JP4753290B2 - Manufacturing method of machine parts - Google Patents

Manufacturing method of machine parts Download PDF

Info

Publication number
JP4753290B2
JP4753290B2 JP2005223685A JP2005223685A JP4753290B2 JP 4753290 B2 JP4753290 B2 JP 4753290B2 JP 2005223685 A JP2005223685 A JP 2005223685A JP 2005223685 A JP2005223685 A JP 2005223685A JP 4753290 B2 JP4753290 B2 JP 4753290B2
Authority
JP
Japan
Prior art keywords
mold
manufacturing
forging
cold forging
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005223685A
Other languages
Japanese (ja)
Other versions
JP2007038240A (en
Inventor
和也 森田
清孝 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Tool Co Ltd
Original Assignee
Kyoto Tool Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Tool Co Ltd filed Critical Kyoto Tool Co Ltd
Priority to JP2005223685A priority Critical patent/JP4753290B2/en
Publication of JP2007038240A publication Critical patent/JP2007038240A/en
Application granted granted Critical
Publication of JP4753290B2 publication Critical patent/JP4753290B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Forging (AREA)

Description

本発明は機械部品の冷間鍛造による製造方法に関するもので、特に冷間閉塞鍛造の材料に焼結材を材料として使用し、焼結素材の各部位の肉厚差等に応じて完成品の各部位の密度に差が生じる場合であっても、それらの密度差を矯正して密度の均一化を図りつつよりいっそうの高密度化を可能とした機械部品の製造方法に関する。 The present invention relates to a manufacturing method by cold forging of machine parts, and particularly uses a sintered material as a material for cold closed forging, and a finished product according to the thickness difference of each part of the sintered material. The present invention relates to a method of manufacturing a machine part that enables even higher density while correcting the density difference and making the density uniform even if there is a difference in the density of each part.

機械部品の製造方法として代表的なものに冷間鍛造による製造方法がある。冷間鍛造は高い能率で製造可能で寸法精度が良好であることから、機械部品の製造に多く利用されている。しかし、溶製材を材料とする冷間鍛造は、最終形状に近い状態の加工品が得られるが、冷間鍛造後に切削等の機械加工を施して形状を整える必要があった。したがって、材料歩留まりが悪く、製造コストの増加や環境への悪化といった問題があった。また、金型を閉塞して冷間鍛造を行う閉塞鍛造であれば、限りなく最終品に近い形状を得ることができるが、溶製材は密度が高いため、製造可能な形状が限定されてしまうことと、材料寸法の誤差により金型を破損するおそれがある問題があった。 A typical manufacturing method for machine parts is a manufacturing method by cold forging. Cold forging can be manufactured with high efficiency and has good dimensional accuracy, and thus is widely used for manufacturing machine parts. However, cold forging using a molten material as a material can obtain a processed product in a state close to the final shape, but after cold forging, it has been necessary to perform machining such as cutting to adjust the shape. Therefore, there is a problem that the material yield is poor, the manufacturing cost is increased, and the environment is deteriorated. Moreover, if it is closed forging in which the mold is closed and cold forging is performed, the shape close to the end product can be obtained as much as possible, but since the melted material has a high density, the shape that can be manufactured is limited. In addition, there is a problem that the mold may be damaged due to an error in material dimensions.

一方で、材料歩留まりがよく生産性に優れた製造方法として、焼結がある。焼結で製造すると、歩留まりが非常によく、限りなく最終品に近い形状を得ることができるが、密度が溶製材に比較して低く、十分な強度が得られないために製造できる部品の形状が限定される問題があった。 On the other hand, there is sintering as a manufacturing method with good material yield and excellent productivity. When manufactured by sintering, the yield is very good and a shape close to the end product can be obtained as much as possible, but the shape of the part that can be manufactured because the density is low compared to the melted material and sufficient strength cannot be obtained. There was a problem that was limited.

これらの問題を解決するために、焼結材を素材とした冷間閉塞鍛造による製造方法が公知である。しかしながら、公知の方法によっても密度は溶製材に比較して低く、その使用方法は限られたものであった。
特開2004−18958号公報
In order to solve these problems, a manufacturing method by cold closed forging using a sintered material as a raw material is known. However, the density is low as compared with the smelted material even by a known method, and its method of use is limited.
JP 2004-18958 A

前述したとおり、従来の冷間鍛造による製造方法では、材料歩留まりが悪く製造コストの増加や環境への悪影響といった問題があった。一方で焼結による製造方法では、完成品が溶製材に比較して密度が低く、強度も十分でないため使用方法が限られるという問題点があった。本発明の製造方法は、焼結素材を材料とした冷間鍛造により、十分な密度と強度を有した機械部品を製造し、切削加工等の工程削減によるコスト削減および環境への悪影響の削減を図るものである。 As described above, the conventional cold forging manufacturing method has problems such as poor material yield and increased manufacturing costs and adverse environmental effects. On the other hand, the manufacturing method by sintering has a problem that the finished product has a lower density than the melted material and the strength is not sufficient, so that the method of use is limited. The manufacturing method of the present invention manufactures mechanical parts with sufficient density and strength by cold forging using a sintered material as a material to reduce costs and reduce adverse effects on the environment by reducing processes such as cutting. It is intended.

本発明は前記課題を解決するために、請求項1記載の発明では、冷間鍛造による機械部品の製造方法において、素材の上方から第1型を規定位置まで下降させて第1予備成形を行い、続いて素材の下方から第2型が規定位置まで上昇して第2予備成形を行い、続いて素材の上方から第3型が規定位置まで下降して本成形を行うことを特徴とする。 In order to solve the above-mentioned problems, the present invention provides a machine part manufacturing method by cold forging according to the first aspect of the present invention, wherein the first pre-forming is performed by lowering the first die from above the material to a specified position. Subsequently, the second mold is raised from the lower side of the material to the specified position to perform the second preliminary molding, and then the third mold is lowered from the upper side of the material to the specified position to perform the main molding.

また、請求項2に記載の発明は、請求項1記載の発明において、冷間鍛造を閉塞鍛造または密閉鍛造としたことを特徴とする。 The invention described in claim 2 is characterized in that, in the invention described in claim 1, the cold forging is a closed forging or a closed forging.

また、請求項3に記載の発明は、請求項1または請求項2記載の発明において、素材を焼結により予備成形された焼結素材であることを特徴とする。 The invention according to claim 3 is the invention according to claim 1 or claim 2, wherein the material is a sintered material preformed by sintering.

また、請求項4に記載の発明は、冷間鍛造に用いる金型構造であって、上方にそれぞれ独立して規定量下方に摺動する第1型と第3型を備え、下方に前記第1型および第3型と対向して配置される、規定量上方に摺動する第2型とを備え、前期第1型ないし第3型がそれぞれ上方ないし下方に規定量摺動することで、キャビティを形成することを特徴とする。 According to a fourth aspect of the present invention, there is provided a die structure for use in cold forging, comprising a first die and a third die that are independently slid downward by a specified amount, respectively, and wherein A first die and a third die disposed opposite to each other and a second die that slides upward by a prescribed amount, and the first to third die of the previous period slide upward or downward by a prescribed amount, A cavity is formed.

また、請求項5に記載の発明は、請求項4記載の発明において、キャビティを閉塞または密閉されたものとすることを特徴とする。 The invention described in claim 5 is the invention described in claim 4, characterized in that the cavity is closed or sealed.

本発明の製造方法によれば、焼結材を素材として冷間鍛造により機械部品を製造しても、溶製材に近い密度と強度を有した機械部品の製造が可能になる。したがって、コスト増の原因となる切削等の機械加工工程が削減でき、コスト削減に大きく働くものである。また、環境面でも非常に有効であり、様々な機械部品の製造に利用できるものである。 According to the manufacturing method of the present invention, even if a mechanical part is manufactured by cold forging using a sintered material as a raw material, it is possible to manufacture a mechanical part having a density and strength close to those of a molten material. Therefore, machining processes such as cutting that cause an increase in cost can be reduced, which greatly reduces the cost. In addition, it is very effective in terms of environment, and can be used for manufacturing various machine parts.

以下、図面に基づいて本発明の実施例について説明する。図1〜5は、本発明にかかる機械部品の製造方法の好ましい実施の形態を表す図である。 Embodiments of the present invention will be described below with reference to the drawings. 1-5 is a figure showing preferable embodiment of the manufacturing method of the machine component concerning this invention.

機械部品として様々な用途で用いられるヘリカルギア、すなわち図3に示すような形状のギア20を製造するにあたり、まず鉄粉を主成分とする原料粉末を用いて、公知の方法で予備成形し、予備成形体を作成する。そして、さらに予備成形体を公知の方法で焼結処理を施し、焼結素材10を作成する。なお、ギア20は略円筒形状で、中央には貫通する孔21が設けられている。また、外周にはセレーション22および歯形状部23が二段階に分けて形成されている。 In producing a helical gear used in various applications as a machine part, that is, a gear 20 having a shape as shown in FIG. 3, first, a raw material powder containing iron powder as a main component is preliminarily molded by a known method, Create a preform. Then, the preform is further subjected to a sintering process by a known method to produce a sintered material 10. The gear 20 has a substantially cylindrical shape and is provided with a through hole 21 at the center. A serration 22 and a tooth-shaped portion 23 are formed on the outer periphery in two stages.

焼結素材10の作成の際、焼結素材10の形状が完成品形状すなわちギア20に限りなく近づくよう、また、焼結素材10の鍛造後における密度の向上が見込まれるよう、さらに側方押し出しでの寸法精度の向上が見込まれるように、予備成形体および焼結素材の設計を行い、金型を適正に作成しておかなければならない。 When creating the sintered material 10, further lateral extrusion is performed so that the shape of the sintered material 10 approaches the finished product shape, that is, the gear 20 as much as possible, and the density of the sintered material 10 after forging is expected to increase. Therefore, it is necessary to design the preform and the sintered material so that the dimensional accuracy can be improved, and to prepare the mold properly.

次に、このようにして作成した焼結素材10を、冷間鍛造工程において再加工する。この冷間鍛造は、閉塞鍛造加工とする。 Next, the sintered material 10 thus prepared is reworked in a cold forging process. This cold forging is a closed forging process.

複雑形状の金属加工製品、すなわち本実施例のギア20のような形状を閉塞鍛造で製造する場合、複雑形状部である歯形状部23の成形は側方押し出しによって行われる。しかしながら、従来技術では欠肉や寸法不良、また金型の寿命低下などの問題があり、実用化には至っていない。 In the case of manufacturing a complicated shaped metal processed product, that is, a shape like the gear 20 of this embodiment by closed forging, the tooth shape portion 23 which is a complicated shape portion is formed by side extrusion. However, the conventional techniques have problems such as lack of thickness, defective dimensions, and a decrease in the life of the mold, and have not been put into practical use.

一般に焼結素材の冷間鍛造を行った場合、冷間鍛造加工により作成された鍛造品の真密度は、鋼材の真密度に対して90%程度にしかならない。一方で、本実施例のギア20のような形状部品の場合、歯形状部の必要強度は鋼材の真密度と同等の強度が必要であり、また、素材中間部意はやや低密度となるような特殊な成形を行うことが必要である。 In general, when cold forging of a sintered material is performed, the true density of a forged product produced by cold forging is only about 90% of the true density of the steel material. On the other hand, in the case of a shaped part such as the gear 20 of the present embodiment, the required strength of the tooth-shaped portion needs to be equal to the true density of the steel material, and the material intermediate portion is somewhat low density. It is necessary to perform special molding.

図1は本実施例の冷間鍛造を行うための金型装置1を示すもので、その構成は次の通りからなる。センターピン11が下方から突出して固定されており、さらにセンターピン11の周囲を囲むように、上下方向摺動可能のヘリカル成形パンチ12が下方から突出して配置されている。さらに、ヘリカル成形パンチ12の周囲には、ヘリカルギア20の歯形状部23を成形するヘリカル成形ダイ13が固定して配置されている。また、セレーション成形パンチ15がセンターピン11と対称に上方から突出して配置されているとともに、その周囲を囲むように同様に上方から突出してセレーション成形ダイ14が配置されている。セレーション成形ダイ14およびセレーション成形パンチ15は、それぞれ独立して上下方向摺動可能に設定されている。なお、ヘリカル成形パンチ12およびセレーション成形ダイ14には、焼結素材10が旋回しながら加工することができるよう、それぞれ基部にスラストベアリングを組み込むことが望ましい。 FIG. 1 shows a mold apparatus 1 for performing cold forging according to the present embodiment, and its configuration is as follows. A center pin 11 protrudes from below and is fixed, and a helical molding punch 12 slidable in the vertical direction is disposed to protrude from below so as to surround the periphery of the center pin 11. Further, a helical molding die 13 for molding the tooth-shaped portion 23 of the helical gear 20 is fixedly disposed around the helical molding punch 12. In addition, a serration molding punch 15 protrudes from the upper side symmetrically with the center pin 11, and similarly, a serration molding die 14 protrudes from the upper side so as to surround the periphery thereof. The serration molding die 14 and the serration molding punch 15 are set so as to be independently slidable in the vertical direction. The helical molding punch 12 and the serration molding die 14 preferably incorporate a thrust bearing at the base so that the sintered material 10 can be processed while turning.

ヘリカル成形パンチ12は、動作前には図1に記載のように中央付近にまで突き出しているが、成形が開始すると下方に配置され、成形時には本ダイセットを装着したサーボプレス機によって上昇される。そして成形が終了した後には、さらに上方へ突出して成形品を排出するものである。反対にセレーション成形パンチ15は、動作前には図1の状態のように上方に配置されており、成形時には本ダイセットを装着したサーボプレス機によって下方に突き出される。また、セレーション成形ダイ14は、同様に動作前には図1の状態のように上方に配置されており、成形時にはダイセット機構内の油圧装置により加圧され、下方に突き出される。そして成形が終了した後には、成形品を排出するためにセレーション成形パンチ15およびセレーション成形ダイ14は上方へ摺動して元の位置に戻るものである。 The helical forming punch 12 protrudes to the vicinity of the center as shown in FIG. 1 before the operation, but is arranged below when the forming starts, and is raised by a servo press machine equipped with this die set at the time of forming. . And after shaping | molding is complete | finished, it protrudes further upwards and discharges | emits a molded article. On the other hand, the serration molding punch 15 is arranged upward as shown in FIG. 1 before operation, and is projected downward by a servo press machine equipped with this die set during molding. Similarly, the serration forming die 14 is disposed upward as shown in FIG. 1 before operation, and is pressed by a hydraulic device in the die set mechanism and protrudes downward during molding. After the molding is completed, the serration molding punch 15 and the serration molding die 14 slide upward to return to the original position in order to discharge the molded product.

以上の構成よりなる本実施例の金型装置1を使用して、焼結素材10の冷間鍛造加工を施す。金型装置1は、動作前には図1の状態で静止している。この状態で、まず焼結素材10を定位置に配置する。この際、焼結素材10の孔21がセンターピン11に挿入される。なお、従来の溶製材を使用したヘリカルギアの製造方法では、加工素材に歯形状部23は成形されておらず、位相(方向性)が無かったために金型への素材の挿入に関しては、位置決めをする必要が無かったが、本実施例では焼結素材10の段階ですでに歯形状部23が成形されており、位相が合わなければ型へ挿入することができない問題がある。そのため、焼結素材の下端部にあらかじめわずかなスリットを設けるとともに、金型1には対応する凸部を設けて、位相決めを行うことが望ましい。 Using the mold apparatus 1 of the present embodiment having the above configuration, the sintered material 10 is cold forged. The mold apparatus 1 is stationary in the state shown in FIG. 1 before operation. In this state, the sintered material 10 is first placed at a fixed position. At this time, the hole 21 of the sintered material 10 is inserted into the center pin 11. In the conventional helical gear manufacturing method using melted material, the tooth-shaped portion 23 is not formed on the processed material and there is no phase (directionality), so that the material is inserted into the mold for positioning. However, in the present embodiment, the tooth-shaped portion 23 is already formed at the stage of the sintered material 10, and there is a problem that it cannot be inserted into the mold unless the phases match. Therefore, it is desirable to provide a slight slit in advance at the lower end portion of the sintered material and to provide a corresponding convex portion on the mold 1 to determine the phase.

焼結素材10が配置された後、セレーション成形ダイ14およびセレーション成形パンチ15を下降させる。そうすると焼結素材10はヘリカル成形ダイ13のヘリカル形状に沿って回転しながら下降し、セレーション成形ダイ14の下端がヘリカル成形ダイ13の上端に接触するまで押し込まれる。なお、セレーション成形ダイ14は、ヘリカル成形ダイ13に接触後、閉塞鍛造に耐えるため油圧力によって加圧され、型閉めが完了する。 After the sintered material 10 is arranged, the serration molding die 14 and the serration molding punch 15 are lowered. Then, the sintered material 10 descends while rotating along the helical shape of the helical forming die 13 and is pushed in until the lower end of the serration forming die 14 contacts the upper end of the helical forming die 13. In addition, the serration die 14 is pressed by oil pressure to withstand closed forging after contacting the helical die 13, and the mold closing is completed.

型閉めが完了すると、焼結素材10のさらなる密度の向上、ギア形状の寸法出しのため、再圧縮を施す。ヘリカル成形パンチ12がダイクッション圧力により上昇し、焼結素材10をヘリカル形状に沿って再圧縮する。また、同時にダイクッション側の圧力を持続した状態で、セレーション成形パンチ15およびセレーション成形ダイ14が加圧保持され、より確実に再圧縮する。そうすることで、ギア形状の寸法精度が向上するとともに、製品上部の密度を向上させることができる。 When the mold closing is completed, recompression is performed to further increase the density of the sintered material 10 and to determine the size of the gear shape. The helical molding punch 12 is raised by the die cushion pressure, and the sintered material 10 is recompressed along the helical shape. At the same time, while maintaining the pressure on the die cushion side, the serration molding punch 15 and the serration molding die 14 are held under pressure and are more reliably recompressed. By doing so, the dimensional accuracy of the gear shape can be improved and the density of the upper part of the product can be improved.

従来の焼結鍛造では、製品上下の密度ばらつきや、ギア歯形状部23のような薄肉部の密度が不完全だという問題があった。しかし、本発明の製造方法を用いると、製品部分密度で溶製材に近い密度を確保することができる。 In the conventional sintering forging, there are problems that the density variation in the upper and lower parts of the product and the density of the thin part such as the gear tooth shape part 23 are incomplete. However, when the manufacturing method of the present invention is used, a density close to that of the smelting material can be ensured by the product partial density.

なお、焼結素材10の変形能を確保するため、粉体成分は純鉄粉を主成分として黒鉛、モリブデン、ステアリン酸亜鉛等の粉末を混合したものとするのが好ましい。また、焼結条件は800℃〜1300℃とする。この条件で作成した焼結素材10は、圧延材とほぼ同等の延性を有する。その結果、この焼結素材10を材料として、断面減少率65%程度の後方押し出し冷間鍛造を施しても、鉄系焼結体でありながら亀裂を生じることなく成形することができる。また、鍛造された製品の密度は従来の粉末冶金工法によるものに比べても格段に高く、鋼材の真密度(7.9グラム/立方センチ)の98%に到達する。 In order to secure the deformability of the sintered material 10, it is preferable that the powder component is a mixture of a powder of graphite, molybdenum, zinc stearate, etc. with pure iron powder as a main component. The sintering conditions are 800 ° C to 1300 ° C. The sintered material 10 created under these conditions has ductility substantially equivalent to that of the rolled material. As a result, even if this sintered material 10 is used as a material and backward extrusion cold forging with a cross-sectional reduction rate of about 65% is performed, it can be formed without cracking even though it is an iron-based sintered body. In addition, the density of the forged product is much higher than that of the conventional powder metallurgy method, reaching 98% of the true density (7.9 grams / cubic centimeter) of the steel material.

従来の工法、すなわち引き抜き材を素材として冷間鍛造により機械部品を製造する場合には、多数回の鍛造、焼きなまし、潤滑処理が必要であった。したがって、多数の工程が必要となり、製造コストが非常に大きくかかっていたが、本発明の製造方法を用いると、大幅な工程短縮を図ることができ、製造コストを大きく削減することができる。 In the case of manufacturing a machine part by cold forging using a conventional method, that is, using a drawn material as a raw material, many times of forging, annealing, and lubrication are required. Therefore, many processes are required and the manufacturing cost is very high. However, when the manufacturing method of the present invention is used, the process can be greatly shortened, and the manufacturing cost can be greatly reduced.

また、従来の工法で行われていた潤滑処理として、代表的なものにボンデライト加工がある。ボンデライト加工には、大量の廃液が排出され環境負荷が大きいという問題があるが、本発明の製造方法を用いると潤滑処理が不要になるため、ボンデライト加工の必要が無く、環境面においても有利である。 As a typical lubrication treatment performed by a conventional method, there is a bonderite process. Bonderite processing has a problem that a large amount of waste liquid is discharged and the environmental load is large. However, the use of the manufacturing method of the present invention eliminates the need for lubrication treatment, which is advantageous in terms of environment. is there.

また、図5に示すように、従来の焼結鍛造による工法では、冷間鍛造を行った後に再度本焼結工程を必要としていた。本発明の製造方法では、冷間鍛造後の本焼結工程が不要であり、これにより省エネルギーおよびコストダウンを実現している。 Further, as shown in FIG. 5, the conventional sintering forging method requires the main sintering step again after cold forging. In the manufacturing method of the present invention, the main sintering step after the cold forging is unnecessary, thereby realizing energy saving and cost reduction.

冷間鍛造により成形された部品は、最後に浸炭熱処理を行って、表面硬さを溶製材相当に引き上げる。なお、通常の浸炭深さは約0.3mmだが、この場合それを大きく超える深浸炭熱処理を行い、粉末冶金素材での炭素不足を補うことが望ましい。 The parts formed by cold forging are finally subjected to a carburizing heat treatment to raise the surface hardness to the level of the melted material. The normal carburizing depth is about 0.3 mm, but in this case, it is desirable to perform deep carburizing heat treatment that greatly exceeds that to compensate for the carbon deficiency in the powder metallurgy material.

本発明の製造方法によれば、本実施例のギア以外にも様々な機械部品の製造に供与でき、コストや環境面で非常に優位な製造方法を提供できるものである。 According to the manufacturing method of the present invention, in addition to the gear of the present embodiment, it can be provided to manufacture various machine parts, and a manufacturing method that is extremely advantageous in terms of cost and environment can be provided.

本発明の製造方法に用いる金型装置を表す断面図であり、動作前の状態を表すものである。It is sectional drawing showing the metal mold | die apparatus used for the manufacturing method of this invention, and represents the state before operation | movement. 本発明の製造方法に用いる金型装置を表す断面図であり、冷間鍛造加工が終了した状態を表すものである。It is sectional drawing showing the metal mold | die apparatus used for the manufacturing method of this invention, and represents the state which cold forging process was complete | finished. 本発明の実施例で成形するギア20を表す斜視図である。It is a perspective view showing the gear 20 shape | molded in the Example of this invention. 本発明の実施例において、上型および下型の動作ストロークおよび動作タイミングを示すグラフである。In the Example of this invention, it is a graph which shows the operation | movement stroke and operation | movement timing of an upper mold | type and a lower mold | type. 本発明の製造方法と、従来の製造方法の工程を比較した図である。It is the figure which compared the process of the manufacturing method of this invention, and the conventional manufacturing method.

符号の説明Explanation of symbols

1 金型装置
10 焼結素材
11 センターピン
12 ヘリカル成形パンチ
13 ヘリカル成形ダイ
14 セレーション成形ダイ
15 セレーション成形パンチ
20 ギア
21 孔
22 セレーション
23 歯形状部
DESCRIPTION OF SYMBOLS 1 Mold apparatus 10 Sintering material 11 Center pin 12 Helical molding punch 13 Helical molding die 14 Serration molding die 15 Serration molding punch 20 Gear 21 Hole 22 Serration 23 Tooth shape part

Claims (2)

閉塞鍛造または密閉鍛造である冷間鍛造による機械部品の製造方法であって、
鉄粉を主成分とする混合粉を焼結させて軸方向に貫通孔を有した円筒形状の成形用素材とし、前記成形用素材の上方から第1型が規定位置まで回転しながら下降して第1予備成形を行い、続いて前記第1予備成形を施した前記成形用素材の下方から第2型が規定位置まで回転しながら上昇して第2予備成形を行い、続いて前記第2予備成形を施した前記成形用素材の上方から第3型が規定位置まで下降して本成形を行うことを特徴とする機械部品の製造方法。
A manufacturing method of machine parts by cold forging which is closed forging or closed forging ,
Sintered mixed powder containing iron powder as a main component to form a cylindrical molding material having a through-hole in the axial direction. The first mold descends from above the molding material while rotating to a specified position. First preforming is performed, and then the second mold is raised from the lower side of the molding material subjected to the first preforming while rotating to a specified position to perform second preforming, and then the second preforming is performed. A method of manufacturing a machine part, wherein the third mold is lowered to a specified position from above the molding material that has been molded to perform a main molding.
閉塞鍛造または密閉鍛造である冷間鍛造に用いる金型構造であって、上方にそれぞれ独立して規定量下方に摺動する第1型と第3型を備え、前期第1型は回転しながら下方へ摺動可能に設定され、下方に前記第1型および第3型と対向して配置される、規定量上方に回転しながら摺動する第2型とを備え、前期第1型ないし第3型がそれぞれ上方ないし下方に規定量摺動することで、第1型の内径部を含めたキャビティを形成することを特徴とする冷間鍛造に用いる金型構造。 A mold structure used for cold forging, which is closed forging or closed forging, and includes a first mold and a third mold that are independently slid downward by a specified amount, and the first mold is rotating while A second mold that is set to be slidable downward and is disposed opposite to the first mold and the third mold, and that slides while rotating upward by a specified amount. A mold structure for use in cold forging, wherein a cavity including an inner diameter portion of a first mold is formed by sliding three molds upward or downward by a specified amount.
JP2005223685A 2005-08-02 2005-08-02 Manufacturing method of machine parts Expired - Fee Related JP4753290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005223685A JP4753290B2 (en) 2005-08-02 2005-08-02 Manufacturing method of machine parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005223685A JP4753290B2 (en) 2005-08-02 2005-08-02 Manufacturing method of machine parts

Publications (2)

Publication Number Publication Date
JP2007038240A JP2007038240A (en) 2007-02-15
JP4753290B2 true JP4753290B2 (en) 2011-08-24

Family

ID=37796703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005223685A Expired - Fee Related JP4753290B2 (en) 2005-08-02 2005-08-02 Manufacturing method of machine parts

Country Status (1)

Country Link
JP (1) JP4753290B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5399058B2 (en) * 2008-12-12 2014-01-29 Ntn株式会社 Manufacturing method of spline shaft of power transmission shaft connected to outer ring of constant velocity joint or constant velocity joint
CN103736893A (en) * 2013-12-26 2014-04-23 柳州正菱集团有限公司 Combined polymerization material die of pre-heading machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832922B2 (en) * 1988-09-20 1996-03-29 日立粉末冶金株式会社 Powder molding method and apparatus for molded body with boss
JPH033726A (en) * 1989-06-01 1991-01-09 Aisin Seiki Co Ltd Method of manufacturing helical gear cold stamping die
JP2001252793A (en) * 2000-03-09 2001-09-18 Hitachi Powdered Metals Co Ltd Green compact forming method
JP3946581B2 (en) * 2002-06-18 2007-07-18 株式会社日立製作所 Manufacturing method of sintered machine parts

Also Published As

Publication number Publication date
JP2007038240A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
US3832763A (en) Method of drop-forging sintered workpieces
JP4252625B2 (en) High density forming process using ferroalloy and prealloy
CN106862399A (en) The manufacture method and its component of mobile terminal metal center
JP2015136736A (en) Manufacturing method of two-stage gear by forging and two-stage cold extrusion processing
US20090129964A1 (en) Method of forming powder metal components having surface densification
CN104959609A (en) Preparation method of copper-base powder metallurgy part
JP4753290B2 (en) Manufacturing method of machine parts
JP2004160644A (en) Method of forming undercut on iron-based sintered molded part
JP2009285688A (en) Method for manufacturing hollow toothed part
JP2008189954A (en) Fe-BASED SINTERED ALLOY AND MANUFACTURING METHOD THEREFOR
JP4856889B2 (en) Cold forging method
JP3763796B2 (en) Manufacturing method of sintered member with inner hole with excellent coaxiality accuracy
JP6550706B2 (en) Manufacturing method of composite sintered machine parts
CN215845697U (en) Extrusion rod and extrusion system for compacting inner surface of powder metallurgy part
JPH0646973Y2 (en) Sinter forging die
GB2370844A (en) Tabletting dies made from sintered ferrous powder
JP2019089078A (en) Method for forging gear
JPH06330108A (en) Production of sintered composite mechanical parts
JP2011240387A (en) Planetary pinion case and press device for planetary pinion case
JP4161889B2 (en) Cylindrical component, molding apparatus and molding method
JPH07317510A (en) Manufacture of tappet for engine
JP3763797B2 (en) Manufacturing method of sintered member with inner hole with excellent coaxial accuracy of inner and outer circumference
JP3939671B2 (en) Three-dimensional cam manufacturing method and powder molding apparatus
JP2016037616A (en) Method for producing composite sintered body
CN112792338A (en) Extrusion rod for compacting inner surface of powder metallurgy part and manufacturing method of part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees