JP2010099672A - Method of joining different kind of metal between casting product and sheet, and joining structure of different kind of metal thereby - Google Patents

Method of joining different kind of metal between casting product and sheet, and joining structure of different kind of metal thereby Download PDF

Info

Publication number
JP2010099672A
JP2010099672A JP2008271199A JP2008271199A JP2010099672A JP 2010099672 A JP2010099672 A JP 2010099672A JP 2008271199 A JP2008271199 A JP 2008271199A JP 2008271199 A JP2008271199 A JP 2008271199A JP 2010099672 A JP2010099672 A JP 2010099672A
Authority
JP
Japan
Prior art keywords
metal
joining
plate
casting
eutectic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008271199A
Other languages
Japanese (ja)
Inventor
Kenji Miyamoto
健二 宮本
Nariyuki Nakagawa
成幸 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008271199A priority Critical patent/JP2010099672A/en
Publication of JP2010099672A publication Critical patent/JP2010099672A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of joining different kinds of metal between a casting product and a sheet, a method in which discharge of an eutectic melting reaction product from a joining boundary can be enhanced, even if pressurization is insufficient during the joining, so that a sound joined part can be obtained, in joining by using eutectic fusion a casting member which has a rib with pressurization possible only from one side and a planar member which is composed of a material different from the casting member. <P>SOLUTION: On the non-rib side of the casting member C comprising aluminum alloy and having ribs R, a galvanized steel sheet 1 as the planar member is piled up, with pressurization and energization performed by an electrode E from the side of the steel sheet 1 for resistance spot welding of the two members. In this welding, eutectic fusion is produced between the zinc contained in the galvanization layer 1p of the steel sheet 1 and aluminum, and the reaction product W produced on the joining boundary with the eutectic fusion is discharged into the recesses R which are formed on the reverse side of the ribs of the casting member C because of shrinks during the casting. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リブを備えた鋳物部材と、当該鋳物部材とは異種の金属から成る板状部材との接合方法と、このような接合方法によって得られる鋳物と板材の異種金属接合構造に関するものである。   The present invention relates to a method of joining a cast member having ribs and a plate-like member made of a metal different from the cast member, and a dissimilar metal joining structure of a cast material and a plate material obtained by such a joining method. is there.

近年、自動車の車体構成部材においては、地球環境の汚染防止を視野に入れた燃費向上対策の一環として、従来の鉄製(鋳物)・鋼製部材からアルミニウム合金やマグネシウム合金などの軽合金製部材への置換による車体の軽量化が進んでいる。
したがって、車体組立工程においては、このような軽合金製部材と鋼製部材との接合頻度が増し、さらなる重量増加を避ける観点から、異種金属同士をボルトやナット、リベットなどの締結用部材を用いることなく、直接接合することができる技術の確立が急務となっている。
In recent years, automotive body components have been changed from conventional iron (cast) and steel members to light alloy members such as aluminum alloys and magnesium alloys as part of measures to improve fuel efficiency with a view to preventing pollution of the global environment. The weight of the car body has been reduced by the replacement.
Therefore, in the vehicle body assembly process, the joining frequency of such light alloy members and steel members is increased, and from the viewpoint of avoiding further increase in weight, different metal members are used as fastening members such as bolts, nuts and rivets. There is an urgent need to establish a technique that allows direct bonding without any problems.

このような異種金属接合において、アルミニウム合金材の表面には、緻密で強固な酸化皮膜が形成されているため、それを除去するためには接合時に大きな熱量を投与することが必要となり、これによって厚い金属間化合物が成長し、接合強度が低下してしまう結果となる。
また、マグネシウム合金材の表面にも強固な酸化皮膜が存在し、さらに接合時の加熱過程で鋼表面の酸化皮膜が成長することから、大気中での接合が困難となる。加えて、Fe−Mg二元状態図は二相分離型を示すことが知られており、互いの固溶限も非常に小さいことから、これら金属を主成分とする上記材料同士を直接接合することは、冶金的に極めて困難である。
In such dissimilar metal bonding, since a dense and strong oxide film is formed on the surface of the aluminum alloy material, it is necessary to administer a large amount of heat at the time of bonding in order to remove it. A thick intermetallic compound grows, resulting in a decrease in bonding strength.
Further, a strong oxide film also exists on the surface of the magnesium alloy material, and further, an oxide film on the steel surface grows during the heating process at the time of bonding, so that bonding in the air becomes difficult. In addition, the Fe-Mg binary phase diagram is known to exhibit a two-phase separation type, and since the mutual solubility limit is very small, the above-mentioned materials mainly composed of these metals are directly bonded to each other. This is extremely difficult metallurgically.

そこで、このような酸化皮膜を有する材料と鋼との接合に際して、例えばZn(亜鉛)を接合界面に介在させ、接合に際してAlあるいはMgとZnの間に共晶溶融を生じさせ、酸化皮膜を共晶溶融物と共に低温度で接合界面から排出する方法が提案されている(例えば、特許文献1参照)。   Therefore, when joining a material having such an oxide film and steel, for example, Zn (zinc) is interposed at the joint interface, and eutectic melting is caused between Al or Mg and Zn at the time of joining. There has been proposed a method of discharging from a bonding interface at a low temperature together with a crystal melt (for example, see Patent Document 1).

一方、アルミニウム合金やマグネシウム合金から成る部材は、展伸材のみならず、鋳造品であることも少なくなく、このような鋳造部材の場合には、部材の剛性を確保するためにリブを備えた複雑な三次元形状となっていることが多い。
このようなアルミニウム合金やマグネシウム合金から成る複雑な形状の鋳造部材と鋼板とを抵抗溶接する場合、鋳造部材の側にはリブなどによる凹凸が障害となって電極を差し込むことができないため、両電極を被接合材の一方側に配置する溶接法(インダイレクト法)を採用せざるを得ない。
WO2006/046608
On the other hand, a member made of an aluminum alloy or a magnesium alloy is not only a wrought material but also a cast product. In the case of such a cast member, a rib is provided to ensure the rigidity of the member. Often a complex three-dimensional shape.
When welding a steel plate and a complicatedly shaped cast member made of such an aluminum alloy or magnesium alloy to the cast member, the unevenness due to ribs or the like cannot be inserted on the cast member side, so the electrodes cannot be inserted. A welding method (indirect method) in which the material is disposed on one side of the material to be joined must be employed.
WO2006 / 046608

しかし、上記特許文献1に記載の方法をインダイレクト法により実施した場合、両側から加圧する通常の溶接法に較べて加圧力が不足することから、酸化皮膜を含む共晶反応生成物を接合界面から十分に排出することができず、これらの残存によって強度低下を来すという問題があった。   However, when the method described in Patent Document 1 is carried out by the indirect method, the applied pressure is insufficient as compared with a normal welding method in which pressure is applied from both sides. There is a problem in that it cannot be sufficiently discharged from the wastewater, and the strength is lowered by the remaining of these.

本発明は、このような鋳造部材と板状部材との異種金属接合における上記課題に鑑みてなされたものである。そして、その目的とするところは、共晶溶融反応生成物の接合界面からの排出性を高めることができ、接合時の加圧力が不足気味であっても健全な接合部を得ることができる鋳物と板材との異種金属接合方法と、これによる高強度な異種金属接合構造を提供することにある。   This invention is made | formed in view of the said subject in the dissimilar metal joining of such a cast member and a plate-shaped member. And the purpose is to increase the discharge property of the eutectic melt reaction product from the bonding interface, and to obtain a sound bonded part even if the applied pressure during bonding is insufficient. Another object of the present invention is to provide a dissimilar metal joining method between a metal plate and a plate material and a high strength dissimilar metal joining structure.

本発明者らは、上記目的の達成に向けて、鋭意検討を重ねた結果、鋳造部材におけるリブの裏面側には鋳造時の引けによって凹部が生じることに着目し、この凹部を積極的に利用することによって上記課題が解決できることを見出し、本発明を完成するに到った。   As a result of intensive investigations aimed at achieving the above object, the present inventors pay attention to the fact that a recess is formed on the back side of the rib of the cast member due to shrinkage during casting, and this recess is actively used. As a result, the inventors have found that the above problems can be solved, and have completed the present invention.

すなわち、本発明は上記知見に基づくものであって、本発明の鋳物と板材の異種金属接合方法は、金属Aを主成分としリブを備えた鋳造部材の反リブ側に、金属Bを主成分とする板状部材を重ね、該板状部材の側から加圧して両部材を接合するに際して、両部材の間に金属Cを含有する第3の材料を介在させた状態で加熱し、金属A及びBの少なくとも一方と金属Cの間に共晶溶融を生じさせ、共晶溶融に伴って生じた反応生成物を鋳造時の引けに起因して鋳造部材のリブ裏面に形成されている凹部に排出することを特徴とする。   That is, the present invention is based on the above knowledge, and the method for joining dissimilar metals between a casting and a plate material according to the present invention includes metal B as a main component on the opposite rib side of a cast member having metal A as a main component and ribs. When the two plate members are stacked and pressed from the plate member side to join the two members, heating is performed with a third material containing metal C interposed between the two members, and metal A And eutectic melting between at least one of B and metal C, and the reaction product generated along with the eutectic melting is formed in the recess formed on the back surface of the rib of the cast member due to shrinkage during casting. It is characterized by discharging.

また、本発明の鋳物と板材の異種金属接合構造は、上記方法によって得られるものであって、鋳造部材と板状部材の新生面同士が直接又は金属間化合物を含む化合物層を介して接合され、共晶溶融に伴って生じた反応生成物が鋳造部材のリブ裏面に形成された凹部に流入していることを特徴としている。   Moreover, the dissimilar metal joining structure of the casting and the plate material of the present invention is obtained by the above method, and the new surfaces of the cast member and the plate-like member are joined directly or via a compound layer containing an intermetallic compound, The reaction product produced along with the eutectic melting flows into a recess formed on the rear surface of the rib of the cast member.

本発明によれば、引けに起因して鋳造部材のリブ裏面に生ずる凹部を積極的に利用し、接合時に酸化皮膜を含む共晶溶融反応生成物を上記凹部に流入させるようにしたから、接合時の加圧力が低い場合でも、上記反応生成物を接合界面から速やかに排出させることができ、残存による接合強度の低下が防止できる。   According to the present invention, the recess formed on the back surface of the rib of the cast member due to the shrinkage is positively utilized, and the eutectic melt reaction product including the oxide film is caused to flow into the recess during bonding. Even when the applied pressure at that time is low, the reaction product can be quickly discharged from the bonding interface, and a decrease in bonding strength due to remaining can be prevented.

以下に、本発明の鋳物と板材との異種金属接合方法や、これによって得られる接合構造について、さらに詳細、かつ具体的に説明する。なお、本明細書において、「%」は特記しない限り、質量百分率を表すものとする。   Below, the dissimilar metal joining method of the casting of this invention and a board | plate material, and the joining structure obtained by this are demonstrated still in detail and concretely. In the present specification, “%” represents mass percentage unless otherwise specified.

図1は、本発明の異種金属接合に用いる加熱・加圧手段の一例として、インダイレクト法による抵抗溶接装置とその要領を示す全体図であって、図1(a)は断続的に点状に接合するためのスポット溶接要領、図1(b)はローラ電極によって線状に接合するシーム溶接の要領を示すものである。
なお、本発明の接合方法に用いる接合手段としては、加熱と加圧を行うことができる限り、抵抗溶接に限定される訳ではなく、例えば、レーザビーム照射ヘッドと加圧ローラを組み合わせた装置を用い、レーザビーム照射位置の直後をローラによって加圧するようになすことも可能である。
FIG. 1 is an overall view showing a resistance welding apparatus by an indirect method and its point as an example of heating / pressurizing means used for joining different kinds of metals according to the present invention, and FIG. FIG. 1 (b) shows a point of seam welding for joining in a linear manner with a roller electrode.
The joining means used in the joining method of the present invention is not limited to resistance welding as long as heating and pressurization can be performed. For example, an apparatus combining a laser beam irradiation head and a pressure roller is used. It is also possible to use a roller to press immediately after the laser beam irradiation position.

すなわち、本発明の異種金属接合においては、鋳造部材Cの側には、図1に示すように、部材としての剛性を確保するためにリブR,Rが形成されていることから、これが邪魔となって鋳造部材Cの側に電極を配置することができない。したがって、図に示すように、両電極E,E(シーム溶接の場合には、ローラ電極Er,Er)を全て板状部材Pの側に配置して、板状部材Pの側から両部材を加圧するインダイレクト法が採用される。   That is, in the dissimilar metal joining of the present invention, as shown in FIG. 1, ribs R and R are formed on the casting member C side in order to ensure rigidity as a member. Thus, the electrode cannot be disposed on the casting member C side. Therefore, as shown in the drawing, both the electrodes E, E (in the case of seam welding, the roller electrodes Er, Er) are all arranged on the plate-like member P side, and both members are attached from the plate-like member P side. The indirect method of applying pressure is adopted.

そして、本発明においては、上記したように金属Aを主成分としリブを備えた鋳造部材(例えば、Alを主成分とするアルミニウム合金製)の反リブ側に、金属Bを主成分とする板状部材(例えば、Feを主成分とする鋼板)を重ね、該板状部材の側から加圧して両部材を接合するに際して、両部材の間に金属C(例えばZn)を含有する第3の材料を介在させた状態で加熱し、金属A及びBの少なくとも一方と金属Cの間(例えば、AlとZnの間)に共晶溶融を生じさせ、共晶溶融に伴って生じた反応生成物を鋳造時の引けに起因して鋳造部材のリブ裏面に形成されている凹部に排出するようにしている。   In the present invention, as described above, on the opposite side of the cast member (for example, made of an aluminum alloy containing Al as a main component) that includes the metal A as a main component and having a rib, a plate containing the metal B as a main component. A third member containing metal C (for example, Zn) between the two members when the two members are joined by pressing from the side of the plate-like member by stacking the member (for example, a steel plate mainly composed of Fe). A reaction product generated by eutectic melting by heating in the state of interposing the material, causing eutectic melting between at least one of metals A and B and metal C (for example, between Al and Zn). Is discharged into a recess formed on the rear surface of the rib of the cast member due to shrinkage during casting.

ここで、「引け」とは、鋳引け、鋳ちぢみなども称し、溶湯凝固時の収縮によって肉の交差部や肉厚部分など周囲より凝固が遅れる部分に生じる鋳造欠陥の1種であって、本発明においてはリブの裏面側に生じるこのような欠陥による凹部を反応生成物の排出性向上手段として有効に利用するようにしている。
なお、本発明において「主成分」とは、材料中に最も多く含まれる成分を意味するものとする。
Here, “shrinkage” is also referred to as casting shrinkage, cast stagnation, etc., and is a type of casting defect that occurs in a portion where solidification is delayed from the surroundings, such as a crossing portion or a thick portion of the meat, due to shrinkage during solidification of the molten metal, In the present invention, the recess due to such a defect generated on the back side of the rib is effectively used as a means for improving the discharge of the reaction product.
In the present invention, the “main component” means a component that is contained most in the material.

次に、共晶溶融に関し、上記した材料例(金属A=Al、金属B=Fe(鋼)、金属C=Zn)に基づいて、Al−Zn系合金について説明する。
すなわち、図2は、Al−Zn系2元状態図を示すものであって、図に示すようにAl−Zn系における共晶点(T)は、655Kであり、Alの融点933Kよりもはるかに低い温度で共晶反応が生じる。したがって、図に示した共晶点を利用してAlとZnの共晶溶融を作り出し、アルミニウム材の接合時における酸化皮膜除去や相互拡散などの接合作用に利用することによって、低温接合が実施できるため、接合界面におけるFe−Al系金属間化合物の成長を極めて効果的に抑制することができる。
Next, regarding eutectic melting, an Al—Zn alloy will be described based on the above-described material examples (metal A = Al, metal B = Fe (steel), metal C = Zn).
That is, FIG. 2 shows an Al—Zn binary phase diagram, and as shown in the figure, the eutectic point (T E ) in the Al—Zn system is 655 K, which is higher than the melting point 933 K of Al. Eutectic reactions occur at much lower temperatures. Therefore, by using the eutectic points shown in the figure to create eutectic melting of Al and Zn, and using them for bonding actions such as oxide film removal and interdiffusion during bonding of aluminum materials, low temperature bonding can be performed. Therefore, the growth of the Fe—Al intermetallic compound at the bonding interface can be extremely effectively suppressed.

ここで、共晶溶融とは共晶反応を利用した溶融であって、2つの金属(又は合金)が相互拡散して生じた相互拡散域の組成が共晶組成となった場合に、保持温度が共晶温度以上であれば共晶反応により液相が形成される。例えばアルミニウムと亜鉛の場合、アルミニウムの融点は933K、亜鉛の融点は692.5Kであり、この共晶金属はそれぞれの融点より低い655Kにて溶融する。
したがって、両金属の清浄面を接触させ、655K以上に加熱保持すると反応が生じる。これを共晶溶融といい、Al−95%Znが共晶組成となるが、共晶反応自体は合金成分に無関係な一定の変化であり、合金組成は共晶反応の量を増減するに過ぎない。
Here, eutectic melting is melting using a eutectic reaction, and when the composition of an interdiffusion region formed by mutual diffusion of two metals (or alloys) becomes a eutectic composition, the holding temperature If is higher than the eutectic temperature, a liquid phase is formed by the eutectic reaction. For example, in the case of aluminum and zinc, the melting point of aluminum is 933 K, the melting point of zinc is 692.5 K, and this eutectic metal melts at 655 K which is lower than the respective melting points.
Therefore, a reaction occurs when the clean surfaces of both metals are brought into contact and heated to 655K or higher. This is called eutectic melting, and Al-95% Zn has a eutectic composition, but the eutectic reaction itself is a constant change unrelated to the alloy components, and the alloy composition only increases or decreases the amount of eutectic reaction. Absent.

一方、アルミニウム材の表面には強固な酸化皮膜が存在するが、これは抵抗溶接時の通電と加圧によってアルミニウム材に塑性変形が生じることにより物理的に破壊されることになる。
すなわち、加圧によって材料表面の微視的な凸部同士が擦れ合うことから、一部の酸化皮膜の局所的な破壊によってアルミニウムと亜鉛が接触した部分から共晶溶融が生じる。この液相の生成によって近傍の酸化皮膜が破砕、分解されてさらに共晶溶融が全面に拡がる反応の拡大によって、酸化皮膜破壊の促進と液相を介した接合が達成される。
On the other hand, a strong oxide film is present on the surface of the aluminum material, which is physically destroyed by plastic deformation of the aluminum material caused by energization and pressurization during resistance welding.
That is, since microscopic convex portions on the surface of the material are rubbed with each other by pressurization, eutectic melting occurs from a portion where aluminum and zinc are in contact with each other due to local destruction of some oxide films. By the generation of the liquid phase, the nearby oxide film is crushed and decomposed, and further, eutectic melting spreads over the entire surface, thereby promoting the oxide film destruction and joining via the liquid phase.

共晶組成は相互拡散によって自発的に達成されるため、組成のコントロールは必要ない。必須条件は2種の金属あるいは合金の間に、低融点の共晶反応が存在することであり、アルミニウムと亜鉛の共晶溶融の場合、亜鉛に代えて、例えばZn−Al合金を用いる場合には、少なくとも亜鉛が95%以上の組成でなければならない。   Since the eutectic composition is spontaneously achieved by interdiffusion, it is not necessary to control the composition. An indispensable condition is that a low melting eutectic reaction exists between two kinds of metals or alloys. In the case of eutectic melting of aluminum and zinc, for example, when using Zn-Al alloy instead of zinc. Must have a composition with at least 95% zinc.

ここで、亜鉛を両部材の間に介在させる手段としては、例えば、亜鉛を含むインサート材を挿入したり、少なくとも一方の部材に亜鉛を含む材料をあらかじめめっきしておいたりすることができるが、めっきを採用することが望ましい。これによって、インサート材を間に挟み込む工程を省略でき、作業効率が向上すると共に、共晶反応によって溶融されためっき層が表面の不純物と共に接合部の周囲に排出された後に、めっき層の下から極めて清浄な新生面が現れることになり、より強固な接合が可能となる。
そして、この場合、亜鉛めっき層を備えた亜鉛めっき鋼板を用いることが望ましい。これによって、特別な準備を要することもなく、防錆目的で亜鉛めっきを施した通常の市販鋼材(例えば、JIS G 3302やG 3313に規定)をそのまま、極めて簡便かつ安価に利用することができる。
Here, as means for interposing zinc between both members, for example, an insert material containing zinc can be inserted, or at least one member can be plated with a material containing zinc in advance, It is desirable to employ plating. As a result, the step of sandwiching the insert material can be omitted, the working efficiency is improved, and after the plating layer melted by the eutectic reaction is discharged together with the surface impurities to the periphery of the joint portion, from below the plating layer. An extremely clean new surface will appear and a stronger bond will be possible.
In this case, it is desirable to use a galvanized steel sheet provided with a galvanized layer. This makes it possible to use ordinary commercially available steel materials (for example, stipulated in JIS G 3302 and G 3313) that are galvanized for the purpose of preventing rust as they are, without any special preparation, and can be used very simply and inexpensively. .

図3(a)〜(e)は、上記したアルミニウム材と鋼材との接合プロセスを示す概略図である。
まず、図3(a)に示すように、その表面に、亜鉛めっき層1pが施された亜鉛めっき鋼板1と、アルミニウム合金材2を用意し、図3(b)に示すように、これら亜鉛めっき鋼板1とアルミニウム合金材2を亜鉛めっき層1pが内側になるように重ねる。このとき、アルミニウム合金材2の表面には酸化皮膜2fが生成している。
FIGS. 3A to 3E are schematic views showing a joining process between the aluminum material and the steel material described above.
First, as shown in FIG. 3 (a), a galvanized steel sheet 1 and an aluminum alloy material 2 provided with a galvanized layer 1p are prepared on the surface, and as shown in FIG. The plated steel plate 1 and the aluminum alloy material 2 are overlapped so that the galvanized layer 1p is inside. At this time, an oxide film 2 f is formed on the surface of the aluminum alloy material 2.

次に、加圧と加熱、例えば抵抗溶接の場合には、電極による加圧と、電極からの通電による加熱によって、図3(c)に示すように材料表面の微視的な接触部で局部的な酸化皮膜2cの破壊を生じさせる。   Next, in the case of pressurization and heating, for example, resistance welding, local contact at the microscopic contact portion of the material surface by pressurization by the electrode and heating by energization from the electrode as shown in FIG. The destruction of the typical oxide film 2c is caused.

これによって、亜鉛とアルミニウムの局部的な接触が生じ、そのときの温度状態に応じて、図3(d)に示すように、亜鉛とアルミニウムの共晶溶融が生じ、共晶溶融金属と共に酸化皮膜2fや接合界面の不純物などを含む反応生成物が排出物Wとなって矢印に示すように接合部の外側に排出される。
したがって、所定の接合面積が確保され、その結果、図3(e)に示すように、アルミニウムと鋼の新生面同士が直接接合され、鋼板1とアルミニウム合金材2の強固な金属接合が得られることになる。
As a result, local contact between zinc and aluminum occurs, and eutectic melting of zinc and aluminum occurs as shown in FIG. 3 (d) according to the temperature state at that time. The reaction product including 2f and impurities at the bonding interface becomes discharged W and is discharged to the outside of the bonded portion as indicated by an arrow.
Therefore, a predetermined bonding area is ensured, and as a result, as shown in FIG. 3E, the new surfaces of aluminum and steel are directly bonded to each other, and a strong metal bonding between the steel plate 1 and the aluminum alloy material 2 is obtained. become.

上記した鋼板とアルミニウム合金材2の組合せにおいては、両材料の間に介在させる金属CとしてZnを用いた例を説明したが、Alと低融点共晶を形成する金属でありさえすれば特にZn限定されることはなく、例えば、上記したZnの他、Cu(銅)、Sn(錫)、Ag(銀)、Ni(ニッケル)などを用いることができる。
すなわち、これら金属とAlとの共晶金属は、母材アルミニウム合金材の融点以下の温度で溶融するため、低温で酸化皮膜を除去することができ、脆弱な金属間化合物が生成し易い鋼材とアルミニウム合金材の接合においても、金属間化合物の生成を抑制して強固な接合を可能にする。
In the combination of the steel sheet and the aluminum alloy material 2 described above, the example in which Zn is used as the metal C interposed between the two materials has been described. However, as long as it is a metal that forms a low melting point eutectic with Al, it is particularly Zn. For example, Cu (copper), Sn (tin), Ag (silver), Ni (nickel), or the like can be used in addition to the above-described Zn.
That is, the eutectic metal of these metals and Al melts at a temperature below the melting point of the base aluminum alloy material, so that the oxide film can be removed at a low temperature, and a steel material that easily generates fragile intermetallic compounds. Even in the joining of aluminum alloy materials, the formation of intermetallic compounds is suppressed and strong joining is possible.

図4(a)〜(c)は、本発明方法によるアルミニウム合金製の鋳造部材Cと、板状部材としての亜鉛めっき鋼板1のインダイレクト法(図1(a)参照)による抵抗スポット溶接過程を示す工程図である。   4 (a) to 4 (c) show a resistance spot welding process by an indirect method (see FIG. 1 (a)) of an aluminum alloy cast member C according to the method of the present invention and a galvanized steel sheet 1 as a plate-like member. FIG.

図4(a)に示すように、アルミニウム合金から成る鋳造部材Cには、その部材としての剛性を確保するために、接合部位の両側近傍部にリブR,Rを備えており、これらの裏面、接合面側には鋳造時の凝固収縮に基づく引けによって、凹部D,Dがそれぞれ形成されている。なお、当該鋳造部材Cの表面には、強固な酸化皮膜(図示せず)が形成されていることは言うまでもない。
一方、板状部材としての亜鉛めっき鋼板1には、亜鉛めっき層1pが形成されている。
As shown in FIG. 4 (a), the cast member C made of an aluminum alloy is provided with ribs R and R in the vicinity of both sides of the joining portion in order to ensure rigidity as the member, and these back surfaces. On the joint surface side, recesses D and D are formed by shrinkage due to solidification shrinkage during casting, respectively. Needless to say, a strong oxide film (not shown) is formed on the surface of the cast member C.
On the other hand, a galvanized layer 1p is formed on a galvanized steel sheet 1 as a plate-like member.

次に、図4(b)に示すように、鋳造部材Cの反リブ側、すなわち凹部D,Dが形成されている面に、亜鉛めっき層1pが内側となるように亜鉛めっき鋼板1を重ね、電極Rを亜鉛めっき鋼板1に当接させて、通電及び加圧を行う。このとき、もう一方の電極は、図外の部分で鋳造部材Cに接触しており、亜鉛めっき鋼板1との間の通電状態が確保されるようになっている。
抵抗スポット接合条件としては、特別な条件を適用する必要はなく、亜鉛めっき鋼板1の板厚や、鋳造部材Cの接合部における肉厚に応じて、溶接電流:10000〜40000A、通電時間:50msec〜500msec、加圧力:50〜1200kgf程度の範囲内で選択することができる。
Next, as shown in FIG. 4 (b), the galvanized steel sheet 1 is overlaid on the opposite rib side of the cast member C, that is, on the surface where the recesses D and D are formed so that the galvanized layer 1p is on the inner side. Then, the electrode R is brought into contact with the galvanized steel sheet 1 and energization and pressurization are performed. At this time, the other electrode is in contact with the cast member C at a portion not shown in the figure, so that a current-carrying state with the galvanized steel sheet 1 is ensured.
As the resistance spot joining condition, it is not necessary to apply a special condition. Depending on the thickness of the galvanized steel sheet 1 and the thickness of the joint portion of the cast member C, the welding current is 10000 to 40000 A, and the energizing time is 50 msec. The pressure can be selected within a range of about 500 msec and a pressing force of about 50 to 1200 kgf.

電極による加圧と通電加熱によって、酸化皮膜が破壊され、亜鉛とアルミニウムの局部的な接触が生じると、先に説明したように、共晶溶融が生じ、酸化皮膜や接合界面の不純物などが共晶溶融金属と共に排出物Wとなって接合部から排出され、両部材が接合される。   When the oxide film is destroyed by the pressurization and current heating by the electrodes and local contact between zinc and aluminum occurs, eutectic melting occurs as described above, and the oxide film and impurities at the joint interface coexist. Together with the crystal molten metal, the material becomes discharged W and is discharged from the joint, and both members are joined.

このとき、両部材の間には、リブR,Rの裏面に形成された凹部D,Dによって隙間が生じており、図4(c)に示すように、排出物Wがこの凹部D,D内に流入することから、接合界面からの排出が極めて円滑なものとなって、排出物Wの接合部への残存が防止される。
したがって、鋼板1とアルミニウム合金から成る鋳造部材Cの新生面同士が直接接合されることになり、鋳物と板材との強固な異種金属接合が達成される。
At this time, a gap is formed between the two members due to the recesses D and D formed on the back surfaces of the ribs R and R, and as shown in FIG. Since it flows into the inside, the discharge from the bonding interface becomes extremely smooth, and the waste W is prevented from remaining in the bonding portion.
Therefore, the new surfaces of the cast member C made of the steel plate 1 and the aluminum alloy are directly joined to each other, and strong dissimilar metal joining between the casting and the plate material is achieved.

本発明においては、上記のように、鋳造時の引けによってリブRの裏面側に形成される凹部Dを利用するものであり、リブRが必ずしも接合部位の両側になく、片側だけであってもそれなりの効果が得られるが、できれば両側にあることが望ましいことは言うまでもない。また、リブRの接合部からの距離についても、大きすぎると凹部Dに到達する前に温度低下によって排出物Wが流動性を失ってしまうことになるため、できるだけ近傍部にあることが望ましい。
このような観点から、製品としての本来の機能に支障がない限りにおいて、接合部の位置をリブ位置に応じて調整したり、鋳造部材CのリブRの位置や数を接合位置に合わせて変えたりする設計変更が考えられる。
In the present invention, as described above, the concave portion D formed on the back surface side of the rib R by shrinkage at the time of casting is used, and the rib R is not necessarily on both sides of the joining portion, but only on one side. Needless to say, it should be on both sides if possible. Further, if the distance from the joint portion of the rib R is too large, the discharge W will lose its fluidity due to a temperature drop before reaching the recess D, so it is desirable that the distance is as close as possible.
From this point of view, as long as the original function of the product is not hindered, the position of the joint is adjusted according to the rib position, or the position and number of the ribs R of the cast member C are changed according to the joint position. Design changes are possible.

また、本発明において、板状部材としては、必ずしも圧延や押出しなど、塑性加工による展伸材のみに限定される訳ではなく、反接合面側に電極の障害となるような凹凸のない平面を有する板状の部材である限り、鋳物であっても差し支えない。   Further, in the present invention, the plate-like member is not necessarily limited to a wrought material by plastic working such as rolling or extrusion, and a flat surface that does not have an unevenness on the anti-joining surface side becomes an obstacle to the electrode. It may be a casting as long as it is a plate-shaped member.

図5は、同様の鋳造部材Cと亜鉛めっき鋼板1のインダイレクト法(図1(b)参照)による抵抗シーム溶接結果を示すものであって、図4(c)における電極Eをローラ電極Erに変更し、当該電極と両部材とを相対移動させて、線状に接合すること以外、基本的に変わるところはない。
抵抗シーム接合の条件についても、特別な条件を適用する必要はなく、亜鉛めっき鋼板1の板厚や、鋳造部材Cの接合部における肉厚に応じて、溶接電流:10000〜40000A、加圧力:50〜1500kgf、接合速度:1〜9m/分程度の条件範囲内で適宜選択することができる。
FIG. 5 shows a resistance seam welding result by the indirect method (see FIG. 1B) of the similar cast member C and the galvanized steel sheet 1. The electrode E in FIG. 4C is a roller electrode Er. There is basically no change except that the electrode and both members are moved relative to each other and joined in a linear shape.
There is no need to apply special conditions for the resistance seam joining, and welding current is 10000 to 40000 A depending on the thickness of the galvanized steel sheet 1 and the thickness of the joint of the cast member C. It can be appropriately selected within a range of conditions of 50 to 1500 kgf and a joining speed of about 1 to 9 m / min.

次に、同様の共晶溶融を利用したマグネシウム合金材と鋼材の接合(金属A=Mg、金属B=Fe(鋼)、金属C=Zn)について説明する。
すなわち、図6は、Mg−Zn系2元状態図を示すものであって、図に示すようにMg−Zn系には、共晶点が2点(Te1及びTe2)あり、それぞれ341℃及び364℃であり、マグネシウムの融点650℃よりも遙かに低い温度で共晶反応を生じる。
Next, the joining of magnesium alloy material and steel material using the same eutectic melting (metal A = Mg, metal B = Fe (steel), metal C = Zn) will be described.
That is, FIG. 6 shows an Mg—Zn-based binary phase diagram. As shown in the figure, the Mg—Zn-based material has two eutectic points (Te1 and Te2), which are 341 ° C. and The eutectic reaction occurs at a temperature of 364 ° C., much lower than the melting point of magnesium, 650 ° C.

したがって、図に示した共晶点を利用してMgとZnの共晶溶融を作り出し、接合時の酸化皮膜除去に利用すれば、同様の原理によって、接合を阻害するマグネシウムの酸化皮膜を低温で確実に除去できると共に、接合時の界面温度をより均一に保持できるようになる。
但し、上記のようにFe−Mg二元状態図は二相分離型を示し、互いの固溶限も非常に小さいことから、これら金属を主成分とする材料同士を直接接合することは極めて困難であるため、両金属とそれぞれ金属間化合物を形成するAlを接合界面に予め添加しておくことが必要となる。
Therefore, if the eutectic point of Mg and Zn is created using the eutectic point shown in the figure and used to remove the oxide film during bonding, the magnesium oxide film that inhibits bonding can be formed at a low temperature by the same principle. It can be surely removed and the interface temperature at the time of bonding can be kept more uniform.
However, as described above, the Fe-Mg binary phase diagram shows a two-phase separation type, and since the mutual solubility limit is very small, it is extremely difficult to directly bond these metal-based materials. Therefore, it is necessary to add in advance to the bonding interface Al that forms an intermetallic compound with both metals.

図7(a)〜(e)は、マグネシウム合金材と鋼材(亜鉛めっき鋼板)との接合過程を示す概略工程図である。
まず、図7(a)に示すように、少なくとも接合界面側の表面に、Mgと共晶を形成する金属として亜鉛を含む亜鉛めっき層(第3の材料)1pが施された亜鉛めっき鋼板1と、マグネシウム合金材2を用意する。
FIGS. 7A to 7E are schematic process diagrams showing a joining process between a magnesium alloy material and a steel material (galvanized steel sheet).
First, as shown in FIG. 7 (a), a galvanized steel sheet 1 having a zinc-plated layer (third material) 1p containing zinc as a metal that forms a eutectic with Mg at least on the surface on the bonding interface side. A magnesium alloy material 2 is prepared.

そして、図7(b)に示すように、これら亜鉛めっき鋼板1とマグネシウム合金材5を亜鉛めっき層1pが内側になるように重ねる。なお、マグネシウム合金材5には、予め適量のAl(例えば、6%程度)が添加されており、表面には酸化皮膜5fが生成している。なお、Alは第3の材料中に添加することもでき、このために亜鉛めっき鋼板1に替えてZn−Al合金めっき鋼板を用いることも可能である。   And as shown in FIG.7 (b), these galvanized steel plates 1 and the magnesium alloy material 5 are piled up so that the galvanized layer 1p may become an inner side. Note that an appropriate amount of Al (for example, about 6%) is added to the magnesium alloy material 5 in advance, and an oxide film 5f is formed on the surface. Note that Al can also be added to the third material. For this purpose, a Zn—Al alloy-plated steel sheet can be used instead of the galvanized steel sheet 1.

次に、図7(b)に矢印で示すように、これらに加熱及び加圧、例えば抵抗溶接の場合には、電極による加圧と通電加熱による塑性変形などが加えられると、酸化皮膜5fが局部的に破壊される。
このように酸化皮膜1fが破壊されると、MgとZnの局部的な接触が起こり、所定の温度状態に保持されると、図7(c)に示すように、MgとZnの共晶液相が生じ、マグネシウム合金材5の表面の酸化皮膜5fが接合界面から順次、効果的に除去される。
Next, as shown by arrows in FIG. 7B, in the case of heating and pressurization, for example, resistance welding, when the electrode pressurization and the plastic deformation due to current heating are applied, the oxide film 5f is formed. Locally destroyed.
When the oxide film 1f is broken in this way, local contact between Mg and Zn occurs, and when the oxide film 1f is maintained at a predetermined temperature state, as shown in FIG. A phase is generated, and the oxide film 5f on the surface of the magnesium alloy material 5 is effectively removed sequentially from the bonding interface.

そして、図7(d)に示すように、押圧によって共晶液相と共に酸化皮膜5fや接合界面の不純物が排出物Wとなって、接合部周囲に排出される。この時、接合界面では共晶溶融によりZnと共にMgが優先的に溶融して排出される。その結果、マグネシウム合金中に添加されたAl成分が取り残され、接合界面だけ相対的にAlリッチな相ができ、さらにこのAl原子がFe及びMgと反応し、Al−Mg系やFe−Al系の金属間化合物を含む化合物層6が形成される。   Then, as shown in FIG. 7 (d), the oxide film 5f and impurities at the bonding interface together with the eutectic liquid phase become discharge W and are discharged around the bonded portion by pressing. At this time, Mg is preferentially melted and discharged together with Zn by eutectic melting at the bonding interface. As a result, the Al component added in the magnesium alloy is left behind, and a relatively Al-rich phase is formed only at the bonding interface. Further, this Al atom reacts with Fe and Mg, and Al-Mg or Fe-Al A compound layer 6 containing the intermetallic compound is formed.

さらに、接合時間が経過すると、図7(e)に示すように、界面に形成したMg−Zn共晶溶融反応生成物が完全に排出される。その結果、接合界面にはAl−Mg系及び/又はFe−Al系金属間化合物を含む化合物層6が形成され、冶金的に直接接合が困難なマグネシウム合金と鋼の組合せにおいても相互拡散が可能となり、亜鉛めっき鋼板1とマグネシウム合金材5との強固な接合が完了する。   Furthermore, when the joining time has elapsed, as shown in FIG. 7E, the Mg—Zn eutectic fusion reaction product formed at the interface is completely discharged. As a result, a compound layer 6 containing an Al—Mg-based and / or Fe—Al-based intermetallic compound is formed at the bonding interface, and mutual diffusion is possible even in the combination of magnesium alloy and steel that are difficult to metallurgically bond directly. Thus, the strong bonding between the galvanized steel sheet 1 and the magnesium alloy material 5 is completed.

本発明の異種金属接合方法において、マグネシウム合金材と鋼材を接合する場合には、先にも説明したように、接合界面にAlが存在することが必要であり、そのためにはマグネシウム合金材及び第3の材料の少なくとも一方に予めAlを添加しておくことが必要となる。   In the dissimilar metal bonding method of the present invention, when a magnesium alloy material and a steel material are bonded, it is necessary that Al be present at the bonding interface as described above. It is necessary to add Al to at least one of the three materials in advance.

Alを含有するマグネシウム合金材としては、例えばASTM(アメリカ材料試験協会)にAZ31(約3%Al)、AZ61(約6%Al)、AZ81(約8%Al)、AZ91(約9%Al)、AZ101(約10%Al)などのAl−Zn系マグネシウム合金や、AM60(約6%Al)、AM100(約10%Al)などのAl−Mn系マグネシウム合金が規定されている。
したがって、マグネシウム合金材としてこれらの合金を利用することによって、改めて合金調合することなく、Al含有のマグネシウム合金材を安価に入手し、本発明に適用することができる。
Examples of magnesium alloy materials containing Al include ASTM (American Society for Testing and Materials) AZ31 (about 3% Al), AZ61 (about 6% Al), AZ81 (about 8% Al), AZ91 (about 9% Al). Al-Zn magnesium alloys such as AZ101 (about 10% Al) and Al-Mn magnesium alloys such as AM60 (about 6% Al) and AM100 (about 10% Al) are defined.
Therefore, by using these alloys as the magnesium alloy material, an Al-containing magnesium alloy material can be obtained at a low cost and applied to the present invention without preparing an alloy again.

一方、表面にZn−Al合金から成るめっきを施しためっき鋼板がJIS G 3317(Zn−5%Al)やG 3321(55%Al−Zn)に規定されており、このような市販鋼板を鋼材として使用することもでき、Alを含有しないマグネシウム合金との接合に適用することができる。   On the other hand, a plated steel sheet having a surface plated with a Zn—Al alloy is defined in JIS G 3317 (Zn-5% Al) and G 3321 (55% Al—Zn). It can also be used as, and can be applied to joining with a magnesium alloy containing no Al.

図8(a)〜(c)は、本発明方法によるマグネシウム合金製の鋳造部材Cと、板状部材としての亜鉛めっき鋼板1のインダイレクト法(図1(a)参照)による抵抗スポット溶接過程を示す工程図である。   8 (a) to 8 (c) show a resistance spot welding process by an indirect method (see FIG. 1 (a)) of a cast member C made of magnesium alloy according to the method of the present invention and a galvanized steel sheet 1 as a plate-like member. FIG.

Al含有のマグネシウム合金から成る鋳造部材Cには、図8(a)に示すように、接合部位の両側近傍部にリブR,Rが同様に形成されており、これらリブR,Rの裏面側には鋳造時の引けによって凹部D,Dがそれぞれ形成され、その表面には、図示しない酸化皮膜を備えている。   As shown in FIG. 8A, ribs R and R are similarly formed in the vicinity of both sides of the joining portion in the cast member C made of an Al-containing magnesium alloy, and the back side of these ribs R and R , Recesses D and D are formed by shrinkage during casting, respectively, and an oxide film (not shown) is provided on the surface thereof.

そして、図8(b)に示すように、鋳造部材Cの反リブ側面に、亜鉛めっき鋼板1を同様に重ね、電極Rを亜鉛めっき鋼板1に当接させて、通電及び加圧を開始する。
なお、鋳造部材CがAlを含有しない合金から成る場合におけるAlの添加手段としては、Zn−Al合金から成るめっきを施しためっき鋼板を用いることが望ましい。
And as shown in FIG.8 (b), the galvanized steel plate 1 is similarly piled up on the anti-rib side surface of the casting member C, the electrode R is contact | abutted to the galvanized steel plate 1, and electricity supply and pressurization are started. .
In addition, when the cast member C is made of an alloy not containing Al, it is desirable to use a plated steel sheet plated with a Zn-Al alloy as the Al addition means.

共晶溶融を利用して異種金属を抵抗接合する場合、アルミニウム合金と鋼との接合では、接合界面の反応生成物を素早く強制的に排出しないと高強度が得られないため、先端曲率の小さいR型電極(例えば、板厚1.2mmではR50以下)を用いて接合することが望ましい。これに対し、固有抵抗値の大きいマグネシウム合金と鋼との接合においては、接合面内の温度分布や加圧力分布が不均一となり、同じ考え方では高い接合強度が得られ難くなる可能性がある。
一方、マグネシウム合金と鋼との接合では、Mg−Zn合金系の低融点共晶(341℃、364℃)を利用することにより(Al−Zn合金では381℃)、接合界面から反応生成物を容易に排出できるものと考えられる。したがって、マグネシウム合金と鋼の接合の場合には、先端曲率のより大きいR型電極を用いることが望ましく、これによって電流密度、加圧力の分散・均一化による有効ナゲット径拡大を果たすことができ、高強度な異種材接合継手を実現することができる。
When jointing dissimilar metals using eutectic melting, high strength cannot be obtained unless the reaction product at the joint interface is quickly and forcibly discharged between the aluminum alloy and steel, so the tip curvature is small. It is desirable to use an R-type electrode (for example, R50 or less when the plate thickness is 1.2 mm). On the other hand, in the joining of a magnesium alloy having a large specific resistance value and steel, the temperature distribution and the applied pressure distribution in the joining surface become non-uniform, and it may be difficult to obtain high joint strength with the same concept.
On the other hand, in the joining of the magnesium alloy and the steel, the reaction product is removed from the joining interface by utilizing the low melting point eutectic (341 ° C., 364 ° C.) of the Mg—Zn alloy (381 ° C. for the Al—Zn alloy). It can be easily discharged. Therefore, in the case of joining a magnesium alloy and steel, it is desirable to use an R-type electrode having a larger tip curvature, which can increase the effective nugget diameter by dispersing and homogenizing the current density and the applied pressure, A high-strength dissimilar material joint can be realized.

電極による加圧と通電加熱によって、鋳造部材Cの表面の酸化皮膜が破壊され、亜鉛とマグネシウムの局部的な接触によって共晶溶融が生じ、酸化皮膜や接合界面の不純物などを含む反応生成物が排出物Wとなって接合部から円滑に排出され、図8(c)に示すように凹部D,D内に流入する。
このとき、接合界面には、Al−Mg系金属間化合物(AlMg)やFe−Al系金属間化合物(FeAl)が生成し、これら金属間化合物を含む化合物層6を介して鋼板1と鋳造部材Cの新生面同士が接合されることになり、鋳物と板材との強固な異種金属接合が可能になる。
The oxide film on the surface of the cast member C is destroyed by pressurization and electric heating by the electrode, eutectic melting occurs due to local contact between zinc and magnesium, and the reaction product containing oxide film and impurities at the bonding interface is generated. It becomes the discharge | emission material W, is discharged | emitted smoothly from a junction part, and flows in into the recessed parts D and D as shown in FIG.8 (c).
At this time, an Al—Mg-based intermetallic compound (Al 3 Mg 2 ) or an Fe—Al-based intermetallic compound (FeAl 3 ) is generated at the bonding interface, and the steel plate is interposed via the compound layer 6 containing these intermetallic compounds. 1 and the new surfaces of the cast member C are joined to each other, and a strong dissimilar metal joining between the casting and the plate material becomes possible.

また、マグネシウム合金から成る鋳造部材Cと亜鉛めっき鋼板1をインダイレクト法(図1(b)参照)によって抵抗シーム溶接することも同様に可能である。
すなわち、図9に示すように、同様のマグネシウム合金から成る鋳造部材Cと亜鉛めっき鋼板1とがAlMgやFeAlなどといった金属間化合物を含む化合物層6を介して線状に接合することができる。
Similarly, it is possible to perform resistance seam welding between the cast member C made of a magnesium alloy and the galvanized steel sheet 1 by the indirect method (see FIG. 1B).
That is, as shown in FIG. 9, a cast member C made of a similar magnesium alloy and a galvanized steel sheet 1 are joined linearly via a compound layer 6 containing an intermetallic compound such as Al 3 Mg 2 or FeAl 3. be able to.

以下、実施例として、本発明による鋳物と板材の具体的な異種金属接合例を示す。なお、本発明はこれら実施例に限定されるものではない。   Hereinafter, as examples, specific examples of dissimilar metal joining of a casting and a plate material according to the present invention will be shown. The present invention is not limited to these examples.

(実施例1)
図4に示したように、接合部の肉厚が3mm、接合部の両側に8mm間隔の隔てて厚さ3mmのリブRを2箇所に備えたアルミニウム合金鋳物C(AC2A)の上に、板厚0.8mmの亜鉛めっき鋼板1を載置した。そして、図1(a)に示したような交流タイプの抵抗スポット溶接装置を用いて、溶接電流30000A、通電時間0.24S(240ms)、加圧力600kgfにて、抵抗スポット溶接を実施した。
接合完了後、接合部を切断して、その周辺を観察した結果、酸化皮膜や接合界面の不純物などを含む共晶反応生成物が接合界面に残存することなくリブ裏面の凹部内に流れ込んでおり、両部材の新生面同士が直接接合された健全な接合部の形成が確認された。
Example 1
As shown in FIG. 4, on the aluminum alloy casting C (AC2A) provided with ribs R having a thickness of 3 mm at the joint and 3 mm thick ribs R on both sides of the joint at an interval of 8 mm, a plate A 0.8 mm thick galvanized steel sheet 1 was placed. And resistance spot welding was implemented by welding current 30000A, energization time 0.24S (240 ms), and applied pressure 600kgf using the alternating current type resistance spot welding apparatus as shown to Fig.1 (a).
After joining is completed, the joint is cut and the periphery is observed. As a result, the eutectic reaction product containing oxide film and impurities at the joint interface flows into the recess on the back of the rib without remaining at the joint interface. The formation of a sound joint portion in which the new surfaces of both members were directly joined was confirmed.

(実施例2)
上記実施例1と同様の形状、寸法を有し、ADC12材から成るアルミニウム合金鋳物Cの上に、上記亜鉛めっき鋼板1を載置し、同様の条件により抵抗スポット溶接を実施した。
そして、同様に、接合部の周辺を観察した結果、反応生成物がリブ裏面の凹部内に流れ込んでおり、同様の健全な接合部が形成されていることが確認された。
(Example 2)
The galvanized steel sheet 1 was placed on an aluminum alloy casting C having the same shape and dimensions as those of Example 1 and made of ADC12 material, and resistance spot welding was performed under the same conditions.
And similarly, as a result of observing the periphery of a junction part, it was confirmed that the reaction product has flowed into the recessed part of a rib back surface, and the same healthy junction part was formed.

(実施例3)
図8に示したように、接合部の肉厚が3mm、接合部の両側に8mm間隔の隔てて厚さ3mmのリブRを2箇所に備えたマグネシウム合金鋳物C(AZ31:3%Al含有)の上に、板厚0.8mmの亜鉛めっき鋼板1を載置した。そして、図1(a)に示したような交流タイプの抵抗スポット溶接装置を用いて、溶接電流28000A、通電時間0.24S(240ms)、加圧力600kgfにて、抵抗スポット溶接を実施した。
接合完了後、接合部を切断して、その周辺を観察した結果、酸化皮膜や接合界面の不純物などを含む共晶反応生成物が接合界面に残存することなくリブ裏面の凹部内に流れ込んでおり、両部材がAlの金属間化合物を含む化合物層を介して、良好に接合されていることが確認された。
(Example 3)
As shown in FIG. 8, a magnesium alloy casting C (AZ31: containing 3% Al) having a thickness of 3 mm at the joint and two ribs R with a thickness of 3 mm on both sides of the joint at intervals of 8 mm. A galvanized steel sheet 1 having a thickness of 0.8 mm was placed on the top. And resistance spot welding was implemented by welding current 28000A, energization time 0.24S (240ms), and applied pressure 600kgf using the alternating current type resistance spot welding apparatus as shown to Fig.1 (a).
After joining is completed, the joint is cut and the periphery is observed. As a result, the eutectic reaction product containing oxide film and impurities at the joint interface flows into the recess on the back of the rib without remaining at the joint interface. It was confirmed that both members were satisfactorily bonded via a compound layer containing an intermetallic compound of Al.

(実施例4)
上記実施例1と同様の形状、寸法を有し、AZ61材(6%Al含有)から成るマグネシウム合金鋳物Cの上に、上記亜鉛めっき鋼板1を載置し、同様の条件により抵抗スポット溶接を実施した。
そして、同様に、接合部の周辺を観察した結果、反応生成物がリブ裏面の凹部内に流れ込んでおり、接合界面に残存することなく、同様の化合物層を介して健全な接合部が形成されていることが確認された。
Example 4
The galvanized steel sheet 1 is placed on a magnesium alloy casting C having the same shape and dimensions as those of Example 1 and made of AZ61 material (containing 6% Al), and resistance spot welding is performed under the same conditions. Carried out.
Similarly, as a result of observing the periphery of the joint, the reaction product flows into the recess on the back surface of the rib, and a healthy joint is formed through the same compound layer without remaining at the joint interface. It was confirmed that

(実施例5)
実施例1と同様のアルミニウム合金鋳物C(AC2A)の上に、同様の亜鉛めっき鋼板1を載置し、図1(b)に示したような交流タイプの抵抗シーム溶接装置を用いて、溶接電流32000A、接合速度5m/min、加圧力800kgfの条件により、図5に示したような抵抗シーム溶接を行った。
接合完了後、接合部を切断して、その周辺を観察した結果、同様に反応生成物が接合界面に残存することなくリブ裏面の凹部内に流れ込んでおり、両部材の新生面同士が直接接合された健全な接合部が形成されていることが確認された。
(Example 5)
A similar galvanized steel sheet 1 is placed on the same aluminum alloy casting C (AC2A) as in Example 1, and welding is performed using an AC type resistance seam welding apparatus as shown in FIG. Resistance seam welding as shown in FIG. 5 was performed under the conditions of a current of 32000 A, a joining speed of 5 m / min, and a pressing force of 800 kgf.
After joining is completed, the joint is cut and the periphery is observed. As a result, the reaction product flows into the recesses on the back surface of the rib without remaining at the joint interface, and the new surfaces of both members are joined directly. It was confirmed that a healthy joint was formed.

(実施例6)
実施例2と同様のアルミニウム合金鋳物C(ADC12)の上に、上記亜鉛めっき鋼板1を載置し、実施例5と同様の条件により、図5に示したような抵抗シーム溶接を実施した。
そして、同様に、接合部の周辺を観察した結果、反応生成物がリブ裏面の凹部内に流れ込んでおり、健全な接合部が同様に形成されていることが確認された。
(Example 6)
The galvanized steel sheet 1 was placed on the same aluminum alloy casting C (ADC12) as in Example 2, and resistance seam welding as shown in FIG. 5 was performed under the same conditions as in Example 5.
And similarly, as a result of observing the periphery of a junction part, it was confirmed that the reaction product has flowed into the recessed part of a rib back surface, and the healthy junction part is formed similarly.

(実施例7)
実施例3と同様のマグネシウム合金鋳物C(AZ31)の上に、同様の亜鉛めっき鋼板1を載置し、図1(b)に示したような交流タイプの抵抗シーム溶接装置を用いて、溶接電流30000A、接合速度5m/min、加圧力800kgfの条件により、図5に示したような抵抗シーム溶接を行った。
接合完了後、接合部を切断して、その周辺を観察した結果、反応生成物が接合界面に残存することなく、リブ裏面の凹部内に流れ込んでおり、両部材がAlの金属間化合物を含む化合物層を介して、良好に接合されていることが確認された。
(Example 7)
A similar galvanized steel sheet 1 is placed on the same magnesium alloy casting C (AZ31) as in Example 3, and welding is performed using an AC type resistance seam welding apparatus as shown in FIG. Resistance seam welding as shown in FIG. 5 was performed under the conditions of a current of 30000 A, a joining speed of 5 m / min, and a pressing force of 800 kgf.
After joining is completed, the joint is cut and the periphery thereof is observed. As a result, the reaction product does not remain at the joint interface and flows into the recesses on the back surface of the rib, and both members contain an intermetallic compound of Al. It was confirmed that the material was satisfactorily bonded via the compound layer.

(実施例8)
実施例4と同様のマグネシウム合金鋳物C(AZ61)の上に、上記亜鉛めっき鋼板1を載置し、実施例7と同様の条件により、図5に示したような抵抗シーム溶接を実施した。
そして、接合部の周辺を同様に観察した結果、反応生成物は、接合界面に残存することなくリブ裏面の凹部内に流れ込んでおり、同様の化合物層を介して健全な接合部が形成されていることが確認された。
(Example 8)
The galvanized steel sheet 1 was placed on the same magnesium alloy casting C (AZ61) as in Example 4, and resistance seam welding as shown in FIG. 5 was performed under the same conditions as in Example 7.
As a result of similarly observing the periphery of the joint, the reaction product flows into the recess on the back surface of the rib without remaining at the joint interface, and a healthy joint is formed through the same compound layer. It was confirmed that

インダイレクト法による抵抗スポット溶接(a)及び抵抗シーム溶接(b)の要領を示す概略図である。It is the schematic which shows the point of the resistance spot welding (a) and resistance seam welding (b) by an indirect method. Al−Zn系2元状態図における共晶点を示すグラフである。It is a graph which shows the eutectic point in an Al-Zn type binary phase diagram. (a)〜(e)は共晶溶融を利用したアルミニウム合金と鋼との異種金属接合過程を概略的に示す工程図である。(A)-(e) is process drawing which shows roughly the dissimilar metal joining process of the aluminum alloy and steel using eutectic melting. (a)〜(c)は本発明によるアルミニウム合金製鋳造部材と鋼板の抵抗スポット溶接過程を示す工程図である。(A)-(c) is process drawing which shows the resistance spot welding process of the aluminum alloy casting member and steel plate by this invention. 本発明により得られたアルミニウム合金製鋳造部材と鋼板の抵抗シーム溶接結果を示す概略図である。It is the schematic which shows the resistance seam welding result of the aluminum alloy casting member and steel plate which were obtained by this invention. Mg−Zn系2元状態図における共晶点を示すグラフである。It is a graph which shows the eutectic point in a Mg-Zn type binary phase diagram. (a)〜(e)は共晶溶融を利用したマグネシウム合金と鋼との異種金属接合過程を概略的に示す工程図である。(A)-(e) is process drawing which shows roughly the dissimilar metal joining process of the magnesium alloy and steel using eutectic melting. (a)〜(c)は本発明によるマグネシウム合金製鋳造部材と鋼板の抵抗スポット溶接過程を示す工程図である。(A)-(c) is process drawing which shows the resistance spot welding process of the magnesium alloy casting member and steel plate by this invention. 本発明により得られたマグネシウム合金製鋳造部材と鋼板の抵抗シーム溶接結果を示す概略図である。It is the schematic which shows the resistance seam welding result of the magnesium alloy casting member and steel plate which were obtained by this invention.

符号の説明Explanation of symbols

1 亜鉛めっき鋼板(板状部材)
1p 亜鉛めっき層(第3の材料)
C 鋳造部材(アルミニウム合金、マグネシウム合金)
R リブ
D 凹部
W 排出物(反応生成物)
6 化合物層
1 Galvanized steel sheet (plate member)
1p Zinc plating layer (third material)
C Casting member (aluminum alloy, magnesium alloy)
R Rib D Recess W W Emission (Reaction product)
6 Compound layer

Claims (10)

金属Aを主成分としリブを備えた鋳造部材の反リブ側に、金属Bを主成分とする板状部材を重ね、該板状部材の側から加圧して両部材を接合するに際し、両部材の間に金属Cを含有する第3の材料を介在させた状態で加熱し、上記金属A及びBの少なくとも一方と金属Cの間に共晶溶融を生じさせ、共晶溶融に伴って生じた反応生成物を鋳造時の引けに起因して鋳造部材のリブ裏面に形成されている凹部に排出することを特徴とする鋳物と板材の異種金属接合方法。   When a plate-shaped member having metal B as a main component is superimposed on the opposite rib side of a cast member having metal A as a main component and provided with ribs, both members are joined by pressurizing from the plate-shaped member side. Between the metal A and B and the metal C to cause eutectic melting, which was accompanied by eutectic melting. A method for joining different types of metal between a casting and a plate, wherein the reaction product is discharged into a recess formed on the back surface of the rib of the cast member due to shrinkage during casting. 鋳造部材がアルミニウム合金から成り、板状部材が鋼板、金属Cが亜鉛であって、アルミニウムと亜鉛の間に共晶溶融を生じさせることを特徴とする請求項1に記載の異種金属接合方法。   The dissimilar metal joining method according to claim 1, wherein the cast member is made of an aluminum alloy, the plate member is a steel plate, and the metal C is zinc, and eutectic melting is caused between aluminum and zinc. 板状部材が金属Cとして亜鉛を含むめっき層を備えた亜鉛めっき鋼板であることを特徴とする請求項2に記載の異種金属接合方法。   The dissimilar metal joining method according to claim 2, wherein the plate-like member is a galvanized steel sheet provided with a plating layer containing zinc as the metal C. 鋳造部材がマグネシウム合金から成り、板状部材が鋼板、金属Cが亜鉛であって、マグネシウムと亜鉛の間に共晶溶融を生じさせると共に、両部材の主成分であるMg及びFeの一方又はそれぞれと、鋳造部材及び/又は第3の材料中に予め添加しておいたAlとの間に金属間化合物を生じさせ、当該金属間化合物を含む化合物層を介して両部材を接合することを特徴とする請求項1に記載の異種金属接合方法。   The cast member is made of a magnesium alloy, the plate member is a steel plate, the metal C is zinc, and eutectic melting occurs between magnesium and zinc, and one or each of Mg and Fe as the main components of both members And an intermetallic compound between the cast member and / or Al previously added in the third material, and the two members are joined via a compound layer containing the intermetallic compound. The dissimilar metal joining method according to claim 1. 板状部材が金属Cとして亜鉛を含むめっき層を備えた亜鉛めっき鋼板であることを特徴とする請求項4に記載の異種金属接合方法。   The dissimilar metal joining method according to claim 4, wherein the plate-like member is a galvanized steel sheet provided with a plating layer containing zinc as the metal C. 抵抗スポット溶接によって断続的に接合することを特徴とする請求項1〜5のいずれか1つの項に記載の異種金属接合方法。   The dissimilar metal joining method according to any one of claims 1 to 5, wherein the joining is performed intermittently by resistance spot welding. 抵抗シーム溶接によって連続的に接合することを特徴とする請求項1〜5のいずれか1つの項に記載の異種金属接合方法。   The dissimilar metal joining method according to any one of claims 1 to 5, wherein the joining is continuously performed by resistance seam welding. 請求項1〜7のいずれか1つの項に記載の方法によって得られる接合構造であって、上記両部材の新生面同士が直接又は金属間化合物を含む化合物層を介して接合され、共晶溶融に伴って生じた反応生成物が鋳造部材のリブ裏面に形成された凹部に流入していることを特徴とする鋳物と板材の異種金属接合構造。   It is a joining structure obtained by the method according to any one of claims 1 to 7, wherein the new surfaces of the two members are joined directly or via a compound layer containing an intermetallic compound, and eutectic melting occurs. A dissimilar metal joining structure between a casting and a plate material, characterized in that a reaction product generated along with it flows into a recess formed on a rib back surface of the casting member. 鋳造部材がアルミニウム合金から成り、板状部材が鋼板であって、上記両部材の新生面同士が直接接合されていることを特徴とする請求項8に記載の異種金属接合構造。   The dissimilar metal joint structure according to claim 8, wherein the cast member is made of an aluminum alloy, the plate-like member is a steel plate, and the new surfaces of the two members are directly joined to each other. 鋳造部材がマグネシウム合金から成り、板状部材が鋼板であって、上記両部材の新生面同士がAl−Mg系及び/又はFe−Al系金属間化合物を含む化合物層を介して接合されていることを特徴とする請求項8に記載の異種金属接合構造。   The casting member is made of a magnesium alloy, the plate-like member is a steel plate, and the new surfaces of the two members are joined via a compound layer containing an Al—Mg-based and / or Fe—Al-based intermetallic compound. The dissimilar metal junction structure according to claim 8.
JP2008271199A 2008-10-21 2008-10-21 Method of joining different kind of metal between casting product and sheet, and joining structure of different kind of metal thereby Pending JP2010099672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008271199A JP2010099672A (en) 2008-10-21 2008-10-21 Method of joining different kind of metal between casting product and sheet, and joining structure of different kind of metal thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008271199A JP2010099672A (en) 2008-10-21 2008-10-21 Method of joining different kind of metal between casting product and sheet, and joining structure of different kind of metal thereby

Publications (1)

Publication Number Publication Date
JP2010099672A true JP2010099672A (en) 2010-05-06

Family

ID=42290783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008271199A Pending JP2010099672A (en) 2008-10-21 2008-10-21 Method of joining different kind of metal between casting product and sheet, and joining structure of different kind of metal thereby

Country Status (1)

Country Link
JP (1) JP2010099672A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045620A (en) * 2010-07-28 2012-03-08 Nissan Motor Co Ltd Joining device and joining method
JP2013063458A (en) * 2011-09-20 2013-04-11 Nissan Motor Co Ltd Jointing method and jointing component
CN110125525A (en) * 2018-02-09 2019-08-16 丰田自动车株式会社 The joint method of dissimilar metal plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045620A (en) * 2010-07-28 2012-03-08 Nissan Motor Co Ltd Joining device and joining method
JP2013063458A (en) * 2011-09-20 2013-04-11 Nissan Motor Co Ltd Jointing method and jointing component
CN110125525A (en) * 2018-02-09 2019-08-16 丰田自动车株式会社 The joint method of dissimilar metal plate
CN110125525B (en) * 2018-02-09 2022-01-14 丰田自动车株式会社 Method for joining dissimilar metal plates

Similar Documents

Publication Publication Date Title
JP5326862B2 (en) Dissimilar metal joining method of magnesium alloy and steel
JP5495093B2 (en) Joining method and structure of dissimilar metals
JP4905766B2 (en) Method and structure for joining dissimilar metals by resistance welding
US9731379B2 (en) Welding light metal workpieces by reaction metallurgy
JP5376391B2 (en) Dissimilar metal joining method and joining structure
JP4601052B2 (en) Dissimilar metal joining method
Ren et al. Interface microstructure and mechanical properties of arc spot welding Mg–steel dissimilar joint with Cu interlayer
JP2008105087A (en) Joining method of iron member with aluminum member, and iron-aluminum joined structure
JP5098792B2 (en) Dissimilar metal joining method of magnesium alloy and steel
JP2009000700A (en) Different-mental joining method and joined sructure
JP4941876B2 (en) Method and structure for joining dissimilar metals by resistance welding
JP2008207245A (en) Joined product of dissimilar materials of steel and aluminum material
JP2008284570A (en) Method and apparatus for joining different kinds of metal
JP4961530B2 (en) Method of joining dissimilar metals by resistance spot welding
JP5051608B2 (en) Method of joining dissimilar metals by resistance spot welding
JP2011088197A (en) Different material joined body and different material resistance spot welding method
JP5071752B2 (en) Dissimilar metal joining method by resistance seam welding
JP5186796B2 (en) Joining method and structure of dissimilar metals
JP2010099672A (en) Method of joining different kind of metal between casting product and sheet, and joining structure of different kind of metal thereby
JP5077615B2 (en) Resistance seam welding method and welded structure of dissimilar metals
JP5637655B2 (en) Dissimilar metal joining method and joining structure of magnesium alloy and steel
JP6996547B2 (en) MIG brazing method, lap joint member manufacturing method, and lap joint member
JP2006150439A (en) Steel material-aluminum material welded joint, and welding method therefor
JP2006320954A (en) Body joined by welding dissimilar metal members made of ferrous alloy and aluminum alloy
JP2009279605A (en) Method for joining dissimilar metal of magnesium alloy and steel, and joint structure of the same metal