopted in the range in which the obtained I indicates the current value that falls within the current range handled by the range. It ’s fine.
The arithmetic circuit 2 can be easily made using a generally known arithmetic circuit using an operational amplifier, a comparator, or the like.
Alternatively, an A / D converter or a voltage / frequency converter and a counter are incorporated in the arithmetic circuit 2, and the voltage output for each I / V conversion resistor is converted to a digital value, and then (93) to (95) The current I can also be calculated by software.

なお、図14に示すような差動増幅器で各I/V変換抵抗の両端電圧を検出してから、レンジ1有効時は
I=V1/R1 ・・・(96)
の演算で、レンジ2有効時は
I=V2/R2 ・・・(97)
の演算で電流を求める事も可能であるが、その場合は差動増幅器が必要になるので(93)、(94)の方が部品点数が少なくなる。
It should be noted that, when the voltage at both ends of each I / V conversion resistor is detected by a differential amplifier as shown in FIG. 14, when range 1 is valid, I = V1 / R1 (96)
When range 2 is valid in the calculation of I = V2 / R2 (97)
It is also possible to obtain the current by the above calculation, but in this case, since a differential amplifier is required (93) and (94), the number of parts is reduced.

以上の説明で誤差増幅用の演算増幅器と電流測定に必要なレンジ数分の複数のI/V変換抵抗を有し、それらのI/V変換抵抗を抵抗値の大きさの順番に直列接続した後の両端の内の最小抵抗値のI/V変換抵抗側の端子を前記演算増幅器の反転入力端子に接続し、最大抵抗値側の端子を前記演算増幅器の出力端子に接続して負帰還回路を構成し、前記演算増幅器の反転入力端子から測定対象の電流を入力し、前記複数のI/V変換抵抗の内最小抵抗値のI/V変換抵抗を除くI/V変換抵抗の前記演算増幅器の反転入力端子側を各I/V変換抵抗毎のレンジ切り替え回路接続部とし、レンジ切り替え回路をこれらレンジ切り替え回路接続部と前記演算増幅器の出力端子間に負帰還回路を構成する様に設け、入力電流がフルスケールを越えたレンジのI/V変換抵抗の入力電流を前記レンジ切り替え回路でバイパスする事によりレンジ切り替えを行なう様にした電流/電圧変換回路において、各I/V変換抵抗の演算増幅器出力端子側の端子電圧をI/V変換信号電圧とし、演算増幅器反転入力端子と各I/V変換抵抗間にあるI/V変換抵抗の合計抵抗値を各レンジ毎のI/V変換抵抗値として、入力電流がバイパスされずに全入力電流が流れるI/V変換抵抗に対するI/V変換信号電圧と当該レンジに対するI/V変換抵抗値を用いてレンジ1有効時は(93)、レンジ2有効時は(94)、レンジ3有効時は(95)により演算回路で電流値を演算して電流値を求める事を特徴とする電流/電圧変換回路を得られる事が判る。   In the above description, there are an operational amplifier for error amplification and a plurality of I / V conversion resistors corresponding to the number of ranges necessary for current measurement, and these I / V conversion resistors are connected in series in the order of the resistance value. A negative feedback circuit is formed by connecting the terminal on the I / V conversion resistance side of the minimum resistance value of the latter ends to the inverting input terminal of the operational amplifier and connecting the terminal on the maximum resistance value side to the output terminal of the operational amplifier. The operational amplifier of the I / V conversion resistance except the I / V conversion resistance of the minimum resistance value of the plurality of I / V conversion resistances, by inputting the current to be measured from the inverting input terminal of the operational amplifier The inverting input terminal side of each I / V conversion resistor is set as a range switching circuit connection unit, and the range switching circuit is provided so as to form a negative feedback circuit between the range switching circuit connection unit and the output terminal of the operational amplifier. Input current exceeds full scale In the current / voltage conversion circuit in which the range switching is performed by bypassing the input current of the I / V conversion resistor in the range by the range switching circuit, the terminal voltage on the operational amplifier output terminal side of each I / V conversion resistor is The input current is bypassed with the I / V conversion signal voltage, the total resistance value of the I / V conversion resistors between the operational amplifier inverting input terminal and each I / V conversion resistor as the I / V conversion resistance value for each range. Without using the I / V conversion signal voltage for the I / V conversion resistor through which all the input current flows and the I / V conversion resistance value for the range, the range 1 is valid (93), the range 2 is valid (94), When range 3 is effective, it can be seen that a current / voltage conversion circuit characterized in that the current value is obtained by calculating the current value by the arithmetic circuit according to (95).

レンジ1とレンジ2のレンジ切り替わり点のV1は(34)、(56)から共に
V1=IFS1・(R1+R2+R3)
である。
レンジ1とレンジ2のレンジ切り替わり点のV2は(35)、(57)から共に
V2= IFS1・(R2+R3)
である。
レンジ1とレンジ2のレンジ切り替わり点のV3は(36)、(58)から共に
V3= IFS1・R3
である。
レンジ1とレンジ2のレンジ切り替わり点のI1は(37)、(59)から共に
I1=IFS1
であり、I2は(38)、(60)から共に
I2=IFS1
である。
また、レンジ1では
I21=0
I31=0
であり、レンジ1とレンジ2のレンジ切り替わり点でのレンジ2も(61)、(62)により同じである。
以上からレンジ1とレンジ2のレンジ切り替わり点のV1、V2、V3、I1、I2、I21、I31は同じ値になるので、レンジ切り替え時にこれらは全て連続的に変化する事が判る。
V1 of the range switching point between Range 1 and Range 2 is from both (34) and (56) V1 = IFS1 · (R1 + R2 + R3)
It is.
V2 of the range switching point between Range 1 and Range 2 is both from (35) and (57) V2 = IFS1 · (R2 + R3)
It is.
V3 of the range switching point between range 1 and range 2 is both from (36) and (58) V3 = IFS1 · R3
It is.
The range switching point I1 between Range 1 and Range 2 is both from (37) and (59). I1 = IFS1
And I2 is both from (38) and (60) I2 = IFS1
It is.
In range 1, I21 = 0
I31 = 0
The range 2 at the range switching point between the range 1 and the range 2 is the same as (61) and (62).
From the above, since V1, V2, V3, I1, I2, I21, and I31 of the range switching points of Range 1 and Range 2 have the same value, it can be seen that they all change continuously when the range is switched.

レンジ2とレンジ3のレンジ切り替わり点のV1は(64)、(86)から共に
V1= IFS1・R1+IFS2・(R2+R3)
+ED2
である。
レンジ2とレンジ3のレンジ切り替わり点のV2は(65)、(87)から共に
V2=IFS2・(R2+R3)
である。
レンジ2とレンジ3のレンジ切り替わり点のV3は(66)、(88)から共に
V3=IFS2・R3
である。
レンジ2とレンジ3のレンジ切り替わり点のI1は(67)、(89)から共に
I1=IFS1+ED2/R1
である。
レンジ2とレンジ3のレンジ切り替わり点のI2は(68)、(90)から共に
I2=IFS2
である。
レンジ2とレンジ3のレンジ切り替わり点のI21は(69)、(91)から共に
I21=IFS2−IFS1−ED2/R1
である。
また、レンジ2では
I31=0
であり、レンジ2とレンジ3のレンジ切り替わり点でのレンジ3でも(92)より同じである。
以上からレンジ2とレンジ3のレンジ切り替わり点のV1、V2、V3、I1、I2、I21、I31はレンジ切り替え時に同じ値になるので、これらは全て連続的に変化する事が判る。
V1 of the range switching point between Range 2 and Range 3 is from both (64) and (86) V1 = IFS1 · R1 + IFS2 · (R2 + R3)
+ ED2
It is.
V2 of the range switching point between Range 2 and Range 3 is both from (65) and (87) V2 = IFS2 · (R2 + R3)
It is.
V3 of the range switching point between range 2 and range 3 is both from (66) and (88) V3 = IFS2 / R3
It is.
I1 of the range switching point between Range 2 and Range 3 is (67) and (89). I1 = IFS1 + ED2 / R1
It is.
The range switching point I2 of range 2 and range 3 is both (68) and (90). I2 = IFS2
It is.
I21 of the range switching point between Range 2 and Range 3 is (69) and (91). I21 = IFS2-IFS1-ED2 / R1
It is.
In range 2, I31 = 0
This is also the case with Range 3 at the range switching point between Range 2 and Range 3 from (92).
From the above, it can be seen that V1, V2, V3, I1, I2, I21, and I31 of the range switching points of Range 2 and Range 3 have the same value when the range is switched, so that they all change continuously.

負入力についても極性が変わるだけで以上の説明と同様になる。
以上の説明で図1の回路はレンジ切り替えを自動、即ちオートレンジで行ない、レンジ切り替えの際に各部の信号が連続的に変化する事が判る。
レンジ切り替えの為に アナログスイッチやリレー等を用いて測定に関わる各部の信号を非連続に変化させると測定誤差やノイズ等の悪影響を発生し易いが、本発明のように各部の信号を連続的に変化させると、測定誤差やノイズ等の悪影響を少なくする利点がある。
また、これらの回路は全て高速動作する半導体素子で構成できるので、高速動作が可能である。
The negative input is the same as the above description only by changing the polarity.
From the above description, it can be seen that the circuit in FIG. 1 performs range switching automatically, that is, in auto range, and the signals of each part continuously change during range switching.
If the signal of each part related to measurement is changed discontinuously using an analog switch or relay for range switching, it is easy to cause adverse effects such as measurement error and noise. By changing to, there is an advantage of reducing adverse effects such as measurement errors and noise.
In addition, since these circuits can be composed of semiconductor elements that operate at high speed, they can operate at high speed.

これは請求項1に関わる誤差増幅用の演算増幅器と電流測定に必要なレンジ数分の複数のI/V変換抵抗を有し、それらのI/V変換抵抗を抵抗値の大きさの順番に直列接続した後の両端の内の最小抵抗値のI/V変換抵抗側の端子を前記演算増幅器の反転入力端子に接続し、最大抵抗値側の端子を前記演算増幅器の出力端子に接続して負帰還回路を構成し、前記演算増幅器の反転入力端子から測定対象の電流を入力し、前記複数のI/V変換抵抗の内最小抵抗値のI/V変換抵抗を除くI/V変換抵抗の前記演算増幅器の反転入力端子側を各I/V変換抵抗毎のレンジ切り替え回路接続部とし、レンジ切り替え回路をこれらレンジ切り替え回路接続部と前記演算増幅器の出力端子間に負帰還回路を構成する様に設け、入力電流がフルスケールを越えたレンジのI/V変換抵抗の入力電流を前記レンジ切り替え回路でバイパスする事によりレンジ切り替えを行なう様にした電流/電圧変換回路において、前記レンジ切り替え回路接続部に一方の端子を接続した電流オン/オフ用のダイオードと、前記レンジ切り替え回路接続部の電圧を入力とし各レンジ毎のレンジ切り替え回路をオンにさせる直前の前記レンジ切り替え回路接続部の電圧値をリミット設定電圧とするリミッタ回路と、前記演算増幅器の出力電圧を入力とし各レンジ毎のレンジ切り替え回路をオンにさせる直前の前記演算増幅器の出力電圧値を不感帯設定電圧とする不感帯回路と、これらリミッタ回路と不感帯回路の出力電圧を加算回路で加算しその出力を前記レンジ切り替え回路接続部に接続した前記電流オン/オフ用ダイオードの他方の端子に接続してバイパス電流を吸い込み又は吐き出す様にし、その加算回路の出力能力が不足する場合にはその加算回路の出力部に電流ブースタを追加して出力能力を補強するものとしたレンジ切り替え回路を各レンジ毎に設け、入力電流がフルスケール以下のレンジの前記レンジ切り替え回路の電流オン/オフ用のダイオードの両端が等電位になってバイパス電流がオフになり、入力電流がフルスケールを越えたレンジについては前記レンジ切り替え回路の不感帯回路を経由した前記演算増幅器の出力電圧により電流オン/オフ用のダイオードの両端に電位差が生じてバイパス電流がオンになる事により、オートレンジ切り替え可能で、且つレンジ切り替え時に電流/電圧変換回路各部の信号を連続的に変化させて測定誤差やノイズの影響を少なくした事を特徴とするレンジ切り替え回路を実現できる事を示す。
なお、請求項1はレンジ切り替え回路の構成方法についてのものであり、I/V変換抵抗の抵抗値とその電圧から電流値を求める方法については問わない。
This has an operational amplifier for error amplification according to claim 1 and a plurality of I / V conversion resistors corresponding to the number of ranges necessary for current measurement, and these I / V conversion resistors are arranged in the order of the resistance value. Connect the terminal on the I / V conversion resistance side of the minimum resistance value of both ends after series connection to the inverting input terminal of the operational amplifier, and connect the terminal on the maximum resistance value side to the output terminal of the operational amplifier. A negative feedback circuit is configured, a current to be measured is input from the inverting input terminal of the operational amplifier, and the I / V conversion resistors except for the I / V conversion resistors of the minimum resistance values of the plurality of I / V conversion resistors The inverting input terminal side of the operational amplifier is a range switching circuit connection for each I / V conversion resistor, and the range switching circuit is configured to form a negative feedback circuit between the range switching circuit connection and the output terminal of the operational amplifier. The input current is at full scale. In the current / voltage conversion circuit in which the range switching is performed by bypassing the input current of the I / V conversion resistor of the range exceeding the range by the range switching circuit, one terminal is connected to the range switching circuit connecting portion. A limiter circuit that uses a diode for current on / off and a voltage of the range switching circuit connection unit as an input and a voltage value of the range switching circuit connection unit immediately before turning on the range switching circuit for each range as a limit setting voltage A dead band circuit that uses the output voltage of the operational amplifier as an input and sets the output voltage value of the operational amplifier immediately before turning on the range switching circuit for each range as a dead band setting voltage, and the output voltage of these limiter circuit and dead band circuit Is added by an adder circuit, and the output is connected to the range switching circuit connection portion. Connected to the other terminal of the diode for absorption and discharge of bypass current, and if the output capability of the adder circuit is insufficient, a current booster is added to the output part of the adder circuit to reinforce the output capability A range switching circuit is provided for each range, and the current on / off diodes of the range switching circuit in the range where the input current is less than full scale are equipotential, the bypass current is turned off, and the input current For a range that exceeds the full scale, the output voltage of the operational amplifier via the dead zone circuit of the range switching circuit causes a potential difference across the current on / off diode, and the bypass current is turned on. The range can be switched, and the signal of each part of the current / voltage conversion circuit is continuously changed when the range is switched. It shows that a range switching circuit characterized by reduced influence of constant error and noise can be realized.
Note that claim 1 relates to a method of configuring the range switching circuit, and any method for obtaining the current value from the resistance value of the I / V conversion resistor and its voltage is acceptable.

請求項2に関わる請求項1によるレンジ切り替え回路を用いた電流/電圧変換回路の全レンジ範囲に渡る入力電流を精度良く電圧信号に変換して電流モニタ電圧信号を作成できる事を特徴とする電流モニタ電圧信号作成回路について説明する。
図1の電流/電圧変換回路において、電流/電圧変換後の電圧信号をモニタ信号とする場合、単純に電圧信号V1、V2、V3の全て、又はそれらから有効レンジの信号を選択した信号と、その時点でどのレンジが有効かを示す信号を組み合わせて出力する事ができるが、モニタ信号の利用者は複数の信号を組み合わせて使用しなければならないので電流モニタ信号としては使用し難い。
あるいはV1を直接又は必要に応じてバッファを介してモニタ信号としても良いが、レンジ2有効時は(48)となりVF2が入り、レンジ3有効時は(79)となりVF3が入る。
VF2、VF3はダイオード両端子間電圧であり、電流の大きさや温度で変化し、且つダイオード毎に特性のばらつきがあるので、モニタ信号の用途によっては精度が不足する。
A current characterized in that a current monitor voltage signal can be generated by accurately converting an input current over the entire range of the current / voltage conversion circuit using the range switching circuit according to claim 1 into a voltage signal. A monitor voltage signal generation circuit will be described.
In the current / voltage conversion circuit of FIG. 1, when the voltage signal after current / voltage conversion is used as a monitor signal, all of the voltage signals V1, V2, V3, or a signal in which an effective range signal is selected from them, Signals indicating which range is effective at that time can be combined and output, but the user of the monitor signal must use a combination of a plurality of signals, so it is difficult to use as a current monitor signal.
Alternatively, V1 may be used as a monitor signal directly or via a buffer as necessary, but when range 2 is valid, it becomes (48) and VF2 is entered, and when range 3 is valid, it becomes (79) and VF3 is entered.
VF2 and VF3 are voltages across the diode terminals, change with the magnitude of the current and temperature, and have variations in characteristics among the diodes. Therefore, the accuracy is insufficient depending on the application of the monitor signal.

これらを解決したのが図2の本発明の請求項2に関わる電流/電圧変換信号に対する電流モニタ電圧信号作成回路である。これは図1のV1、V2、V3を入力とするものであり説明の明快化の為に図1の関連する部分のみ取り出して記載している。
21、22、23はリミッタ回路であり実現方法は既に説明した図1のリミッタ回路10、11と同じである。
24は加算回路であり実現方法は既に説明した図1の加算回路12、13と同じである。このモニタ出力電圧をVMとする。
その他は図1と同じである。
また実施例1と同様に最小レンジのフルスケールの電流値をIFS1、中レンジのフルスケールの電流値をIFS2とする。
What solved these problems is the current monitor voltage signal generation circuit for the current / voltage conversion signal according to claim 2 of the present invention in FIG. This takes V1, V2, and V3 in FIG. 1 as inputs, and only the relevant parts in FIG. 1 are taken out and described for clarity of explanation.
21, 22, and 23 are limiter circuits, and the implementation method is the same as that of the limiter circuits 10 and 11 of FIG. 1 already described.
Reference numeral 24 denotes an adder circuit, which is implemented in the same manner as the adder circuits 12 and 13 shown in FIG. This monitor output voltage is VM.
Others are the same as FIG.
Similarly to the first embodiment, the full-scale current value of the minimum range is IFS1, and the full-scale current value of the middle range is IFS2.

なお、図2では各リミッタ回路の入出力、モニタ出力にバッファを記載していないが、必要に応じて付加すれば良い。
また、モニタ出力の用途に応じて最適なスケーリングをする為に各リミッタ回路21、22、23又は加算回路24に増幅器を付加してゲインを調整すれば便利であるが、ここでは説明の明快化の為に全てゲインは1のままとする。
In FIG. 2, buffers are not described for input / output and monitor output of each limiter circuit, but may be added as necessary.
In addition, it is convenient to adjust the gain by adding an amplifier to each of the limiter circuits 21, 22, 23 or the adder circuit 24 in order to perform optimum scaling according to the use of the monitor output. For this reason, all gains remain at 1.

また、図2ではリミッタ回路23を設けているが、最大レンジの上限を越えた入力電流に対してモニタ出力の上限を抑える必要が無ければ最大レンジのリミッタ回路は無くても良く、以下の説明では明快化の為リミッタ回路23を省き、且つバッファも無いものとしてV3を加算回路24に直接接続するものとする。   In FIG. 2, the limiter circuit 23 is provided. However, if it is not necessary to suppress the upper limit of the monitor output for the input current exceeding the upper limit of the maximum range, the limiter circuit of the maximum range may be omitted. Then, for the sake of clarity, it is assumed that the limiter circuit 23 is omitted and V3 is directly connected to the adder circuit 24 with no buffer.

図2の回路において
V14=lm(V1、E13) ・・・(98)
V24=lm(V2、E23) ・・・(99)
VM=V14+V24+V3 ・・・(100)
である。
各リミット設定値を
E13=IFS1・(R1+R2+R3) ・・・(101)
E23=IFS2・(R2+R3) ・・・(102)
とする。
In the circuit of FIG. 2, V14 = lm (V1, E13) (98)
V24 = lm (V2, E23) (99)
VM = V14 + V24 + V3 (100)
It is.
Set each limit value as follows: E13 = IFS1 · (R1 + R2 + R3) (101)
E23 = IFS2 · (R2 + R3) (102)
And

・レンジ1有効時、即ち
0≦I<IFS1 ・・・(103)
の場合の動作をまとめる。
レンジの条件(103)と(98)〜(102)を演算してVMについて整理すると
VM=I・(R1+2R2+3R3) ・・・(104)
0≦VM<IFS1・(R1+2R2+3R3) ・・・(105)
を得る。
・ When range 1 is valid, that is, 0 ≦ I <IFS1 (103)
The operation in the case of is summarized.
When the range conditions (103) and (98) to (102) are calculated and arranged for the VM, VM = I · (R1 + 2R2 + 3R3) (104)
0 ≦ VM <IFS1 · (R1 + 2R2 + 3R3) (105)
Get.

・レンジ2有効時、即ち
IFS1≦I<IFS2 ・・・(106)
の場合の動作をまとめる。
レンジの条件(106)と(98)〜(102)を演算してVMについて整理すると
VM= IFS1・(R1+R2+R3)
+I・(R2+2R3) ・・・(107)
IFS1・(R1+2R2+3R3)≦VM ・・・(108)
VM< IFS1・(R1+R2+R3)
+IFS2・(R2+2R3) ・・・(109)
を得る。
・ When range 2 is valid, that is, IFS1 ≦ I <IFS2 (106)
The operation in the case of is summarized.
When the range conditions (106) and (98) to (102) are calculated and arranged for the VM, VM = IFS1 · (R1 + R2 + R3)
+ I · (R2 + 2R3) (107)
IFS1 · (R1 + 2R2 + 3R3) ≦ VM (108)
VM <IFS1 · (R1 + R2 + R3)
+ IFS2 · (R2 + 2R3) (109)
Get.

・レンジ3有効時、即ち
IFS2≦I ・・・(110)
の場合の動作をまとめる。
レンジの条件(110)と(98)〜(102)を演算してVMについて整理すると
VM= IFS1・(R1+R2+R3)
+IFS2・(R2+R3)+I・R3 ・・・(111)
IFS1・(R1+R2+R3)
+IFS2・(R2+2R3)≦VM ・・・(112)
を得る。
負入力についても極性が変わるだけで同様になる。
・ When range 3 is valid, that is, IFS2 ≦ I (110)
The operation in the case of is summarized.
When the range conditions (110) and (98) to (102) are calculated and arranged for VM, VM = IFS1 · (R1 + R2 + R3)
+ IFS2 · (R2 + R3) + I · R3 (111)
IFS1 ・ (R1 + R2 + R3)
+ IFS2 · (R2 + 2R3) ≦ VM (112)
Get.
The same applies to the negative input just by changing the polarity.

図15は上記の入力電流Iとモニタ出力VMの関係の概略を示したものである。以上から判るようにVMは全範囲のIに対して、IFS1、IFS2を折れ点として1対1で対応する直線による折れ線の関係になるので、VMだけで入力電流Iが表現でき、他に現在の有効レンジを示す信号等を必要としない。
また、(104)、(107)、(111)から判るように、VMにはダイオード両端電圧VF2、VF3のような個々の素子の特性のバラツキが大きく、そのまま精度に影響及ぼす要因を含まないので精度が高い。
FIG. 15 shows an outline of the relationship between the input current I and the monitor output VM. As can be seen from the above, the VM has a broken line relationship with a straight line corresponding to IFS1 and IFS2 as a breakpoint with respect to I in the entire range, so that the input current I can be expressed only by the VM. No signal or the like indicating the effective range is required.
As can be seen from (104), (107), and (111), the VM has a large variation in the characteristics of the individual elements such as the voltage across the diodes VF2 and VF3, and does not include factors that directly affect the accuracy. High accuracy.

以上から図2の回路により請求項2に関わる、請求項1によるレンジ切り替え回路を用いた電流/電圧変換回路の電流/電圧変換信号のモニタ信号として、1つの電圧信号で全レンジの入力電流に対して精度良くモニタできる電流モニタ電圧信号作成回路を実現できる事が判る。   As described above, as a monitor signal of the current / voltage conversion signal of the current / voltage conversion circuit using the range switching circuit according to claim 1 related to claim 2 by the circuit of FIG. On the other hand, it can be seen that a current monitor voltage signal generation circuit capable of monitoring with high accuracy can be realized.

図3は請求項3に関わる不感帯設定電圧、リミット設定電圧に出力設定電圧を加算するようにした請求項1のレンジ切り替え回路を用いて、ダイナミックレンジが大きく、且つ高速に変化する負荷電流でも精度良くモニタ即ち電流測定できる事を特徴とする電圧発生器である。   FIG. 3 shows the accuracy of even a load current having a large dynamic range and a high speed by using the range switching circuit according to claim 1 in which the output setting voltage is added to the dead band setting voltage and limit setting voltage related to claim 3. It is a voltage generator characterized by good monitoring, i.e. current measurement.

31は設定電圧を供給する対象となる負荷である。
32は供給電圧の大きさを設定する為の電圧設定器である。
その他の記号は図1と同じである。
負荷31の抵抗をRLとし、これに供給する電圧をVLとし、その時の負荷31に流れる電流をIとする。
Reference numeral 31 denotes a load to which a set voltage is supplied.
Reference numeral 32 denotes a voltage setting device for setting the magnitude of the supply voltage.
Other symbols are the same as those in FIG.
The resistance of the load 31 is RL, the voltage supplied to this is VL, and the current flowing through the load 31 at that time is I.

誤差増幅器1はVLをフィードバックする負帰還回路を構成しているので、その+入力端子電圧と−入力端子電圧が常に等しくなるように出力電圧V1を制御する。
従って電圧設定器32の設定電圧をESにすると、フィードバック電圧VLもESになるようにV1が出力され、その結果負荷31にはその抵抗値RLの値に関わらず常にESに等しい電圧VLが供給される。
同時に負荷31には負荷電流Iが流れる。その大きさは
I=VL/RL ・・・(113)
であり、RLが変化するとIも変化する。
なお、図3の誤差増幅器1の接続は図16のように設定値の極性を反転させ入力抵抗を介して−入力端子に接続し、フィードバック信号もフィードバック抵抗を介して−入力端子に接続しても同じ動作になる。
Since the error amplifier 1 constitutes a negative feedback circuit that feeds back VL, the output voltage V1 is controlled so that the + input terminal voltage and the −input terminal voltage are always equal.
Therefore, when the set voltage of the voltage setting device 32 is set to ES, V1 is output so that the feedback voltage VL also becomes ES. As a result, the voltage VL that is always equal to ES is supplied to the load 31 regardless of the resistance value RL. Is done.
At the same time, a load current I flows through the load 31. Its size is I = VL / RL (113)
And when RL changes, I also changes.
The error amplifier 1 shown in FIG. 3 is connected to the input terminal via the input resistor with the polarity of the set value inverted as shown in FIG. 16, and the feedback signal is also connected to the input terminal via the feedback resistor. Will be the same operation.

図3は図1の電流/電圧変換回路を応用している。但し、不感帯回路8、9の不感帯設定電圧、リミッタ回路10、11のリミット設定電圧の各々に電圧測定器32の設定値ESを加算している。
これにより、図1におけるe≒0であるR3の上側とE21、E22、E31、E32の各設定値の電位関係と、図3の電位がVL(=ES)であるR3の上側と、E21、E22、E31、E32の各設定値の電位関係が等しくなり、実施例1で図1においてR3の上側がe≒0として説明したレンジ切り替え機能の説明がそのまま図3にも当て嵌まり、図3の電流/電圧変換回路はオートレンジ切り替え機能を持つ事が判る。
なお、不感帯回路入力電圧、リミッタ回路入力電圧から出力設定電圧を減算しても同じ動作をする。
実施例1で行った動作説明の繰り返しを避ける為、これらの詳細動作説明は省略する。
FIG. 3 applies the current / voltage conversion circuit of FIG. However, the setting value ES of the voltage measuring device 32 is added to each of the dead band setting voltage of the dead band circuits 8 and 9 and the limit setting voltage of the limiter circuits 10 and 11.
Thereby, the upper side of R3 where e≈0 in FIG. 1 and the potential relationship of each set value of E21, E22, E31, E32, the upper side of R3 where the potential of FIG. 3 is VL (= ES), and E21, The potential relationships of the set values E22, E31, and E32 are equal, and the description of the range switching function described in the first embodiment in which the upper side of R3 in FIG. 1 is e≈0 also applies to FIG. It can be seen that the current / voltage conversion circuit has an auto-range switching function.
The same operation is performed even if the output set voltage is subtracted from the dead band circuit input voltage and the limiter circuit input voltage.
In order to avoid repeating the description of the operation performed in the first embodiment, the detailed description of these operations is omitted.

RLの変化幅が大きく電流Iの変化幅が大きい場合には、負荷電流Iを正確にモニタする為にはレンジ切り替えによりI/V変換抵抗の大きさを変えて電流を検出する必要があるが、従来の電圧発生器では不可能であった。
図3の回路では高速のオートレンジで電流検出ができるので、ダイナミックレンジが大きく、且つ高速に変化する負荷電流でも精度良くモニタできる電圧発生器を実現できる。
その誤差増幅器1、電流ブースタ6、7が負荷への電流供給機能も兼ねる点も大きな特徴である。
When the change width of RL is large and the change width of current I is large, in order to monitor load current I accurately, it is necessary to detect the current by changing the magnitude of the I / V conversion resistor by switching the range. This is not possible with a conventional voltage generator.
Since the circuit shown in FIG. 3 can detect a current with a high-speed autorange, a voltage generator that has a large dynamic range and can accurately monitor even a load current that changes at high speed can be realized.
The point that the error amplifier 1 and the current boosters 6 and 7 also serve as a current supply to the load is also a great feature.

図4は請求項4に関わる不感帯回路、リミット回路の各入力電圧から負荷電圧を減算するようにした請求項1のレンジ切り替え回路、及び請求項2の電流モニタ電圧信号作成回路を用いて、広範囲の電流値を精度良く発生できる事を特徴とする電流発生器である。   FIG. 4 shows a wide range using the dead zone circuit according to claim 4, the range switching circuit of claim 1 in which the load voltage is subtracted from each input voltage of the limit circuit, and the current monitor voltage signal generation circuit of claim 2. It is a current generator characterized by being able to generate the current value of.

33は供給電流の大きさを設定する為の電流設定器である。
その他の記号は図1〜図3と同じである。
負荷31の抵抗をRLとし、これに供給する電流をIとし、その時の負荷31に印加される電圧をVLとする。
Reference numeral 33 denotes a current setter for setting the magnitude of the supply current.
Other symbols are the same as those in FIGS.
The resistance of the load 31 is RL, the current supplied thereto is I, and the voltage applied to the load 31 at that time is VL.

リミッタ回路21〜23は実施例2で説明した請求項2に関わる電流/電圧変換信号の電流モニタ電圧信号作成回路と同等の回路であり、動作も同じであって負荷電流Iを正確に検出し電圧出力VMとして出力する。
但し、リミッタ回路23のE33は充分大きな任意の値とし、常に
V34=V3−VL ・・・(114)
になる値にしておく。換言すると、23は単に(114)を演算する回路で良いが説明の明快化の為にリミッタ回路で表現したものである。
The limiter circuits 21 to 23 are equivalent to the current monitor voltage signal generation circuit for the current / voltage conversion signal according to claim 2 described in the second embodiment, and operate in the same manner to accurately detect the load current I. Output as voltage output VM.
However, E33 of the limiter circuit 23 is an arbitrarily large value, and V34 = V3-VL (114)
It becomes the value which becomes. In other words, 23 may be a circuit that simply calculates (114), but is expressed by a limiter circuit for clarity of explanation.

誤差増幅器1はVMをフィードバックする負帰還回路を構成しているので、その+入力端子電圧と−入力端子電圧が常に等しくなるように出力電圧V1を制御する。
従って電流設定器33の設定電圧をESにすると、フィードバック電圧VMもESになるようにV1が出力され、その結果負荷31にはその抵抗値RLの値に関わらず常に負荷電流Iの検出値VMがESに等しくなるような電圧VLが印加される。
VLの大きさは
VL=I・RL ・・・(115)
であり、RLが変化するとVLも変化する。
なお、図4の誤差増幅器1の接続は図16のように設定値の極性を反転させ入力抵抗を介して−入力端子に接続し、フィードバック信号もフィードバック抵抗を介して−入力端子に接続しても同じ動作になる。
Since the error amplifier 1 constitutes a negative feedback circuit that feeds back VM, the output voltage V1 is controlled so that the + input terminal voltage and the −input terminal voltage are always equal.
Therefore, when the set voltage of the current setting unit 33 is set to ES, V1 is output so that the feedback voltage VM also becomes ES, and as a result, the load 31 always has a detection value VM of the load current I regardless of the resistance value RL. A voltage VL is applied such that becomes equal to ES.
The size of VL is VL = I · RL (115)
When RL changes, VL also changes.
The connection of the error amplifier 1 in FIG. 4 is made by inverting the polarity of the set value as shown in FIG. 16 and connecting it to the −input terminal via the input resistor, and connecting the feedback signal to the −input terminal via the feedback resistor. Will be the same operation.

図4は図1の電流/電圧変換回路を応用している。但し、不感帯回路8、9の入力電圧、リミッタ回路10、11の入力電圧の各々から負荷電圧VLを減算している。
これにより、図1におけるe≒0であるR3の上側とE21、E22、E31、E32の各設定値の電位関係と、図4の電位がVLであるR3の上側と、E21、E22、E31、E32の各設定値の電位関係が等しくなり、実施例1で図1においてR3の上側がe≒0として説明したレンジ切り替え機能の説明がそのまま図3にも当て嵌まり、図4の電流/電圧変換回路はオートレンジ切り替え機能を持つ事が判る。
なお、不感帯設定電圧、リミット設定電圧に負荷電圧を加算しても同じ動作をする。
実施例1で行った動作説明の繰り返しを避ける為、これらの詳細動作説明は省略する。
FIG. 4 applies the current / voltage conversion circuit of FIG. However, the load voltage VL is subtracted from each of the input voltages of the dead band circuits 8 and 9 and the input voltages of the limiter circuits 10 and 11.
Thereby, the potential relationship between the upper side of R3 where e≈0 in FIG. 1 and the set values of E21, E22, E31 and E32, the upper side of R3 where the potential of FIG. 4 is VL, and E21, E22, E31, The potential relationship of each set value of E32 becomes equal, and the description of the range switching function described in the first embodiment in which the upper side of R3 in FIG. 1 is e≈0 applies to FIG. 3 as it is, and the current / voltage conversion of FIG. It can be seen that the circuit has an auto-range switching function.
The same operation is performed even if the load voltage is added to the dead band setting voltage and limit setting voltage.
In order to avoid repeating the description of the operation performed in the first embodiment, the detailed description of these operations is omitted.

RLの変化が大きい場合には、負荷電流Iを正確に検出する為にはレンジ切り替えによりI/V変換抵抗の大きさを変えて電流を検出する必要があるが、従来の電流発生器では不可能であった。
図4の回路では高速のオートレンジで電流検出ができるので、ダイナミックレンジが大きく、且つ高速に変化する負荷電流でも精度良く検出し、高速に応答できる電流発生器を実現できる。
その誤差増幅器1、電流ブースタ6、7が負荷への電流供給機能も兼ねる点も大きな特徴である。
When the change in RL is large, in order to accurately detect the load current I, it is necessary to detect the current by changing the magnitude of the I / V conversion resistor by switching the range, but this is not possible with the conventional current generator. It was possible.
Since the circuit of FIG. 4 can detect current with a high-speed autorange, a current generator that has a large dynamic range and can accurately detect even a load current that changes at high speed and can respond at high speed can be realized.
The point that the error amplifier 1 and the current boosters 6 and 7 also serve as a current supply to the load is also a great feature.

図5は請求項1を用いた電流/電圧変換回路にバッファと電圧/電流変換抵抗を付加し、電圧測定回路に応用した応用例である。   FIG. 5 shows an application example in which a buffer and a voltage / current conversion resistor are added to the current / voltage conversion circuit using claim 1 and applied to a voltage measurement circuit.

オートレンジ切り替え機能を有する電流/電圧変換回路である。It is a current / voltage conversion circuit having an auto range switching function. 電流モニタ電圧信号作成回路である。It is a current monitor voltage signal generation circuit. 電流モニタ機能付き電圧発生器である。This is a voltage generator with a current monitor function. オートレンジによる電流検出機能付き電流発生器である。It is a current generator with a current detection function by auto-ranging. 電流/電圧変換回路を応用した電圧測定回路である。This is a voltage measurement circuit using a current / voltage conversion circuit. 一般的なダイオードのI−V特性である。This is an IV characteristic of a general diode. 演算増幅器によるバッファ回路である。This is a buffer circuit using an operational amplifier. 演算増幅器による反転増幅器である。An inverting amplifier using an operational amplifier. 演算増幅器による反転加算機である。This is an inverting adder using an operational amplifier. 演算増幅器による不感帯回路である。This is a dead band circuit using an operational amplifier. 不感帯回路の入出力特性である。This is the input / output characteristics of the dead zone circuit. 演算増幅器による反転型リミッタ回路である。This is an inverting limiter circuit using an operational amplifier. 反転型リミッタ回路の入出力特性である。This is an input / output characteristic of an inverting type limiter circuit. 演算増幅器による差動増幅器である。It is a differential amplifier using an operational amplifier. 電流モニタ電圧信号作成回路の入出力特性である。It is an input / output characteristic of a current monitor voltage signal generation circuit. 設定値を演算増幅器の−入力端子に接続した負帰還回路である。This is a negative feedback circuit in which the set value is connected to the negative input terminal of the operational amplifier.

1 誤差増幅器
2 演算回路
3、4、5 I/V変換抵抗
6、7 電流ブースタ
8、9 不感帯回路
10、11、21、22、23 リミッタ回路
12、13、24 加算回路
14、15 ダイオード
31 負荷
32 電圧設定器
33 電流設定器
34 バッファ
35 電圧/電流変換抵抗
1 error amplifier 2 arithmetic circuit
3, 4, 5 I / V conversion resistor 6, 7 Current booster 8, 9 Dead band circuit 10, 11, 21, 22, 23 Limiter circuit 12, 13, 24 Adder circuit 14, 15 Diode 31 Load 32 Voltage setting device 33 Current Setting device 34 Buffer 35 Voltage / current conversion resistor

Claims (4)

誤差増幅用の演算増幅器と電流測定に必要なレンジ数分の複数のI/V変換抵抗を有し、それらのI/V変換抵抗を抵抗値の大きさの順番に直列接続した後の両端の内の最小抵抗値のI/V変換抵抗側の端子を前記演算増幅器の反転入力端子に接続し、最大抵抗値側の端子を前記演算増幅器の出力端子に接続して負帰還回路を構成し、前記演算増幅器の反転入力端子から測定対象の電流を入力し、前記複数のI/V変換抵抗の内最小抵抗値のI/V変換抵抗を除くI/V変換抵抗の前記演算増幅器の反転入力端子側を各I/V変換抵抗毎のレンジ切り替え回路接続部とし、レンジ切り替え回路をこれらレンジ切り替え回路接続部と前記演算増幅器の出力端子間に負帰還回路を構成する様に設け、入力電流がフルスケールを越えたレンジのI/V変換抵抗の入力電流を前記レンジ切り替え回路でバイパスする事によりレンジ切り替えを行なう様にした電流/電圧変換回路において、前記レンジ切り替え回路接続部に一方の端子を接続した電流オン/オフ用のダイオードと、前記レンジ切り替え回路接続部の電圧を入力とし各レンジ毎のレンジ切り替え回路をオンにさせる直前の前記レンジ切り替え回路接続部の電圧値をリミット設定電圧とするリミッタ回路と、前記演算増幅器の出力電圧を入力とし各レンジ毎のレンジ切り替え回路をオンにさせる直前の前記演算増幅器の出力電圧値を不感帯設定電圧とする不感帯回路と、これらリミッタ回路と不感帯回路の出力電圧を加算回路で加算しその出力を前記レンジ切り替え回路接続部に接続した前記電流オン/オフ用ダイオードの他方の端子に接続してバイパス電流を吸い込み又は吐き出す様にし、その加算回路の出力能力が不足する場合にはその加算回路の出力部に電流ブースタを追加して出力能力を補強するものとしたレンジ切り替え回路を各レンジ毎に設け、入力電流がフルスケール以下のレンジの前記レンジ切り替え回路の電流オン/オフ用のダイオードの両端が等電位になってバイパス電流がオフになり、入力電流がフルスケールを越えたレンジについては前記レンジ切り替え回路の不感帯回路を経由した前記演算増幅器の出力電圧により電流オン/オフ用のダイオードの両端に電位差が生じてバイパス電流がオンになる事により、オートレンジ切り替え可能で、且つレンジ切り替え時に電流/電圧変換回路各部の信号を連続的に変化させて測定誤差やノイズの影響を少なくした事を特徴とするレンジ切り替え回路。   An operational amplifier for error amplification and a plurality of I / V conversion resistors corresponding to the number of ranges required for current measurement, and the I / V conversion resistors at both ends after being connected in series in the order of the resistance value A negative feedback circuit is configured by connecting a terminal on the I / V conversion resistance side of the minimum resistance value to the inverting input terminal of the operational amplifier and connecting a terminal on the maximum resistance value side to the output terminal of the operational amplifier, The current to be measured is input from the inverting input terminal of the operational amplifier, and the inverting input terminal of the operational amplifier of the I / V conversion resistance excluding the I / V conversion resistance of the minimum resistance value of the plurality of I / V conversion resistances The side is used as a range switching circuit connection for each I / V conversion resistor, and the range switching circuit is provided to form a negative feedback circuit between the range switching circuit connection and the output terminal of the operational amplifier, and the input current is full. I / of the range beyond the scale In a current / voltage conversion circuit configured to perform range switching by bypassing the input current of the conversion resistor by the range switching circuit, a current on / off diode having one terminal connected to the range switching circuit connection portion and A limiter circuit that uses the voltage of the range switching circuit connection unit as an input and sets the voltage value of the range switching circuit connection unit immediately before turning on the range switching circuit for each range, and an output voltage of the operational amplifier And the dead band circuit that uses the output voltage value of the operational amplifier immediately before turning on the range switching circuit for each range as the dead band setting voltage, and the output voltage of these limiter circuit and dead band circuit is added by the addition circuit. The other of the current on / off diodes connected to the range switching circuit connecting portion. A range switching circuit that is connected to a child to suck in or discharge the bypass current, and when the output capability of the adder circuit is insufficient, a current booster is added to the output part of the adder circuit to reinforce the output capability. Is provided for each range, and both ends of the current on / off diode of the range switching circuit in the range where the input current is less than full scale are equipotential, the bypass current is turned off, and the input current exceeds full scale. For the range, the auto-range can be switched by turning on the bypass current by causing a potential difference across the diode for current on / off due to the output voltage of the operational amplifier via the dead zone circuit of the range switching circuit, In addition, the signal of each part of the current / voltage conversion circuit is continuously changed at the time of range switching to reduce the influence of measurement error and noise. Range switching circuit characterized by less. 誤差増幅用の演算増幅器と電流測定に必要なレンジ数分の複数のI/V変換抵抗を有し、それらのI/V変換抵抗を抵抗値の大きさの順番に直列接続した後の両端の内の最小抵抗値のI/V変換抵抗側の端子を前記演算増幅器の反転入力端子に接続し、最大抵抗値側の端子を前記演算増幅器の出力端子に接続して負帰還回路を構成し、前記演算増幅器の反転入力端子から測定対象の電流を入力し、前記複数のI/V変換抵抗の内最小抵抗値のI/V変換抵抗を除くI/V変換抵抗の前記演算増幅器の反転入力端子側を各I/V変換抵抗毎のレンジ切り替え回路接続部とし、レンジ切り替え回路をこれらレンジ切り替え回路接続部と前記演算増幅器の出力端子間に負帰還回路を構成する様に設け、入力電流がフルスケールを越えたレンジのI/V変換抵抗の入力電流を前記レンジ切り替え回路でバイパスする事によりレンジ切り替えを行なう様にした電流/電圧変換回路において、レンジ切り替え回路を請求項1によるものとし、前記各I/V変換抵抗の前記誤差増幅用の演算増幅器の出力端子側の端子をモニタ信号引き出し部とし、その点の電圧信号を入力としてそのI/V変換抵抗に対応するレンジのレンジ切り替え回路をオンにさせる直前の前記モニタ信号引き出し部の電圧値をリミット設定電圧とするリミッタ回路を各レンジ毎に設け、それら全てのリミッタ回路の出力電圧を加算回路で加算した電圧信号か、又は前記加算回路の入力の内最大レンジについてはリミッタ回路を設けず最大レンジのモニタ信号引き出し部の電圧信号を入力とした加算回路で加算した電圧信号、の何れかを測定対象である入力電流をモニタする為の電圧信号とする事により、全レンジの範囲に渡る入力電流を精度良くモニタできる事を特徴とする、請求項1によるレンジ切り替え回路と組み合わせて用いるリミッタ回路と加算回路からなる電流モニタ電圧信号作成回路。   An operational amplifier for error amplification and a plurality of I / V conversion resistors corresponding to the number of ranges required for current measurement, and the I / V conversion resistors at both ends after being connected in series in the order of the resistance value A negative feedback circuit is configured by connecting a terminal on the I / V conversion resistance side of the minimum resistance value to the inverting input terminal of the operational amplifier and connecting a terminal on the maximum resistance value side to the output terminal of the operational amplifier, The current to be measured is input from the inverting input terminal of the operational amplifier, and the inverting input terminal of the operational amplifier of the I / V conversion resistance excluding the I / V conversion resistance of the minimum resistance value of the plurality of I / V conversion resistances The side is used as a range switching circuit connection for each I / V conversion resistor, and the range switching circuit is provided to form a negative feedback circuit between the range switching circuit connection and the output terminal of the operational amplifier, and the input current is full. I / of the range beyond the scale In the current / voltage conversion circuit configured to perform range switching by bypassing the input current of the conversion resistor by the range switching circuit, the range switching circuit is according to claim 1, and the error of each I / V conversion resistor The terminal on the output terminal side of the operational amplifier for amplification is used as a monitor signal lead-out unit, and the monitor signal lead-out just before the range switching circuit corresponding to the I / V conversion resistor is turned on with the voltage signal at that point as an input A limiter circuit that sets the voltage value of the limiter to the limit setting voltage is provided for each range, and the limiter is the voltage signal obtained by adding the output voltages of all the limiter circuits by the adder circuit or the maximum range of the input of the adder circuit The voltage signal added by the addition circuit with the input of the voltage signal of the monitor signal lead-out part of the maximum range without providing a circuit, In combination with the range switching circuit according to claim 1, characterized in that any one of the voltage signals for monitoring the input current to be measured can be accurately monitored over the entire range. A current monitor voltage signal generation circuit comprising a limiter circuit and an adder circuit to be used. 誤差増幅用の演算増幅器の反転入力端子に電圧を印加する対象である負荷を接続し、前記演算増幅器の非反転入力端子に前記負荷に印加する電圧を設定する電圧設定器を接続し、電流測定に必要なレンジ数分の複数のI/V変換抵抗を抵抗値の大きさの順番に直列接続した後の両端の内の最小抵抗値のI/V変換抵抗側の端子を前記負荷に接続し、最大抵抗値側の端子を前記演算増幅器の出力端子に接続して負帰還回路を構成し、前記複数のI/V変換抵抗の内最小抵抗値のI/V変換抵抗を除くI/V変換抵抗の前記演算増幅器の反転入力端子側を各I/V変換抵抗毎のレンジ切り替え回路接続部とし、請求項1によるレンジ切り替え回路をこれらレンジ切り替え回路接続部と前記演算増幅器の出力端子間に設け、各レンジ切り替え回路毎のリミッタ回路のリミット設定電圧と不感帯回路の不感帯設定電圧に前記電圧設定器が出力する設定電圧を加算するか、又は各レンジ毎のリミッタ回路入力電圧と不感帯回路入力電圧から前記電圧設定器が出力する設定電圧を減算する回路構成にした、オートレンジ切り替えで精度高く負荷電流を測定できる事を特徴とする電圧発生器。   Connect the load that is the target of voltage application to the inverting input terminal of the operational amplifier for error amplification, connect the voltage setting device that sets the voltage to be applied to the load to the non-inverting input terminal of the operational amplifier, and measure the current After connecting a plurality of I / V conversion resistors for the number of ranges necessary for the series in the order of the resistance value, the terminal on the I / V conversion resistance side of the minimum resistance value at both ends is connected to the load. The negative resistance circuit is configured by connecting the terminal on the maximum resistance value side to the output terminal of the operational amplifier, and the I / V conversion excluding the I / V conversion resistance of the minimum resistance value among the plurality of I / V conversion resistances The inverting input terminal side of the operational amplifier of the resistor is a range switching circuit connection for each I / V conversion resistor, and the range switching circuit according to claim 1 is provided between the range switching circuit connection and the output terminal of the operational amplifier. For each range switching circuit Add the set voltage output by the voltage setting device to the limit setting voltage of the limiter circuit and the dead band setting voltage of the dead band circuit, or output the voltage setting device from the limiter circuit input voltage and dead band circuit input voltage for each range. A voltage generator with a circuit configuration that subtracts the set voltage and that can measure load current with high accuracy by auto-range switching. 誤差増幅用の演算増幅器の非反転入力端子に電流を供給する対象である負荷に印加する電流を設定する電流設定器を接続し、電流測定に必要なレンジ数分の複数のI/V変換抵抗を抵抗値の大きさの順番に直列接続した後の両端の内の最小抵抗値のI/V変換抵抗側の端子を前記負荷に接続し、最大抵抗値側の端子を前記演算増幅器の出力端子に接続し、前記複数のI/V変換抵抗の内最小抵抗値のI/V変換抵抗を除くI/V変換抵抗の前記負荷側の端子を各I/V変換抵抗毎のレンジ切り替え回路接続部とし、請求項1によるレンジ切り替え回路をこれらレンジ切り替え回路接続部と前記演算増幅器の出力端子間に設け、請求項2による電流モニタ電圧信号作成回路を用いて前記各I/V変換抵抗から前記負荷の電流をモニタする電圧信号を取り出して前記演算増幅器の反転入力端子に接続して負帰還回路を構成し、各レンジ毎のリミッタ回路のリミット設定電圧と不感帯回路の不感帯設定電圧に前記負荷の電圧を加算するか、又は各レンジ毎のリミッタ回路入力電圧と不感帯回路入力電圧から前記負荷電圧を減算する回路構成にした、広範囲の電流値を精度良く発生できる事を特徴とする電流発生器。   Connect a current setter that sets the current to be applied to the load to be supplied to the non-inverting input terminal of the operational amplifier for error amplification, and a plurality of I / V conversion resistors for the number of ranges required for current measurement Are connected in series in the order of the resistance value, the terminal on the I / V conversion resistance side of the minimum resistance value of both ends is connected to the load, and the terminal on the maximum resistance value side is the output terminal of the operational amplifier And connecting the load side terminals of the I / V conversion resistors excluding the I / V conversion resistor having the minimum resistance value among the plurality of I / V conversion resistors to the range switching circuit connection unit for each I / V conversion resistor A range switching circuit according to claim 1 is provided between the range switching circuit connection portion and the output terminal of the operational amplifier, and the load is supplied from each I / V conversion resistor to the load using a current monitor voltage signal generation circuit according to claim 2. Voltage signal to monitor current Is connected to the inverting input terminal of the operational amplifier to constitute a negative feedback circuit, and the voltage of the load is added to the limit setting voltage of the limiter circuit and the dead band setting voltage of the dead band circuit for each range, or each A current generator having a circuit configuration in which the load voltage is subtracted from a limiter circuit input voltage and a dead band circuit input voltage for each range and capable of generating a wide range of current values with high accuracy.
JP2006147509A 2006-05-29 2006-05-29 Current / voltage conversion circuit Expired - Fee Related JP4451415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006147509A JP4451415B2 (en) 2006-05-29 2006-05-29 Current / voltage conversion circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006147509A JP4451415B2 (en) 2006-05-29 2006-05-29 Current / voltage conversion circuit

Publications (2)

Publication Number Publication Date
JP2007315980A JP2007315980A (en) 2007-12-06
JP4451415B2 true JP4451415B2 (en) 2010-04-14

Family

ID=38849957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006147509A Expired - Fee Related JP4451415B2 (en) 2006-05-29 2006-05-29 Current / voltage conversion circuit

Country Status (1)

Country Link
JP (1) JP4451415B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9024686B2 (en) 2011-09-01 2015-05-05 Nf Corporation Amplifier circuit and feedback circuit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4800371B2 (en) * 2008-07-30 2011-10-26 富士男 小澤 Range switching circuit
JP5037575B2 (en) * 2009-08-21 2012-09-26 ケースレー・インスツルメンツ・インコーポレイテッド Auto range current detection circuit
JP5839319B2 (en) * 2011-05-26 2016-01-06 富士男 小澤 Current / voltage conversion circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9024686B2 (en) 2011-09-01 2015-05-05 Nf Corporation Amplifier circuit and feedback circuit
US9252720B2 (en) 2011-09-01 2016-02-02 Nf Corporation Amplifier circuit and feedback circuit

Also Published As

Publication number Publication date
JP2007315980A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
JP2593253B2 (en) Current measurement circuit
US20090312970A1 (en) Current measuring device and processing unit comprising one such device
JP4800371B2 (en) Range switching circuit
JP2017215303A (en) Resistance value measurement circuit
JP2010085384A5 (en)
JP4451415B2 (en) Current / voltage conversion circuit
US9531181B2 (en) Current sensing circuit
JP6663165B2 (en) Voltage and current supply circuit
JP4977013B2 (en) Power application circuit and test apparatus
US20080111539A1 (en) Direct current measuring apparatus and limiting circuit
US8525094B2 (en) Photoelectric conversion circuit
JP5839319B2 (en) Current / voltage conversion circuit
US20240044954A1 (en) Current sensing circuitry
JP3628948B2 (en) Current / voltage conversion circuit
US6963238B2 (en) Level shift circuit
JP2011095037A (en) Range switching circuit
JP5037575B2 (en) Auto range current detection circuit
US20210333310A1 (en) Current sensing circuit
JP2001141753A (en) Current and electric quantity measuring circuit
JP2005172796A (en) Current-voltage converting circuit
JP5016235B2 (en) Current-voltage converter and impedance measuring device
JP2013167546A (en) Current measuring circuit
JP3236297B2 (en) Measurement method and measurement circuit for particle current
JP2005167429A (en) Current/voltage conversion circuit
JP2008209998A (en) Voltage generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080903

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080908

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090819

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees