JP2004128516A - Substrate processing apparatus - Google Patents
Substrate processing apparatus Download PDFInfo
- Publication number
- JP2004128516A JP2004128516A JP2003408060A JP2003408060A JP2004128516A JP 2004128516 A JP2004128516 A JP 2004128516A JP 2003408060 A JP2003408060 A JP 2003408060A JP 2003408060 A JP2003408060 A JP 2003408060A JP 2004128516 A JP2004128516 A JP 2004128516A
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- substrate
- inert gas
- cooling
- processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Abstract
Description
本発明は、例えば半導体ウェハ等の基板を加熱処理や冷却処理する基板処理装置に関する。 {Circle over (1)} The present invention relates to a substrate processing apparatus for heating or cooling a substrate such as a semiconductor wafer.
半導体デバイスの製造工程においては、例えばSOD(Spin on Dielectric)システムにより層間絶縁膜を形成している。このSODシステムでは、例えばゾル−ゲル方法により、ウエハ上に塗布膜をスピンコートし、化学的処理または加熱処理等を施して層間絶縁膜を形成している。 In the manufacturing process of a semiconductor device, an interlayer insulating film is formed by, for example, an SOD (Spin on Dielectric) system. In this SOD system, for example, a coating film is spin-coated on a wafer by a sol-gel method, and a chemical treatment or a heat treatment is performed to form an interlayer insulating film.
例えばゾル−ゲル方法により層間絶縁膜を形成する場合には、まず半導体ウエハ(以下、「ウエハ」と呼ぶ。)上に絶縁膜材料、例えばTEOS(テトラエトキシシラン)のコロイドを有機溶媒に分散させた溶液を供給する。次に、溶液が供給されたウエハをゲル化処理し、次いで溶媒の置換を行う。そして、溶媒の置換されたウエハを加熱処理している。 For example, when an interlayer insulating film is formed by a sol-gel method, first, a colloid of an insulating film material, for example, TEOS (tetraethoxysilane) is dispersed in an organic solvent on a semiconductor wafer (hereinafter, referred to as “wafer”). Supply the solution. Next, the wafer supplied with the solution is subjected to a gelling process, and then the solvent is replaced. Then, the wafer in which the solvent has been replaced is subjected to a heat treatment.
これら一連の工程においては、様々な加熱処理や冷却処理が行われる。一般に、加熱処理工程においては、ウエハを加熱処理室に搬入し、支持部材によりウエハを支持した状態のままで処理室内を低酸素雰囲気とする。低酸素雰囲気に達したら、熱板上にウエハを載置し加熱処理を行う。ウエハを高温で加熱処理する際には、絶縁膜材料からなる塗布膜の酸化防止の観点から低酸素雰囲気中で処理が行われるが、一般にこのような低酸素雰囲気は処理室内を不活性ガスであるN2ガスで置換することにより行われる。また、冷却処理工程においては処理室内の冷却板に基板を載置し、処理室の上部に配置される通気口からウエハ表面に向かって不活性ガスが送風されるように処理室内を低酸素雰囲気として冷却処理をしている。 様 々 In these series of steps, various heating processes and cooling processes are performed. Generally, in a heat treatment step, a wafer is carried into a heat treatment chamber, and a low oxygen atmosphere is set in the treatment chamber while the wafer is supported by a supporting member. When a low oxygen atmosphere is reached, the wafer is placed on a hot plate and heat treatment is performed. When a wafer is heated at a high temperature, the treatment is performed in a low oxygen atmosphere from the viewpoint of preventing oxidation of a coating film made of an insulating film material. Generally, such a low oxygen atmosphere is filled with an inert gas in a processing chamber. This is performed by replacing with a certain N2 gas. In the cooling process, the substrate is placed on a cooling plate in the processing chamber, and the processing chamber is placed in a low-oxygen atmosphere so that an inert gas is blown from a ventilation port arranged above the processing chamber toward the wafer surface. As a cooling process.
上述する技術として、例えば、特許文献1に示す技術が知られている。
しかしながら、上述したように処理室を低酸素雰囲気としてから熱板上にウエハを載置して加熱処理を行うため、所望の低酸素雰囲気を形成するのに多大な時間を要し、低酸素下での加熱処理に要する時間が実質的に長くなり、ウエハ上に形成される絶縁膜形成のための全体の処理時間に影響を与えるという、課題がある。また、熱板により加熱するため、ウエハ全面を均一に加熱処理できず、加熱むらが生じるという課題がある。 However, as described above, since the heat treatment is performed by placing the wafer on the hot plate after setting the processing chamber in a low oxygen atmosphere, it takes a lot of time to form a desired low oxygen atmosphere, However, there is a problem that the time required for the heat treatment in the step becomes substantially longer, which affects the entire processing time for forming the insulating film formed on the wafer. In addition, since the heating is performed by the hot plate, the entire surface of the wafer cannot be uniformly heat-treated, resulting in a problem of uneven heating.
また、冷却処理においては、ウエハ表面に向かって供給される不活性ガスが面内で不均一となり、ウエハ面内での冷却むらが生じるという、課題がある。 In addition, in the cooling process, there is a problem that the inert gas supplied toward the wafer surface becomes non-uniform in the surface, causing uneven cooling in the wafer surface.
本発明の目的は、加熱むらがなく、加熱処理工程を短時間で行うことができる基板処理装置及び基板処理方法を提供することにある。 An object of the present invention is to provide a substrate processing apparatus and a substrate processing method that can perform a heat treatment step in a short time without uneven heating.
本発明の別の目的は、冷却むらのない基板処理装置を提供することにある。 Another object of the present invention is to provide a substrate processing apparatus free from uneven cooling.
かかる課題を解決するため、本発明の基板処理装置は、基板が載置される熱板と、前記熱板を貫通し、上昇状態では熱板表面から突出して基板を支持し、下降状態では熱板に埋没して前記基板を熱板上に載置する昇降可能な支持部材と、前記基板の外周を囲むように配置され、前記熱板に載置された基板の厚さ方向に沿って通気口が複数設けられた昇降可能なシャッタ部材を有し、該シャッタ部材が上昇または下降した状態で前記熱板との間で処理空間を形成する処理室と、前記処理室内に前記通気口を介して加熱された不活性ガスを供給する不活性ガス供給手段とを具備することを特徴とする。 In order to solve such a problem, a substrate processing apparatus of the present invention includes a hot plate on which a substrate is mounted, a hot plate that penetrates the hot plate, protrudes from the surface of the hot plate in an up state, and supports the substrate in a down state. A vertically movable support member that is embedded in the plate and mounts the substrate on the hot plate, and is disposed so as to surround an outer periphery of the substrate, and is ventilated along a thickness direction of the substrate mounted on the hot plate. A processing chamber for forming a processing space between the heating plate and the heating member in a state where the shutter member is raised or lowered, and And inert gas supply means for supplying the heated inert gas.
本発明では、シャッタ部材に基板の厚さ方向に沿って通気口が複数設けられているため、基板が支持部材により支持された状態下で、通気口を介して供給される加熱された不活性ガスが基板の両面に送風される。従って、基板の両面を同時に加熱することができ、基板は面内で均一に加熱され加熱むらが生じることがない。更に、基板を支持部材により支持してから熱板に載置するまでの間にも、不活性ガスにより基板の加熱を行うことができるので、従来のように低酸素雰囲気にした後に熱板により加熱処理する場合と比較し、加熱処理に要する時間を短縮することができる。更に、基板の両面に、基板とほぼ水平の方向に不活性ガスが供給されることになるので、この不活性ガスが処理室内に残存する酸素と基板とを遮断する役割をも有し、基板上に形成される塗布膜は加熱状態にあっても酸化が促進されることはない。 In the present invention, since the shutter member is provided with a plurality of ventilation holes along the thickness direction of the substrate, the heated inert gas supplied through the ventilation holes is provided under the state where the substrate is supported by the support member. Gas is blown to both sides of the substrate. Therefore, both surfaces of the substrate can be heated at the same time, and the substrate is uniformly heated within the surface, so that uneven heating does not occur. Furthermore, since the substrate can be heated by the inert gas even before the substrate is placed on the hot plate after being supported by the supporting member, the hot plate is used after the substrate is made into a low oxygen atmosphere as in the conventional case. The time required for the heat treatment can be reduced as compared with the case of performing the heat treatment. Further, since an inert gas is supplied to both surfaces of the substrate in a direction substantially horizontal to the substrate, the inert gas also has a role of blocking oxygen remaining in the processing chamber and the substrate, Oxidation of the coating film formed thereon is not promoted even in a heated state.
本発明の一の形態は、前記支持部材により支持された基板は、当該装置の外部から受け渡された位置でかつ前記シャッタ部材が上昇または下降して熱板との間で処理空間を形成した状態で、上下の前記通気口のほぼ中央に位置するようにされていることを特徴とする。このような構成とすることにより、基板の両面に通気口から送風される不活性ガスを供給することができ、基板面内での加熱むらが生じない。 In one embodiment of the present invention, the substrate supported by the support member is formed at a position transferred from the outside of the apparatus and the shutter member is raised or lowered to form a processing space between the substrate and the hot plate. In this state, it is characterized by being located substantially at the center of the upper and lower vents. With such a configuration, an inert gas blown from the ventilation holes can be supplied to both surfaces of the substrate, and uneven heating in the substrate surface does not occur.
本発明の一の形態は、前記基板を当該装置の外部から受け渡された支持部材は、前記シャッタ部材が上昇または下降して熱板との間で処理空間を形成した状態でかつ前記通気口から加熱された不活性ガスを供給された状態で下降して前記基板を前記熱板上に載置することを特徴とする。このような構成とすることにより、基板を支持部材により支持してから熱板に載置するまでの基板の移動の間に、不活性ガスの供給工程と加熱処理工程とを同時に行うことができるので、従来のように低酸素雰囲気にした後に熱板により加熱処理する場合と比較し、加熱処理に要する時間を短縮することができる。 In one embodiment of the present invention, the support member that has received the substrate from the outside of the apparatus is configured such that the shutter member is raised or lowered to form a processing space between the substrate and a hot plate, and the ventilation port is provided. The substrate is lowered while the inert gas heated from above is supplied, and the substrate is placed on the hot plate. With such a configuration, the inert gas supply step and the heat treatment step can be performed simultaneously during the movement of the substrate from when the substrate is supported by the support member to when the substrate is placed on the hot plate. Therefore, the time required for the heat treatment can be reduced as compared with the conventional case where the heat treatment is performed using a hot plate after a low oxygen atmosphere.
本発明の一の形態は、前記不活性ガス供給手段は、前記不活性ガスの供給量を徐々に増加させながら供給することにより前記処理室内を前記不活性ガスに置換することを特徴とする。このような構成によれば、不活性ガスの供給量を徐々に増加させることにより、基板上に形成される塗布膜の酸化を防止しつつ効率よく温度を上昇させることができ、加熱処理時間を従来と比較して短縮することができる。すなわち、基板上に形成される塗布膜は、温度が上昇するにつれ酸化が促進される傾向にあるが、本発明の構成では、高温状態となるに従って処理室内の酸素濃度を低くしていくことが可能なので、塗布膜の酸化を防止しつつ効率の良い加熱処理を実現することができるものである。 One embodiment of the present invention is characterized in that the inert gas supply unit replaces the inside of the processing chamber with the inert gas by supplying the inert gas while gradually increasing the supply amount. According to such a configuration, by gradually increasing the supply amount of the inert gas, it is possible to efficiently raise the temperature while preventing the oxidation of the coating film formed on the substrate, and reduce the heat treatment time. It can be shortened as compared with the related art. That is, the coating film formed on the substrate tends to be oxidized as the temperature rises, but in the structure of the present invention, the oxygen concentration in the processing chamber may be reduced as the temperature becomes higher. Since it is possible, efficient heat treatment can be realized while preventing oxidation of the coating film.
本発明の基板処理装置は、基板が載置される冷却板と、前記冷却板との間で前記基板を処理するための処理空間が形成された処理室と、冷却された不活性ガスを供給する不活性ガス供給手段と、前記冷却板上に載置された基板のほぼ中央の上方に配置され、前記不活性ガス供給手段から供給された不活性ガスを該基板の外周に向けて傾斜しつつ噴出する噴出口を有する不活性ガス噴出ノズルとを具備することを特徴とする。 The substrate processing apparatus of the present invention supplies a cooling plate on which a substrate is placed, a processing chamber in which a processing space for processing the substrate is formed between the cooling plate, and a cooled inert gas. Inert gas supply means, which is disposed above substantially the center of the substrate placed on the cooling plate, and inclines the inert gas supplied from the inert gas supply means toward the outer periphery of the substrate. And an inert gas ejection nozzle having an ejection port that ejects while discharging.
本発明では、基板の外周に向けて傾斜しつつ噴出する噴出口を有する不活性ガス噴出ノズルを有することにより、不活性ガスを基板全面にむらなく供給することができるので、基板面内での冷却むらが生じることがない。 In the present invention, the inert gas can be supplied evenly to the entire surface of the substrate by having the inert gas ejecting nozzle having the ejection port ejecting while being inclined toward the outer periphery of the substrate. No cooling unevenness occurs.
本発明の基板処理方法は、(a)熱板の上方に基板を搬入する工程と、(b)加熱された不活性ガスを前記基板の外周側から基板の両面に供給しつつ、前記基板を下降する工程と、(c)前記基板を前記熱板上に載置して加熱する工程とを具備することを特徴とする。 The substrate processing method of the present invention includes: (a) a step of carrying a substrate above a hot plate; and (b) supplying the heated inert gas to both surfaces of the substrate from the outer peripheral side of the substrate. And (c) placing the substrate on the hot plate and heating the substrate.
本発明では、基板の両面に加熱された不活性ガスを供給するので、基板全面をむらなく加熱することができる。 According to the present invention, since the heated inert gas is supplied to both surfaces of the substrate, the entire surface of the substrate can be uniformly heated.
本発明の一の形態では、前記工程(b)において、前記加熱された不活性ガスをその供給量を徐々に増加しつつ供給することを特徴とする。このような構成によれば、基板上に形成される塗布膜の酸化を防止しつつ効率よく温度を上昇させることができ、加熱処理時間を従来と比較して短縮することができる。 の One embodiment of the present invention is characterized in that, in the step (b), the heated inert gas is supplied while its supply amount is gradually increased. According to such a configuration, the temperature can be efficiently increased while preventing the oxidation of the coating film formed on the substrate, and the heat treatment time can be shortened as compared with the related art.
本発明に係る他の基板処理装置は、基板が載置される冷却板と、前記冷却板との間で前記基板を処理するための処理空間が形成された処理室と、冷却された不活性ガスを供給する不活性ガス供給手段と、前記冷却板上に載置された基板のほぼ中央の上方に配置され、前記不活性ガス供給手段から供給された不活性ガスを該基板の外周に向けて傾斜しつつ噴出する噴出口を有する不活性ガス噴出ノズルとを具備する。 Another substrate processing apparatus according to the present invention includes a cooling plate on which a substrate is placed, a processing chamber in which a processing space for processing the substrate is formed between the cooling plate, and a cooled inert plate. An inert gas supply unit for supplying a gas, and an inert gas supplied from the inert gas supply unit, which is disposed substantially above the center of the substrate placed on the cooling plate, and directed to an outer periphery of the substrate. And an inert gas ejection nozzle having an ejection port that ejects while being inclined.
本発明に係る別の基板処理装置は、基板上に層間絶縁膜を形成するために用いられる基板処理装置であって、基板が載置される冷却板と、前記冷却板との間で前記基板を処理するための処理空間が形成された処理室と、冷却された不活性ガスを供給する不活性ガス供給手段と、前記冷却板上に載置された基板のほぼ中央の上方に配置され、前記不活性ガス供給手段から供給された不活性ガスを該基板の外周に向けて傾斜しつつ噴出する噴出口を有する不活性ガス噴出ノズルとを具備する。 Another substrate processing apparatus according to the present invention is a substrate processing apparatus used for forming an interlayer insulating film on a substrate, wherein the cooling plate on which the substrate is mounted, and the substrate between the cooling plate A processing chamber in which a processing space for processing is formed, an inert gas supply unit that supplies a cooled inert gas, and is disposed substantially above the center of the substrate mounted on the cooling plate, An inert gas ejection nozzle having an ejection port for ejecting the inert gas supplied from the inert gas supply means while being inclined toward the outer periphery of the substrate.
本発明では、基板の外周に向けて傾斜しつつ噴出する噴出口を有する不活性ガス噴出ノズルを有することにより、不活性ガスを基板全面にむらなく供給することができるので、基板面内での冷却むらが生じることがない。 In the present invention, the inert gas can be supplied evenly to the entire surface of the substrate by having the inert gas ejecting nozzle having the ejection port ejecting while being inclined toward the outer periphery of the substrate. No cooling unevenness occurs.
本発明の一の形態によれば、前記不活性ガス噴出ノズルの噴出口付近に整流板を設けた。 According to one embodiment of the present invention, a rectifying plate is provided near the ejection port of the inert gas ejection nozzle.
本発明の一の形態によれば、前記不活性ガス噴出ノズルの噴出口付近に整流板を設け、前記不活性ガスが前記整流板の開口から基板の外周縁に向かって放射状に流れることで基板の中央部上方にエアが残ることを防ぐようにしてもよい。 According to one embodiment of the present invention, a rectifying plate is provided near the ejection port of the inert gas ejection nozzle, and the inert gas flows radially from an opening of the rectifying plate toward the outer peripheral edge of the substrate. The air may be prevented from remaining above the central part of the airbag.
以上説明したように、本発明によれば、基板処理装置では、基板の外周に向かって傾斜する噴出口を有する不活性ガス噴出ノズルを具備するので、不活性ガスが基板全面にむらなく供給され、冷却むらが生じることがない。 As described above, according to the present invention, since the substrate processing apparatus includes the inert gas ejection nozzle having the ejection port inclined toward the outer periphery of the substrate, the inert gas is uniformly supplied to the entire surface of the substrate. No uneven cooling occurs.
以下、図面を参照して本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
先ず、本発明の基板処理装置としてのSOD(Spin on Dielectric)システムを説明する。図1〜図3はこのSODシステムの全体構成を示す図であって、図1は平面図、図2は正面図および図3は背面図である。 First, an SOD (Spin on Dielectric) system as a substrate processing apparatus of the present invention will be described. 1 to 3 show the overall configuration of this SOD system. FIG. 1 is a plan view, FIG. 2 is a front view, and FIG. 3 is a rear view.
このSODシステム1は、基板としての半導体ウエハ(以下、ウエハと呼ぶ。)WをウエハカセットCRで複数枚たとえば25枚単位で外部からシステムに搬入しまたはシステムから搬出したり、ウエハカセットCRに対してウエハWを搬入・搬出したりするためのカセットブロック10と、SOD塗布工程の中で1枚ずつウエハWに所定の処理を施す枚葉式の各種処理ステーションを所定位置に多段配置してなる処理ブロック11と、エージング工程にて必要とされるアンモニア水のボトル、バブラー、ドレインボトル等が設置されたキャビネット12とを一体に接続した構成を有している。
In the
カセットブロック10では、図1に示すように、カセット載置台20上の突起20aの位置に複数個たとえば4個までのウエハカセットCRがそれぞれのウエハ出入口を処理ブロック11側に向けてX方向一列に載置され、カセット配列方向(X方向)およびウエハカセットCR内に収納されたウエハのウエハ配列方向(Z垂直方向)に移動可能なウエハ搬送体21が各ウエハカセットCRに選択的にアクセスするようになっている。さらに、このウエハ搬送体21は、θ方向に回転可能に構成されており、後述するように処理ブロック11側の第3の組G3 の多段ステーション部に属する受け渡し・冷却プレート(TCP)にもアクセスできるようになっている。
In the
処理ブロック11では、図1に示すように、中心部に垂直搬送型の主ウエハ搬送機構22が設けられ、その周りに全ての処理ステーションが1組または複数の組に亙って多段に配置されている。この例では、4組G1,G2,G3,G4の多段配置構成であり、第1および第2の組G1,G2の多段ステーションはシステム正面(図1において手前)側に並置され、第3の組G3の多段ステーションはカセットブロック10に隣接して配置され、第4の組G4の多段ステーションはキャビネット12に隣接して配置されている。
In the
図2に示すように、第1の組G1では、カップCP内でウエハWをスピンチャックに載せて絶縁膜材料を供給し、ウエハを回転させることによりウエハ上に均一な絶縁膜を塗布するSOD塗布処理ステーション(SCT)と、カップCP内でウエハWをスピンチャックに載せてHMDS及びヘプタン等のエクスチェンジ用薬液を供給し、ウエハ上に塗布された絶縁膜中の溶媒を乾燥工程前に他の溶媒に置き換える処理を行うソルベントエクスチェンジ処理ステーション(DSE)とが下から順に2段に重ねられている。 As shown in FIG. 2, in the first set G1, a wafer W is placed on a spin chuck in a cup CP to supply an insulating film material, and the wafer is rotated to apply a uniform insulating film on the wafer. A coating process station (SCT), a wafer W is placed on a spin chuck in a cup CP to supply an exchange chemical such as HMDS and heptane, and a solvent in an insulating film applied on the wafer is removed by another solvent before a drying process. A solvent exchange processing station (DSE) for performing a process of replacing with a solvent is stacked in two stages from the bottom.
第2の組G2では、SOD塗布処理ステーション(SCT)が上段に配置されている。なお、必要に応じて第2の組G2の下段にSOD塗布処理ステーション(SCT)やソルベントエクスチェンジ処理ステーション(DSE)等を配置することも可能である。 で は In the second set G2, the SOD coating processing station (SCT) is arranged in the upper stage. In addition, if necessary, an SOD coating processing station (SCT), a solvent exchange processing station (DSE), and the like can be arranged below the second set G2.
図3に示すように、第3の組G3では、2個の低酸素高温加熱処理ステーション(OHP)と、低温加熱処理ステーション(LHP)と、2個の冷却処理ステーション(CPL)と、受け渡し・冷却プレート(TCP)と、冷却処理ステーション(CPL)とが上から順に多段に配置されている。ここで、低酸素高温加熱処理ステーション(OHP)は密閉化可能な処理室内にウエハWが載置される熱板を有し、熱板の外周の穴から均一にN2を吐出しつつ処理室上部中央より排気し、低酸素化雰囲気中でウエハWを高温加熱処理する。低温加熱処理ステーション(LHP)はウエハWが載置される熱板を有し、ウエハWを低温加熱処理する。冷却処理ステーション(CPL)はウエハWが載置される冷却板を有し、ウエハWを冷却処理する。受け渡し・冷却プレート(TCP)は下段にウエハWを冷却する冷却板、上段に受け渡し台を有する2段構造とされ、カセットブロック10と処理ブロック11との間でウエハWの受け渡しを行う。
As shown in FIG. 3, in the third set G3, two low-oxygen high-temperature heat treatment stations (OHP), two low-temperature heat treatment stations (LHP), two cooling treatment stations (CPL), Cooling plates (TCP) and cooling processing stations (CPL) are arranged in multiple stages in order from the top. Here, the low-oxygen high-temperature heating processing station (OHP) has a hot plate on which the wafer W is placed in a process chamber that can be sealed, and discharges N2 uniformly from a hole on the outer periphery of the hot plate while upper portion of the processing chamber. Air is exhausted from the center, and the wafer W is subjected to high-temperature heat treatment in a low oxygen atmosphere. The low-temperature heat processing station (LHP) has a hot plate on which the wafer W is placed, and heat-processes the wafer W at a low temperature. The cooling processing station (CPL) has a cooling plate on which the wafer W is placed, and cools the wafer W. The transfer / cooling plate (TCP) has a two-stage structure having a cooling plate for cooling the wafer W in a lower stage and a transfer table in an upper stage, and transfers the wafer W between the
第4の組G4では、低温加熱処理ステーション(LHP)、2個の低酸素キュア・冷却処理ステーション(DCC)と、エージング処理ステーション(DAC)とが上から順に多段に配置されている。ここで、低酸素キュア・冷却処理ステーション(DCC)は密閉化可能な処理室内に熱板と冷却板とを隣接するように有し、N2置換された低酸素雰囲気中で高温加熱処理すると共に加熱処理されたウエハWを冷却処理する。エージング処理ステーション(DAC)は密閉化可能な処理室内にNH3+H2Oを導入してウエハWをエージング処理し、ウエハW上の絶縁膜材料膜をウエットゲル化する。 で は In the fourth group G4, a low-temperature heating processing station (LHP), two low-oxygen curing / cooling processing stations (DCC), and an aging processing station (DAC) are arranged in multiple stages in order from the top. Here, the low-oxygen curing / cooling processing station (DCC) has a hot plate and a cooling plate adjacent to each other in a process chamber that can be sealed, and performs high-temperature heat treatment and heating in an N 2 -substituted low-oxygen atmosphere. The processed wafer W is cooled. The aging processing station (DAC) introduces NH3 + H2O into a process chamber that can be sealed, performs aging processing on the wafer W, and wet-gels the insulating film material film on the wafer W.
図4は上述した低酸素キュア・冷却処理ステーション(DCC)の平面図、図5はその断面図である。 FIG. 4 is a plan view of the above-described low oxygen curing / cooling treatment station (DCC), and FIG. 5 is a sectional view thereof.
図4、図5に示すように、低酸素キュア・冷却処理ステーション(DCC)は、加熱処理室341と、これに隣接して設けられた冷却処理室342とを有しており、この加熱処理室341は、設定温度が200〜470℃とすることが可能な熱板343を有している。この低酸素キュア・冷却処理ステーション(DCC)は、さらに主ウエハ搬送機構22との間でウエハWを受け渡しする際に開閉される第1のゲートシャッター344と、加熱処理室341と冷却処理室342との間を開閉するための第2のゲートシャッター345と、熱板343の周囲でウエハWの外周部を包囲しながら第2のゲートシャッター345と共に昇降されるシャッター部材であるリングシャッター346とを有している。さらに、熱板343を貫通し、ウエハWを載置して昇降するための3個の支持部材であるリフトピン347が昇降自在に設けられている。このリフトピンは上昇状態では熱板343の表面から突出してウエハWをほぼ水平に支持し、下降状態では熱板343に埋没してウエハを熱板343に載置する。
As shown in FIGS. 4 and 5, the low-oxygen curing / cooling treatment station (DCC) has a
加熱処理室341の下方には、上記3個のリフトピン347を昇降するための昇降機構348と、リングシャッター346を第2のゲートシャッター345と共に昇降するための昇降機構349と、第1のゲートシャッター344を昇降して開閉するための昇降機構350とが設けられている。
Below the
この加熱処理室341と冷却処理室342とは、連通口352を介して連通されており、ウエハWを載置して冷却するための冷却板353がガイドプレート354に沿って移動機構355により水平方向に移動自在に構成されている。これにより、冷却板352は、連通口352を介して加熱処理室341内に進入することができ、加熱処理室41内の熱板343により加熱された後のウエハWをリフトピン347から受け取って冷却処理室342内に搬入し、ウエハWの冷却後、ウエハWをリフトピン347に戻すようになっている。
The
以下に、図4、図5、図7〜図10を用いて、低酸素キュア・冷却処理ステーション(DCC)内の加熱処理室341、冷却処理室342各々の構造及び低酸素キュア・冷却処理ステーション(DCC)内での装置動作について詳細に説明する。図7〜図9は低酸素キュア・冷却処理ステーション(DCC)の装置動作を示すフロー図、図10は動作時の加熱処理室341内に供給される不活性ガス供給量の経時変化を示す図である。
The structure of each of the
まず、第1のゲートシャッター344が開き、加熱処理室341内に主ウエハ搬送機構22から受け渡されたウエハWが搬送され、図7(a)に示すようにリフトピン347がウエハWを水平に支持する。この際、リフトピン347は上昇した状態、リングシャッター346は降下した状態となっている。
First, the
次に、図7(b)に示すように、リングシャッター346が上昇するとともに、蓋体348が下降して、熱板343、リングシャッター346、蓋体348とで処理空間が形成される。リングシャッター346は中空構造を有し、内側面には、ウエハWの厚さ方向、更にウエハWと水平な方向に通気口346aが複数設けられ、リングシャッター346の内側面全面に均一に複数の通気口346aが設けられている。そして、処理空間が形成された状態では、ウエハWは上下の通気口346aのほぼ中央に位置している。
Next, as shown in FIG. 7B, the
次に、図7(c)、図8(a)に示すように、加熱処理室341は、図示しない供給源から、リングシャッター346の通気口346aを介して、その中に常温から470℃に加熱されたN2等の不活性ガスが供給されるように構成され、さらに、その中が排気管351を介して排気されるように構成されている。そして、加熱処理室341内が排気され、同時にN2ガスが供給されて加熱処理室341内を徐々に低酸素濃度雰囲気とする間に、リフトピン347が降下されウエハWが降下される。ウエハWが下降され、熱板343上に載置されるまでの間、図10に示すようにN2ガスはその供給量を徐々に増加させて30秒間、加熱処理室341内に供給される。ウエハWが熱板343に載置されるまでの間、リングシャッター346の内側面にウエハWの厚さ方向に複数の通気口が設けられることにより、ウエハWの両面にはウエハWとほぼ水平な方向にN2ガスが供給されることになり、ウエハWを均一にむらなく加熱することができる。また、N2ガスを徐々に増加させて供給することにより、ウエハW上に形成された塗布膜の酸化を防止しつつ効率的な温度上昇を可能とする。ここで、N2ガスは、リングシャッター346の下部に設けられた1個または複数個の供給口346bからリングシャッター346内に供給され、リングシャッター346の内部空間を通り、通気口346aを介して加熱処理室341内に供給されている。リングシャッター346の内部空間には、複数の通気口346aから均等にN2ガスが熱処理室341内に供給されるように、複数の弁346cが形成されている。弁346cはリング形状をしており、リングシャッター346の内部空間の内壁、外壁に交互に突出するように設けられている。
Next, as shown in FIGS. 7 (c) and 8 (a), the
次に図8(b)に示すように、ウエハWが熱板343上に載置される。ウエハWが熱板343上に載置された後、図10に示すように、加熱処理室内342内に、N2ガスを供給量20NL/minで30秒間一定に保持して供給し、更に徐々にN2ガスの供給量を徐々に減少させて7秒間供給し、次にN2ガスを10NL/minの供給量にて30秒間一定に保持して供給する。熱板343にウエハWが載置された時点での処理空間内は例えば50ppm以下の低酸素雰囲気であり、この時の熱板343の温度は200〜470℃である。ここで、熱板343上にウエハWを載置する際、直接ウエハWを熱板343に載置しても良いし、プロキシミティシートを介して載置しても良い。
Next, as shown in FIG. 8B, the wafer W is placed on the
次に、図8(c)に示すように、リングシャッター346が降下、蓋体348が上昇され、リフトピン347が上昇して熱板343からウエハ347を受け取る。この際、N2ガスは図10に示すように徐々に供給量が減少されて供給され、最終的には供給が停止される。
Next, as shown in FIG. 8C, the
次に、冷却板353が加熱処理室341内に進入して、リフトピン347からウエハWを受け取り、リフトピン347が降下される。そして、図9(a)に示すように、ウエハを保持した冷却板353が冷却処理室342に戻される。
Next, the
次に、第2のゲートシャッター345が上昇され、冷却処理室342内に処理空間が形成される。冷却処理室342は、図9(b)に示すように、図示しない供給手段から供給路である供給管356を介してその中にN2等の不活性ガスが供給されるように構成され、さらに、その中が排気管357を介して外部に排気されるように構成されている。不活性ガス噴出ノズルである供給管356は、冷却板353上に載置されたウエハWのほぼ中央の上方に配置され、N2ガスをウエハWの外周に向けて傾斜しつつ噴出する噴出口356aを有している。更に供給管356の出口付近には整流板358が配置されており、N2ガスの流れの方向を制御している。供給管356の噴出口の形状をウエハWの外周に向けて傾斜するテーパー形状とすることにより、整流板358では制御しきれないN2ガスの流れを制御することができ、ウエハW全面にむらなくN2ガスを送風することができる。更に、噴出口356aをテーパー形状とすることにより、ウエハW中央部に空気だまり359が生じることを防止でき、基板面内で均一な冷却が可能となる。そして、冷却室342内が排気されつつ、N2ガスが供給されて、ウエハWが低酸素濃度(例えば50ppm以下)の雰囲気において冷却される。この時の冷却温度は、例えば150〜400℃である。この際、ウエハWは低酸素濃度雰囲気下で冷却されているため、塗布膜の酸化が効果的に防止される。冷却処理終了後、冷却処理室内へのN2ガスの供給が停止し、冷却が終了する。
Next, the
次に、図9(c)に示すように、第2のゲートシャッター345が降下され、冷却板353が加熱処理室341に進入し、次いで、リフトピン347が上昇され、ウエハWが冷却板353からリフトピン347に戻される。ウエハを搬出した後の冷却板353が冷却室内に戻されるとともに、第1のゲートシャッター344が開かれ、ウエハWがメインの搬送機構に戻される。以上により、加熱処理及び冷却処理が終了する。
Next, as shown in FIG. 9C, the
次にこのように構成されたSODシステム1における動作について説明する。図8はこのSODシステム1における処理フローを示している。
Next, the operation of the
まずカセットブロック10において、処理前のウエハWはウエハカセットCRからウエハ搬送体21を介して処理ブロック11側の第3の組G3に属する受け渡し・冷却プレート(TCP)における受け渡し台へ搬送される。
First, in the
受け渡し・冷却プレート(TCP)における受け渡し台に搬送されたウエハWは主ウエハ搬送機構22を介して冷却処理ステーション(CPL)へ搬送される。そして冷却処理ステーション(CPL)において、ウエハWはSOD塗布処理ステーション(SCT)における処理に適合する温度まで冷却される(ステップ901)。
The wafer W transferred to the transfer table in the transfer / cooling plate (TCP) is transferred to the cooling processing station (CPL) via the main
冷却処理ステーション(CPL)で冷却処理されたウエハWは主ウエハ搬送機構22を介してSOD塗布処理ステーション(SCT)へ搬送される。そしてSOD塗布処理ステーション(SCT)において、ウエハWはSOD塗布処理が行われる(ステップ902)。
(4) The wafer W cooled in the cooling processing station (CPL) is transferred to the SOD coating processing station (SCT) via the main
SOD塗布処理ステーション(SCT)でSOD塗布処理が行われたウエハWは主ウエハ搬送機構22を介してエージング処理ステーション(DAC)へ搬送される。そしてエージング処理ステーション(DAC)において、ウエハWは処理室内にNH3+H2Oを導入してウエハWをエージング処理し、ウエハW上の絶縁膜材料膜をゲル化する(ステップ903)。
The wafer W on which the SOD coating processing has been performed at the SOD coating processing station (SCT) is transferred to the aging processing station (DAC) via the main
エージング処理ステーション(DAC)でエージング処理されたウエハWは主ウエハ搬送機構22を介してソルベントエクスチェンジ処理ステーション(DSE)へ搬送される。そしてソルベントエクスチェンジ処理ステーション(DSE)において、ウエハWはエクスチェンジ用薬液が供給され、ウエハ上に塗布された絶縁膜中の溶媒を他の溶媒に置き換える処理が行われる(ステップ904)。
The wafer W that has been aged at the aging processing station (DAC) is transferred to the solvent exchange processing station (DSE) via the main
ソルベントエクスチェンジ処理ステーション(DSE)で置換処理が行われたウエハWは主ウエハ搬送機構22を介して低温加熱処理ステーション(LHP)へ搬送される。そして低温加熱処理ステーション(LHP)において、ウエハWは低温加熱処理される(ステップ905)。
The wafer W subjected to the replacement processing at the solvent exchange processing station (DSE) is transferred to the low-temperature heating processing station (LHP) via the main
低温加熱処理ステーション(LHP)で低温加熱処理されたウエハWは主ウエハ搬送機構22を介して低酸素高温加熱処理ステーション(OHP)へ搬送される。そして低酸素高温加熱処理ステーション(OHP)において、ウエハWは低酸素化雰囲気中での高温加熱処理が行われる(ステップ906)。
The wafer W that has been subjected to the low-temperature heat treatment at the low-temperature heat treatment station (LHP) is transferred to the low-oxygen high-temperature heat treatment station (OHP) via the main
低酸素高温加熱処理ステーション(OHP)で高温加熱処理が行われたウエハWは主ウエハ搬送機構22を介して低酸素キュア・冷却処理ステーション(DCC)へ搬送される。そして低酸素キュア・冷却処理ステーション(DCC)において、ウエハWは低酸素雰囲気中で高温加熱処理され、冷却処理される(ステップ907)。
The wafer W that has been subjected to the high-temperature heat treatment at the low-oxygen high-temperature heat treatment station (OHP) is transferred to the low-oxygen cure / cooling treatment station (DCC) via the main
低酸素キュア・冷却処理ステーション(DCC)で処理されたウエハWは主ウエハ搬送機構22を介して受け渡し・冷却プレート(TCP)における冷却板へ搬送される。そして受け渡し・冷却プレート(TCP)における冷却板において、ウエハWは冷却処理される(ステップ908)。
The wafer W processed in the low-oxygen cure / cooling processing station (DCC) is transferred to the cooling plate in the transfer / cooling plate (TCP) via the main
受け渡し・冷却プレート(TCP)における冷却板で冷却処理されたウエハWはカセットブロック10においてウエハ搬送体21を介してウエハカセットCRへ搬送される。
The wafer W cooled by the cooling plate of the transfer / cooling plate (TCP) is transferred to the wafer cassette CR via the
このように本実施形態のSODシステム1では、縁膜材料が塗布されたウエハWをエージング処理するエージング処理ステーション(DAC)及びエージング処理されたウエハWをソルベントエクスチェンジ処理するソルベントエクスチェンジ処理ステーション(DSE)がシステムと一体化されているので、基板処理に要するトータル時間が非常に短くなる。そして、低酸素キュア・冷却処理ステーション(DCC)の加熱処理室のリングシャッターにウエハWの厚さ方向に複数の通気口が設けられているため、ウエハWの両面に不活性ガスを供給でき、加熱むらを防止できる。さらに、ウエハWを加熱処理室内に搬入後、熱板に載置するまでの間に不活性ガスの供給を徐々の増加させているので、ウエハWに形成される塗布膜の酸化を防止しつつ効率的に基板温度を上昇することができ、実質的な加熱処理時間を短縮することができる。
As described above, in the
上記実施形態では、低酸素キュア・冷却処理ステーション(DCC)の加熱処理装置のリングシャッター346が上昇された状態で処理空間を形成しているが、例えば蓋体348とリングシャッター346とが一体化して、リングシャッターが下降された状態で処理室が形成されても良い。
In the above embodiment, the processing space is formed in a state where the
更に、低酸素キュア・冷却処理ステーション(DCC)の加熱処理装置341において、リングシャッター346にウエハWの厚さ方向に複数の通気口を設け、更にウエハWを熱板343に載置するまでの間に不活性ガスの供給量を増加させて供給しているが、このような構成は、熱板を用いる加熱処理装置、例えば低酸素高温加熱処理ステーション(OHP)にも適用することができる。
Further, in the
また、上記実施形態では、低酸素キュア・冷却処理ステーション(DCC)の冷却処理装置の不活性ガス供給管は基板の外周に向かって傾斜する形状を有する噴出口を有しているが、このような構成は、DCCの冷却処理装置に限らず、基板中央部の上部にガス供給管が位置し、この供給管を介して処理室内へガスが供給される形態をとる場合にも適用できる。そして、このような構成をとることにより基板全面に均一にガスを供給することができる。また、上記実施形態では、噴出口をテーパー形状としたが、例えば階段状にウエハWに向かって口が広がる形状としても同様の効果を得ることができる。 Further, in the above embodiment, the inert gas supply pipe of the cooling processing apparatus of the low oxygen curing / cooling processing station (DCC) has the ejection port having a shape inclined toward the outer periphery of the substrate. This configuration is not limited to the DCC cooling processing apparatus, and can be applied to a case where a gas supply pipe is located above the central part of the substrate and gas is supplied into the processing chamber via the supply pipe. With such a configuration, gas can be uniformly supplied to the entire surface of the substrate. Further, in the above-described embodiment, the ejection port has a tapered shape. However, the same effect can be obtained by, for example, a shape in which the opening is widened toward the wafer W in a stepwise manner.
次に、本発明の他の実施形態について説明する。 Next, another embodiment of the present invention will be described.
図11に示すように、この実施形態に係る低酸素キュア・冷却処理ステーション(DCC)は、加熱処理室441と、これに隣接して設けられ、最初の実施形態と同様の構成の冷却処理室342とを有している。
As shown in FIG. 11, the low-oxygen curing / cooling processing station (DCC) according to this embodiment is provided adjacent to the
この加熱処理室441は、設定温度が200〜470℃とすることが可能な熱板443を有している。また、この熱板443の上方には、熱板443に載置されたウェハWを覆うように、蓋体444が昇降可能に配置されている。蓋体444は加熱処理室441の下方に配置された昇降機構445により昇降駆動されるようになっている。
加熱 The
加熱処理室441と冷却処理室342との間には、ウェハWの搬入出をするための開口部446が設けられている。この開口部446には、蓋体444と一体的とされ、蓋体444と共に昇降するシャッター部材447が設けられている。ここで、図12に示すように、開口部446をシャッター部材447で閉じた状態で、開口部446とシャッター部材447との間に例えば0.5mm程度の微少な隙間448を有するようになっている。このような隙間448を有することで、クローズドするための調整は不要で、かつパーティクルの発生もなくなる。
(4) An
図13に示すように、上記の蓋体444の外周内側には、熱板443に載置されたウェハWの厚さ方向(上下方向)に沿って通気口451が複数、例えば3段に設けられている。これらの通気口451は、例えば2mm程度の穴径を有し、蓋体444の外周内側にほぼ等間隔、例えば7.2°おきに設けられている。蓋体444の上部中央には、排気口461が設けられ、排気口461には排気装置462が接続されている。また、図14に示すように、蓋体444には、通気口451から供給される不活性ガスを一旦蓄えて前記各通気口451に行き渡すためのバッファ452が設けられている。そして、ガス供給部453から不活性ガス、例えば窒素ガスがバッファ452及び通気口451を介して処理領域側に供給されるようになっている。ここで、上中下3段の通気口の451のうち上段及び下段の通気口451はウェハW表面に対してほぼ平行に窒素ガスを供給するものであり、中段の通気口451はウェハW表面に対して斜め方向に窒素ガスを供給するものである。これにより、均一なパージが可能となる。
As shown in FIG. 13, a plurality of, for example, three-
なお、最初に示した実施形態と同様に、熱板443を貫通し、ウエハWを載置して昇降するための3個の支持部材であるリフトピン347が昇降自在に設けられている。このリフトピンは上昇状態では熱板443の表面から突出してウエハWをほぼ水平に支持し、下降状態では熱板443に埋没してウエハを熱板443に載置する。
Note that, similarly to the first embodiment, lift pins 347 as three support members for penetrating the
本実施形態では、特に蓋体444側に通気口451を設けたので、通気口451から噴出される窒素ガスが熱板443に直接的に吹き付けられることはない。よって、熱板443の温度が安定する。
In this embodiment, since the
本発明は、上述した実施の形態に限定されず、種々変形可能である。例えば、処理する基板は半導体ウエハに限らず、LCD基板等の他のものであってもよい。また、膜の種類は層間絶縁膜に限らない。 The present invention is not limited to the above-described embodiment, and can be variously modified. For example, the substrate to be processed is not limited to a semiconductor wafer, but may be another substrate such as an LCD substrate. Further, the type of the film is not limited to the interlayer insulating film.
341…加熱処理装置
342…冷却処理装置
343…熱板
346…リングシャッタ
346a…通気口
347…リフトピン
353…冷却板
356…供給管
356a…噴出口
W…ウエハ
341,
Claims (3)
前記冷却板との間で前記基板を処理するための処理空間が形成された処理室と、
冷却された不活性ガスを供給する不活性ガス供給手段と、
前記冷却板上に載置された基板のほぼ中央の上方に配置され、前記不活性ガス供給手段から供給された不活性ガスを該基板の外周に向けて傾斜しつつ噴出する噴出口を有する不活性ガス噴出ノズルと
を具備することを特徴とする基板処理装置。 A cooling plate on which the substrate is mounted,
A processing chamber formed with a processing space for processing the substrate between the cooling plate,
Inert gas supply means for supplying a cooled inert gas,
A gas discharge port disposed substantially above the center of the substrate mounted on the cooling plate and having an ejection port for ejecting the inert gas supplied from the inert gas supply means while being inclined toward the outer periphery of the substrate. A substrate processing apparatus comprising: an active gas ejection nozzle.
基板が載置される冷却板と、
前記冷却板との間で前記基板を処理するための処理空間が形成された処理室と、
冷却された不活性ガスを供給する不活性ガス供給手段と、
前記冷却板上に載置された基板のほぼ中央の上方に配置され、前記不活性ガス供給手段から供給された不活性ガスを該基板の外周に向けて傾斜しつつ噴出する噴出口を有する不活性ガス噴出ノズルと
を具備することを特徴とする基板処理装置。 A substrate processing apparatus used to form an interlayer insulating film on a substrate,
A cooling plate on which the substrate is mounted,
A processing chamber formed with a processing space for processing the substrate between the cooling plate,
Inert gas supply means for supplying a cooled inert gas,
A gas discharge port disposed substantially above the center of the substrate mounted on the cooling plate and having an ejection port for ejecting the inert gas supplied from the inert gas supply means while being inclined toward the outer periphery of the substrate. A substrate processing apparatus comprising: an active gas ejection nozzle.
前記不活性ガス噴出ノズルの噴出口付近に整流板を設けたことを特徴とする基板処理装置。 The substrate processing apparatus according to claim 1 or 2, wherein
A substrate processing apparatus, wherein a rectifying plate is provided near a discharge port of the inert gas discharge nozzle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003408060A JP2004128516A (en) | 1999-07-28 | 2003-12-05 | Substrate processing apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21399599 | 1999-07-28 | ||
JP2003408060A JP2004128516A (en) | 1999-07-28 | 2003-12-05 | Substrate processing apparatus |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000220896A Division JP3599322B2 (en) | 1999-07-28 | 2000-07-21 | Substrate processing apparatus and substrate processing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004128516A true JP2004128516A (en) | 2004-04-22 |
Family
ID=32299968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003408060A Pending JP2004128516A (en) | 1999-07-28 | 2003-12-05 | Substrate processing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004128516A (en) |
-
2003
- 2003-12-05 JP JP2003408060A patent/JP2004128516A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3494435B2 (en) | Substrate processing equipment | |
JP3535457B2 (en) | Substrate heat treatment equipment | |
US6354832B1 (en) | Substrate processing apparatus and substrate processing method | |
US20170372926A1 (en) | Substrate treating unit, baking apparatus including the same, and substrate treating method using baking apparatus | |
JP3769426B2 (en) | Insulating film forming equipment | |
JP3585215B2 (en) | Substrate processing equipment | |
US6524389B1 (en) | Substrate processing apparatus | |
JP3599322B2 (en) | Substrate processing apparatus and substrate processing method | |
JP3527868B2 (en) | Heat treatment apparatus and heat treatment method for semiconductor substrate | |
JP3909222B2 (en) | Substrate processing apparatus and substrate processing method | |
JP2002093687A (en) | Method and processor for heat-treating substrate | |
JP5195640B2 (en) | Heat treatment equipment | |
JPWO2003001579A1 (en) | Substrate processing apparatus and substrate processing method | |
JP3623134B2 (en) | Substrate processing equipment | |
JP3582584B2 (en) | Substrate processing method | |
JP2000133647A (en) | Heat treatment, heat treatment equipment and treatment system | |
JP3515963B2 (en) | Substrate processing equipment | |
JP2004128516A (en) | Substrate processing apparatus | |
JP3557382B2 (en) | Substrate processing equipment | |
JP4051358B2 (en) | Substrate processing equipment | |
JP4048189B2 (en) | Substrate processing equipment | |
JP3648136B2 (en) | Substrate processing equipment | |
JP2002164333A (en) | Heat treatment apparatus | |
JP4048192B2 (en) | Substrate processing equipment | |
JP3606560B2 (en) | Substrate processing equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061128 |
|
A02 | Decision of refusal |
Effective date: 20070424 Free format text: JAPANESE INTERMEDIATE CODE: A02 |