JP2004115898A - Sintered alloy having dynamic pressure generation groove, and method for manufacturing the same - Google Patents

Sintered alloy having dynamic pressure generation groove, and method for manufacturing the same Download PDF

Info

Publication number
JP2004115898A
JP2004115898A JP2002284392A JP2002284392A JP2004115898A JP 2004115898 A JP2004115898 A JP 2004115898A JP 2002284392 A JP2002284392 A JP 2002284392A JP 2002284392 A JP2002284392 A JP 2002284392A JP 2004115898 A JP2004115898 A JP 2004115898A
Authority
JP
Japan
Prior art keywords
dynamic pressure
sintered alloy
pressure generating
sizing
steam treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002284392A
Other languages
Japanese (ja)
Other versions
JP4758595B2 (en
Inventor
Teruo Shimizu
清水 輝夫
Tsuneo Maruyama
丸山 恒夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002284392A priority Critical patent/JP4758595B2/en
Publication of JP2004115898A publication Critical patent/JP2004115898A/en
Application granted granted Critical
Publication of JP4758595B2 publication Critical patent/JP4758595B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide sintered alloy which is easily formed with a dynamic pressure generation groove and suppresses wear of a sliding surface, and a method for manufacturing the same. <P>SOLUTION: Sintered alloy body is formed by molding raw material powder, and performing sintering (S3) thereof. Sizing (S5) after steaming (S4) is performed on a surface of the sintered alloy body, and a dynamic pressure generation groove is formed by transfer on the surface subjected to the steaming (S4). Since the sizing (S5) is performed on the sintered alloy body having a steamed layer, the dimension of a product including the steamed layer can be finished within a predetermined dimensional tolerance. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、動圧発生溝を備えた焼結合金とその製造方法に関する。
【0002】
【従来の技術】
この種の焼結合金を用いるものとして、回転軸を支承する軸受などの摺動部材があり、その焼結合金は、金属を主原料とする原料粉末を圧縮して圧粉体を形成した後、この圧粉体を焼結して得られる。
【0003】
前記焼結合金は、例えば、鉄系や銅系の原料粉末を用いて成形され、鉄系の原料粉末を用いれば強度的に優れた軸受が得られるものの、一般に回転軸には鋼などの鉄系材料が用いられ、このように軸受及び回転軸に同種の材料を用いると、摩擦抵抗が大となり、溶着摩耗の発生を招き、耐久性が損われる。一方、銅系の原料粉末を用いれば、軸受と回転軸との摩擦抵抗が極めて小さくなるが、軸受側の摩耗が大となり、耐久性を損う。
【0004】
また、このように軸受において、回転体との摺動面に動圧発生溝を設け、この動圧発生溝によって回転体を支える動圧を発生させるようにした動圧軸受も知られている。
【0005】
例えば特開平10−141358号公報(特許文献1)などで開示される筒状の動圧軸受は、軸体を回転自在に支持する軸受の内周面に第1の傾斜溝部と第2の傾斜溝部とを対称に対向させ、これら第1の傾斜溝部と第2の傾斜溝部を円周方向に並設させてヘリンボーン状の動圧発生溝を形成している。そして、特開平10−141358号公報(特許文献1)における動圧発生溝は、内周面をNC旋盤を用いて切削加工して動圧発生溝を形成するようにしている。
【0006】
【特許文献1】
特開平10−141358号公報
【0007】
【発明が解決しようとする課題】
しかし、上記のようなヘリンボーン型の動圧発生溝をNC旋盤を用いて切削加工して形成する場合、第1及び第2の傾斜溝部が相互に隣接して円周方向に多数並設させて形成しているため、一回の切削工程で動圧発生溝を連続的に成形することができない。すなわち、まず、第1の傾斜溝部を終端まで形成した後、NC旋盤の回転駆動機構を強制停止させ、第1の傾斜溝部の終端に環状溝部を形成し、この後、第1の傾斜溝部の終端に第2の傾斜溝部の基端を合わせるようにして環状溝部から第2の傾斜溝部を第1の傾斜溝部は逆方向に向かって形成(特許文献1の段落0018〜0020段参照)するようにしている。このため、第1及び第2の傾斜溝部を1本ずつ切削することになるから、第1及び第2の傾斜溝部を位置決めするのに極めて煩雑な手間がかかり、その作業を第1及び第2の傾斜溝部の本数に応じて繰り返して行う必要があるため、動圧発生溝の成形に際し、その作業は極めて非効率的なものであった。
【0008】
また、こうした動圧発生溝は、回転体と、これを摺動自在に支持する摺動部材との摺動面に形成されることになるが、摺動面が磨耗して動圧発生溝の深さが浅くなった場合、高い動圧を維持できなくなるという問題もある。
【0009】
本発明は、このような問題点を解決しようとするもので、動圧発生溝を簡単かつ容易に形成することができるとともに、摺動面の磨耗を抑制することができる焼結合金とその製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
請求項1の焼結合金は、前記目的を達成するために、原料粉末を成形すると共に焼結してなる焼結合金本体に、動圧発生溝を有するスチーム処理層を設けたものである。
【0011】
スチーム処理層に設けた動圧発生溝により、回転により動圧が発生し、回転部材を支承することができる。しかも、スチーム処理層に転写などにより動圧発生溝を設けることができるから、焼結合金本体を切削加工する必要がなく、動圧発生溝の加工を容易に行うことができる。そして、スチーム処理層により動圧発生溝の気密性が保たれるから、動圧の発生に有利である。
【0012】
また、請求項2の発明は、請求項1の焼結合金において、前記動圧発生溝は、前記スチーム処理層を有する焼結合金本体をサイジングして該スチーム処理層に転写されたものである。
【0013】
動圧発生溝をスチーム処理層に転写するから、極めて簡易かつ正確に動圧発生溝を設けることができる。しかも、スチーム処理層を有する焼結合金本体をサイジングするから、スチーム処理層を合せた製品寸法を所定の寸法公差内に仕上げることができる。
【0014】
また、請求項3の発明は、請求項1又は2の焼結合金において、前記焼結合金が摺動部材である。
【0015】
スチーム処理層に動圧発生溝を設けた摺動部品が得られる。
【0016】
請求項4の焼結合金の製造方法は、前記目的を達成するために、原料粉末を成形すると共に焼結して焼結合金本体を形成し、この焼結合金本体の表面にスチーム処理を施した後サイジングし、前記スチーム処理を施した表面に動圧発生溝を形成する製造方法である。
【0017】
この方法を用いることにより、サイジング時にスチーム処理層が圧縮され、スチーム処理層の表面が平坦に形成され、スチーム処理層表面の摩擦抵抗が小さくなる。また、スチーム処理層を有する焼結合金本体をサイジングするから、スチーム処理層を合せた製品寸法を所定の寸法公差内に仕上げることができる。
【0018】
また、スチーム処理層に設けた動圧発生溝により、回転により動圧が発生し、回転部材を支承することができる。しかも、焼結合金本体を加工することなく、動圧発生溝を設けることができ、その加工も容易となる。
【0019】
また、請求項5の製造方法は、請求項4の製造方法において、前記サイジングと同時に前記スチーム処理を施した表面に前記動圧発生溝を転写する製造方法である。
【0020】
サイジングにより動圧発生溝をスチーム処理層に転写するから、極めて簡易かつ正確に動圧発生溝を形成することができる。
【0021】
【発明の実施形態】
以下、本発明の実施形態を添付図面を参照して説明する。図1〜図5は本発明の第1実施形態を示し、焼結合金本体の原料には、鉄系原料粉末を用いることができる。尚、以下、焼結合金として摺動部材たる軸受5を例に説明する。図2及び図3に示すように、軸受5は、略円筒形の焼結合金本体51からなり、その中央には回転軸が回転摺動する円筒状の摺動面52が形成され、さらに、その焼結合金本体51の露出した表面にスチーム処理層53を備え、このスチーム処理層53が動圧発生溝61を有する。
【0022】
その製造方法につき、図1を参照して説明すると、鉄系金属を主体とする原料粉末を所定の配合組成に配合し、その原料粉末を混合する混合(S1:ステップ1)処理を行った後、所定の圧力でプレスにより所定形状の圧粉体に成形(S2)し、この圧粉体を焼結(S3)することにより、焼結合金本体51を形成し、この焼結合金本体51をスチーム処理(S4)してスチーム処理層53を形成し、スチーム処理層53を設けた焼結合金本体を、再圧縮であるサイジング(S5)して所定寸法に仕上げてなる。
【0023】
本発明では、気密性などの向上を図るため、前記焼結(S3)処理後、焼結合金本体51に前記スチーム処理(S4)を行う。このスチーム処理(S4)は、例えば、450〜600℃の温度のスチームで約1時間実施され、焼結合金本体51の表面に、四三酸化鉄(Fe)のスチーム処理層53が形成され、このスチーム処理層53は厚さ2〜10μm程度である。
【0024】
スチーム処理(S4)後、軸受5を再圧縮であるサイジング(S5)して所定寸法に仕上げる。一例として、図4及び図5はサイジングに用いる矯正用金型装置11を示し、この矯正用金型装置11は、上下方向を軸方向(プレス上下軸方向)としており、ダイ12、コアロッド13、下パンチ14および上パンチ15を備えている。ダイ12はほぼ円筒形状で、このダイ12内にほぼ円柱形状のコアロッド13が同軸的に位置している。下パンチ14は、ほぼ円筒形状で、ダイ12およびコアロッド13間に下方から上下動自在に嵌合している。上パンチ15は、ほぼ円筒形状で、ダイ12およびコアロッド13間に上方から上下動自在にかつ挿脱自在に嵌合するものである。そして、図4に示すように、ダイ12内に前記軸受5を充填し、この軸受5の貫通孔である摺動面52にコアロッド13を挿入配置した状態で、上下方向から上,下パンチ13,14により軸受5を加圧して所定の寸法に矯正する。
【0025】
本発明の特徴的な構成として、前記矯正用金型装置11には、前記コアロッド13のサイジング面たる外周面に、前記動圧発生溝61を形成する転写部21を設けている。そして、この転写部21は、前記動圧発生溝61の形状に対応した凸部に形成されており、転写部21の高さはこのスチーム処理層53に形成する動圧発生溝61の深さに対応する。また、動圧発生溝61は、コアロッド13以外にも、軸受5の摺動面となる両側端面及び外周面に設けることができ、この場合は対応する摺動面を形成する上,下パンチ15,14のサイジング面及びダイ12のサイジング面に転写部を設ければよい。尚、サイジング面とはサイジングされるもの(この例では軸受5)に当接する面である。
【0026】
上記のようなスチーム処理層61は、焼結合金の表面に開口する気孔を塞ぎ、気密性を高め、また、酸化皮膜の特性により、硬度の向上により耐磨耗性が向上する。一方、スチーム処理層61の最表面に凹凸が発生するが、サイジング(S5)により最表面が平滑化される。
【0027】
このように本実施形態では、請求項1に対応して、原料粉末を成形すると共に焼結してなる焼結合金本体51に、動圧発生溝61を有するスチーム処理層53を設けたから、スチーム処理層53に設けた動圧発生溝61により、回転により動圧が発生し、回転部材を支承することができる。しかも、スチーム処理層61に転写などにより動圧発生溝61を設けることができるから、焼結合金本体51を切削加工する必要がなく、動圧発生溝61の加工を容易に行うことができる。そして、スチーム処理層53により動圧発生溝61の気密性が保たれるから、動圧の発生に有利である。
【0028】
また、このように本実施形態では、請求項2に対応して、動圧発生溝61は、スチーム処理層53を有する焼結合金本体51をサイジング(S5)して該スチーム処理層53に転写されたものであるから、極めて簡易かつ正確に動圧発生溝61を設けることができる。しかも、スチーム処理層53を有する焼結合金本体51をサイジング(S5)するから、スチーム処理層61を合せた製品寸法を所定の寸法公差内に仕上げることができる。
【0029】
また、このように本実施形態では、請求項3に対応して、焼結合金が摺動部材たる軸受であるから、スチーム処理層53に動圧発生溝61を設けた軸受5が得られる。
【0030】
このように本実施形態では、請求項4に対応して、原料粉末を成形すると共に焼結して焼結合金本体51を形成し、この焼結合金本体51の表面にスチーム処理(S4)を施した後サイジング(S5)し、スチーム処理(S4)を施した表面に動圧発生溝61を形成するから、サイジング(S5)時にスチーム処理層53が圧縮され、スチーム処理層53の表面が平坦に形成され、スチーム処理層53表面の摩擦抵抗が小さくなる。また、スチーム処理層53を有する焼結合金本体51をサイジング(S5)するから、スチーム処理層53を合せた製品寸法を所定の寸法公差内に仕上げることができる。
【0031】
また、このように本実施形態では、請求項5に対応して、サイジング(S5)と同時にスチーム処理(S4)を施した表面に動圧発生溝61を転写するから、極めて簡易かつ正確に動圧発生溝61を形成することができる。
【0032】
図6は本発明の第2実施形態を示し、上記第1実施形態と同一部分に同一符号を付し、その詳細な説明を省略して詳述すると、この例では、回転軸の代わりに同様の製法により焼結合金本体51Aである固定軸4Aを形成し、固定軸4Aの外周面に設けたスチーム処理層53に、サイジング(S5)により動圧発生溝61を形成したものであり、その固定軸4Aに筒状回転体71を回転可能に設け、該筒状回転体71にインペラ6を設けてモータ3を構成したものであり、筒状回転体71が回転することにより動圧発生溝61に動圧が発生する。
【0033】
このように固定軸4Aの摺動面たる外周面に筒状回転体71が摺動しながら回転するものであり、固定軸4Aは摺動部材であり、このように固定された摺動部材に動圧発生溝61を設けても良く、上記各実施例と同様な作用・効果を奏する。
【0034】
なお、本発明は、前記実施形態に限定されるものではなく、種々の変形実施が可能である。例えば、第3実施形態として図7は、焼結合金たる軸受5の端面に動圧発生溝61Aを形成したものを示し、この例では端面に沿って回動する回転体のスラスト荷重を支持することができ、このように動圧発生溝の形状や位置などは適宜選定可能である。また、スチーム処理層の厚さ及び動圧発生溝の深さなども適宜選定可能である。また、軸受は、実施形態のものに限らず種々の形状のもの適用可能である。また、摺動部材も軸受に限らず、摺動部が有る部材であれば各種の摺動部材に適用可能である。
【0035】
【発明の効果】
請求項1の焼結合金は、原料粉末を成形すると共に焼結してなる焼結合金本体に、動圧発生溝を有するスチーム処理層を設けたものであり、回転により動圧が発生し、回転部材を支承することができ、しかも、焼結合金本体を加工することなく、動圧発生溝を設けることができ、その加工も容易となる。
【0036】
また、請求項2の発明は、請求項1の効果に加えて、前記動圧発生溝は、前記スチーム処理層を有する焼結合金本体をサイジングして該スチーム処理層に転写されたものであり、極めて簡易かつ正確に動圧発生溝を設けることができる。しかも、スチーム処理層を有する焼結合金本体をサイジングするから、スチーム処理層を合せた製品寸法を所定の寸法公差内に仕上げることができる。
【0037】
また、請求項3の発明は、請求項1又は2の効果に加えて、前記焼結合金が摺動部材であり、スチーム処理層に動圧発生溝を設けた摺動部品摺動部品が得られる。
【0038】
請求項4の焼結合金の製造方法は、原料粉末を成形すると共に焼結して焼結合金本体を形成し、この焼結合金本体の表面にスチーム処理を施した後サイジングし、前記スチーム処理を施した表面に動圧発生溝を形成する製造方法であり、サイジング時にスチーム処理層が圧縮され、スチーム処理層の表面が平坦に形成され、スチーム処理層表面の摩擦抵抗が小さくなる。また、スチーム処理層を有する焼結合金本体をサイジングするから、スチーム処理層を合せた製品寸法を所定の寸法公差内に仕上げることができる。
【0039】
また、請求項5の製造方法は、請求項4の効果に加えて、前記サイジングと同時に前記スチーム処理を施した表面に前記動圧発生溝を転写する製造方法であり、極めて簡易かつ正確に動圧発生溝を形成することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示す製造方法を説明するフローチャート図である。
【図2】同上、焼結合金本体の斜視図である。
【図3】同上、一部を拡大した焼結合金の断面図である。
【図4】同上、サイジングを説明する断面図である。
【図5】同上、サイジングを説明する要部の拡大断面図である。
【図6】本発明の第2実施形態を示す筒状回転体にインペラを設けてモータを構成したポンプの説明図である。
【図7】本発明の第3実施形態を示す端面に動圧発生溝を設けた焼結合金の平面図である。
【符号の説明】
1 軸受(摺動部材)
51 焼結合金本体
52 摺動面(表面)
53 スチーム処理層
61 動圧発生溝
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sintered alloy having a dynamic pressure generation groove and a method for manufacturing the same.
[0002]
[Prior art]
There is a sliding member such as a bearing for supporting a rotating shaft as a material using a sintered alloy of this kind. The sintered alloy is formed by compressing a raw material powder mainly composed of a metal into a green compact. This is obtained by sintering the compact.
[0003]
The sintered alloy is formed using, for example, iron-based or copper-based raw material powder, and a bearing having excellent strength can be obtained by using iron-based raw material powder. If the same material is used for the bearing and the rotating shaft in this way, the frictional resistance becomes large, welding wear occurs, and the durability is impaired. On the other hand, when a copper-based raw material powder is used, the frictional resistance between the bearing and the rotating shaft becomes extremely small, but the wear on the bearing side becomes large and the durability is impaired.
[0004]
Further, in such bearings, there is also known a dynamic pressure bearing in which a dynamic pressure generating groove is provided on a sliding surface with a rotating body, and the dynamic pressure generating groove generates a dynamic pressure for supporting the rotating body.
[0005]
For example, a cylindrical dynamic pressure bearing disclosed in Japanese Patent Application Laid-Open No. H10-141358 (Patent Document 1) has a first inclined groove portion and a second inclined groove formed on an inner peripheral surface of a bearing that rotatably supports a shaft body. The grooves are symmetrically opposed to each other, and the first inclined groove and the second inclined groove are arranged side by side in the circumferential direction to form a herringbone-shaped dynamic pressure generating groove. The dynamic pressure generating groove in Japanese Patent Application Laid-Open No. H10-141358 (Patent Literature 1) has an inner peripheral surface formed by cutting using an NC lathe.
[0006]
[Patent Document 1]
JP-A-10-141358
[Problems to be solved by the invention]
However, when the herringbone type dynamic pressure generating grooves as described above are formed by cutting using an NC lathe, a large number of first and second inclined grooves are arranged adjacent to each other in the circumferential direction. Due to the formation, the dynamic pressure generating groove cannot be continuously formed in one cutting step. That is, first, after forming the first inclined groove portion to the end, the rotary drive mechanism of the NC lathe is forcibly stopped, an annular groove portion is formed at the end of the first inclined groove portion, and thereafter, the first inclined groove portion is formed. The second inclined groove portion is formed from the annular groove portion in the opposite direction to the first inclined groove portion so that the base end of the second inclined groove portion is aligned with the end (see paragraphs 0018 to 0020 in Patent Document 1). I have to. For this reason, since the first and second inclined groove portions are cut one by one, it takes extremely troublesome work to position the first and second inclined groove portions, and the operation is performed by the first and second inclined groove portions. It is necessary to repeat the process according to the number of the inclined groove portions, so that the operation for forming the dynamic pressure generating grooves is extremely inefficient.
[0008]
Further, such a dynamic pressure generating groove is formed on the sliding surface of the rotating body and the sliding member slidably supporting the rotating body, but the sliding surface is worn and the dynamic pressure generating groove is formed. When the depth becomes shallow, there is also a problem that high dynamic pressure cannot be maintained.
[0009]
The present invention is intended to solve such a problem, and a sintered alloy capable of easily and easily forming a dynamic pressure generating groove and suppressing abrasion of a sliding surface, and a method of manufacturing the same. The aim is to provide a method.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the sintered alloy according to the first aspect is provided with a steam processing layer having a dynamic pressure generating groove in a sintered alloy body formed by molding and sintering a raw material powder.
[0011]
The dynamic pressure generating groove provided in the steam processing layer generates a dynamic pressure by rotation, and can support a rotating member. Moreover, since the dynamic pressure generating grooves can be provided in the steam processing layer by transfer or the like, it is not necessary to cut the sintered alloy body, and the dynamic pressure generating grooves can be easily processed. Further, the hermeticity of the dynamic pressure generating groove is maintained by the steam treatment layer, which is advantageous for generating dynamic pressure.
[0012]
According to a second aspect of the present invention, in the sintered alloy according to the first aspect, the dynamic pressure generating groove is obtained by sizing a sintered alloy body having the steam processing layer and transferring it to the steam processing layer. .
[0013]
Since the dynamic pressure generating grooves are transferred to the steam processing layer, the dynamic pressure generating grooves can be provided extremely easily and accurately. In addition, since the sintered alloy body having the steam treatment layer is sized, the product dimensions including the steam treatment layer can be finished within a predetermined dimensional tolerance.
[0014]
According to a third aspect of the present invention, in the sintered alloy according to the first or second aspect, the sintered alloy is a sliding member.
[0015]
A sliding component having a dynamic pressure generating groove in the steam treatment layer can be obtained.
[0016]
According to a fourth aspect of the present invention, in order to achieve the above object, a raw material powder is formed and sintered to form a sintered alloy body, and the surface of the sintered alloy body is subjected to a steam treatment. And then sizing and forming a dynamic pressure generating groove on the surface subjected to the steam treatment.
[0017]
By using this method, the steam treatment layer is compressed during sizing, the surface of the steam treatment layer is formed flat, and the friction resistance of the steam treatment layer surface is reduced. In addition, since the sintered alloy body having the steam treatment layer is sized, the product dimensions including the steam treatment layer can be finished within a predetermined dimensional tolerance.
[0018]
Further, the dynamic pressure generating groove provided in the steam processing layer generates a dynamic pressure by rotation, and can support the rotating member. Moreover, the dynamic pressure generating groove can be provided without processing the sintered alloy body, and the processing is also facilitated.
[0019]
A manufacturing method according to a fifth aspect is the manufacturing method according to the fourth aspect, wherein the dynamic pressure generating groove is transferred to a surface subjected to the steam treatment at the same time as the sizing.
[0020]
Since the dynamic pressure generating grooves are transferred to the steam processing layer by sizing, the dynamic pressure generating grooves can be formed extremely easily and accurately.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. 1 to 5 show a first embodiment of the present invention. As a raw material of a sintered alloy body, an iron-based raw material powder can be used. Hereinafter, a bearing 5 as a sliding member will be described as an example of a sintered alloy. As shown in FIGS. 2 and 3, the bearing 5 is composed of a substantially cylindrical sintered alloy body 51, and a cylindrical sliding surface 52 on which a rotating shaft slides is formed at the center thereof. A steam treatment layer 53 is provided on the exposed surface of the sintered alloy body 51, and the steam treatment layer 53 has a dynamic pressure generation groove 61.
[0022]
The manufacturing method will be described with reference to FIG. 1. After mixing a raw material powder mainly composed of an iron-based metal into a predetermined compounding composition, and performing a mixing (S1: step 1) process of mixing the raw material powder, The compact is formed into a green compact having a predetermined shape by pressing under a predetermined pressure (S2), and the green compact is sintered (S3) to form a sintered alloy body 51. The steam treatment (S4) is performed to form the steam treatment layer 53, and the sintered alloy body provided with the steam treatment layer 53 is sizing (S5) as recompression to finish it to a predetermined size.
[0023]
In the present invention, in order to improve airtightness and the like, after the sintering (S3) processing, the steam processing (S4) is performed on the sintered alloy body 51. This steam treatment (S4) is performed, for example, with steam at a temperature of 450 to 600 ° C. for about 1 hour, and a steam treatment layer 53 of triiron tetroxide (Fe 3 O 4 ) is formed on the surface of the sintered alloy body 51. This steam processing layer 53 is formed and has a thickness of about 2 to 10 μm.
[0024]
After the steam processing (S4), the bearing 5 is sizing (S5) for recompression to finish it to a predetermined size. As an example, FIG. 4 and FIG. 5 show a straightening mold device 11 used for sizing. The straightening mold device 11 has a vertical direction (press vertical axis direction), a die 12, a core rod 13, A lower punch 14 and an upper punch 15 are provided. The die 12 has a substantially cylindrical shape, and a substantially cylindrical core rod 13 is coaxially located in the die 12. The lower punch 14 has a substantially cylindrical shape, and is fitted between the die 12 and the core rod 13 so as to be vertically movable from below. The upper punch 15 has a substantially cylindrical shape, and is fitted between the die 12 and the core rod 13 so as to be vertically movable from above and removably. As shown in FIG. 4, the die 5 is filled with the bearing 5 and the core rod 13 is inserted and arranged in the sliding surface 52 which is a through hole of the bearing 5. , 14 press the bearing 5 to correct it to a predetermined size.
[0025]
As a characteristic configuration of the present invention, the correcting unit 11 is provided with a transfer unit 21 for forming the dynamic pressure generating groove 61 on an outer peripheral surface which is a sizing surface of the core rod 13. The transfer portion 21 is formed in a convex portion corresponding to the shape of the dynamic pressure generation groove 61, and the height of the transfer portion 21 is the depth of the dynamic pressure generation groove 61 formed in the steam processing layer 53. Corresponding to In addition to the core rod 13, the dynamic pressure generating grooves 61 can be provided on both side end surfaces and the outer peripheral surface serving as sliding surfaces of the bearing 5, and in this case, the upper and lower punches 15 which form corresponding sliding surfaces are formed. , 14 and the sizing surface of the die 12 may be provided with transfer portions. The sizing surface is a surface that comes into contact with the sizing target (the bearing 5 in this example).
[0026]
The steam treatment layer 61 as described above closes the pores opened on the surface of the sintered alloy, improves the airtightness, and improves the abrasion resistance by improving the hardness due to the characteristics of the oxide film. On the other hand, irregularities occur on the outermost surface of the steam treatment layer 61, but the outermost surface is smoothed by sizing (S5).
[0027]
As described above, in the present embodiment, the steam processing layer 53 having the dynamic pressure generating grooves 61 is provided in the sintered alloy body 51 formed by molding and sintering the raw material powder. The dynamic pressure generating groove 61 provided in the processing layer 53 generates a dynamic pressure by rotation, and can support the rotating member. Moreover, since the dynamic pressure generating grooves 61 can be provided on the steam processing layer 61 by transfer or the like, there is no need to cut the sintered alloy body 51, and the dynamic pressure generating grooves 61 can be easily processed. Since the hermeticity of the dynamic pressure generating groove 61 is maintained by the steam processing layer 53, it is advantageous for generating dynamic pressure.
[0028]
Further, in the present embodiment, the dynamic pressure generating groove 61 is sized (S5) to transfer the sintered alloy body 51 having the steam processing layer 53 to the steam processing layer 53 according to the second aspect. Therefore, the dynamic pressure generating groove 61 can be provided extremely easily and accurately. In addition, since the sintered alloy body 51 having the steam treatment layer 53 is sized (S5), the product dimensions including the steam treatment layer 61 can be finished within a predetermined dimensional tolerance.
[0029]
Further, in the present embodiment, as described above, since the sintered alloy is the bearing serving as the sliding member, the bearing 5 having the steam processing layer 53 provided with the dynamic pressure generating groove 61 can be obtained.
[0030]
As described above, in the present embodiment, the raw material powder is molded and sintered to form the sintered alloy body 51, and the surface of the sintered alloy body 51 is subjected to the steam treatment (S4). After the application, sizing (S5) and forming the dynamic pressure generating grooves 61 on the surface subjected to the steam treatment (S4), the steam treatment layer 53 is compressed at the time of sizing (S5), and the surface of the steam treatment layer 53 is flattened. And the frictional resistance on the surface of the steam treatment layer 53 decreases. In addition, since the sintered alloy body 51 having the steam processing layer 53 is sized (S5), the product dimensions including the steam processing layer 53 can be finished within a predetermined dimensional tolerance.
[0031]
Further, in this embodiment, the dynamic pressure generating groove 61 is transferred to the surface subjected to the steaming (S4) at the same time as the sizing (S5) according to claim 5, so that the dynamic pressure can be extremely easily and accurately adjusted. The pressure generating groove 61 can be formed.
[0032]
FIG. 6 shows a second embodiment of the present invention, in which the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. The fixed shaft 4A, which is the sintered alloy body 51A, is formed by the method described above, and the dynamic pressure generating groove 61 is formed by sizing (S5) in the steam treatment layer 53 provided on the outer peripheral surface of the fixed shaft 4A. The motor 3 is constituted by rotatably providing a cylindrical rotary body 71 on the fixed shaft 4A and providing the impeller 6 on the cylindrical rotary body 71. The dynamic pressure generating groove is formed by the rotation of the cylindrical rotary body 71. A dynamic pressure is generated at 61.
[0033]
As described above, the cylindrical rotating body 71 rotates while sliding on the outer peripheral surface which is the sliding surface of the fixed shaft 4A, and the fixed shaft 4A is a sliding member. The dynamic pressure generating groove 61 may be provided, and the same operation and effect as those of the above-described embodiments are obtained.
[0034]
Note that the present invention is not limited to the above embodiment, and various modifications can be made. For example, FIG. 7 shows a third embodiment in which a dynamic pressure generating groove 61A is formed on an end face of a bearing 5 as a sintered alloy. In this example, a thrust load of a rotating body that rotates along the end face is supported. Thus, the shape and position of the dynamic pressure generating groove can be appropriately selected. Further, the thickness of the steam treatment layer, the depth of the dynamic pressure generating groove, and the like can be appropriately selected. Further, the bearing is not limited to the one in the embodiment, but may be of various shapes. Also, the sliding member is not limited to a bearing, and can be applied to various sliding members as long as the member has a sliding portion.
[0035]
【The invention's effect】
The sintered alloy according to claim 1 is provided with a steam processing layer having a dynamic pressure generating groove in a sintered alloy body formed by molding and sintering a raw material powder, and a dynamic pressure is generated by rotation, The rotating member can be supported, and the dynamic pressure generating groove can be provided without processing the sintered alloy body, so that the processing is facilitated.
[0036]
Further, in the invention of claim 2, in addition to the effect of claim 1, the dynamic pressure generating groove is obtained by sizing a sintered alloy body having the steam processing layer and transferring the sintering alloy body to the steam processing layer. Thus, the dynamic pressure generating groove can be provided extremely simply and accurately. In addition, since the sintered alloy body having the steam treatment layer is sized, the product dimensions including the steam treatment layer can be finished within a predetermined dimensional tolerance.
[0037]
According to the invention of claim 3, in addition to the effect of claim 1 or 2, there is obtained a sliding component in which the sintered alloy is a sliding member and a dynamic pressure generating groove is provided in a steam processing layer. Can be
[0038]
The method for producing a sintered alloy according to claim 4, wherein the raw material powder is molded and sintered to form a sintered alloy body, and the surface of the sintered alloy body is subjected to steam treatment and then sized, and then the steam treatment is performed. This is a manufacturing method in which a dynamic pressure generating groove is formed on the surface subjected to sizing, the steam treatment layer is compressed at the time of sizing, the surface of the steam treatment layer is formed flat, and the friction resistance of the surface of the steam treatment layer is reduced. In addition, since the sintered alloy body having the steam treatment layer is sized, the product dimensions including the steam treatment layer can be finished within a predetermined dimensional tolerance.
[0039]
The manufacturing method according to claim 5 is a manufacturing method in which, in addition to the effect of claim 4, the dynamic pressure generating groove is transferred to the surface subjected to the steam treatment at the same time as the sizing. A pressure generating groove can be formed.
[Brief description of the drawings]
FIG. 1 is a flowchart illustrating a manufacturing method according to a first embodiment of the present invention.
FIG. 2 is a perspective view of a sintered alloy body according to the first embodiment;
FIG. 3 is a cross-sectional view of the sintered alloy in which a part thereof is enlarged.
FIG. 4 is a cross-sectional view illustrating sizing according to the first embodiment.
FIG. 5 is an enlarged cross-sectional view of a main part for explaining sizing.
FIG. 6 is an explanatory view of a pump in which a motor is configured by providing an impeller on a cylindrical rotating body according to a second embodiment of the present invention.
FIG. 7 is a plan view of a sintered alloy having a dynamic pressure generation groove formed on an end face according to a third embodiment of the present invention.
[Explanation of symbols]
1 bearings (sliding members)
51 Sintered alloy body 52 Sliding surface (surface)
53 Steam treatment layer 61 Dynamic pressure generating groove

Claims (5)

原料粉末を成形すると共に焼結してなる焼結合金本体に、動圧発生溝を有するスチーム処理層を設けたことを特徴とする動圧発生溝を備えた焼結合金。A sintered alloy having a dynamic pressure generation groove, wherein a steam processing layer having a dynamic pressure generation groove is provided on a sintered alloy body formed by molding and sintering a raw material powder. 前記動圧発生溝は、前記スチーム処理層を有する焼結合金本体をサイジングして該スチーム処理層に転写されたものであることを特徴とする請求項1記載の動圧発生溝を備えた焼結合金。The sintering device according to claim 1, wherein the dynamic pressure generating groove is obtained by sizing a sintered alloy body having the steam processing layer and transferring the sizing to the steam processing layer. Binding gold. 前記焼結合金が摺動部材であることを特徴とする請求項1又は2記載の動圧発生溝を備えた焼結合金。The sintered alloy according to claim 1, wherein the sintered alloy is a sliding member. 原料粉末を成形すると共に焼結して焼結合金本体を形成し、この焼結合金本体の表面にスチーム処理を施した後サイジングし、前記スチーム処理を施した表面に動圧発生溝を形成することを特徴とする動圧発生溝を備えた焼結合金の製造方法。The raw material powder is molded and sintered to form a sintered alloy body, and the surface of the sintered alloy body is subjected to steam treatment and then sized to form a dynamic pressure generating groove on the surface subjected to the steam treatment. A method for producing a sintered alloy having a dynamic pressure generating groove. 前記サイジングと同時に前記スチーム処理を施した表面に前記動圧発生溝を転写することを特徴とする請求項4記載の動圧発生溝を備えた焼結合金の製造方法。The method for producing a sintered alloy having a dynamic pressure generating groove according to claim 4, wherein the dynamic pressure generating groove is transferred to a surface subjected to the steam treatment simultaneously with the sizing.
JP2002284392A 2002-09-27 2002-09-27 Bearing with dynamic pressure generating groove Expired - Fee Related JP4758595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002284392A JP4758595B2 (en) 2002-09-27 2002-09-27 Bearing with dynamic pressure generating groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002284392A JP4758595B2 (en) 2002-09-27 2002-09-27 Bearing with dynamic pressure generating groove

Publications (2)

Publication Number Publication Date
JP2004115898A true JP2004115898A (en) 2004-04-15
JP4758595B2 JP4758595B2 (en) 2011-08-31

Family

ID=32277971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002284392A Expired - Fee Related JP4758595B2 (en) 2002-09-27 2002-09-27 Bearing with dynamic pressure generating groove

Country Status (1)

Country Link
JP (1) JP4758595B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037234A (en) * 2004-07-29 2006-02-09 Caterpillar Inc Steam oxidation of powder metal component
JP2007057068A (en) * 2005-08-26 2007-03-08 Pooraito Kk Method for manufacturing hydrodynamic bearing
KR100965324B1 (en) * 2008-07-11 2010-06-22 삼성전기주식회사 Method for manufacturing the hydrodynamics bearing
CN103433492A (en) * 2013-08-20 2013-12-11 哈尔滨工大宇航精工科技有限公司 Blow molding method for powder of metal hollow product
WO2021093046A1 (en) * 2019-11-12 2021-05-20 丹阳市剑庐工具有限公司 Preparation method for hexagonal high-torque drilling shank
CN114567129A (en) * 2022-03-03 2022-05-31 苏州唯创特精密机械有限公司 Manufacturing method of high-performance powder metallurgy rotor bracket

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037234A (en) * 2004-07-29 2006-02-09 Caterpillar Inc Steam oxidation of powder metal component
JP2007057068A (en) * 2005-08-26 2007-03-08 Pooraito Kk Method for manufacturing hydrodynamic bearing
KR100965324B1 (en) * 2008-07-11 2010-06-22 삼성전기주식회사 Method for manufacturing the hydrodynamics bearing
CN103433492A (en) * 2013-08-20 2013-12-11 哈尔滨工大宇航精工科技有限公司 Blow molding method for powder of metal hollow product
CN103433492B (en) * 2013-08-20 2015-04-15 哈尔滨工大宇航精工科技有限公司 Blow molding method for powder of metal hollow product
WO2021093046A1 (en) * 2019-11-12 2021-05-20 丹阳市剑庐工具有限公司 Preparation method for hexagonal high-torque drilling shank
US11801575B2 (en) 2019-11-12 2023-10-31 Jalor Industry Co., Limited Method for manufacturing high-torque hexagonal drill shank
CN114567129A (en) * 2022-03-03 2022-05-31 苏州唯创特精密机械有限公司 Manufacturing method of high-performance powder metallurgy rotor bracket

Also Published As

Publication number Publication date
JP4758595B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP2006046540A (en) Dynamic pressure fluid bearing device
CN107650202A (en) The cutting-off method of anvil roller, revolution cutting knife and workpiece
JP4758595B2 (en) Bearing with dynamic pressure generating groove
JP2001524606A (en) Densification of sintered metal powder by point contact
JP2003221606A (en) Sliding parts and manufacturing method therefor
JP4573349B2 (en) Manufacturing method of hydrodynamic bearing
JP6530839B2 (en) Sintered bearing and method of manufacturing the same
JP3531151B2 (en) Molding equipment for powder molding used in the manufacture of Oldham rings
KR101370508B1 (en) Method for manufacturing a combined type sintered oilless bearing for a sliding bearing
JP2006281264A (en) Method for manufacturing gear
JP3238300B2 (en) Manufacturing method of sintered bearing
JP2850135B2 (en) Manufacturing method of hydrodynamic groove bearing
JP2001025838A (en) Sintered metallic sprocket
JP2002048136A (en) Sintered bearing and manufacturing method thereof
JP4753290B2 (en) Manufacturing method of machine parts
JP4420339B2 (en) Manufacturing method of hydrodynamic bearing
WO2017047697A1 (en) Method for manufacturing green compact and method for manufacturing sintered metal part
JPH10148211A (en) Thrust dynamic pressure bearing and its manufacture
TWI308944B (en) Method for manufacturing hydrodynamic bearing
JPH09273554A (en) Sintered bearing and its manufacture
JP3856363B2 (en) Manufacturing method of bearing
JP3939671B2 (en) Three-dimensional cam manufacturing method and powder molding apparatus
KR100563697B1 (en) Method for manufacturing a piston shoe for piston hydraulic pump
JPH04342887A (en) Forming metallic mold for scroll and its machining method
JPH11264002A (en) Production of sintered article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090305

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090407

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4758595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees