JP2004122171A - Apparatus and method for solid-phase welding of dissimilar metal sheets - Google Patents

Apparatus and method for solid-phase welding of dissimilar metal sheets Download PDF

Info

Publication number
JP2004122171A
JP2004122171A JP2002289215A JP2002289215A JP2004122171A JP 2004122171 A JP2004122171 A JP 2004122171A JP 2002289215 A JP2002289215 A JP 2002289215A JP 2002289215 A JP2002289215 A JP 2002289215A JP 2004122171 A JP2004122171 A JP 2004122171A
Authority
JP
Japan
Prior art keywords
solid
dissimilar metal
thin plates
metal thin
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002289215A
Other languages
Japanese (ja)
Other versions
JP4253488B2 (en
Inventor
Tsunetaka Takeuchi
竹内 恒孝
Yoshiki Seto
瀬戸 芳樹
Takashi Matsuoka
松岡 孝
Kiyokazu Mori
森 清和
Masanori Kondo
近藤 正紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Nissan Motor Co Ltd
Original Assignee
Neturen Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd, Nissan Motor Co Ltd filed Critical Neturen Co Ltd
Priority to JP2002289215A priority Critical patent/JP4253488B2/en
Publication of JP2004122171A publication Critical patent/JP2004122171A/en
Application granted granted Critical
Publication of JP4253488B2 publication Critical patent/JP4253488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To apply solid-phase welding even when dissimilar metals to be welded to each other have a complicated shape such as that of a sheet for automobiles. <P>SOLUTION: Two dissimilar metal sheets constituted of a sheet W<SB>1</SB>formed of aluminum alloy and a sheet W<SB>2</SB>formed of a galvanized steel sheet is set on a lower die 3, and an upper die 7 is pressed with the specified pressure to perform the solid-phase welding of the sheets W<SB>1</SB>and W<SB>2</SB>. The dissimilar metal sheets are heated by heaters 9 and 11 so that the temperature of an interface of portions to be welded reaches a specified value. The pressing face of the upper die 7 is flat or convex, and a pressing face of the lower die 3 is flat. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、互いに重ね合わせた2枚の異種金属薄板を固相接合により接合する異種金属薄板の固相接合装置および固相接合方法に関する。
【0002】
【従来の技術】
鉄とアルミニウムなどの異種金属材料同士を接合する際に、溶接を行うと、接合部界面に金属間化合物が生成し、充分な接合強度が得られないことは広く知られている。
【0003】
このような異種金属材料同士の接合に際し、所定の接合強度を確保できる接合方法として、固相接合方法がある。これは、例えば非特許文献1に記載されている。ここでは、先端をテーパ状に機械加工した鉄パイプに亜鉛を電気メッキし、この鉄パイプをアルミニウムパイプ内に挿入した状態で所定の温度まで加熱し、さらに押し込むことで、固相接合を行っている。
【0004】
【非特許文献1】
溶接学会論文集 第18巻 第4号 P.572〜579(2000)
「亜鉛メッキによる鉄パイプとアルミニウムパイプの接合」
【0005】
上記した固相接合のメカニズムとしては、鉄パイプとアルミニウムパイプとが、ZnとAlの共晶温度380℃程度に加熱され、鉄パイプ挿入時に、アルミニウムパイプが擦られて両パイプの新生面同士が接触し、AlとZnとが反応して共晶液体が形成される。この共晶液体により、Al,Zn,Feの拡散反応が促進されて接合がなされる。
【0006】
【発明が解決しようとする課題】
ところで、互いに接合する異種金属材料として、薄板を用いる場合には、圧延ローラにて加圧する方法があるが、薄板として自動車用材料のような複雑な3次元曲面形状を呈するものでは、圧延ローラを用いた固相接合方法の適用が困難である。
【0007】
そこで、この発明は、互いに接合する異種金属材料が、自動車用薄板材料のような複雑な形状を呈するものであっても、固相接合を適用できるようにすることを目的としている。
【0008】
【課題を解決するための手段】
前記目的を達成するために、この発明は、互いに重ね合わせた亜鉛メッキ鋼板およびアルミニウム合金からなる2枚の異種金属薄板を、両側から加圧して固相接合する一対の金型を備え、前記亜鉛メッキ鋼板側の金型の加圧面を凸曲面または平面とする一方、前記アルミニウム側の金型の加圧面を平面とする構成としてある。
【0009】
【発明の効果】
この発明によれば、互いに重ね合わせた2枚の異種金属薄板を、一対の金型により両側から加圧することで、薄板として自動車用材料のような複雑な3次元曲面形状を呈するものについても、圧延ローラを用いていないことから、固相接合方法を適用することができる。また、亜鉛メッキ鋼板側の金型の加圧面を凸曲面とすることで、接合部界面のアルミニウム表面にある酸化皮膜を容易に破壊し、新生面を確実に露出させることができ、接合強度を向上させることができる。
【0010】
【発明の実施の形態】
以下、この発明の実施の形態を図面に基づき説明する。
【0011】
図1は、この発明の実施の一形態を示す異種金属薄板の固相接合装置の側面断面図である。フレーム1の下壁1a上には下型3を設置し、同上壁1bの下面には、油圧シリンダ5を介して上型7を設置してある。この上型7は、油圧シリンダ5の駆動により、下型3に対して接近離反する方向に移動可能である。上記した下型3と上型7とで一対の金型を構成している。
【0012】
そして、下型3上にセットするワークWは、互いに重ね合わせた2枚の異種金属薄板である薄板Wと薄板Wとからなる。下側の薄板Wはアルミニウム合金製で、上側の薄板Wは亜鉛メッキ鋼板であり、板厚はいずれも3mm以下である。亜鉛メッキ鋼板のメッキ膜厚は、20μm以上とする。
【0013】
また、上記した下型3および上型7には、ワークWを加熱する加熱手段としての加熱用ヒータ9および11をそれぞれ埋め込んである。さらに、フレーム1には、ワークWに向けてシールドガス(N,Arガスなど)を吐出するガス吐出ノズル13を設けてある。
【0014】
なお、加熱手段として、ヒータ9,11などの発熱体からワークWへ伝熱する間接加熱のほか、誘導加熱などによる直接加熱を用いてもよい。
【0015】
下型3は、図2に斜視図として示すように、全体としてほぼ立方体形状であり、ワークWがセットされる図1中で上面の加圧面が平面3aとなっている。一方上型7は、図3に示すように、全体としてほぼ立方体形状を呈しているが、ワークWに対応する図1中で下面の加圧面が、同図(a)のように円筒面7aか、もしくは同図(b)のように球面7bとなるよう、凸曲面を構成している。なお、上型7の加圧面の形状は、上記した円筒面7aや球面7bに代えて、下型3と同様に平面としてもよい。
【0016】
ここで、図4に示すように、上記した上型7の凸曲面となる円筒面7aや球面7bにおける基端部Pから先端部である頂点Qまでの高さHは、薄板Wと薄板Wの各板厚を合わせた総板厚Tの20%以下としてある。
【0017】
次に、作用を説明する。図1に示すように、下型3上に、下部側が薄板W,上部側が薄板Wとなるよう、これら2枚の薄板Wと薄板Wとを互いに重ね合わせた状態でセットする。この状態で油圧シリンダ5を駆動して上型7を下降させ、この上型7と下型3とでワークWを規定の加圧力にて上下両側から加圧する。
【0018】
このとき、加熱用ヒータ9,11を作動させてワークWを規定の温度になるまで加熱するとともに、ガス吐出手段としてのガス吐出ノズル13から、1分間に10リットル程度の量の不活性ガスであるシールドガスを、ワークWに向けて吐出して、不活性ガス雰囲気内で接合を行って酸化の促進を防止し、接合強度の低下およびバラツキを抑制する。
【0019】
上記した加圧力は、30MPa〜130MPaの範囲とし、加熱温度としては、接合部界面温度が320℃〜650℃の範囲とするのがよい。ただし、それぞれの接合加圧力に最も適した接合部界面温度の範囲が存在する。
【0020】
図6は、上記した固相接合による接合メカニズムを示している。すなわち、加圧時に、両者の新生面同士が接触し、薄板WのAlと薄板WのZnとが反応して共晶液体相15が形成される。この共晶液体相15により、Al−Zn−Fe相17の拡散反応が促進されて接合がなされる。
【0021】
上記した接合条件(加圧力や加熱温度)を決定する上で、接合強度の要求値を次のように決めている。ここでの接合強度の要求値は、アルミニウム合金の板厚2.0mm同士のスポット溶接部引張りせん断荷重の要求値(2kN以上)で代用し、実用的な強度範囲が得られることを前提とした。
【0022】
また、図7に示すように、接合圧力(加圧力)が約55MPaで、接合部界面温度がAlとZnの共晶液体ができる380℃近傍の370℃〜420℃の範囲で接合したテストピースの引張りせん断試験の結果、引張りせん断荷重が約4.4kNを越えた時点で、亜鉛メッキ鋼板側の母材が破断した。
【0023】
上記した図7は、接合圧力が16.67PMa,33.36PMa,44.47PMa,55.58PMa,88.94PMa,133.41PMaについてそれぞれの引張りせん断荷重を示したもので、これによれば、上記した2kN以上の引張りせん断荷重の要求値が得られる接合圧力は、30MPaから130MPaで、加熱温度は、320°〜450°となる。
【0024】
加熱時間を除く接合時間は、AlとZnの共晶液体による接合メカニズムにより、図8に示すように、10秒程度であっても、引張りせん断荷重が4.0kNを越えた時点で、亜鉛メッキ鋼板側の母材が破断しているので、充分な接合強度が得られる。
【0025】
なお、上記実験に使用した亜鉛メッキ鋼板の板厚は0.8mm、アルミニウム合金の板厚は2.0mmであり、亜鉛メッキ鋼板のメッキ膜厚は、20μm以上である。
【0026】
表1は、各種亜鉛メッキ鋼板と各種アルミニウム合金との組合せによる、破断が発生したときの引張りせん断荷重を示している。これによれば、NO.1の合金化溶融亜鉛メッキ鋼板と押出し形材6063−T5との組み合わせで、シールドガスなしの場合が、0.9kNの引張りせん断荷重で接合部にて破断が発生しており、必要強度として引張りせん断荷重が2.0kN以上を確保できていない。その他の組合せで、シールガスありとした場合には、必要強度として引張りせん断荷重が2.0kN以上を確保できている。
【0027】
【表1】

Figure 2004122171
なお、ここでの下型3および上型7の加圧面の形状は16mm×16mmの正方形で、上型7の加圧面は半径100mmの球面としてある。
【0028】
上記した実施形態によれば、互いに重ね合わせた2枚の異種金属薄板W,Wを、一対の金型3,7により両側から加圧することで、薄板W,Wとして自動車用材料のような複雑な3次元曲面形状を呈するものについても、圧延ローラを用いていないことから、固相接合方法を適用することができる。
【0029】
また、亜鉛メッキ鋼板側の上型7を、円筒面7aや球面7bからなる凸曲面とすることで、接合部界面のアルミニウム表面にある酸化皮膜を容易に破壊して、新生面を確実に露出させることができ、接合強度を向上させることができる。このとき、破壊した酸化皮膜は、図4に示してある頂点Qから基端部Pに向けて凸曲面に沿って排出しやすくなる。
【0030】
上型7の加圧面を平面や円筒面7aとした場合には、一度に長い接合部を得るのに適している。すなわち、接合部長さがなくなるように加圧面を長くする。また、上型7の加圧面を球面7bとした場合には、スポット溶接と同様な接合が可能なため、ワークWの3次元曲面形状への追従性がより高まる。
【0031】
このような上型7の加圧面形状を、適宜使い分けることにより、1点ずつ接合することも、複数点を同時に接合することも可能である。
【0032】
さらに、凸曲面の基端部Pから先端部の頂点Qまでの高さ寸法Hを、2枚の薄板W,Wの各板厚を合わせた総板厚Tの20%以下とすることで、アルミニウム合金(W)の板厚が局部的に低減しすぎることなく接合でき、これにより接合部の加圧面全体が均一に密着して接合強度が向上する。
【0033】
また、加圧力として30MPa〜130MPaの範囲とすることで、板厚減少による強度低下および母材の変形を抑制することができる。さらに、加熱温度としては、接合部界面温度を320℃〜450℃の範囲とすることで、熱影響による母材の強度低下を防止することができる。
【0034】
また、薄板WのAlと薄板WのZnとが反応して形成される共晶液体相15により、Al−Zn−Fe相17の拡散反応が促進されるため、接合時間が短縮化し、コスト低下を図ることができる。
【0035】
図9は、本装置を、プレス型に組み込んだ例を示している。プレス下型19は、中央部に凹部19aを備え、その周囲の加圧部19bの上面の加圧面が平面19cとなっている。この平面19c上に、ワークWをセットする。ワークWは、互いに重ね合わせた2枚の異種金属薄板である薄板Wと薄板Wとで構成され、下側の薄板Wはアルミニウム合金で、上側の薄板Wは亜鉛メッキ鋼板である。
【0036】
一方、プレス上型21は、中央に形成した凹部21aの周囲の前記平面19cに対向する位置に、前記した加圧部19bとで一対の金型を構成する可動型23を設置してある。この可動型23は、プレス上型21に形成した可動孔21b内を上下動可能であり、ワークWに対向する面が、前記図3に示した円筒面7aや球面7bと同様な凸曲面23aとなっている。この例においても、凸曲面23aに代えて平面としてもよい。
【0037】
可動型23は、全体としてほぼ立方体形状とした状態で、凹部21aの周囲に複数設けてもよく、環状の連続したものとしてもよい。環状とした場合には、可動型23の加圧面は、円筒面か平面となる。
【0038】
一方、図10は、前記図9における可動型23に代えて、プレス上型210の平面19cに対向する下面に、所定のR形状を備えた凸曲面210aを形成してある。
【0039】
凸曲面210aは、球面状として凹部210bの周囲に複数設けるか、あるいは円筒面形状として環状の連続したものとしてもよい。
【0040】
上記した図9および図10に示すように、本装置を、プレス型に組み込み一体化することで、かなり大きな部品単位で接合することが可能となる。
【図面の簡単な説明】
【図1】この発明の実施の一形態を示す異種金属薄板の固相接合装置の断面図である。
【図2】図1の固相接合装置における下型の斜視図である。
【図3】図1の固相接合装置における上型の斜視図で、(a)は加圧面が円筒面、(b)は加圧面が球面である。
【図4】上型の凸曲面の形状を説明するための上型の側面図である。
【図5】2枚の異種金属薄板を合わせた総板厚を示すワークの断面図である。
【図6】固相接合による接合メカニズムを示す断面図である。
【図7】各接合圧力についての接合部界面温度と引張りせん断荷重との相関図である。
【図8】各接合時間についての接合部界面温度と引張りせん断荷重との相関図である。
【図9】本装置を、プレス型に組み込んだ例を示す断面図である。
【図10】本装置を、プレス型に組み込んだ他の例を示す断面図である。
【符号の説明】
,W 2枚の異種金属薄板
3 下型(一対の金型)
3a 平面
7 上型(一対の金型)
7a 円筒面(凸曲面)
7b 球面(凸曲面)
9,11 加熱用ヒータ(加熱手段)
13 ガス吐出ノズル(ガス吐出手段)
19b 加圧部(一対の金型)
19c 平面
23 可動型(一対の金型)
23a,210a 凸曲面
P 基端部
Q 頂点(先端部)
H 基端部から先端部までの高さ寸法
T 2枚の薄板の総板厚[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dissimilar metal sheet solid-state joining apparatus and a solid-phase joining method for joining two different dissimilar metal sheets stacked on each other by solid-state joining.
[0002]
[Prior art]
It is widely known that when welding different metal materials such as iron and aluminum, if welding is performed, an intermetallic compound is generated at the interface of the joint, and sufficient joining strength cannot be obtained.
[0003]
In joining such dissimilar metal materials together, there is a solid-state joining method as a joining method capable of securing a predetermined joining strength. This is described in Non-Patent Document 1, for example. Here, zinc is electroplated on an iron pipe whose tip is machined into a tapered shape, heated to a predetermined temperature while this iron pipe is inserted into an aluminum pipe, and further pushed in to perform solid-phase joining. I have.
[0004]
[Non-patent document 1]
Transactions of the Japan Welding Society, Vol. 572-579 (2000)
"Joint of iron pipe and aluminum pipe by galvanization"
[0005]
The mechanism of the above-mentioned solid-phase joining is as follows: the iron pipe and the aluminum pipe are heated to a eutectic temperature of about 380 ° C. of Zn and Al, and when the iron pipe is inserted, the aluminum pipe is rubbed and the new surfaces of both pipes come into contact with each other. Then, Al reacts with Zn to form a eutectic liquid. The eutectic liquid promotes the diffusion reaction of Al, Zn, and Fe to form a junction.
[0006]
[Problems to be solved by the invention]
By the way, when a thin plate is used as a dissimilar metal material to be joined to each other, there is a method of pressing with a rolling roller. However, when the thin plate has a complicated three-dimensional curved surface shape such as a material for an automobile, the rolling roller is used. It is difficult to apply the solid phase bonding method used.
[0007]
Therefore, an object of the present invention is to enable solid-phase joining to be applied to dissimilar metal materials to be joined to each other even if the dissimilar metallic materials have a complicated shape such as a thin sheet material for automobiles.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention includes a pair of dies for solid-state joining two different metal thin plates made of a galvanized steel sheet and an aluminum alloy which are superimposed on each other by pressing from both sides, The pressing surface of the mold on the plated steel plate side is a convex curved surface or a flat surface, while the pressing surface of the mold on the aluminum side is a flat surface.
[0009]
【The invention's effect】
According to the present invention, by pressing two different dissimilar metal sheets superimposed on each other with a pair of dies from both sides, the thin sheet having a complicated three-dimensional curved surface shape such as a material for automobiles is also provided. Since a rolling roller is not used, a solid-phase joining method can be applied. In addition, by making the pressing surface of the mold on the galvanized steel sheet a convex curved surface, the oxide film on the aluminum surface at the joint interface can be easily broken, and the new surface can be reliably exposed, improving the bonding strength. Can be done.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0011]
FIG. 1 is a side sectional view of a solid-phase joining apparatus for dissimilar metal sheets showing an embodiment of the present invention. A lower mold 3 is installed on a lower wall 1a of the frame 1, and an upper mold 7 is installed on a lower surface of the upper wall 1b via a hydraulic cylinder 5. The upper mold 7 can be moved in a direction approaching and moving away from the lower mold 3 by driving the hydraulic cylinder 5. The lower mold 3 and the upper mold 7 constitute a pair of molds.
[0012]
Then, the workpiece W is set on the lower mold 3 is made of a thin plate W 1 and the thin plate W 2 Metropolitan is two dissimilar metal sheet superimposed with each other. Sheet W 1 of the lower side in the aluminum alloy sheet W 2 of the upper is galvanized steel plate thickness are both less than 3mm. The thickness of the galvanized steel sheet is 20 μm or more.
[0013]
Heaters 9 and 11 as heating means for heating the work W are embedded in the lower mold 3 and the upper mold 7, respectively. Further, the frame 1 is provided with a gas discharge nozzle 13 for discharging a shield gas (N 2 , Ar gas, etc.) toward the work W.
[0014]
As the heating means, in addition to indirect heating for transferring heat from a heating element such as the heaters 9 and 11 to the work W, direct heating such as induction heating may be used.
[0015]
As shown in a perspective view in FIG. 2, the lower mold 3 has a substantially cubic shape as a whole, and a pressing surface on an upper surface in FIG. On the other hand, the upper die 7 has a substantially cubic shape as a whole as shown in FIG. 3, but the pressing surface on the lower surface in FIG. 1 corresponding to the work W has a cylindrical surface 7a as shown in FIG. Alternatively, a convex curved surface is formed so as to form a spherical surface 7b as shown in FIG. In addition, the shape of the pressing surface of the upper die 7 may be a flat surface, similar to the lower die 3, instead of the cylindrical surface 7a and the spherical surface 7b described above.
[0016]
Here, as shown in FIG. 4, the height H from the proximal end P of the cylindrical surface 7a and spherical 7b as a convex curved surface of the upper mold 7 as described above to the apex Q is a tip, and the thin plate W 1 sheet there as no more than 20% of the SoitaAtsu T tailored each thickness of W 2.
[0017]
Next, the operation will be described. As shown in FIG. 1, on the lower mold 3, the lower side sheet W 1, so that the upper side becomes thin W 2, sets and these two sheet W 1 and the thin plate W 2 to each other in a mutually superposed state. In this state, the hydraulic cylinder 5 is driven to lower the upper mold 7, and the upper mold 7 and the lower mold 3 press the work W with upper and lower sides with a predetermined pressing force.
[0018]
At this time, the work heaters 9 and 11 are operated to heat the work W to a predetermined temperature, and the inert gas of about 10 liters per minute is supplied from the gas discharge nozzle 13 as a gas discharge means. A certain shielding gas is discharged toward the workpiece W, and bonding is performed in an inert gas atmosphere to prevent the promotion of oxidation, thereby suppressing a reduction and variation in bonding strength.
[0019]
The above pressure is preferably in the range of 30 MPa to 130 MPa, and the heating temperature is preferably in the range of 320 ° C. to 650 ° C. at the junction interface temperature. However, there is a range of the junction interface temperature most suitable for each welding pressure.
[0020]
FIG. 6 shows a bonding mechanism by the solid-phase bonding described above. That is, when pressurized, contact the newly formed surfaces of both, the eutectic liquid phase 15 and Zn of Al and the thin plate W 2 of the thin plate W 1 is reacted is formed. The eutectic liquid phase 15 promotes the diffusion reaction of the Al—Zn—Fe phase 17 to form a junction.
[0021]
In determining the above-mentioned bonding conditions (pressure and heating temperature), the required value of the bonding strength is determined as follows. The required value of the bonding strength here is replaced with the required value of the tensile shear load (2 kN or more) of the spot weld of the aluminum alloy having a thickness of 2.0 mm, and it is assumed that a practical strength range can be obtained. .
[0022]
As shown in FIG. 7, the test pieces were joined at a joining pressure (applied pressure) of about 55 MPa and a joint interface temperature in the range of 370 ° C. to 420 ° C. near 380 ° C. where a eutectic liquid of Al and Zn was formed. As a result of the tensile shear test, when the tensile shear load exceeded about 4.4 kN, the base material on the galvanized steel sheet fractured.
[0023]
FIG. 7 described above shows the respective tensile shear loads for the bonding pressures of 16.67 PMa, 33.36 PMa, 44.47 PMa, 55.58 PMa, 88.94 PMa, and 133.41 PMa. The bonding pressure at which the required value of the tensile shear load of 2 kN or more is obtained is 30 MPa to 130 MPa, and the heating temperature is 320 ° to 450 °.
[0024]
As shown in FIG. 8, even if the joining time excluding the heating time is about 10 seconds due to the joining mechanism of the eutectic liquid of Al and Zn, when the tensile shear load exceeds 4.0 kN, galvanizing is performed. Since the base material on the steel plate side is broken, sufficient bonding strength can be obtained.
[0025]
The thickness of the galvanized steel sheet used in the above experiment was 0.8 mm, the thickness of the aluminum alloy was 2.0 mm, and the thickness of the galvanized steel sheet was 20 μm or more.
[0026]
Table 1 shows the tensile shearing load when a fracture occurs due to the combination of various galvanized steel sheets and various aluminum alloys. According to this, NO. In the case of the combination of the alloyed hot-dip galvanized steel sheet 1 and the extruded profile 6063-T5, without the shielding gas, a fracture occurred at the joint with a tensile shear load of 0.9 kN. Shear load of 2.0 kN or more could not be secured. In other combinations, when the sealing gas is used, a required shear strength of 2.0 kN or more can be secured as the required strength.
[0027]
[Table 1]
Figure 2004122171
Here, the shape of the pressing surface of the lower die 3 and the upper die 7 is a square of 16 mm × 16 mm, and the pressing surface of the upper die 7 is a spherical surface with a radius of 100 mm.
[0028]
According to the above-described embodiment, the two dissimilar metal thin plates W 1 and W 2 , which are superimposed on each other, are pressed from both sides by the pair of dies 3 and 7, and are used as the automotive materials as the thin plates W 1 and W 2. The solid-phase joining method can be applied to a material having a complicated three-dimensional curved surface shape such as described above, since a rolling roller is not used.
[0029]
Also, by forming the upper mold 7 on the galvanized steel sheet side as a convex curved surface composed of the cylindrical surface 7a and the spherical surface 7b, the oxide film on the aluminum surface at the joint interface is easily destroyed, and the new surface is reliably exposed. The bonding strength can be improved. At this time, the broken oxide film is easily discharged along the convex curved surface from the vertex Q to the base end P shown in FIG.
[0030]
When the pressing surface of the upper mold 7 is a flat surface or a cylindrical surface 7a, it is suitable for obtaining a long joint at one time. That is, the pressing surface is lengthened so that the joint length is eliminated. When the pressurizing surface of the upper die 7 is a spherical surface 7b, joining similar to spot welding is possible, so that the followability to the three-dimensional curved surface shape of the work W is further improved.
[0031]
By appropriately using the shape of the pressing surface of the upper mold 7, it is possible to join one point at a time or to join a plurality of points at the same time.
[0032]
Further, the height dimension H from the base end P of the convex curved surface to the vertex Q of the tip end is set to 20% or less of the total thickness T of the two thin plates W 1 and W 2. Thus, the joining can be performed without locally reducing the thickness of the aluminum alloy (W 1 ) locally, whereby the entire pressurized surface of the joining portion is uniformly adhered and the joining strength is improved.
[0033]
Further, by setting the pressing force in the range of 30 MPa to 130 MPa, it is possible to suppress a decrease in strength due to a decrease in plate thickness and deformation of the base material. Further, as the heating temperature, by setting the junction interface temperature in a range of 320 ° C. to 450 ° C., it is possible to prevent a decrease in the strength of the base material due to thermal influence.
[0034]
Further, the eutectic liquid phase 15 and Zn of Al and the thin plate W 2 of the thin plate W 1 is formed by the reaction, because the diffusion reaction of Al-Zn-Fe phase 17 is accelerated, shortened the bonding time, Cost can be reduced.
[0035]
FIG. 9 shows an example in which the present apparatus is incorporated in a press die. The press lower mold 19 has a concave portion 19a in the center, and the pressing surface on the upper surface of the pressing portion 19b around the concave portion 19a is a flat surface 19c. The work W is set on this plane 19c. Workpiece W is constituted by a thin plate W 1 and the thin plate W 2 is a two dissimilar metal sheet superimposed with each other, the thin plate W 1 of the lower aluminum alloy, sheet W 2 of the upper is a galvanized steel plate .
[0036]
On the other hand, in the upper press die 21, a movable die 23 forming a pair of dies with the pressurizing portion 19b is installed at a position facing the flat surface 19c around a concave portion 21a formed at the center. The movable die 23 can move up and down in a movable hole 21b formed in the upper press die 21, and the surface facing the work W has a convex curved surface 23a similar to the cylindrical surface 7a and the spherical surface 7b shown in FIG. It has become. Also in this example, a flat surface may be used instead of the convex curved surface 23a.
[0037]
A plurality of movable dies 23 may be provided around the concave portion 21a in a substantially cubic shape as a whole, or may be formed in an annular continuous shape. In the case of an annular shape, the pressing surface of the movable mold 23 is a cylindrical surface or a flat surface.
[0038]
On the other hand, in FIG. 10, instead of the movable die 23 in FIG. 9, a convex curved surface 210a having a predetermined R shape is formed on the lower surface facing the flat surface 19c of the upper press die 210.
[0039]
A plurality of convex curved surfaces 210a may be provided around the concave portion 210b as a spherical shape, or may be a continuous annular shape having a cylindrical surface shape.
[0040]
As shown in FIGS. 9 and 10 described above, by incorporating the present apparatus into a press die and integrating it, it becomes possible to join in a considerably large unit.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an apparatus for solid-phase joining of dissimilar metal sheets, showing one embodiment of the present invention.
FIG. 2 is a perspective view of a lower die in the solid-state bonding apparatus of FIG. 1;
FIGS. 3A and 3B are perspective views of an upper die in the solid-state bonding apparatus of FIG. 1, in which FIG. 3A shows a cylindrical pressing surface and FIG. 3B shows a spherical pressing surface.
FIG. 4 is a side view of the upper mold for explaining the shape of the convex curved surface of the upper mold.
FIG. 5 is a cross-sectional view of a work showing a total plate thickness obtained by combining two different types of thin metal plates.
FIG. 6 is a cross-sectional view showing a bonding mechanism by solid-phase bonding.
FIG. 7 is a correlation diagram between a joint interface temperature and a tensile shear load for each joining pressure.
FIG. 8 is a correlation diagram between a joint interface temperature and a tensile shear load for each joining time.
FIG. 9 is a cross-sectional view illustrating an example in which the apparatus is incorporated in a press die.
FIG. 10 is a cross-sectional view showing another example in which the present apparatus is incorporated in a press die.
[Explanation of symbols]
W 1 , W 2 Two dissimilar metal sheets 3 Lower mold (a pair of molds)
3a Flat surface 7 Upper mold (a pair of molds)
7a Cylindrical surface (convex surface)
7b spherical surface (convex surface)
9,11 Heating heater (heating means)
13 Gas discharge nozzle (gas discharge means)
19b Pressing part (a pair of molds)
19c plane 23 movable type (a pair of molds)
23a, 210a convex curved surface P base end Q vertex (top end)
H Height dimension from base end to tip end T Total thickness of two thin plates

Claims (9)

互いに重ね合わせた亜鉛メッキ鋼板およびアルミニウム合金からなる2枚の異種金属薄板を、両側から加圧して固相接合する一対の金型を備え、前記亜鉛メッキ鋼板側の金型の加圧面を凸曲面または平面とする一方、前記アルミニウム側の金型の加圧面を平面とすることを特徴とする請求項1記載の異種金属薄板の固相接合装置。A pair of dies for solid-phase joining by pressing two dissimilar metal thin plates made of a galvanized steel sheet and an aluminum alloy which are superimposed on each other from both sides are provided, and the pressing surface of the die on the galvanized steel sheet side is a convex curved surface. 2. The solid-phase joining apparatus for dissimilar metal thin plates according to claim 1, wherein the pressing surface of the mold on the aluminum side is a flat surface, while the pressing surface is a flat surface. 3. 前記凸曲面の基端部から先端部までの高さ寸法を、前記2枚の異種金属薄板の各板厚を合わせた総板厚の20%以下としたことを特徴とする請求項1記載の異種金属薄板の固相接合装置。The height dimension from the base end part to the tip part of the said convex curved surface was 20% or less of the total board thickness which combined each board thickness of the said two different metal thin plates, The claim 1 characterized by the above-mentioned. Solid phase joining equipment for dissimilar metal sheets. 前記凸曲面は、球面形状であることを特徴とする請求項1または2記載の異種金属薄板の固相接合装置。3. The solid-state welding apparatus according to claim 1, wherein the convex curved surface has a spherical shape. 前記凸曲面は、円筒面形状であることを特徴とする請求項1または2記載の異種金属薄板の固相接合装置。The solid-phase joining apparatus for dissimilar metal thin plates according to claim 1, wherein the convex curved surface has a cylindrical surface shape. 前記一対の金型に、前記2枚の異種金属薄板を加熱する加熱手段を設けたことを特徴とする請求項1〜4のいずれかに記載の異種金属薄板の固相接合装置。The solid-state joining apparatus for dissimilar metal thin plates according to any one of claims 1 to 4, wherein heating means for heating the two dissimilar metal thin plates is provided in the pair of dies. 互いに重ね合わせた亜鉛メッキ鋼板およびアルミニウム合金からなる2枚の異種金属薄板を、前記亜鉛メッキ鋼板側の金型の加圧面を凸曲面または平面とする一方、前記アルミニウム側の金型の加圧面を平面とする一対の金型により、両側から加圧して固相接合することを特徴とする異種金属薄板の固相接合方法。The two dissimilar metal thin plates made of a galvanized steel sheet and an aluminum alloy overlapped with each other, the pressing surface of the mold on the galvanized steel plate side is made a convex curved surface or a flat surface, while the pressing surface of the mold on the aluminum side is made A solid-state joining method for dissimilar metal thin plates, wherein solid-state joining is performed by applying pressure from both sides using a pair of flat molds. 前記一対の金型による加圧力を30MPa〜130MPaとするとともに、接合部界面温度が320℃〜650℃となるよう加熱することを特徴とする請求項6記載の異種金属薄板の固相接合方法。The solid-state joining method for dissimilar metal thin plates according to claim 6, wherein the pressure applied by the pair of molds is set to 30 MPa to 130 MPa, and heating is performed so that the interface temperature at the joining portion is set to 320 ° C. to 650 ° C. 9. 不活性ガス雰囲気内で前記加圧および加熱を行うことを特徴とする請求項7記載の異種金属薄板の固相接合方法。The method according to claim 7, wherein the pressurizing and heating are performed in an inert gas atmosphere. 前記不活性ガスは、ガス吐出手段を用いて前記異種金属鋼板に向けて吐出することを特徴とする請求項8記載の異種金属薄板の固相接合方法。9. The method according to claim 8, wherein the inert gas is discharged toward the dissimilar metal steel sheet using a gas discharge unit.
JP2002289215A 2002-10-01 2002-10-01 Solid state bonding apparatus and solid state bonding method for dissimilar metal thin plates Expired - Fee Related JP4253488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002289215A JP4253488B2 (en) 2002-10-01 2002-10-01 Solid state bonding apparatus and solid state bonding method for dissimilar metal thin plates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002289215A JP4253488B2 (en) 2002-10-01 2002-10-01 Solid state bonding apparatus and solid state bonding method for dissimilar metal thin plates

Publications (2)

Publication Number Publication Date
JP2004122171A true JP2004122171A (en) 2004-04-22
JP4253488B2 JP4253488B2 (en) 2009-04-15

Family

ID=32281483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002289215A Expired - Fee Related JP4253488B2 (en) 2002-10-01 2002-10-01 Solid state bonding apparatus and solid state bonding method for dissimilar metal thin plates

Country Status (1)

Country Link
JP (1) JP4253488B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175504A (en) * 2004-12-24 2006-07-06 Nissan Motor Co Ltd Method for joining different kind of material
JP2006175502A (en) * 2004-12-24 2006-07-06 Nissan Motor Co Ltd Different kinds of metal welding method
US7119309B2 (en) 2004-02-17 2006-10-10 Nissan Motor Co., Ltd. Liquid phase diffusion bonding method for dissimilar metal sheets and liquid phase diffusion bonding apparatus for the same
JP2006326612A (en) * 2005-05-24 2006-12-07 Nissan Motor Co Ltd Method of welding different kind of metal by resistance seam welding
JP2006326613A (en) * 2005-05-24 2006-12-07 Nissan Motor Co Ltd Resistance seam welding method for different kind of metal and its welding structure
JP2007130686A (en) * 2005-10-11 2007-05-31 Nissan Motor Co Ltd Method for joining different metals by resistance welding and joining structure of metals
JP2007152401A (en) * 2005-12-06 2007-06-21 Nissan Motor Co Ltd Bonding method, bonding apparatus and bonding structure for different materials
JP2007331018A (en) * 2006-06-19 2007-12-27 Nissan Motor Co Ltd Method of and apparatus for joining different kinds of metal panels, and joined structure
JP2008023583A (en) * 2006-07-25 2008-02-07 Nissan Motor Co Ltd Different metal joining method, joined structure and joining device
JP2008284578A (en) * 2007-05-16 2008-11-27 Hitachi Plant Technologies Ltd Apparatus and method for closing piping
US7850059B2 (en) 2004-12-24 2010-12-14 Nissan Motor Co., Ltd. Dissimilar metal joining method
JP2011240409A (en) * 2011-07-19 2011-12-01 Nissan Motor Co Ltd Device for joining different materials
US8492005B2 (en) 2008-01-17 2013-07-23 Nissan Motor Co., Ltd. Joining method and joint structure of dissimilar metal
KR101328549B1 (en) * 2012-03-29 2013-11-20 (주)태광테크 Chips scatter preventing apparatus for friction stir welding
US9174298B2 (en) 2008-09-08 2015-11-03 Nissan Motor Co., Ltd. Dissimilar metal joining method for magnesium alloy and steel
JP2017047468A (en) * 2015-09-04 2017-03-09 トヨタ車体株式会社 Diffusion joining method
WO2021192595A1 (en) * 2020-03-27 2021-09-30 富山県 Joining method for metal material
WO2024029386A1 (en) * 2022-08-01 2024-02-08 ファインネクス株式会社 Method for manufacturing composite electrode terminal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102164562B1 (en) * 2020-06-08 2020-10-12 최용근 Manufacturing method of artificial gem

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7119309B2 (en) 2004-02-17 2006-10-10 Nissan Motor Co., Ltd. Liquid phase diffusion bonding method for dissimilar metal sheets and liquid phase diffusion bonding apparatus for the same
JP4601052B2 (en) * 2004-12-24 2010-12-22 日産自動車株式会社 Dissimilar metal joining method
JP2006175502A (en) * 2004-12-24 2006-07-06 Nissan Motor Co Ltd Different kinds of metal welding method
JP2006175504A (en) * 2004-12-24 2006-07-06 Nissan Motor Co Ltd Method for joining different kind of material
US8020749B2 (en) 2004-12-24 2011-09-20 Nissan Motor Co., Ltd. Dissimilar metal joining method
US7984840B2 (en) 2004-12-24 2011-07-26 Nissan Motor Co., Ltd. Dissimilar metal joining method
JP4631429B2 (en) * 2004-12-24 2011-02-16 日産自動車株式会社 Dissimilar materials joining method
US7850059B2 (en) 2004-12-24 2010-12-14 Nissan Motor Co., Ltd. Dissimilar metal joining method
JP2006326612A (en) * 2005-05-24 2006-12-07 Nissan Motor Co Ltd Method of welding different kind of metal by resistance seam welding
JP2006326613A (en) * 2005-05-24 2006-12-07 Nissan Motor Co Ltd Resistance seam welding method for different kind of metal and its welding structure
JP2007130686A (en) * 2005-10-11 2007-05-31 Nissan Motor Co Ltd Method for joining different metals by resistance welding and joining structure of metals
JP2007152401A (en) * 2005-12-06 2007-06-21 Nissan Motor Co Ltd Bonding method, bonding apparatus and bonding structure for different materials
JP2007331018A (en) * 2006-06-19 2007-12-27 Nissan Motor Co Ltd Method of and apparatus for joining different kinds of metal panels, and joined structure
JP2008023583A (en) * 2006-07-25 2008-02-07 Nissan Motor Co Ltd Different metal joining method, joined structure and joining device
JP2008284578A (en) * 2007-05-16 2008-11-27 Hitachi Plant Technologies Ltd Apparatus and method for closing piping
US8492005B2 (en) 2008-01-17 2013-07-23 Nissan Motor Co., Ltd. Joining method and joint structure of dissimilar metal
US9174298B2 (en) 2008-09-08 2015-11-03 Nissan Motor Co., Ltd. Dissimilar metal joining method for magnesium alloy and steel
JP2011240409A (en) * 2011-07-19 2011-12-01 Nissan Motor Co Ltd Device for joining different materials
KR101328549B1 (en) * 2012-03-29 2013-11-20 (주)태광테크 Chips scatter preventing apparatus for friction stir welding
JP2017047468A (en) * 2015-09-04 2017-03-09 トヨタ車体株式会社 Diffusion joining method
WO2021192595A1 (en) * 2020-03-27 2021-09-30 富山県 Joining method for metal material
JPWO2021192595A1 (en) * 2020-03-27 2021-09-30
JP7350369B2 (en) 2020-03-27 2023-09-26 富山県 Method of joining metal materials
WO2024029386A1 (en) * 2022-08-01 2024-02-08 ファインネクス株式会社 Method for manufacturing composite electrode terminal

Also Published As

Publication number Publication date
JP4253488B2 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
JP4253488B2 (en) Solid state bonding apparatus and solid state bonding method for dissimilar metal thin plates
US10766095B2 (en) Mating electrodes for resistance spot welding of aluminum workpieces to steel workpieces
US10500679B2 (en) Resistance welding electrode and method of resistance welding
CN107520550B (en) Multi-step electrode weld face geometry for welding aluminum to steel
KR100925580B1 (en) Bonding method, bonding structure and bonding device of hetero-metal
JP4971821B2 (en) Dissimilar material joining method between steel and aluminum
JP2007118059A (en) Method and structure of welding different kind of metallic material
JP5315207B2 (en) Dissimilar material joined body and dissimilar material resistance spot welding method
Huang et al. Dissimilar joining of aluminum alloy and stainless steel thin sheets by thermally assisted plastic deformation
CN110202245A (en) Aluminium-steel weld seam mechanical performance is improved by limitation steel plate deformed
US20230007988A1 (en) Method for Joining Metal Materials and Controlling Bonding Quality Thereof
KR20190089192A (en) Resistance spot welding method
EP1273385B1 (en) Method for diffusion bonding magnesium/aluminum components
JP6016095B2 (en) Joining method and joining parts
JPS5948714B2 (en) Method of pressure welding metal base materials using eutectic reaction
US20080041922A1 (en) Hybrid Resistance/Ultrasonic Welding System and Method
JP2009226425A (en) Spot welding method of dissimilar plates
JP5098804B2 (en) Dissimilar metal joining method and joining structure of magnesium alloy and steel
JP6209991B2 (en) Blank material manufacturing method, hot stamp molded product manufacturing method, blank material, and hot stamp molded product
JP2017047449A (en) Metal joint article and manufacturing method of the same
JP7242112B2 (en) Solid point welding method and solid point welding apparatus
JPWO2018123350A1 (en) Resistance spot welding method
JP2015066588A (en) Resistance welding method of dissimilar metallic materials and vehicular component
CN109014580B (en) Lapping laser gap powder filling welding method with rolling assistance
JP7114029B2 (en) metal joining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

R150 Certificate of patent or registration of utility model

Ref document number: 4253488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees