【0001】
【発明の属する技術分野】
本発明は、板材の重ね合わせ溶接における溶接欠陥を防ぐための技術に関するものである。
【0002】
【従来の技術】
従来から、板材の形状に合わせて、重ね合わせ溶接を精密に行うための種々の技術が発明されており、レーザー溶接装置を例に挙げれば、レーザートーチに板材同士の良好な密着状態を確保するための加圧ローラを設けたものが用いられている(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開2000−288756号(請求項1、図1)
【0004】
【発明が解決しようとする課題】
しかしながら、従来の加圧ローラを備えた重ね合せ溶接装置は、板材の立体的な外形に沿って、加圧ローラを移動させることは可能であるが、重ね合わされる板材同士のプレス精度のばらつき等により生ずる微小な板間隙間に対し、常に適切な加圧力を付与するものとはなっておらず、かかる板間隙間のばらつきに起因する溶接欠陥(溶接品質のバラツキ)を十分に回避し得るものではなかった。
本発明は上記課題に鑑みてなされたものであり、その目的とするところは、重ね合わせ溶接時の板間隙間量を正確に計測すると共に、その測定結果に基づいて、適切な溶接作業を行うことにより、板材の重ね合わせ溶接における溶接欠陥を確実に防ぐことにある。
【0005】
【課題を解決するための手段】
上記課題を解決するための、本発明の請求項1に係る重ね合わせ溶接時の板間隙間量計測方法は、板材の重ね合わせ部分を溶接により固定する際に、板材の溶接未完了部位に向けて磁気を印加し、当該印加部位の近傍で磁気を検出し、かかる検出信号に基づき板材間隙間量を求めることを特徴とする。
本発明によれば、板材の溶接未完了部位に印加した磁気を検出すると、板間隙間量に応じて検知される磁気の強度が異なることを利用し、検知された周波数を予め把握した板間隙間量と検知される磁気強度との相関関係に照らし合わせて、溶接直前の板間隙間量を求めることができる。
【0006】
また、上記課題を解決するための、本発明の請求項2に係る溶接方法は、請求項1記載の方法により計測した板間隙間量に基づき、板材の重ね合わせ部分への押圧力を調節して溶接することを特徴とするものである。
本発明によれば、請求項1記載の方法により計測した、溶接直前の正確な板間隙間量に応じて、板材への密着圧力を調節することで、微小な板間隙間に対しても確実にその隙間を無くした状態で、重ね合せ溶接作業を行うことが可能となる。
【0007】
また、上記課題を解決するための、本発明の請求項3に係る溶接方法は、請求項1記載の方法により計測した板間隙間量に基づき、溶接条件を調節して溶接することを特徴とするものである。
本発明によれば、請求項1記載の方法により計測した、溶接直前の正確な板間隙間量に応じて、板材の溶接部位に付与する単位時間当りの熱量等の溶接条件を調節することで、板間隙間に応じた条件で、重ね合せ溶接作業を行うことが可能となる。
【0008】
また、上記課題を解決するための、本発明の請求項4に係る重ね合わせ溶接の板間隙間量計測装置は、溶接トーチに、一定接触力発生装置を介して補助加圧ローラを設け、該補助加圧ローラにより板材に対する磁気発生装置および磁気センサの距離を一定に支持するとともに、前記磁気センサの検知信号に基づき板材隙間量を求める解析手段を有することを特徴とするものである。
本発明によれば、前記磁気発生装置により、板材の溶接未完了部位に向けて磁気を印加し、前記磁気センサにより、印加部位の近傍で磁気を検出する。そして、板間隙間量に応じて検知される磁気の強度が異なることを利用し、前記解析手段において、検知された磁力検出信号出力を予め把握した板間隙間量と検知される磁気強度との相関関係に照らし合わせて、溶接直前の板間隙間量を求めることができる。しかも、前記磁気発生装置および前記磁気センサは、何れも前記補助加圧ローラにより板材に対する磁気発生装置および磁気センサの距離が一定となるように支持されていることから、上記の検出精度の安定化が図られる。
【0009】
また、本発明の請求項5に係る重ね合わせ溶接の板間隙間量計測装置は、請求項4記載の重ね合わせ溶接の板間隙間量計測装置において、前記磁気センサの近傍に温度センサを設け、かつ、該温度センサの検知信号に基づき前記磁気センサの検知信号を温度補正する補正手段を備えるものである。
本発明によれば、前記温度センサによって、前記磁気センサ近傍の温度を測定し、前記補正手段によって、該温度センサの検知信号に基づき前記磁気センサの検知信号を温度補正することにより、溶接直前の板間隙間量の検出精度を高めている。
【0010】
また、上記課題を解決するための、本発明の請求項6に係る溶接装置は、請求項4または5記載の装置により計測した板間隙間量に基づき、板材の重ね合わせ部分への押圧力を調節する加圧ローラを備えることを特徴とするものである。
本発明によれば、請求項4または5記載の装置により計測した、溶接直前の正確な板間隙間量に応じて、前記加圧ローラにより板材への密着圧力を調節することで、微小な板間隙間に対しても確実にその隙間を無くした状態で、重ね合せ溶接作業を行うことが可能となる。
【0011】
また、上記課題を解決するための、本発明の請求項7に係る溶接装置は、請求項4または5記載の装置により計測した板間隙間量に基づき、溶接条件を調節する制御手段を備えることを特徴とするものである。
本発明によれば、請求項4または5記載の装置により計測した、溶接直前の正確な板間隙間量に応じて、前記制御手段により板材の溶接部位に付与する単位時間当りの熱量等の溶接条件を調節することで、板間隙間に応じた条件で、重ね合せ溶接作業を行うことが可能となる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて説明する。
【0013】
図1には、本発明の実施の形態に係る、重ね合わせ溶接時の板間隙間量計測装置を備えたレーザー溶接装置1の要部を、模式的に示している。このレーザー溶接装置1は、溶接トーチ2に、一定接触力発生装置3を介して、補助加圧ローラ4を支持する支持アーム5を固定している。補助加圧ローラ4は、重ね合わされた板材W1、W2のうち板材W1に密着し、板材W1の表面に沿って回転するものである。また、一定接触力発生装置3は、補助加圧ローラ4の板材W1への接触圧力を一定にするための付勢力を発生させるものであり、例えば、油圧シリンダ等にリリーフバルブを設けたもの等を用いることができる。
さらに、支持アーム5には、磁気発生装置6と磁気センサ7とが固定され、板材W1に対する磁気発生装置6および磁気センサ7の距離が、補助加圧ローラ4により一定となるように支持される。また、磁気センサ7の近傍には、温度センサ8が設けられている。加えて、溶接トーチ2には、板材W1、W2の密着圧力を調節する加圧ローラ9を備えており、加圧ローラ9を溶接トーチ2に固定するための加圧アーム10に、圧力制御部11が設けられている。
【0014】
磁気発生装置6、磁気センサ7、温度センサ8、圧力制御部11は、何れもコントローラ12に対し電気的に接続されている。コントローラ12は、磁気センサ7の検知信号に基づき板材W1、W2の隙間量を求める解析手段としての機能を有している。そして、圧力制御部11では、コントローラ12の指令に基づき加圧ローラ9から板材W1へと必要な圧力を付与するとともに、実際に付与された圧力を監視し、圧力フィードバックを行う。
なお、符号13で示す部分は、レーザー溶接時の熱を遮蔽して、磁気発生装置6、磁気センサ7、温度センサ8への熱の影響を抑えるための、遮熱板である。また、矢印Aは、板材W1、W2に対するレーザー溶接装置1の進行方向(溶接方向)を示している。
【0015】
図2には、補助加圧ローラ4の近傍部分を斜視図で示している。図中矢印Bで示す、磁気発生装置6から板材W1、W2の溶接未完了部位に向けて印加された磁気は、矢印Cで示すように、磁気センサ7によって捉えられ、検出信号の強弱として把握される。磁気発生装置6は、図3に示すように、磁気発生コイル・磁石14をノイズ除去シールド15によって覆い、さらに、非磁性体材料で構成されたケース16に格納した構造を有している。したがって、磁気発生装置6から板材W1、W2の溶接未完了部位に向けて印加される磁気Bからノイズが除去され、磁気センサ7における計測結果の安定化が図られている。
【0016】
図4には、板材W1、W2の隙間量D(mm)に応じて、磁気センサ7により検出される磁力検出信号出力E(dB)が変化する様子を示している。図示の如く、板材W1、W2の隙間量Dが大きい程、磁力検出信号出力Eも大きくなることが解かる。よって、コントローラ12において、温度センサ8の検知信号に基づき磁気センサ7の検知信号を温度補正しつつ、溶接直前の板材W1、W2の隙間量Dを検出することができる。
なお、図4に例示した、板間隙間量Dと検知される磁気強度Eとの相関関係図(板間隙間評価テーブル)は、磁気センサ7で検出される磁力検出信号出力Eが、板材W1、W2の厚さに応じて異なることを考慮し、板厚に応じた複数の板間隙間評価テーブルを予め複数用意し、適宜、選択するものとする。
【0017】
図5には、コントローラ12と、磁気発生装置6、磁気センサ7、温度センサ8および圧力制御部11との情報交換の様子を、ブロック図で示している。
まず、コントローラ12の基準信号発生側において、所定強度の磁気を発生させるための指令値50を、アンプ51において増幅し、磁気発生装置6を励磁する。指令値50は、2枚の板材W1、W2を透過することが可能な強度の磁力が得られるものとする。
【0018】
また、コントローラ12の信号受信側では、磁気センサ7で検出した信号をアンプ52で増幅し、判定器53に送る。また、温度センサ8で検出した信号をアンプ54で増幅し、判定器53に送る。判定器53では、図4に例示した、板材W1、W2の隙間量D(mm)と、磁気センサ7により検出される磁力検出信号出力E(dB)との関係に基づき、実際の隙間量Dを求める。この際、温度センサ8で検出した温度情報に基づき磁気センサ7の検出信号を温度補正する。すなわち、判定器53は、温度センサ8の検知信号に基づき磁気センサ7の検知信号を温度補正する、補正手段としての機能も担持している。
そして、判定器53により判定された板材W1、W2の隙間量D(mm)は、記録部の記録計55に記録されると共に、加圧制御部である圧力制御部11において判定器53の判定結果がフィードバックされ、加圧ローラ9から板材W1、W2への密着圧力を調節し、微小な板間隙間に対しても確実にその隙間が除去される。
【0019】
上記構成をなす本発明の実施の形態により得られる作用効果は、以下の通りである。まず、磁気発生装置6により、板材W1、W2の溶接未完了部位に向けて所定強度(2枚の板材W1、W2を透過することが可能な強度。)の磁気Bを印加し、磁気センサ7により、印加部位の近傍で磁気Cを検出する。そして、板間隙間量D(mm)に応じて検知される磁気Cの強度が異なることを利用し、解析手段であるコントローラ12の判定器53によって、検知された磁力検出信号出力を、予め把握した板間隙間量D(mm)と検知された磁力検出信号出力E(dB)との相関関係(図4)に照らし合わせて、溶接直前の板材W1、W2の板間隙間量D(mm)を求めることができる。しかも、磁気発生装置6および磁気センサ7は、何れも補助加圧ローラ4により板材W1に対する磁気発生装置6および磁気センサ7の距離が一定となるように支持されていることから、上記の検出精度の安定化が図られる。
また、温度センサ7によって、磁気センサ6の近傍の温度を測定し、補正手段である判定器53によって、温度センサ7の検知信号に基づき磁気センサ6の検知信号を温度補正することにより、溶接直前の板間隙間量の検出精度を高めている。
【0020】
そして、上記重ね合わせ溶接の板間隙間量計測装置により計測した、溶接直前の正確な板間隙間量に応じて、加圧ローラ9により板材W1、W2への押圧力を調節することで、微小な板間隙間に対しても確実にその隙間を無くした状態で、重ね合せ溶接作業を行うことが可能となる。
なお、溶接トーチ2が小さい等、加圧ローラ9のごとき加圧力付与手段を設けることができない場合には、上記重ね合わせ溶接の板間隙間量計測装置により計測した、溶接直前の正確な板間隙間量に応じて、溶接装置が通常備える溶接条件の制御装置を操作し、レーザー出力または溶接速度等、板材の溶接部位に付与する単位時間当りの熱量等を調節することで、板間隙間に応じた条件で、重ね合せ溶接作業を行うことが可能となる。
【0021】
以上のごとく、本発明の実施の形態では、レーザー溶接装置を例に挙げて説明したが、本発明はレーザー溶接装置への適用に限定されるものではなく、ガスシールドアーク溶接装置、プラズマアーク溶接装置等にも、同様に適用することが可能である。
【0022】
【発明の効果】
本発明はこのように構成したので、重ね合わせ溶接時の板間隙間量を正確に計測すると共に、その測定結果に基づいて、適切な溶接作業を行い、板材の重ね合わせ溶接における溶接欠陥を確実に防ぐことが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る、重ね合わせ溶接時の板間隙間量計測装置を備えたレーザー溶接装置の要部模式図である。
【図2】図1に示すレーザー溶接装置の、補助加圧ローラの近傍部分を示す斜視図である。
【図3】磁気発生装置の構造を一部断面で示した斜視図である。
【図4】板間隙間量と磁気センサにより検出される磁力検出信号出力との相関関係を示すグラフである。
【図5】レーザー溶接装置の、コントローラと、磁気発生装置、磁気センサ、温度センサおよび圧力制御部との情報交換の様子を示すブロック図である。
【符号の説明】
1 レーザー溶接装置
2 溶接トーチ
3 一定接触力発生装置
4 補助加圧ローラ
5 支持アーム
6 磁気発生装置
7 磁気センサ
8 温度センサ
9 加圧ローラ
10 加圧アーム
11 圧力制御部
12 コントローラ
53 判定器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for preventing welding defects in lap welding of plate materials.
[0002]
[Prior art]
Conventionally, various techniques have been invented to precisely perform overlap welding in accordance with the shape of the plate material. Taking a laser welding apparatus as an example, a good contact state between the plate materials is ensured on the laser torch. For this purpose, a pressure roller is provided (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP 2000-288756 (Claim 1, FIG. 1)
[0004]
[Problems to be solved by the invention]
However, the lap welding apparatus provided with the conventional pressure roller can move the pressure roller along the three-dimensional outer shape of the plate material, but the press accuracy of the stacked plate materials varies. It does not always give an appropriate pressure to the minute gaps between plates, and can sufficiently avoid welding defects (welding quality variations) due to variations between the gaps between plates. It wasn't.
The present invention has been made in view of the above problems, and its object is to accurately measure the inter-plate gap amount at the time of lap welding and to perform an appropriate welding operation based on the measurement result. This is to reliably prevent welding defects in the overlap welding of the plate materials.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the method for measuring a gap amount between plates at the time of lap welding according to claim 1 of the present invention is directed to an incomplete welded portion of the plate material when the overlapped portion of the plate material is fixed by welding. The magnetism is applied, the magnetism is detected in the vicinity of the application site, and the gap amount between the plate members is obtained based on the detection signal.
According to the present invention, when magnetism applied to an incomplete welded portion of a plate material is detected, the detected magnetic frequency is varied according to the gap amount between the plates, and the detected frequency is detected in advance between the plates. In light of the correlation between the gap amount and the detected magnetic strength, the gap amount between the plates immediately before welding can be obtained.
[0006]
Further, a welding method according to claim 2 of the present invention for solving the above-mentioned problem is to adjust the pressing force to the overlapping portion of the plate materials based on the inter-plate gap amount measured by the method of claim 1. And welding.
According to the present invention, even with respect to a minute gap between plates, the adhesion pressure to the plate material is adjusted according to the accurate gap amount between the plates measured by the method of claim 1 immediately before welding. In addition, it is possible to perform the lap welding work in a state where the gap is eliminated.
[0007]
Further, a welding method according to claim 3 of the present invention for solving the above-mentioned problems is characterized in that welding is performed by adjusting welding conditions based on the inter-plate gap amount measured by the method of claim 1. To do.
According to the present invention, the welding conditions such as the amount of heat per unit time applied to the welded portion of the plate material are adjusted according to the accurate gap between the plates immediately before welding, measured by the method of claim 1. It becomes possible to perform the lap welding work under the conditions according to the gap between the plates.
[0008]
Further, an apparatus for measuring the amount of gap between plates in lap welding according to claim 4 of the present invention for solving the above-mentioned problem is provided with an auxiliary pressure roller on a welding torch via a constant contact force generator, The auxiliary pressure roller supports the distance between the magnetism generating device and the magnetic sensor with respect to the plate material, and has analysis means for obtaining the plate material gap amount based on the detection signal of the magnetic sensor.
According to the present invention, the magnetism is applied to the welding incomplete part of the plate material by the magnetism generator, and the magnetism is detected in the vicinity of the application part by the magnetic sensor. Then, utilizing the fact that the detected magnetic strength differs according to the gap amount between the plates, the analysis means calculates the detected magnetic force detection signal output in advance between the gap amount between the plates and the detected magnetic strength. In light of the correlation, the amount of gap between the plates immediately before welding can be obtained. In addition, since both the magnetic generator and the magnetic sensor are supported by the auxiliary pressure roller so that the distance between the magnetic generator and the magnetic sensor with respect to the plate material is constant, the detection accuracy is stabilized. Is planned.
[0009]
Further, the overlap welding inter-plate gap amount measuring apparatus according to claim 5 of the present invention is the overlap welding inter-plate gap amount measuring apparatus according to claim 4, wherein a temperature sensor is provided in the vicinity of the magnetic sensor, In addition, a correction means for correcting the temperature of the detection signal of the magnetic sensor based on the detection signal of the temperature sensor is provided.
According to the present invention, the temperature in the vicinity of the magnetic sensor is measured by the temperature sensor, and the detection signal of the magnetic sensor is temperature-corrected based on the detection signal of the temperature sensor by the correction means. The detection accuracy of the gap amount between plates is improved.
[0010]
Moreover, the welding apparatus which concerns on Claim 6 of this invention for solving the said subject is based on the amount of clearance gaps between plates measured by the apparatus of Claim 4 or 5, and applies the pressing force to the overlapping part of a board | plate material. A pressure roller to be adjusted is provided.
According to the present invention, the fine plate is adjusted by adjusting the contact pressure to the plate material by the pressure roller according to the accurate inter-plate gap amount immediately before welding, measured by the apparatus according to claim 4 or 5. It is possible to perform the lap welding operation in a state where the gap is surely eliminated.
[0011]
Moreover, the welding apparatus which concerns on Claim 7 of this invention for solving the said subject is provided with the control means which adjusts welding conditions based on the clearance gap between plates measured by the apparatus of Claim 4 or 5. It is characterized by.
According to the present invention, welding such as the amount of heat per unit time applied to the welded portion of the plate material by the control means according to the accurate inter-plate gap amount immediately before welding, measured by the apparatus according to claim 4 or 5. By adjusting the conditions, it is possible to perform the lap welding work under conditions according to the gap between the plates.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0013]
In FIG. 1, the principal part of the laser welding apparatus 1 provided with the clearance gap amount measuring apparatus between the plates at the time of lap welding based on Embodiment of this invention is shown typically. In the laser welding apparatus 1, a support arm 5 that supports an auxiliary pressure roller 4 is fixed to a welding torch 2 via a constant contact force generator 3. The auxiliary pressure roller 4 is in close contact with the plate material W 1 out of the stacked plate materials W 1 and W 2 and rotates along the surface of the plate material W 1 . The thing, the constant contact force generator 3, a contact pressure on the plate material W 1 of the auxiliary pressure roller 4 as it generates a biasing force for constant, for example, provided with a relief valve to the hydraulic cylinder or the like Etc. can be used.
Further, the magnetic generating device 6 and the magnetic sensor 7 are fixed to the support arm 5, and supported by the auxiliary pressure roller 4 so that the distance between the magnetic generating device 6 and the magnetic sensor 7 with respect to the plate material W 1 is constant. The A temperature sensor 8 is provided in the vicinity of the magnetic sensor 7. In addition, the welding torch 2 is provided with a pressure roller 9 for adjusting the contact pressure of the plate materials W 1 and W 2 , and pressure is applied to the pressure arm 10 for fixing the pressure roller 9 to the welding torch 2. A control unit 11 is provided.
[0014]
The magnetism generator 6, the magnetic sensor 7, the temperature sensor 8, and the pressure control unit 11 are all electrically connected to the controller 12. The controller 12 has a function as analysis means for obtaining the gap amount between the plate materials W 1 and W 2 based on the detection signal of the magnetic sensor 7. Then, the pressure control unit 11, as well as impart the necessary pressure from the pressure roller 9 based on a command of the controller 12 to the plate material W 1, to monitor the actually applied pressure, performs pressure feedback.
In addition, the part shown with the code | symbol 13 is a heat shield for shielding the heat | fever at the time of laser welding, and suppressing the influence of the heat | fever to the magnetism generator 6, the magnetic sensor 7, and the temperature sensor 8. FIG. The arrow A shows a sheet material W 1, the traveling direction of the laser welding apparatus 1 for W 2 (welding direction).
[0015]
FIG. 2 is a perspective view showing the vicinity of the auxiliary pressure roller 4. The magnetism applied from the magnetism generator 6 toward the incomplete welded portions of the plate materials W 1 and W 2 , indicated by the arrow B in the figure, is captured by the magnetic sensor 7 as indicated by the arrow C, and the strength of the detection signal As grasped. As shown in FIG. 3, the magnetism generating device 6 has a structure in which the magnetizing coil / magnet 14 is covered with a noise removing shield 15 and further stored in a case 16 made of a non-magnetic material. Therefore, noise is removed from the magnetism B applied from the magnetism generator 6 toward the unwelded parts of the plate materials W 1 and W 2 , and the measurement result in the magnetic sensor 7 is stabilized.
[0016]
FIG. 4 shows how the magnetic force detection signal output E (dB) detected by the magnetic sensor 7 changes according to the gap amount D (mm) between the plate materials W 1 and W 2 . As shown in the figure, it is understood that the magnetic force detection signal output E increases as the gap amount D between the plate members W 1 and W 2 increases. Therefore, the controller 12 can detect the gap amount D between the plate materials W 1 and W 2 immediately before welding while correcting the temperature of the detection signal of the magnetic sensor 7 based on the detection signal of the temperature sensor 8.
Note that the correlation diagram (the inter-plate gap evaluation table) between the inter-plate gap amount D and the detected magnetic strength E illustrated in FIG. 4 indicates that the magnetic force detection signal output E detected by the magnetic sensor 7 is the plate material W. In consideration of differences depending on the thicknesses of 1 and W 2 , a plurality of inter-plate gap evaluation tables corresponding to the plate thickness are prepared in advance and appropriately selected.
[0017]
FIG. 5 is a block diagram showing how information is exchanged between the controller 12, the magnetic generator 6, the magnetic sensor 7, the temperature sensor 8, and the pressure control unit 11.
First, on the reference signal generation side of the controller 12, a command value 50 for generating magnetism of a predetermined intensity is amplified by the amplifier 51 and the magnetism generator 6 is excited. The command value 50 is such that a magnetic force having a strength capable of transmitting the two plate materials W 1 and W 2 is obtained.
[0018]
On the signal receiving side of the controller 12, the signal detected by the magnetic sensor 7 is amplified by the amplifier 52 and sent to the determiner 53. Further, the signal detected by the temperature sensor 8 is amplified by the amplifier 54 and sent to the determiner 53. In the determiner 53, the actual gap based on the relationship between the gap amount D (mm) between the plate materials W 1 and W 2 illustrated in FIG. 4 and the magnetic force detection signal output E (dB) detected by the magnetic sensor 7. The quantity D is determined. At this time, the temperature of the detection signal of the magnetic sensor 7 is corrected based on the temperature information detected by the temperature sensor 8. That is, the determiner 53 also has a function as a correction unit that corrects the temperature of the detection signal of the magnetic sensor 7 based on the detection signal of the temperature sensor 8.
Then, the gap amount D (mm) between the plate materials W 1 and W 2 determined by the determination unit 53 is recorded in the recorder 55 of the recording unit, and the determination unit 53 in the pressure control unit 11 which is a pressurization control unit. The determination result is fed back, and the contact pressure from the pressure roller 9 to the plate materials W 1 and W 2 is adjusted, so that the gap is surely removed even for a minute gap between the plates.
[0019]
The effects obtained by the embodiment of the present invention having the above-described configuration are as follows. First, the magnetic generation device 6, by applying a magnetic B of the plate material W 1, W weld predetermined intensity toward the uncompleted portion 2 (plate material W 1 of the two, W 2 that can transmit intensity.) The magnetic sensor 7 detects the magnetic C in the vicinity of the application site. The detected magnetic force detection signal output is grasped in advance by the determination unit 53 of the controller 12 which is an analysis means, utilizing the fact that the detected strength of the magnetic C varies depending on the inter-plate gap amount D (mm). in the light of the plates gap size D (mm) and the sensed magnetic force detection signal output E correlation between (dB) (Fig. 4), the welding immediately before the plate material W 1, W 2 between the plates gap size D ( mm). Moreover, the magnetic generation device 6 and the magnetic sensor 7 are both from the distance between the magnetic generation device 6 and the magnetic sensor 7 is supported so as to be constant with respect to the plate material W 1 by the auxiliary pressing roller 4, the above detection Accuracy can be stabilized.
Further, the temperature in the vicinity of the magnetic sensor 6 is measured by the temperature sensor 7, and the detection signal of the magnetic sensor 6 is temperature-corrected based on the detection signal of the temperature sensor 7 by the determiner 53 as correction means, so that The detection accuracy of the gap amount between plates is improved.
[0020]
And by adjusting the pressing force to the plate materials W 1 and W 2 by the pressure roller 9 according to the accurate inter-plate gap amount immediately before welding, measured by the above-described laminar welding inter-plate gap amount measuring device. Thus, it is possible to perform the lap welding operation in a state where the gap between the small plates is surely eliminated.
In addition, when the welding torch 2 is small, for example, when the pressing force applying means such as the pressure roller 9 cannot be provided, the accurate plate-to-plate measurement just before welding measured by the above-mentioned overlap welding plate gap amount measuring device is performed. Depending on the amount of gap, the welding condition control device that the welding equipment normally has is operated to adjust the amount of heat per unit time applied to the welded part of the plate material, such as laser output or welding speed. It is possible to perform the lap welding work under the corresponding conditions.
[0021]
As described above, in the embodiment of the present invention, the laser welding apparatus has been described as an example. However, the present invention is not limited to the application to the laser welding apparatus, and the gas shield arc welding apparatus, plasma arc welding, and the like. The present invention can be similarly applied to devices.
[0022]
【The invention's effect】
Since the present invention is configured as described above, the gap amount between the plates at the time of lap welding is accurately measured, and an appropriate welding operation is performed based on the measurement result, so that a welding defect in the lap welding of the plate materials can be reliably ensured. It becomes possible to prevent.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a main part of a laser welding apparatus provided with an inter-plate gap amount measuring apparatus during lap welding according to an embodiment of the present invention.
2 is a perspective view showing the vicinity of an auxiliary pressure roller in the laser welding apparatus shown in FIG. 1. FIG.
FIG. 3 is a perspective view showing a partial cross section of the structure of the magnetic generator.
FIG. 4 is a graph showing a correlation between a gap between plates and a magnetic force detection signal output detected by a magnetic sensor.
FIG. 5 is a block diagram showing a state of information exchange between a controller and a magnet generator, a magnetic sensor, a temperature sensor, and a pressure control unit of the laser welding apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Laser welding apparatus 2 Welding torch 3 Constant contact force generator 4 Auxiliary pressure roller 5 Support arm 6 Magnetic generator 7 Magnetic sensor 8 Temperature sensor 9 Pressure roller 10 Pressure arm 11 Pressure control part 12 Controller 53 Judgment device