JP2011240409A - Device for joining different materials - Google Patents

Device for joining different materials Download PDF

Info

Publication number
JP2011240409A
JP2011240409A JP2011157683A JP2011157683A JP2011240409A JP 2011240409 A JP2011240409 A JP 2011240409A JP 2011157683 A JP2011157683 A JP 2011157683A JP 2011157683 A JP2011157683 A JP 2011157683A JP 2011240409 A JP2011240409 A JP 2011240409A
Authority
JP
Japan
Prior art keywords
joining
joined
eutectic
materials
energy beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011157683A
Other languages
Japanese (ja)
Other versions
JP5207156B2 (en
Inventor
Nariyuki Nakagawa
成幸 中川
Minoru Kasukawa
実 粕川
Kenji Miyamoto
健二 宮本
Masayuki Inoue
雅之 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2011157683A priority Critical patent/JP5207156B2/en
Publication of JP2011240409A publication Critical patent/JP2011240409A/en
Application granted granted Critical
Publication of JP5207156B2 publication Critical patent/JP5207156B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laser Beam Processing (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device for joining different materials that, even if a fine oxide film is interposed between boundary surfaces, relatively easily removes the oxide film from a joined part without applying not so a large heat input, and improves joining strength.SOLUTION: The device includes: an irradiation head 11 disposed to be movable relatively with respect to materials 1, 2 to be joined and irradiating a high-energy beam B to the joined part of the materials to be joined while relatively moving; and a pressure roller disposed backward in the traveling direction of an irradiation point of the high-energy beam by the irradiation head and pressing the joined part after irradiated with the high-energy beam. In the joining device, multiple pressure rollers 13a, 13b are disposed along in the traveling direction.

Description

本発明は、異種材料、例えばスチール材とアルミニウム合金材のように、互いに異なる融点を有する異種材料同士の接合技術に係わり、電子ビームやレーザビームのような高エネルギービームを高融点材料と低融点材料の高融点側の材料表面に照射しつつ、移動させることによって、両材料を線状に接合するのに用いる接合装置に関するものである。   The present invention relates to a joining technique of different materials having different melting points, such as different materials, for example, steel materials and aluminum alloy materials, and a high energy beam such as an electron beam or a laser beam is combined with a high melting material and a low melting point. The present invention relates to a joining apparatus used for joining both materials linearly by irradiating and moving the material surface on the high melting point side of the material.

一般に、異種材料を接合しようとする場合、同種材同士の溶接の場合と同様に両方の被接合材料を溶融させてしまうと、脆弱な金属間化合物が生成し、十分な継手強度を得られない。
例えば、異種金属であるアルミニウム合金と鋼を接合する場合には、硬度が高くて脆弱なFe2Al5、FeAl3などの金属間化合物が生成することから、継手強度を確保するためには、これら金属間化合物の制御が必要となる。
Generally, when different materials are to be joined, if both materials to be joined are melted as in the case of welding of the same kind of materials, a brittle intermetallic compound is generated and sufficient joint strength cannot be obtained. .
For example, when joining an aluminum alloy, which is a dissimilar metal, and steel, intermetallic compounds such as Fe2Al5 and FeAl3, which are high in hardness and brittle, are generated. In order to ensure joint strength, these intermetallic compounds are used. Control is required.

ところが、アルミニウム合金の表面には、緻密で強固な酸化皮膜が形成されており、それを除去するためには接合時に大きな投与熱量が必要となり、その結果、金属間化合物層が厚く成長し、接合部の強度が低くなってしまうという問題がある。   However, a dense and strong oxide film is formed on the surface of the aluminum alloy, and in order to remove it, a large dose of heat is required at the time of bonding. As a result, the intermetallic compound layer grows thickly, There exists a problem that the intensity | strength of a part will become low.

このように、異材同士の接合に際しては、金属間化合物の成長を精密にコントロールしながら接合する必要があるため、加熱のための外部熱源として、精密な温度制御が可能な、電子ビームやレーザビームなどのような高エネルギービームを用いた方法が試みられている。
高エネルギービームを用いた異種材料の重ね接合においては、脆い金属間化合物の生成を抑制するために、高融点材料の側にデフォーカスさせた高エネルギービームを照射し、高融点材料側からの伝熱により低融点材料を溶融させて接合する方法がとられていた(例えば、非特許文献1参照。)。
In this way, when joining different materials, it is necessary to join while controlling the growth of the intermetallic compound precisely, so as an external heat source for heating, an electron beam or laser beam capable of precise temperature control. Attempts have been made to use a method using a high energy beam.
In the lap joining of dissimilar materials using a high energy beam, in order to suppress the formation of brittle intermetallic compounds, a high energy beam defocused on the high melting point material side is irradiated to transmit from the high melting point material side. A method has been adopted in which a low melting point material is melted by heat and bonded (for example, see Non-Patent Document 1).

このような場合、溶接条件をコントロールし、接合界面において、片側の材料(低融点材料)のみを溶融させ、材料の拡散を利用して接合することによって金属間化合物層の成長を抑制し、その厚さを薄くすることによって、両方の材料を溶融させて接合した場合よりも、接合部の単位面積当りの強度を高くすることができると考えられていた。   In such a case, the welding conditions are controlled, only the material on one side (low melting point material) is melted at the joining interface, and the growth of the intermetallic compound layer is suppressed by joining using the diffusion of the material. It has been thought that by reducing the thickness, the strength per unit area of the joint can be made higher than when both materials are melted and joined.

「溶接学会全国大会講演概要」、社団法人日本溶接学会、2003年4月、第72集、p.152“Overview of the National Conference of the Japan Welding Society”, Japan Welding Society, April 2003, Vol. 72, p. 152

しかしながら、接合界面の金属間化合物の生成を制御して、良好な接合強度を得るには、接合条件を極めて精密にコントロールしなければならず、しかもその適正接合条件範囲が極めて狭いことから、上記したように、条件制御が比較的容易な高エネルギービームを熱源として用いたとしても、工業的に実用化することが極めて困難であるという問題点があった。   However, in order to control the formation of intermetallic compounds at the bonding interface and obtain good bonding strength, the bonding conditions must be controlled very precisely, and the appropriate bonding condition range is extremely narrow. As described above, even if a high energy beam whose condition control is relatively easy is used as a heat source, there is a problem that it is extremely difficult to put it to practical use industrially.

本発明は、高エネルギービームを用いた異種材料の接合における上記課題に鑑みてなされたものであって、接合界面に緻密な酸化皮膜が介在していたとしても、さほど大きな入熱を投与することなく、比較的容易に接合部から除去することができ、接合強度の向上が可能な異種材料の接合装置を提供することを目的としている。   The present invention has been made in view of the above-described problems in bonding dissimilar materials using a high-energy beam, and even if a dense oxide film is present at the bonding interface, a large heat input is administered. Therefore, an object of the present invention is to provide a bonding apparatus of different materials that can be removed from the bonded portion relatively easily and the bonding strength can be improved.

本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、被接合材料に対して相対移動する高エネルギービーム照射ヘッドによる照射点の進行方向後方側に、照射によって加圧された接合部を加圧するための加圧ローラを進行方向に対して複数個設置することによって、上記目的が解決できることを見出し、本発明を完成するに到った。   As a result of intensive investigations to achieve the above object, the inventors of the present invention have made a high-energy beam irradiation head that moves relative to the material to be bonded to the back side of the irradiation point in the direction of travel of the irradiation point. The inventors have found that the above object can be solved by installing a plurality of pressure rollers for pressing the part in the traveling direction, and have completed the present invention.

すなわち、本発明は上記知見に基づくものであって、本発明の異種材料の接合装置は、被接合材料に対して相対移動可能に配設され、相対移動しながら上記被接合材料の接合部に高エネルギービームを照射する照射ヘッドと、該照射ヘッドによる高エネルギービーム照射点の進行方向後方に配設され、高エネルギービーム照射後の接合部を加圧する加圧ローラを備え、当該加圧ローラが進行方向に対して複数個配設されていることを特徴としている。   That is, the present invention is based on the above knowledge, and the dissimilar material bonding apparatus of the present invention is disposed so as to be relatively movable with respect to the material to be bonded, and is moved to the bonded portion of the material to be bonded while moving relatively. An irradiation head that irradiates a high energy beam; and a pressure roller that is disposed behind the high energy beam irradiation point of the irradiation head and presses the joint after irradiation with the high energy beam. It is characterized in that a plurality are arranged in the traveling direction.

本発明によれば、高エネルギービームの照射によって加熱した接合部を加圧するための加圧ローラを進行方向に複数個備えているので、接合界面に緻密な酸化皮膜が介在していたとしても、その破壊や排出が容易なものとなり、接合強度が向上する。   According to the present invention, since a plurality of pressure rollers are provided in the traveling direction for pressurizing the joint heated by irradiation with the high energy beam, even if a dense oxide film is interposed at the joint interface, The destruction and discharge are easy, and the bonding strength is improved.

Al−Zn系2元状態図における共晶点を示すグラフである。It is a graph which shows the eutectic point in an Al-Zn type binary phase diagram. (a)〜(e)は共晶溶融を伴う異種材料の接合過程を概略的に示す工程図である。(A)-(e) is process drawing which shows roughly the joining process of the dissimilar material accompanying eutectic melting. 異種材料の接合装置の一例を示す概略図である。It is the schematic which shows an example of the joining apparatus of a dissimilar material. 図3に示した接合装置による接合時の温度分布を示すグラフである。It is a graph which shows the temperature distribution at the time of joining by the joining apparatus shown in FIG. 本発明の接合装置による接合時の温度分布を示すグラフである。It is a graph which shows the temperature distribution at the time of joining by the joining apparatus of this invention. 本発明の接合装置において、外周面を凸状曲面とした加圧ローラを用いた場合の排出物の排出状況を示す説明図である。In the joining apparatus of this invention, it is explanatory drawing which shows the discharge condition of the discharge | emission material at the time of using the pressure roller which made the outer peripheral surface convex convex curved surface. 本発明の接合装置による接合において、被接合部材に排出促進手段を設けた場合の排出物の排出状況を示す説明図である。In joining by the joining apparatus of this invention, it is explanatory drawing which shows the discharge condition of the discharge | emission material at the time of providing a discharge promotion means in a to-be-joined member. 本発明の接合装置による接合において、被接合部材に他の形状の排出促進手段を設けた場合の排出物の排出状況を示す説明図である。In joining by the joining apparatus of this invention, it is explanatory drawing which shows the discharge | emission condition of the discharge | emission when the discharge promotion means of another shape is provided in the to-be-joined member. 本発明の接合装置による接合の一実施形態として、鋼製車体部材とアルミニウム製ルーフパネルの接合構造例を示す概略断面図である。It is a schematic sectional drawing which shows the example of joining structure of a steel vehicle body member and an aluminum roof panel as one Embodiment of joining by the joining apparatus of this invention. 図9のA−A線についての断面図である。It is sectional drawing about the AA line of FIG. (a)及び(b)は図9の要部拡大図である。(A) And (b) is a principal part enlarged view of FIG. 図9に示した接合構造における湾曲部の他の形状例を示す断面図である。It is sectional drawing which shows the other example of a shape of the curved part in the joining structure shown in FIG. 鋼製車体部材とアルミニウム製ルーフパネルの他の接合構造例を示す概略断面図である。It is a schematic sectional drawing which shows the other joining structural example of a steel vehicle body member and an aluminum roof panel. 鋼製車体部材とアルミニウム製ルーフパネルのリベットによる接合構造例を示す概略断面図である。It is a schematic sectional drawing which shows the example of a joining structure by the rivet of a steel vehicle body member and an aluminum roof panel.

以下に、本発明の接合装置を用いた異種材料の接合について、主にアルミニウム合金板材と亜鉛めっき鋼板の接合を例に挙げて、さらに具体的かつ詳細に説明する。   Hereinafter, the joining of dissimilar materials using the joining apparatus of the present invention will be described more specifically and in detail by mainly taking the joining of an aluminum alloy sheet and a galvanized steel sheet as an example.

図1は、Al−Zn系2元状態図を示すものであって、図に示すようにAl−Zn系における共晶点(T1)は、655Kであり、Alの融点933Kよりもはるかに低い温度で共晶反応が生じる。
したがって、図に示した共晶点を利用してAlとZnの共晶溶融を作り出し、アルミニウム材の接合時における酸化皮膜除去や相互拡散などの接合作用に利用することによって、低温接合が実施できるため、接合界面における金属間化合物の成長を極めて有効に抑制することができる。
FIG. 1 shows an Al—Zn-based binary phase diagram. As shown in the figure, the eutectic point (T1) in the Al—Zn system is 655 K, which is much lower than the melting point of Al 933 K. A eutectic reaction occurs at temperature.
Therefore, by using the eutectic points shown in the figure to create eutectic melting of Al and Zn, and using them for bonding actions such as oxide film removal and interdiffusion during bonding of aluminum materials, low temperature bonding can be performed. Therefore, the growth of the intermetallic compound at the bonding interface can be suppressed extremely effectively.

ここで、共晶溶融について説明する。共晶溶融とは共晶反応を利用した溶融を意味し、2つの金属(又は合金)が相互拡散して生じた相互拡散域の組成が共晶組成となった場合に、保持温度が共晶温度以上であれば共晶反応により液相が形成される。例えばアルミニウムと亜鉛の場合、アルミニウムの融点は933K、亜鉛の融点は692.5Kであるのに対して、この共晶金属はそれぞれの融点より低い655Kにて溶融する。
したがって、両金属の清浄面を接触させ、655K以上に加熱保持すると反応が生じる。これを共晶溶融といい、Al−95%Znが共晶組成となるが、共晶反応自体は合金成分に無関係な一定の変化であり、合金組成は共晶反応の量を増減するに過ぎない。
Here, eutectic melting will be described. Eutectic melting means melting using a eutectic reaction, and when the composition of the interdiffusion region formed by mutual diffusion of two metals (or alloys) becomes a eutectic composition, the holding temperature is the eutectic. If it is above the temperature, a liquid phase is formed by the eutectic reaction. For example, in the case of aluminum and zinc, the melting point of aluminum is 933 K and the melting point of zinc is 692.5 K, whereas this eutectic metal melts at 655 K, which is lower than the respective melting points.
Therefore, a reaction occurs when the clean surfaces of both metals are brought into contact and heated to 655K or higher. This is called eutectic melting, and Al-95% Zn has a eutectic composition, but the eutectic reaction itself is a constant change unrelated to the alloy components, and the alloy composition only increases or decreases the amount of eutectic reaction. Absent.

一方、アルミニウム材の表面には酸化皮膜が存在するが、これは高エネルギービームの照射による加熱と、その直後の所定温度での加圧によってアルミニウム材に塑性変形が生じることにより物理的に破壊されることになる。
すなわち、加圧によって材料表面の微視的な凸部同士が擦れ合うことから、一部の酸化皮膜の局所的な破壊によってアルミニウムと亜鉛が接触した部分から共晶溶融が生じ、この液相の生成によって近傍の酸化皮膜が破砕、分解されてさらに共晶溶融が全面に拡がる反応の拡大によって、酸化皮膜破壊の促進と液相を介した接合が達成される。
On the other hand, an oxide film exists on the surface of the aluminum material, and this is physically destroyed by plastic deformation of the aluminum material due to heating by irradiation with a high energy beam and pressurization at a predetermined temperature immediately after that. Will be.
That is, microscopic projections on the surface of the material rub against each other by pressurization, so eutectic melting occurs from the part where aluminum and zinc contact due to local destruction of some oxide films, and this liquid phase is generated. By accelerating the reaction in which the nearby oxide film is crushed and decomposed and further eutectic melting spreads over the entire surface, the destruction of the oxide film and the joining via the liquid phase are achieved.

共晶組成は相互拡散によって自発的達成されるため、組成のコントロールは必要ない。必須条件は2種の金属あるいは合金の間に、低融点の共晶反応が存在することであり、アルミニウムと亜鉛の共晶溶融の場合、亜鉛に代えてZn−Al合金を用いる場合には、少なくとも亜鉛が95%以上の組成でなければならない。   Since the eutectic composition is spontaneously achieved by interdiffusion, composition control is not necessary. The essential condition is that a low melting eutectic reaction exists between the two metals or alloys. In the case of eutectic melting of aluminum and zinc, when using Zn-Al alloy instead of zinc, The composition must be at least 95% zinc.

図2(a)〜(e)は、共晶溶融を伴う異種材料の接合プロセスとして、亜鉛めっき鋼板(高融点材料)とアルミニウム合金板材(低融点材料)との接合例を示す概略図である。
まず、図2(a)に示すように、少なくとも接合界面側の表面に、Alと共晶を形成する第3の金属材料として機能する亜鉛めっき層1pが施された亜鉛めっき鋼板1と、アルミニウム合金材2を用意し、図2(b)に示すように、これら亜鉛めっき鋼板1とアルミニウム合金材2を亜鉛めっき層1pが内側になるように重ねる。なお、アルミニウム合金材2の表面には酸化皮膜2cが生成している。
2 (a) to 2 (e) are schematic views showing a joining example of a galvanized steel sheet (high melting point material) and an aluminum alloy sheet (low melting point material) as a joining process of dissimilar materials accompanied by eutectic melting. .
First, as shown in FIG. 2 (a), a galvanized steel sheet 1 having a galvanized layer 1p functioning as a third metal material that forms a eutectic with Al on at least the surface on the bonding interface side, and aluminum An alloy material 2 is prepared, and as shown in FIG. 2B, the galvanized steel sheet 1 and the aluminum alloy material 2 are overlapped so that the galvanized layer 1p is on the inside. An oxide film 2 c is generated on the surface of the aluminum alloy material 2.

次に、高エネルギービームを亜鉛めっき鋼板1に照射し、接合界面が所定の温度範囲となったところで、加圧し、接合面を相対的に押圧すると、押圧による塑性変形や熱的衝撃などによって、図2(c)に示すように材料表面の微視的な接触部において、局部的に酸化皮膜2cが破壊される。   Next, when the galvanized steel sheet 1 is irradiated with a high energy beam and the joining interface is in a predetermined temperature range, pressurization is performed, and when the joining surface is relatively pressed, plastic deformation or thermal shock due to pressing, As shown in FIG. 2C, the oxide film 2c is locally broken at the microscopic contact portion of the material surface.

これによって、亜鉛とアルミニウムの局部的な接触が生じ、そのときの温度状態に応じて、図2(d)に示すように、亜鉛とアルミニウムの共晶溶融が生じ、共晶溶融金属3と共に酸化皮膜2cや接合界面の不純物などから成る排出物が接合部の外側(矢印方向)に排出されることにより、所定の接合面積が確保され、その結果、図2(e)に示すように、アルミニウム合金材と鋼材の新生面同士が極めて薄い反応層4によって直接接合され、鋼板1とアルミニウム合金材2の強固な金属接合が得られることになる。なお、反応層4と鋼材1の間には材料や接合条件によって鋼への亜鉛の薄い拡散層が生じる場合もあるが、接合強度への影響は少なく、実質的な問題はない。   As a result, local contact between zinc and aluminum occurs, and as shown in FIG. 2 (d), eutectic melting of zinc and aluminum occurs and oxidizes together with the eutectic molten metal 3 according to the temperature state at that time. A discharge formed from impurities such as the film 2c and the bonding interface is discharged to the outside (in the direction of the arrow) of the bonded portion, so that a predetermined bonded area is secured. As a result, as shown in FIG. The new surfaces of the alloy material and the steel material are directly joined by the extremely thin reaction layer 4, and a strong metal joint between the steel plate 1 and the aluminum alloy material 2 is obtained. A thin diffusion layer of zinc to the steel may be formed between the reaction layer 4 and the steel material 1 depending on the material and joining conditions, but there is little influence on the joining strength and there is no substantial problem.

このような鋼材とアルミニウム合金材の組み合せの場合、両材料の間に介在させる第3の材料としては、アルミニウム合金と低融点共晶を形成する材料でありさえすれば特に限定されることはなく、例えば、亜鉛(Zn)、銅(Cu)、錫(Sn)、銀(Ag)、ニッケル(Ni)などを用いることができる。
すなわち、これら金属とAlとの共晶金属は、母材であるアルミニウム合金材の融点以下で溶融するため、脆弱な金属間化合物が生成し易い鋼材とアルミニウム合金材の接合においても、低温で酸化皮膜の除去ができ、接合過程での接合界面における金属間化合物の生成が抑制でき、強固な接合が可能になる。
In the case of such a combination of a steel material and an aluminum alloy material, the third material interposed between the two materials is not particularly limited as long as it is a material that forms a low melting point eutectic with the aluminum alloy. For example, zinc (Zn), copper (Cu), tin (Sn), silver (Ag), nickel (Ni), or the like can be used.
That is, the eutectic metal of these metals and Al melts below the melting point of the aluminum alloy material, which is the base material, so that even when joining steel materials and aluminum alloy materials where fragile intermetallic compounds are easily formed, oxidation occurs at a low temperature. The film can be removed, the formation of intermetallic compounds at the bonding interface during the bonding process can be suppressed, and strong bonding becomes possible.

また、このような接合を自動車ボディの組み立てに適用することを考えた場合、被接合材料は鋼材とアルミニウムとの組み合せがほとんどであるが、将来的には鋼材とマグネシウム、あるいはアルミニウムとマグネシウムとの組み合せなども考えられる。
鋼材とマグネシウムとの接合に際しては、後述する実施例と同様に鋼材側にめっきした亜鉛とマグネシウムの間に共晶反応を生じさせて接合することが可能である。さらに、アルミニウムとマグネシウムを接合する場合においても、亜鉛や銀を第3の材料として利用することが可能である。
In addition, considering the application of such joining to the assembly of automobile bodies, the materials to be joined are mostly a combination of steel and aluminum, but in the future, steel and magnesium, or aluminum and magnesium will be used. Combinations are also possible.
When joining the steel material and magnesium, it is possible to produce a eutectic reaction between zinc and magnesium plated on the steel material side in the same manner as in the examples described later. Furthermore, even when aluminum and magnesium are joined, zinc or silver can be used as the third material.

なお、第3の材料として、上記したような純金属に限定される必要はなく、共晶金属は2元合金も3元合金も存在するため、これらの少なくとも1種の金属を含む合金であってもよい。   The third material is not necessarily limited to the pure metal as described above, and the eutectic metal includes both binary alloys and ternary alloys. Therefore, the eutectic metal is an alloy containing at least one of these metals. May be.

このような異種材料の接合においては、上記したように接合しようとする異種材料間に、これら材料と共晶反応を生じる第3の材料を介在させ、接合に際して共晶溶融を生じさせるようにするものであるが、第3の材料を被接合材の間に介在させるための具体的手段としては、接合しようとする両材料の少なくとも一方の材料に第3の材料をめっきすることが望ましく、これによって第3の材料をインサート材として材料間に挟み込む工程を省略することができ、作業効率が向上するばかりでなく、共晶反応によって溶融されためっき層が表面の不純物と共に接合部の周囲に排出された後に、めっき層の下から極めて清浄な新生面が現れることになり、より強固な接合が可能となる。   In joining different kinds of materials, a third material that causes a eutectic reaction with these materials is interposed between the different kinds of materials to be joined as described above, and eutectic melting is caused at the time of joining. However, as a specific means for interposing the third material between the materials to be joined, it is desirable to plate the third material on at least one of the two materials to be joined. This eliminates the step of sandwiching the third material as an insert material, which not only improves the work efficiency, but also discharges the plated layer melted by the eutectic reaction around the joints along with surface impurities. After that, an extremely clean new surface appears from under the plating layer, and a stronger bond is possible.

そして、例えば、上記したアルミニウム合金材やマグネシウム合金材と鋼材との異材接合に際しては、鋼材として、アルミニウムやマグネシウムと低融点共晶を形成する第3の金属である亜鉛がその表面にあらかじめめっきされている、いわゆる亜鉛めっき鋼板を用いることができる。この場合には、新たにめっきを施したり、特別な準備を要したりすることもなく、防錆目的で亜鉛めっきを施した通常の市販鋼材をそのまま使用することができ、極めて簡便かつ安価に、異種材料の強固な接合が可能になる。   For example, when dissimilar joining of the above-described aluminum alloy material or magnesium alloy material and steel material is performed, the surface is preliminarily plated with zinc, which is a third metal that forms a low melting point eutectic with aluminum or magnesium. A so-called galvanized steel sheet can be used. In this case, it is possible to use a normal commercial steel material that has been galvanized for the purpose of rust prevention as it is without any new plating or special preparation. This makes it possible to firmly bond dissimilar materials.

また、本発明の異種材料の接合装置は、被接合材料の接合部を所定の接合線に沿って線状に接合するのに用いられるが、ここで言う「線状」とは、必ずしも連続した線のみを意味するものではなく、必要に応じて断続した線状(破線状)に接合することも可能である。   Further, the dissimilar material joining apparatus of the present invention is used to join the joined portions of the materials to be joined along a predetermined joining line, but the term “linear” as used herein is not necessarily continuous. It does not mean only a line, but can be joined to an intermittent line (broken line) as necessary.

そして、このような線状に接合するためには、電子ビームやレーザビームなどのような高エネルギービームを被接合材料の高融点材料の側に移動させながら、連続的あるいは断続的に照射すると共に、当該高エネルギービームを追随する位置に配設した加圧ローラによって、ビーム照射点の進行方向後方の接合部に相対的な押圧力を連続的あるいは断続的に加えるようにする。これによって高エネルギービームによる精密な温度コントロールに加え、加圧ローラにより接合部が加圧密着し、材料表面の局部的な酸化皮膜の破壊が生じ、これを起点に共晶反応が促進され、低温状態にて酸化皮膜の除去ができ、金属間化合物の生成を抑制しながら、新生面同士が連続的又は断続的な線状の強固な接合を得ることが可能となる。なお、このときの高エネルギービームの移動は、相対的なものであって、ビームの照射ヘッドや加圧ローラを移動させても、被接合材の側を移動させても、場合によっては両方移動させてもよい。   And in order to join in such a linear form, while moving high energy beams, such as an electron beam and a laser beam, to the high melting point material side of a material to be joined, while irradiating continuously or intermittently A relative pressing force is continuously or intermittently applied to the joining portion on the rear side in the traveling direction of the beam irradiation point by the pressure roller disposed at the position following the high energy beam. As a result, in addition to precise temperature control with a high energy beam, the pressure roller is used to press and bond the joints, resulting in the local destruction of the oxide film on the surface of the material. It is possible to remove the oxide film in a state, and it is possible to obtain a continuous and intermittent linear strong bond between new surfaces while suppressing the formation of intermetallic compounds. Note that the movement of the high-energy beam at this time is relative, and both the beam irradiation head and the pressure roller, or the side of the material to be joined, may move depending on the case. You may let them.

このとき、加圧ローラを移動方向に沿って複数個配置することによって、共晶反応及び反応生成物の排出と、拡散接合のそれぞれの役割を別個の加圧ローラに分担させることができ、高速溶接が可能になって、能率が向上する。   At this time, by arranging a plurality of pressure rollers along the moving direction, the roles of eutectic reaction, discharge of reaction products, and diffusion bonding can be shared by separate pressure rollers. Welding is possible and efficiency is improved.

図3は、上記した異種材料の接合に用いる装置の一例を示すものであって、図に示す異種材料の接合装置10は、高エネルギービームの1種であるYAGレーザを照射する照射ヘッド11と、この照射ヘッド11にエアシリンダを内蔵したガイド12を介して、上下方向に移動自在に取り付けられた加圧ローラ13を備えており、上記エアシリンダに送給するエア圧力を調整することによって、当該ローラ13が被接合材料1,2に加える押圧力をコントロールすることができる。   FIG. 3 shows an example of an apparatus used for bonding the above-mentioned different materials. The different-material bonding apparatus 10 shown in the figure includes an irradiation head 11 that irradiates a YAG laser that is one kind of high-energy beam. The irradiation head 11 is provided with a pressure roller 13 that is mounted so as to be movable in the vertical direction via a guide 12 incorporating an air cylinder. By adjusting the air pressure supplied to the air cylinder, The pressing force applied by the roller 13 to the materials 1 and 2 can be controlled.

そして、加圧ローラ13は、上記のように照射ヘッド11に取り付けられていることにより、レーザビームBの移動に伴って移動し、レーザビームBから常に一定距離を隔てた位置で、被接合材料1,2を加圧しながら移動することができ、ワークが平面の場合はもとより、車体のような3次元形状の場合にもレーザ照射位置に追従することができ、当該接合装置10が、被接合材料である、例えば亜鉛めっき鋼板1とアルミニウム合金材2に対して、図中の矢印方向に相対移動することによって、連続的あるいは断続的に線状に接合することができるようになっている。   Since the pressure roller 13 is attached to the irradiation head 11 as described above, the pressure roller 13 moves with the movement of the laser beam B, and is always at a certain distance from the laser beam B. 1 and 2 can be moved while pressurizing, and the laser irradiation position can be tracked not only when the workpiece is a flat surface but also when the workpiece is a three-dimensional shape such as a vehicle body. By moving relative to the materials, for example, the galvanized steel sheet 1 and the aluminum alloy material 2 in the direction of the arrows in the figure, they can be joined linearly or continuously.

なお、当該装置10においては、図示以外にも各種の制御手段や調整装置を備えており、レーサビームBの照射角度や照射位置、照射位置と加圧位置の距離調整などができるようにしてある。   The apparatus 10 is provided with various control means and adjustment devices other than those shown in the drawing, so that the irradiation angle of the laser beam B, the irradiation position, the distance between the irradiation position and the pressing position can be adjusted.

図4は、レーザビームBと加圧ローラ13の構成と、その位置における接合界面の温度分布を示す概略図である。
図において、アルミニウム合金材2に亜鉛めっき鋼板1が、通常発生し得るわずかな隙間をもって重ねられており、高融点材料である亜鉛めっき鋼板1の側に、焦点を材料表面の手前で結んだ、つまりデフォーカスさせたレーザビームBを照射する。
FIG. 4 is a schematic diagram showing the configuration of the laser beam B and the pressure roller 13 and the temperature distribution of the bonding interface at that position.
In the figure, the galvanized steel sheet 1 is superimposed on the aluminum alloy material 2 with a slight gap that can usually occur, and the focal point is tied to the galvanized steel sheet 1 side, which is a high melting point material, in front of the material surface. That is, the defocused laser beam B is irradiated.

すなわち、レーザビームBを接合界面において高融点材料である鋼板1を溶融させない範囲で、しかも接合界面の表面めっき層である亜鉛が蒸発しない範囲、つまり亜鉛の沸点T2以下の温度となるような条件で照射する。その後、加圧ローラ13により所定の加圧力を加え、アルミニウム合金材2と亜鉛めっき鋼板1を塑性変形させながら相対的に密着させる。
このとき、高温の亜鉛めっき鋼板1からの伝熱でアルミニウム合金材2の接合界面温度が上昇し、アルミニウムと亜鉛の共晶温度T1以上の温度となるように、レーザビームBと加圧ローラ13の移動速度を制御して溶接を行う。
That is, a condition in which the laser beam B does not melt the steel plate 1 that is a high melting point material at the bonding interface, and does not evaporate zinc, which is the surface plating layer at the bonding interface, that is, a temperature that is lower than the boiling point T2 of zinc. Irradiate with. Thereafter, a predetermined pressing force is applied by the pressure roller 13 so that the aluminum alloy material 2 and the galvanized steel sheet 1 are relatively closely adhered while being plastically deformed.
At this time, the heat transfer from the high-temperature galvanized steel sheet 1 raises the bonding interface temperature of the aluminum alloy material 2, and the laser beam B and the pressure roller 13 so that the temperature becomes equal to or higher than the eutectic temperature T1 of aluminum and zinc. Welding is performed by controlling the moving speed of

図5は、本発明の接合装置、すなわち加圧ローラを進行方向に沿って複数(図では2個)設けた接合装置を用いた場合の温度分布を示す概略図である。
アルミニウム合金材2と亜鉛めっき鋼板1は、同様に通常発生し得るわずかな隙間をもって重ねられており、高融点材料である亜鉛めっき鋼板1にレーザビームBをデフォーカスさせて照射し、同様に、鋼板1が溶融することもめっき層の亜鉛が蒸発することもない範囲である亜鉛の沸点T2以下の温度となるような条件で照射する。
FIG. 5 is a schematic view showing a temperature distribution when using the joining apparatus of the present invention, that is, a joining apparatus provided with a plurality (two in the figure) of pressure rollers along the traveling direction.
Similarly, the aluminum alloy material 2 and the galvanized steel sheet 1 are overlapped with a slight gap that may normally occur, and the galvanized steel sheet 1 that is a high melting point material is irradiated with the laser beam B defocused, Irradiation is performed under conditions such that the temperature is not higher than the boiling point T2 of zinc, which is a range in which the steel plate 1 is not melted and the zinc of the plating layer is not evaporated.

その後、第1加圧ローラ13aによって所定の加圧力を加え、アルミニウム合金材2と亜鉛めっき鋼板1を塑性変形させながら相対的に密着させ、亜鉛めっき鋼板1からの伝熱によりアルミニウム合金材2の接合界面温度が上昇する。このときアルミニウムと亜鉛の共晶温度T1以上の温度となるように、レーザビームBと加圧ローラ13a及び13bの移動速度を制御すれば、アルミニウムと亜鉛の共晶反応を生じさせると共に、第1加圧ローラ13aの押圧により接合界面から共晶溶融金属と共に、酸化皮膜や接合界面の不純物が接合部周囲に排出される。   Thereafter, a predetermined pressing force is applied by the first pressure roller 13a, and the aluminum alloy material 2 and the galvanized steel plate 1 are relatively brought into close contact with each other while being plastically deformed. The bonding interface temperature rises. At this time, if the moving speed of the laser beam B and the pressure rollers 13a and 13b is controlled so that the temperature is equal to or higher than the eutectic temperature T1 of aluminum and zinc, an eutectic reaction between aluminum and zinc occurs, and the first Oxide film and impurities at the bonding interface are discharged from the bonding interface together with the eutectic molten metal to the periphery of the bonded portion by the pressing of the pressure roller 13a.

ここで、第2加圧ローラ13bによって接合界面がさらに押圧されることになるので、不純物が排出されて活性な新生面同士が所定の圧力で、しかも拡散接合に有効な温度T3で密着されることにより、強固な溶接が行われる。
すなわち、この実施形態においては、主に共晶反応と排出に際して機能する第1加圧ローラ13aと、主に排出と圧接に際して機能する第2加圧ローラ13bを併設して、役割を分担させることによって、より高速での溶接が可能になるため、作業能率が向上することになる。
Here, since the bonding interface is further pressed by the second pressure roller 13b, impurities are discharged and the active new surfaces are brought into close contact with each other at a predetermined pressure and at a temperature T3 effective for diffusion bonding. Thus, strong welding is performed.
That is, in this embodiment, the first pressure roller 13a that mainly functions in the eutectic reaction and discharge and the second pressure roller 13b that mainly functions in the discharge and pressure contact are provided side by side to share the role. As a result, welding at a higher speed becomes possible, so that work efficiency is improved.

上記した異種材料の接合においては、図2を用いて説明したように、接合界面に共晶反応を起こさせた後、接合界面から共晶溶融金属と共に、酸化皮膜や接合界面の不純物などを接合部周囲に排出することによって、被接合材料の新生面同士を直接反応させて強固な接合を得るようにしている。
したがって、接合過程において接合界面から如何に短時間で確実にこれらを排出するかが重要である。
In the bonding of the different materials described above, as described with reference to FIG. 2, after the eutectic reaction is caused at the bonding interface, the oxide film and impurities at the bonding interface are bonded together with the eutectic molten metal from the bonding interface. By discharging to the periphery of the part, the new surfaces of the materials to be joined are directly reacted with each other to obtain a strong joint.
Therefore, it is important how to reliably discharge them from the bonding interface in a short time in the bonding process.

例えば、加圧ローラの被接合材料との接触面をその中央部が凸形となるような断面形状とすることによって、接合界面から共晶溶融金属や酸化皮膜、不純物などがより排出されやすくなり、新生面同士の強固な接合を得ることができるようになる。   For example, by making the contact surface of the pressure roller with the material to be joined in a cross-sectional shape with a convex center part, eutectic molten metal, oxide film, impurities, etc. are more easily discharged from the joining interface. Thus, it becomes possible to obtain a strong bond between the new surfaces.

図6は、加圧ローラ13の被接合材料1との接触面である外周面に、曲率のある凸状曲面Pを設けたものであって、このような形状のローラ13を用いることによって、接合界面から共晶溶融と共に、酸化皮膜や接合界面の不純物などの排出物6が接合部の外側に容易に排出されるようになり、異種材料1,2がその新生面同士で直接接合されるようになり、強固な金属接合を得ることができる。
なお、外周部にこのような凸状曲面Pを有する加圧ローラは、レーザビームの照射位置の少なくとも直後、つまり共晶反応および排出用のローラとして設ければよく、図5に示した第1加圧ローラ13aとして利用することが好ましい。
FIG. 6 shows an example in which a convex curved surface P having a curvature is provided on the outer peripheral surface which is a contact surface of the pressure roller 13 with the material 1 to be joined. By using the roller 13 having such a shape, As eutectic melts from the joint interface, discharge 6 such as oxide film and impurities at the joint interface can be easily discharged to the outside of the joint, so that the dissimilar materials 1 and 2 are directly joined at the new surfaces. Thus, a strong metal bond can be obtained.
Note that the pressure roller having such a convex curved surface P on the outer periphery may be provided at least immediately after the irradiation position of the laser beam, that is, as a roller for eutectic reaction and discharge, as shown in FIG. It is preferable to use the pressure roller 13a.

また、上記同様の観点から、両材料の一方又は両方の接合部に、上記のような排出物の排出を容易ならしめる排出促進手段を設けることも望ましい。
図7は、このような排出促進手段の一例として、亜鉛めっき鋼板1の接合部に、あらかじめ接合界面側に膨らんだ形状の膨出部Eを形成した例を示すものであって、当該膨出部Eは、溶接線に沿って連続的又は断続的に設けることができる。
Further, from the same viewpoint as described above, it is also desirable to provide discharge promotion means for facilitating discharge of the above-described discharge at one or both joint portions of both materials.
FIG. 7 shows an example in which a bulging portion E having a shape swelled in advance on the bonding interface side is formed in the joint portion of the galvanized steel sheet 1 as an example of such discharge promoting means. The part E can be provided continuously or intermittently along the weld line.

この膨出部Eにおいて、アルミニウム合金材2に亜鉛めっき鋼板1が重ねられ、亜鉛めっき鋼板1に形成された当該膨出部EにデフォーカスさせたレーザビームBを照射し、その直後、加圧ローラ13によって所定の加圧力を加え、両材料1,2を塑性変形させながら相対的に密着させる。   In this bulging part E, the galvanized steel sheet 1 is superimposed on the aluminum alloy material 2, and the bulging part E formed on the galvanized steel sheet 1 is irradiated with the defocused laser beam B. A predetermined pressurizing force is applied by the roller 13 so that the two materials 1 and 2 are relatively brought into close contact with each other while being plastically deformed.

このとき、亜鉛めっき鋼板1の側に膨出部Eが形成されているため、加圧ローラ(13の押圧により、接合界面から共晶溶融金属と共に酸化皮膜や接合界面の不純物などの排出物6が接合部周囲に容易に排出されるようになることから、アルミニウム合金と鋼の新生面同士が直接接合され、強固な金属接合を得ることができる。
なお、この場合のローラ形状は、通常の円筒形状であっても良好な排出性を得ることができる。また、図示した例では、膨出部Eを亜鉛めっき鋼板1の側に設けたが、アルミニウム合金材2の側、あるいは両方に形成してもよい。
At this time, since the bulging portion E is formed on the side of the galvanized steel sheet 1, the pressure roller (13 is pressed to discharge waste 6 such as an oxide film and impurities at the bonding interface together with the eutectic molten metal from the bonding interface. Is easily discharged around the joint, so that the new surfaces of the aluminum alloy and the steel are directly joined together, and a strong metal joint can be obtained.
In addition, even if the roller shape in this case is a normal cylindrical shape, good dischargeability can be obtained. In the illustrated example, the bulging portion E is provided on the galvanized steel sheet 1 side, but may be formed on the aluminum alloy material 2 side or both.

図8は、このような排出促進手段の他の例として、亜鉛めっき鋼板1の接合端部に、アルミニウム合金材2から離間する方向に湾曲した湾曲部Cを形成した例を示すものであって、あらかじめ接合部先端に湾曲部Cを形成しておき、この湾曲部CにデフォーカスさせたレーザビームBを照射し、その直後に、加圧ローラ13により両者を密着させる。
これによって、同様に排出物6が接合界面から接合端側に容易に排出されるようになり、強固な金属接合を得ることができる。
FIG. 8 shows an example in which a curved portion C curved in a direction away from the aluminum alloy material 2 is formed at the joining end portion of the galvanized steel sheet 1 as another example of such discharge promoting means. A curved portion C is formed in advance at the tip of the joint, and the curved portion C is irradiated with a defocused laser beam B. Immediately thereafter, the pressure roller 13 causes the two to adhere to each other.
As a result, similarly, the discharge 6 is easily discharged from the bonding interface to the bonding end side, and a strong metal bonding can be obtained.

さらに、低融点材料の接合端部に湾曲部を形成することによって、この湾曲部により形成される隙間を介して高エネルギービームを高融点材料に照射するようになすこともでき、これによって低融点材料の側から高エネルギービームを高融点材料に照射することができるようになり、溶接施工の自由度を大幅に拡張することができる。   Furthermore, by forming a curved portion at the joining end portion of the low melting point material, it is possible to irradiate the high melting point material with a high energy beam through a gap formed by the curved portion. It becomes possible to irradiate the high melting point material with a high energy beam from the material side, and the degree of freedom of welding can be greatly expanded.

例えば、車両の軽量化による燃費向上や運動性能向上を目的として、車体パネルにアルミニウム合金などの軽合金を用いた車体構造が求められているが、低重心化による性能向上効果の大きいルーフパネルにアルミニウム合金を用いた場合、車体骨格を構成する鋼製部材の上から、アルミニウム合金製のルーフパネルを重ねた状態で、車体骨格の外側、すなわちアルミニウム合金側からレーザビームを照射しなければならない接合構造となるため、上記したような異種材料の接合方法を適用することができない。   For example, there is a need for a vehicle body structure that uses a light alloy such as an aluminum alloy for the body panel for the purpose of improving fuel economy and athletic performance by reducing the weight of the vehicle. When aluminum alloy is used, a laser beam must be irradiated from the outside of the body skeleton, that is, from the aluminum alloy side, with the aluminum alloy roof panel overlaid on the steel members that make up the body skeleton. Because of the structure, the above-described bonding method of different materials cannot be applied.

このため実用上は、アルミニウム合金側からリベットなどの打ち込みによる機械的締結によって、アルミニウム合金製ルーフパネルを鋼製の車体骨格部材に接合することになるが、この方法では重量やコストが増加したり、外観デザインの自由度に制約が生じたりする場合がある。   For this reason, in practice, an aluminum alloy roof panel is joined to a steel body frame member by mechanical fastening by driving a rivet or the like from the aluminum alloy side. However, this method increases weight and cost. In some cases, there are restrictions on the degree of freedom in external design.

図14は、このようなリベット締結による異種金属パネルの接合構造例を示すものであって、鋼製のレールインナ51と鋼製のレールアウタ52が溶接によって組み立てられた車体部材50の上方から、軽合金製のルーフパネル53が重ねられ、車体部材50の接合フランジ部55にルーフパネル側から複数のリベットRを打ち込むことによって、点状に接合して組み立てられている。そのため、リベットRを打ち込む際には、車室内からの押え(図中の矢印P方向)が必要となるため、接合フランジ55の設定位置の設計自由度が低くなると共に、フランジ幅W0がリベットRの直径以上に広くなり、外観デザインが劣ることになる。   FIG. 14 shows an example of a joining structure of dissimilar metal panels by such rivet fastening. From the upper side of the vehicle body member 50 in which the steel rail inner 51 and the steel rail outer 52 are assembled by welding, An alloy roof panel 53 is overlaid, and a plurality of rivets R are driven into the joint flange portion 55 of the vehicle body member 50 from the roof panel side, thereby being assembled in a spot shape. Therefore, when the rivet R is driven, a presser from the passenger compartment (in the direction of arrow P in the figure) is required, so that the design freedom of the setting position of the joint flange 55 is reduced and the flange width W0 is set to the rivet R. It becomes wider than the diameter of, and the appearance design is inferior.

これに対し、上記したように低融点材料の接合端部に湾曲部を形成し、この湾曲部により形成される隙間から高エネルギービームを高融点材料に照射するようになすことによって、低融点材料の側から高エネルギービームを照射して両材料を接合することができるようになる。
すなわち、図9は、鋼製の車体部材と軽合金製のルールパネルの接合例を示すものであって、鋼製のレールインナ21と鋼製のレールアウタ22及び鋼製のサイドアウタ23が溶接によって組み立てられた車体部材20の上方から、アルミニウム合金製のルーフパネル25が重ねられ、車体部材20には接合用の傾斜面23aが設けてあり、傾斜面23aを備えたサイドアウタ23については、表面に亜鉛がめっきされた亜鉛めっき鋼板が使用されている。当然ながら、他の鋼材についても亜鉛めっき鋼板を使用するようにしても差し支えない。
On the other hand, as described above, a low melting point material is formed by forming a curved portion at the joining end portion of the low melting point material and irradiating the high melting point material with a high energy beam from a gap formed by the curved portion. Both materials can be joined by irradiating a high energy beam from the side of the substrate.
That is, FIG. 9 shows an example of joining a steel body member and a light alloy rule panel. The steel rail inner 21, the steel rail outer 22 and the steel side outer 23 are assembled by welding. A roof panel 25 made of aluminum alloy is overlaid from above the body member 20, and the body member 20 is provided with an inclined surface 23a for joining. The side outer 23 having the inclined surface 23a is made of zinc on the surface. A galvanized steel sheet plated with is used. Of course, other steel materials may be made of galvanized steel sheets.

一方、アルミニウム合金製のルーフパネル25のフランジ先端には湾曲部25aが形成されており、当該湾曲部25aの開放側から、亜鉛めっき鋼板から成るサイドアウタ23の傾斜面23aに向けてデフォーカスさせたレーザビームBを照射することができるようになっている。
加圧ローラ13は、ルーフパネル25の湾曲部25aをレーザビームBによって加熱された傾斜面23aに押し付ける方向に加圧することができるように配設されている。
On the other hand, a curved portion 25a is formed at the flange tip of the roof panel 25 made of aluminum alloy, and defocused from the open side of the curved portion 25a toward the inclined surface 23a of the side outer 23 made of a galvanized steel sheet. The laser beam B can be irradiated.
The pressure roller 13 is disposed so as to pressurize the curved portion 25a of the roof panel 25 in a direction in which the curved portion 25a is pressed against the inclined surface 23a heated by the laser beam B.

図10は、図9のA−A方向からの断面図であって、レーザビームBと加圧手段13は、車体部材20に対して、相対的に移動可能に配置されている。   FIG. 10 is a cross-sectional view from the AA direction of FIG. 9, and the laser beam B and the pressurizing means 13 are disposed so as to be relatively movable with respect to the vehicle body member 20.

図11は、図10の要部拡大図であって、まず、図11(a)に示すように、レーザビームBをルーフパネル25の側から、ルーフパネル25のフランジに形成された湾曲部25aの先端部と車体部材20のルーフパネル25との間に形成される隙間を介して、サイドアウタ23の傾斜面23aに向けて照射し、傾斜面23aの接合部近傍を所定の温度に加熱する。
そのすぐ後方では、図11(b)に示すように、加圧ローラ13による加圧によってルーフパネル25の湾曲部25aがレーザ加熱された傾斜面23aに押し付けられ、これによってルーフパネル25の湾曲部25aがサイドアウタ23の傾斜面23aに密着し、サイドアウタ23からの伝熱によって接合界面が共晶反応の発現する温度に保持され、加圧ローラ13による加圧により、ルーフパネル25が車体部材20のサイドアウタ23に接合される。
FIG. 11 is an enlarged view of the main part of FIG. 10. First, as shown in FIG. 11A, the curved portion 25 a formed on the flange of the roof panel 25 from the side of the roof panel 25 with the laser beam B. Irradiation is performed toward the inclined surface 23a of the side outer 23 through a gap formed between the front end portion of the vehicle body member 20 and the roof panel 25 of the vehicle body member 20, and the vicinity of the joint portion of the inclined surface 23a is heated to a predetermined temperature.
Immediately behind that, as shown in FIG. 11B, the curved portion 25a of the roof panel 25 is pressed against the inclined surface 23a heated by the laser by the pressure applied by the pressure roller 13, thereby the curved portion of the roof panel 25 is pressed. 25 a is in close contact with the inclined surface 23 a of the side outer 23, the heat transfer from the side outer 23 keeps the joining interface at a temperature at which a eutectic reaction occurs, and the pressure applied by the pressure roller 13 causes the roof panel 25 to be attached to the vehicle body member 20. Joined to the side outer 23.

ここで、アルミニウム合金製のルーフパネル25の湾曲部25aの剛性に比較して、鋼製の構造部材である車体部材20の剛性が十分に高いため、加圧ローラ13の加圧に対する車室内側からの押えは必要ないため、ルーフパネル25と車体部材20の接合位置や接合構造を比較的自由に設定することができるため、設計自由度が高く、しかも接合フランジ幅(W1)も狭くすることができる。   Here, since the rigidity of the vehicle body member 20, which is a steel structural member, is sufficiently high compared to the rigidity of the curved portion 25 a of the roof panel 25 made of aluminum alloy, the vehicle interior side against the pressure of the pressure roller 13. Since the presser foot does not need to be pressed, the joining position and the joining structure of the roof panel 25 and the vehicle body member 20 can be set relatively freely. Therefore, the degree of design freedom is high and the joining flange width (W1) is also narrowed. Can do.

このとき、アルミニウム合金製のルーフパネル25の湾曲部25aの形状は、図11に示したような曲率を有する湾曲形状のもののみに限定されず、図12に例示するように凸形状の湾曲部15bを備えたルーフパネル25の他、種々の形状を採用することができる。   At this time, the shape of the curved portion 25a of the roof panel 25 made of aluminum alloy is not limited to a curved shape having a curvature as shown in FIG. 11, and a convex curved portion as illustrated in FIG. In addition to the roof panel 25 provided with 15b, various shapes can be adopted.

図13は、本発明の接合装置による鋼製車体部材と軽合金製ルーフパネルの他の接合形態例を示すものであって、ここでは、鋼製レールインナ21と鋼製レールアウタ22が溶接されて組み立てられた車体部材20の上方から、アルミニウム合金製ルーフパネル25が車体部材20の端部近くまで延伸され、このルーフパネル25が車体部材20のレールアウタ22に形成された傾斜面22aにおいて同様に接合される。   FIG. 13 shows another example of the joining form of the steel vehicle body member and the light alloy roof panel by the joining device of the present invention. Here, the steel rail inner 21 and the steel rail outer 22 are welded. An aluminum alloy roof panel 25 is extended from above the assembled vehicle body member 20 to near the end of the vehicle body member 20, and the roof panel 25 is similarly joined at an inclined surface 22 a formed on the rail outer 22 of the vehicle body member 20. Is done.

以下、本発明を実施例に基づいて具体的に説明するが、本発明は、これら実施例によって何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by these Examples.

(接合例1)
図3に示すように、板厚1.0mmの6000系アルミニウム合金材2(低融点材料)の上に、板厚0.55mmの亜鉛めっき鋼板1(高融点材料、亜鉛めっき厚さ:約5μm)を重ね、高融点材料側である鋼板側から照射ヘッド11によりYAGレーザビームBを照射しながら、その直後を加圧ローラ13によって加圧し、照射ヘッド11と加圧ローラ13を被溶接材料1,2に対して、図中の矢印方向に移動させることにより連続的に線状接合した。
なお、接合条件としては、最大出力3kWのYAGレーザ発振器と焦点距離150mmのレンズを用い、亜鉛めっき鋼板1表面上においてスポット径が3.5mmとなるようビームをデフォーカスし、YAGレーザ出力1.0kW、移動速度1.0m/min、加圧ローラ13による加圧力100MPaで溶接を行った。また、レーザ照射中はレーザと同軸のノズルからアルゴンガスを25L/minの流量で流すことによって、接合部位をシールドした。
(Joint Example 1)
As shown in FIG. 3, on a 6000 series aluminum alloy material 2 (low melting point material) with a plate thickness of 1.0 mm, a galvanized steel sheet 1 (high melting point material, galvanization thickness: about 5 μm) with a plate thickness of 0.55 mm. ), The YAG laser beam B is irradiated by the irradiation head 11 from the steel plate side which is the high melting point material side, and immediately after that, the irradiation roller 11 and the pressure roller 13 are pressed by the pressure roller 13. , 2 are continuously joined linearly by moving in the direction of the arrow in the figure.
As a bonding condition, a YAG laser oscillator with a maximum output of 3 kW and a lens with a focal length of 150 mm are used, the beam is defocused so that the spot diameter is 3.5 mm on the surface of the galvanized steel sheet 1, and the YAG laser output 1. Welding was performed at 0 kW, a moving speed of 1.0 m / min, and a pressure of 100 MPa applied by the pressure roller 13. Further, during the laser irradiation, the bonded portion was shielded by flowing argon gas from a nozzle coaxial with the laser at a flow rate of 25 L / min.

得られた接合体から、マクロ試験片を切り出し、接合部のマクロ組織を観察した結果、アルミニウム合金と鋼材の新生面同士が直接接合され、その両側に酸化皮膜や共晶溶融金属などの反応生成物などから成る排出物が排出された状態の良好な接合構造が得られることが確認された。   As a result of cutting out a macro test piece from the obtained bonded body and observing the macro structure of the bonded portion, the new surfaces of the aluminum alloy and the steel material are directly bonded to each other, and reaction products such as oxide film and eutectic molten metal are formed on both sides thereof. It was confirmed that a good joining structure in which exhausted materials such as the above were discharged was obtained.

(接合例2)
図9に示したような鋼製の車体部材20(高融点材料)とアルミニウム合金製のルールパネル25(低融点材料)との接合を実施した。
車体部材20を構成するレールインナ21、レールアウタ22及びサイドアウタ23は、何れも亜鉛めっき鋼板から成るものであって、それぞれ1.2mm、1.4mm及び0.55mmの厚さを有しており、亜鉛めっき厚さは、何れも約5μmのものを用いた。
(Joint example 2)
A steel body member 20 (high melting point material) as shown in FIG. 9 and an aluminum alloy rule panel 25 (low melting point material) were joined.
The rail inner 21, the rail outer 22 and the side outer 23 constituting the vehicle body member 20 are all made of a galvanized steel plate and have thicknesses of 1.2 mm, 1.4 mm and 0.55 mm, respectively. The galvanized thickness was about 5 μm.

一方、アルミニウム合金製のルーフパネル25は、板厚1.0mmの6000系アルミニウム合金板材から成るものであって、そのフランジ先端には曲率半径12mmの湾曲部25aを形成することによって、当該ルーフパネル25を重ねた時に、サイドアウタ23との間に約5mmの間隙が形成されるようにした。   On the other hand, the roof panel 25 made of an aluminum alloy is made of a 6000 series aluminum alloy plate material having a plate thickness of 1.0 mm, and a curved portion 25a having a curvature radius of 12 mm is formed at the end of the flange, thereby the roof panel. When the 25 is stacked, a gap of about 5 mm is formed with the side outer 23.

そして、図10〜11に示すように、アルミニウム合金製ルーフパネル25の側に位置させた照射ヘッドから、Nd:YAGレーザビームBを上記湾曲部25aにより形成された間隙を通して、サイドアウタ23の傾斜面23aに照射しながら、移動させ、加圧ローラ13の加圧によってルーフパネル25の湾曲部25aがレーザ加熱直後の傾斜面23aに押し付けることによって、ルーフパネル25のフランジ先端部をサイドアウタ23に連続的な線状に接合した。   Then, as shown in FIGS. 10 to 11, the inclined surface of the side outer 23 is passed through the gap formed by the curved portion 25a from the irradiation head positioned on the side of the aluminum alloy roof panel 25 through the Nd: YAG laser beam B. 23a is moved while being irradiated, and the curved portion 25a of the roof panel 25 is pressed against the inclined surface 23a immediately after the laser heating by the pressure of the pressure roller 13, whereby the flange tip of the roof panel 25 is continuously applied to the side outer 23. Were joined in a straight line.

このときの照射条件としては、最大出力3kWのYAGレーザ発振器及び焦点距離150mmのレンズを用い、レーザ照射後、加圧ローラ13によってアルミニウム合金製ルーフパネル25の湾曲部25aを鋼製サイドアウタ23に密着させた際に、共晶溶融が生じる温度以上となるようにするために、レーザ出力を0.8kW、送り速度を0.7〜1.0 m/min、加圧ローラ13による加圧力を120MPaとすると共に、鋼製サイドアウタ23の表面上でのスポット径が3.5mmとなるようにビームBをデフォーカスして照射した。また、レーザ照射中はアルゴンガスを25L/minの流量で流し、接合部分をシールドした。   As irradiation conditions at this time, a YAG laser oscillator with a maximum output of 3 kW and a lens with a focal length of 150 mm are used. After the laser irradiation, the curved portion 25 a of the aluminum alloy roof panel 25 is brought into close contact with the steel side outer 23 by the pressure roller 13. In order to make the temperature equal to or higher than the temperature at which eutectic melting occurs, the laser output is 0.8 kW, the feed rate is 0.7 to 1.0 m / min, and the pressure applied by the pressure roller 13 is 120 MPa. In addition, the beam B was defocused and irradiated so that the spot diameter on the surface of the steel side outer 23 was 3.5 mm. Further, during the laser irradiation, argon gas was flowed at a flow rate of 25 L / min to shield the joint portion.

そして、得られた接合体から、マクロ試験片を切り出し、接合部組織を観察した結果、上記実施例と同様に、良好な接合構造が得られることが確認された。   And as a result of cutting out a macro test piece and observing a junction structure | tissue from the obtained joined body, it was confirmed that a favorable joining structure is obtained similarly to the said Example.

10 異種材料の接合装置
11 照射ヘッド
13、13a、13b 加圧ローラ
B レーザビーム
P 凸状曲面
DESCRIPTION OF SYMBOLS 10 Joining apparatus of different materials 11 Irradiation head 13, 13a, 13b Pressure roller B Laser beam P Convex curved surface

Claims (2)

被接合材料に対して相対移動可能に配設され、相対移動しながら上記被接合材料の接合部に高エネルギービームを照射する照射ヘッドと、
該照射ヘッドによる高エネルギービーム照射点の進行方向後方に配設され、高エネルギービーム照射後の接合部を加圧する加圧ローラを備え、当該加圧ローラが進行方向に対して複数個配設されていることを特徴とする異種材料の接合装置。
An irradiation head that is disposed so as to be relatively movable with respect to the material to be joined, and irradiates a high energy beam to the joint portion of the material to be joined while relatively moving;
A high-energy beam irradiation point by the irradiation head is disposed behind the traveling direction, and includes a pressure roller that presses the joint after the high-energy beam irradiation, and a plurality of the pressure rollers are disposed in the traveling direction. An apparatus for joining different materials.
加圧ローラの被接合材料との接触面が凸状曲面をなしていることを特徴とする請求項1に記載の異種材料の接合装置。   2. The apparatus for joining different materials according to claim 1, wherein the contact surface of the pressure roller with the material to be joined has a convex curved surface.
JP2011157683A 2011-07-19 2011-07-19 Dissimilar materials joining equipment Active JP5207156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011157683A JP5207156B2 (en) 2011-07-19 2011-07-19 Dissimilar materials joining equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011157683A JP5207156B2 (en) 2011-07-19 2011-07-19 Dissimilar materials joining equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005351851A Division JP4868210B2 (en) 2005-12-06 2005-12-06 Bonding method of dissimilar materials

Publications (2)

Publication Number Publication Date
JP2011240409A true JP2011240409A (en) 2011-12-01
JP5207156B2 JP5207156B2 (en) 2013-06-12

Family

ID=45407606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011157683A Active JP5207156B2 (en) 2011-07-19 2011-07-19 Dissimilar materials joining equipment

Country Status (1)

Country Link
JP (1) JP5207156B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014117767A (en) * 2012-12-14 2014-06-30 Mitsubishi Heavy Ind Ltd Composite machining method and composite machining apparatus
JP2020097039A (en) * 2018-12-17 2020-06-25 トヨタ自動車株式会社 Lap-welding method of dissimilar metal member

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193792A (en) * 1985-02-21 1986-08-28 Hitachi Cable Ltd Manufacture of metallic composite wire
JPS61276787A (en) * 1985-05-30 1986-12-06 Ishikawajima Harima Heavy Ind Co Ltd Method and equipment for rolling clad plate
JPH04501234A (en) * 1988-10-15 1992-03-05 ブリティッシュ・テクノロジー・グループ・リミテッド Welding coated metal
JP2002192375A (en) * 2000-12-25 2002-07-10 Kawasaki Heavy Ind Ltd Pushing head for laser beam welding
JP2004122171A (en) * 2002-10-01 2004-04-22 High Frequency Heattreat Co Ltd Apparatus and method for solid-phase welding of dissimilar metal sheets
JP2004223557A (en) * 2003-01-22 2004-08-12 Toyota Motor Corp Method and device of instrumentation for inter-plate gap in lap welding, and method and equipment for welding
JP2004291090A (en) * 2002-09-26 2004-10-21 Fine Process:Kk Method and equipment of laser roll welding for different kinds of metal
JP2005169418A (en) * 2003-12-09 2005-06-30 Nissan Motor Co Ltd Method and device for joining dissimilar materials
JP2007152401A (en) * 2005-12-06 2007-06-21 Nissan Motor Co Ltd Bonding method, bonding apparatus and bonding structure for different materials

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193792A (en) * 1985-02-21 1986-08-28 Hitachi Cable Ltd Manufacture of metallic composite wire
JPS61276787A (en) * 1985-05-30 1986-12-06 Ishikawajima Harima Heavy Ind Co Ltd Method and equipment for rolling clad plate
JPH04501234A (en) * 1988-10-15 1992-03-05 ブリティッシュ・テクノロジー・グループ・リミテッド Welding coated metal
JP2002192375A (en) * 2000-12-25 2002-07-10 Kawasaki Heavy Ind Ltd Pushing head for laser beam welding
JP2004291090A (en) * 2002-09-26 2004-10-21 Fine Process:Kk Method and equipment of laser roll welding for different kinds of metal
JP2004122171A (en) * 2002-10-01 2004-04-22 High Frequency Heattreat Co Ltd Apparatus and method for solid-phase welding of dissimilar metal sheets
JP2004223557A (en) * 2003-01-22 2004-08-12 Toyota Motor Corp Method and device of instrumentation for inter-plate gap in lap welding, and method and equipment for welding
JP2005169418A (en) * 2003-12-09 2005-06-30 Nissan Motor Co Ltd Method and device for joining dissimilar materials
JP2007152401A (en) * 2005-12-06 2007-06-21 Nissan Motor Co Ltd Bonding method, bonding apparatus and bonding structure for different materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014117767A (en) * 2012-12-14 2014-06-30 Mitsubishi Heavy Ind Ltd Composite machining method and composite machining apparatus
JP2020097039A (en) * 2018-12-17 2020-06-25 トヨタ自動車株式会社 Lap-welding method of dissimilar metal member

Also Published As

Publication number Publication date
JP5207156B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP4868210B2 (en) Bonding method of dissimilar materials
JP4957093B2 (en) Dissimilar metal joining method
JP4780526B2 (en) Joining method, joining apparatus and joining structure of different materials
JP4961532B2 (en) Method and apparatus for joining dissimilar metals
US8020749B2 (en) Dissimilar metal joining method
JP4601052B2 (en) Dissimilar metal joining method
JP5098792B2 (en) Dissimilar metal joining method of magnesium alloy and steel
JP4326492B2 (en) Dissimilar materials joining method using laser welding
JP4919006B2 (en) Dissimilar metal panel joining method
JP4961530B2 (en) Method of joining dissimilar metals by resistance spot welding
JP5207156B2 (en) Dissimilar materials joining equipment
JP2007326146A (en) Method and structure for joining dissimilar metals by resistance spot welding
JP2008030113A (en) Joining method of different metals
JP4868222B2 (en) Method and apparatus for joining dissimilar metal panels
JP2009226425A (en) Spot welding method of dissimilar plates
JP5424005B2 (en) Dissimilar metal joining method
JP6376221B2 (en) Laser welded joint and manufacturing method thereof
JP4868223B2 (en) Method and apparatus for joining dissimilar metal panels
JP2008264820A (en) Structure and method for joining different kind metals
JP2013146737A (en) Laser joining method
JP2006116600A (en) Method for joining different materials
JP2006198678A (en) Different kind of metal joining method
Vaamonde Couso et al. Laser beam welding and automotive engineering
JP2010099672A (en) Method of joining different kind of metal between casting product and sheet, and joining structure of different kind of metal thereby

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5207156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150