JP2008189954A - Fe-BASED SINTERED ALLOY AND MANUFACTURING METHOD THEREFOR - Google Patents

Fe-BASED SINTERED ALLOY AND MANUFACTURING METHOD THEREFOR Download PDF

Info

Publication number
JP2008189954A
JP2008189954A JP2007023451A JP2007023451A JP2008189954A JP 2008189954 A JP2008189954 A JP 2008189954A JP 2007023451 A JP2007023451 A JP 2007023451A JP 2007023451 A JP2007023451 A JP 2007023451A JP 2008189954 A JP2008189954 A JP 2008189954A
Authority
JP
Japan
Prior art keywords
sintered alloy
based sintered
base
enlarged portion
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007023451A
Other languages
Japanese (ja)
Other versions
JP5177787B2 (en
Inventor
Kinya Kawase
欣也 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamet Corp
Original Assignee
Diamet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamet Corp filed Critical Diamet Corp
Priority to JP2007023451A priority Critical patent/JP5177787B2/en
Publication of JP2008189954A publication Critical patent/JP2008189954A/en
Application granted granted Critical
Publication of JP5177787B2 publication Critical patent/JP5177787B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Fe-based sintered alloy which has a base part and an extending part that is wider than the base part, and makes the density uniform, and to provide a manufacturing method therefor. <P>SOLUTION: The Fe-based sintered alloy 1 is manufactured by the steps of: filling a part to be filled of a molding die with a ferrous raw powder containing 4 to 8 wt.% Cu; pressurizing the raw powder in an axial direction to form a green compact; and sintering the green compact. The Fe-based sintered alloy has the base part 2 at one side in the axial direction and the extending part 3 that is arranged on the other side in the axial direction and is wider than the base part 2. A ratio of the length L3 of the extending part 3 to a total length L is 2 to 5. A Cu content in the base part 2 is higher than that in the extending part 3. Even when the base part 2 has lower density than the extending part 3 in a state of the green compact having been molded, Cu in the extending part migrates to the base part in the sintering step, which makes the Cu content in the base part 2 higher than that of the extending part 3, thereby increases the density of the base part 2 rightly by the increment, and makes the density of the Fe-based sintered alloy uniform. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、基部とこれより広い拡大部とを備えたFe基焼結合金とその製造方法に関する。   The present invention relates to a Fe-based sintered alloy having a base portion and a wider enlarged portion and a method for manufacturing the same.

この種の焼結合金の製造方法においては、例えば、金属を主成分とする原料粉末を成形用金型のキャビティに供給し(粉末供給工程)、キャビティに供給された原料粉末を圧縮して圧粉体である成形体を成形し(粉末成形工程)た後、この成形体を焼結炉で加熱して焼結する(焼結工程)ことが行われる。   In this type of sintered alloy manufacturing method, for example, a raw material powder containing metal as a main component is supplied to a cavity of a molding die (powder supply step), and the raw material powder supplied to the cavity is compressed and compressed. After forming a molded body that is a powder (powder molding process), the molded body is heated and sintered in a sintering furnace (sintering process).

前記キャビティの形状に対応して各種の形状の圧粉体を成形することができ、複数のパンチを用いて、基部とこの基部より広い拡大部とを備えた圧粉体を成形することができる。   Various types of green compacts can be formed corresponding to the shape of the cavity, and a green compact having a base and an enlarged portion wider than the base can be formed using a plurality of punches. .

そして、それら基部101と拡大部102として、図8に示すように、ボス部とギヤ部(例えば特許文献1)や、ヘリカルギヤ部とフランジ部(例えば特許文献2)や、第1のヘリカルギギアと第2のヘリカルギギア(例えば、特許文献3)や、径小筒部と径大筒部など各種のものがある。
特開平5−302102号公報 特開平7−70612号公報 特開平10−156590号公報
Then, as shown in FIG. 8, as the base portion 101 and the enlarged portion 102, a boss portion and a gear portion (for example, Patent Literature 1), a helical gear portion and a flange portion (for example, Patent Literature 2), a first helical gear, There are various helical gears (for example, Patent Document 3) and various types such as a small diameter cylindrical portion and a large diameter cylindrical portion.
JP-A-5-302102 JP-A-7-70612 Japanese Patent Laid-Open No. 10-156590

上記のように基部101と拡大部102とを備えた圧粉体の成形においては、軸方向両側から原料粉末を加圧する方法を用いるから、複数のパンチを用いても、短い拡大部102に比べて、該拡大部102に連続する基部101側には加圧力が加わり難く、圧粉体の状態で基部101側の中央側101Aの密度が低くなり、結果、圧粉体を焼結した焼結合金の基部101の密度が低下し、全体の密度が不均一になり易い、という問題があった。   As described above, in the molding of the green compact provided with the base 101 and the enlarged portion 102, since a method of pressing the raw material powder from both sides in the axial direction is used, even if a plurality of punches are used, compared to the short enlarged portion 102 Thus, it is difficult to apply a pressing force to the base 101 side continuous with the enlarged portion 102, and the density of the central side 101A on the base 101 side in the state of the green compact becomes low. There is a problem that the density of the gold base 101 is lowered and the overall density is likely to be uneven.

そこで、本発明は、基部とこれより広い拡大部とを有する焼結合金において、密度の均一化を図ることができるFe基焼結合金とその製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide an Fe-based sintered alloy capable of achieving uniform density in a sintered alloy having a base portion and an enlarged portion wider than the base portion, and a manufacturing method thereof.

請求項1の発明は、3〜8重量%のCuを含んだ鉄系の原料粉末を成形金型の充填部に充填し、この原料粉末を軸方向から加圧して圧粉体を成形し、この圧粉体を焼結してなるFe基焼結合金において、軸方向一側の基部と軸方向他側に設けられ前記基部より広い拡大部とを備え、全体の長さが前記拡大部の長さの2〜5倍であり、前記拡大部より前記基部のCu含有率が高いものである。   In the invention of claim 1, an iron-based raw material powder containing 3 to 8% by weight of Cu is filled in a filling part of a molding die, the raw material powder is pressed from the axial direction to form a green compact, The Fe-based sintered alloy obtained by sintering the green compact includes a base on one side in the axial direction and an enlarged part provided on the other side in the axial direction, and has an overall length that is larger than that of the enlarged part. The length is 2 to 5 times, and the Cu content of the base is higher than that of the enlarged portion.

また、請求項2の発明は、前記軸方向の貫通孔を備え、全体の長さが前記貫通孔の直径の1.5〜8倍である。   The invention according to claim 2 includes the through hole in the axial direction, and the entire length is 1.5 to 8 times the diameter of the through hole.

また、請求項3の発明は、0.08〜1.6重量%のMnを含むものである。   Further, the invention of claim 3 includes 0.08 to 1.6% by weight of Mn.

また、請求項4の発明は、軸方向一側の基部と軸方向他側に設けられ前記基部より広い拡大部とを備え、全体の長さが前記拡大部の長さの2〜5倍であるFe基焼結合金の製造方法において、3〜8重量%のCuを含有した鉄系の原料粉末を成形金型の充填部に充填し、この原料粉末を軸方向から加圧して圧粉体を成形し、前記圧粉体を焼結する方法である。   The invention of claim 4 includes a base portion on one axial side and an enlarged portion provided on the other axial side and wider than the base portion, and the overall length is 2 to 5 times the length of the enlarged portion. In a certain Fe-based sintered alloy manufacturing method, an iron-based raw material powder containing 3 to 8% by weight of Cu is filled in a filling portion of a molding die, and this raw material powder is pressed from the axial direction to be a green compact. Is formed and the green compact is sintered.

また、請求項5の発明は、前記Fe基焼結合金は、前記軸方向の貫通孔を備え、全体の長さが前記貫通孔の直径の1.5〜8倍である方法である。   Further, the invention of claim 5 is a method in which the Fe-based sintered alloy includes the axial through hole, and the entire length is 1.5 to 8 times the diameter of the through hole.

また、請求項6の発明は、0.08〜1.6重量%のMnを含む方法である。   The invention of claim 6 is a method containing 0.08 to 1.6% by weight of Mn.

請求項1の構成によれば、圧粉体を成形した状態で、拡大部より基部の密度が低くても、拡大部より基部のCu含有率が高い分だけ、基部の密度が上がり、均一な密度を備えたFe基焼結合金となる。   According to the structure of claim 1, even if the density of the base portion is lower than that of the enlarged portion in the state where the green compact is molded, the density of the base portion is increased by the amount that the Cu content of the base portion is higher than that of the enlarged portion. An Fe-based sintered alloy having a density is obtained.

そして、原料粉末におけるCuの割合が3重量%未満では、密度の均一化効果が発揮できず、一方、8重量%を超えると、寸法精度が低下するため、上記の範囲が有効であることを見出した。   And if the ratio of Cu in the raw material powder is less than 3% by weight, the effect of uniformizing the density cannot be exhibited. On the other hand, if it exceeds 8% by weight, the dimensional accuracy is lowered, so that the above range is effective. I found it.

また、全長から拡大部の長さを引いた長さが基部の長さであり、基部の長さが拡大部の1倍未満では、圧粉体の圧縮成形時に基部と拡大部とで密度差の問題はほとんど生じず、一方、全体の長さが拡大部の5倍を越えると、拡大部から基部の中央側が離れるため、Cuの移動による密度均一化効果が得られにくいため、上記の範囲が有効であることを見出した。   In addition, if the length obtained by subtracting the length of the enlarged portion from the total length is the length of the base, and if the length of the base is less than 1 time of the enlarged portion, the density difference between the base and the enlarged portion during compression molding of the green compact On the other hand, if the total length exceeds 5 times the enlarged portion, the center side of the base portion is separated from the enlarged portion, so that it is difficult to obtain a density uniforming effect due to the movement of Cu. Was found to be effective.

また、請求項2の構成によれば、全体の長さが貫通孔直径の1.5倍未満では密度差の問題が生じず、一方、8倍を越えるとCuの移動による密度均一化効果が得られ難いため、上記の範囲が有効であることを見出した。   Further, according to the structure of claim 2, if the total length is less than 1.5 times the diameter of the through hole, the problem of density difference does not occur. Since it was difficult to obtain, the above range was found to be effective.

また、請求項3の構成によれば、Mnを含むことにより、Cuの融点が下がり、移動し易くなり、密度の低い基部にCu合金が移動し易くなる。そして、Mnの割合が0.08%未満では融点の降下が発揮できず、一方、1.6%を超えると、靭性が低下するため、上記の範囲が有効であることを見出した。   Moreover, according to the structure of Claim 3, by containing Mn, melting | fusing point of Cu falls and it becomes easy to move, and Cu alloy becomes easy to move to the base part with a low density. And when the ratio of Mn was less than 0.08%, the melting point could not be lowered. On the other hand, when it exceeded 1.6%, the toughness was lowered, so the above range was found to be effective.

請求項4の構成によれば、圧粉体を成形した状態で、拡大部より基部の密度が低くても、焼結時にCuが溶けて基部側に移動して基部の密度が上昇し、均一な密度を備えたFe基焼結合金となる。すなわち、密度の高い部分から低い部分に押し流されることにより、Cuが移動する。   According to the structure of claim 4, even if the density of the base is lower than that of the enlarged portion in the state where the green compact is molded, Cu melts and moves to the base side during sintering, and the density of the base increases and is uniform. Fe-based sintered alloy having a high density. That is, Cu moves by being swept away from a high density portion to a low portion.

そして、原料粉末におけるCuの割合が3重量%未満では、密度の均一化効果が発揮できず、一方、8重量%を超えると、寸法精度が低下するため、上記の範囲が有効であることを見出した。   And if the ratio of Cu in the raw material powder is less than 3% by weight, the effect of uniformizing the density cannot be exhibited. On the other hand, if it exceeds 8% by weight, the dimensional accuracy is lowered, so that the above range is effective. I found it.

また、全長から拡大部の長さを引いた長さが基部の長さであり、基部の長さが拡大部の1倍未満では、圧粉体の圧縮成形時に基部と拡大部とで密度差の問題はほとんど生じず、一方、全体の長さが拡大部の5倍を越えると、拡大部から基部の中央側が離れるため、Cuの移動による密度均一化効果が得られにくいため、上記の範囲が有効であることを見出した。   In addition, if the length obtained by subtracting the length of the enlarged portion from the total length is the length of the base, and if the length of the base is less than 1 time of the enlarged portion, the density difference between the base and the enlarged portion during compression molding of the green compact On the other hand, if the total length exceeds 5 times the enlarged portion, the center side of the base portion is separated from the enlarged portion, so that it is difficult to obtain a density uniforming effect due to the movement of Cu. Was found to be effective.

また、請求項5の構成によれば、全体の長さが貫通孔直径の1.5倍未満では密度差の問題が生じず、一方、8倍を越えるとCuの移動による密度均一化効果が得られ難いため、上記の範囲が有効であることを見出した。   Further, according to the structure of claim 5, if the total length is less than 1.5 times the diameter of the through hole, the problem of density difference does not occur. Since it was difficult to obtain, the above range was found to be effective.

また、請求項6の構成によれば、Mnを含むことにより、Cuの融点が下がり焼結時に密度の低い基部にCu合金が移動し易くなる。そして、Mnの割合が0.08%未満では融点の降下が発揮できず、一方、1.6%を超えると、靭性が低下するため、上記の範囲が有効であることを見出した。   Moreover, according to the structure of Claim 6, by containing Mn, melting | fusing point of Cu falls and Cu alloy becomes easy to move to the base part with a low density at the time of sintering. And when the ratio of Mn was less than 0.08%, the melting point could not be lowered. On the other hand, when it exceeded 1.6%, the toughness was lowered, so the above range was found to be effective.

本発明における好適な実施の形態について、添付図面を参照しながら詳細に説明する。なお、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を限定するものではない。また、以下に説明される構成の全てが、本発明の必須要件であるとは限らない。各実施例では、従来とは異なる新規なFe基焼結合金とその製造方法を採用することにより、従来にないFe基焼結合金とその製造方法が得られ、Fe基焼結合金とその製造方法を夫々記述する。   Preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments described below do not limit the contents of the present invention described in the claims. In addition, all of the configurations described below are not necessarily essential requirements of the present invention. In each example, by adopting a new Fe-based sintered alloy different from the conventional one and its manufacturing method, an unprecedented Fe-based sintered alloy and its manufacturing method can be obtained. Each method is described.

以下、本発明の実施形態を添付図面を参照して説明する。図1〜図4は本発明の実施例1を示し、Fe基焼結合金1は、図1に示すように、第1筒状部たる基部2とこの基部2より径大な第2筒状部たる拡大部3とを一体に備え、この例では、それら基部2と拡大部3とに連続して貫通する貫通孔4が形成されている。また、それら基部2と拡大部3とは円形の貫通孔4の軸心に対して同心円上に位置する。そして、基部2と拡大部3との間には段部5が形成される。   Embodiments of the present invention will be described below with reference to the accompanying drawings. 1 to 4 show Example 1 of the present invention. As shown in FIG. 1, an Fe-based sintered alloy 1 includes a base 2 as a first cylindrical part and a second cylindrical shape having a diameter larger than that of the base 2. In this example, a through hole 4 that continuously penetrates the base 2 and the enlarged portion 3 is formed. Further, the base 2 and the enlarged portion 3 are located concentrically with respect to the axis of the circular through hole 4. A step portion 5 is formed between the base portion 2 and the enlarged portion 3.

前記Fe基焼結合金1の長さL(全体の長さ)は、前記拡大部3の長さL3の2倍以上、5倍以下であり、基部2の長さL2は、拡大部3の長さLの1倍以上、4倍以下である。また、前記Fe基焼結合金1の長さLは、貫通孔4の直径Dの1.5倍以上、8倍以下である。   The length L (total length) of the Fe-based sintered alloy 1 is not less than 2 times and not more than 5 times the length L3 of the enlarged portion 3, and the length L2 of the base portion 2 is equal to that of the enlarged portion 3. It is 1 time or more and 4 times or less of the length L. Further, the length L of the Fe-based sintered alloy 1 is not less than 1.5 times and not more than 8 times the diameter D of the through hole 4.

また、前記拡大部3の直径D3は、基部2の直径D2に拡大部3の長さL2の2倍を加えた寸法以上(D3>=D2+L2×2)とすることが好ましく、この寸法より直径D3が小さいと、拡大部3の体積も小さく、拡大部3から基部2に移動するCuの量も少なくなるため、前記寸法以上とすることが好ましい。   Further, the diameter D3 of the enlarged portion 3 is preferably not less than a dimension obtained by adding twice the length L2 of the enlarged portion 3 to the diameter D2 of the base portion 2 (D3> = D2 + L2 × 2). When D3 is small, the volume of the enlarged portion 3 is also small, and the amount of Cu moving from the enlarged portion 3 to the base portion 2 is also reduced.

前記Fe焼結合金1には、一例として、重量%で、Cu:3〜8%、Mn:0.08〜1.6%、Ni:0.1〜6%、Mo:0.1〜6%、C :0.1〜2%、を含有し、残りがFeと不可避不純物からなる組成を有するFe基焼結合金1を用いることができ、また、それ以外の組成、重量%で、Cu:4〜8%、Mn:0.08〜1.6%(Cuの2〜20%)を少なくとも含有し、残りがFeと不可避不純物からなる組成を有するFe基焼結合金を用いることもできる。   For example, the Fe sintered alloy 1 includes, by weight, Cu: 3 to 8%, Mn: 0.08 to 1.6%, Ni: 0.1 to 6%, Mo: 0.1 to 6 %, C: 0.1 to 2%, and the remaining Fe-based sintered alloy 1 having a composition composed of Fe and inevitable impurities can be used. : 4-8%, Mn: 0.08-1.6% (2-20% of Cu) at least, Fe-based sintered alloy having a composition composed of Fe and inevitable impurities can be used. .

そのFe基焼結合金1の試験品の製造方法につき、図3及び図4を参照して説明する。試験品は、図1に示したFe基焼結合金1において、前記長さLが30mm、前記長さL3が10mm、前記直径Dが15mm、基部2の外径D2が25mm、拡大部3の直径D3が45mmのものを用いた。そして、試験品(A)〜(E)に用いる原料粉末として、重量%で、下記の表1に示す割合となるようにFe粉末,Fe−Mo粉末,Fe−Ne−Mo粉末,Cu粉末,Cu−Mn粉末,黒鉛粉を原料粉末として混合(S1:ステップ1)し、混合した原料粉末を例えば400〜800MPaの範囲内の所定の圧力でプレスにより所定形状の圧粉体に成形(S2)し、この圧粉体を例えばアンモニア分解ガス雰囲気中で、1090〜1100℃の範囲内の所定の温度に20分間保持の条件で焼結(S3)してFe基焼結合金1を得た。   A method for producing a test product of the Fe-based sintered alloy 1 will be described with reference to FIGS. In the Fe-based sintered alloy 1 shown in FIG. 1, the test product has the length L of 30 mm, the length L3 of 10 mm, the diameter D of 15 mm, the outer diameter D2 of the base portion 2 of 25 mm, and the enlarged portion 3. The one having a diameter D3 of 45 mm was used. And as a raw material powder used for the test products (A) to (E), by weight percent, Fe powder, Fe-Mo powder, Fe-Ne-Mo powder, Cu powder, so as to have the ratio shown in Table 1 below, Cu-Mn powder and graphite powder are mixed as raw material powder (S1: Step 1), and the mixed raw material powder is formed into a green compact of a predetermined shape by pressing at a predetermined pressure within a range of, for example, 400 to 800 MPa (S2). Then, the green compact was sintered (S3) under a condition of holding for 20 minutes at a predetermined temperature in the range of 1990 to 1100 ° C. in an ammonia decomposition gas atmosphere to obtain an Fe-based sintered alloy 1.

本発明では、図4に示すように、前記基部2を下にした状態で、前記焼結(S3)を行う。
実験例
実験品(A)〜(E)は、用いた原料粉末が下記の表1の組成からなり、試験例(X)〜(Z)と同一条件で製造した。
In the present invention, as shown in FIG. 4, the sintering (S3) is performed with the base portion 2 facing down.
Experimental Examples The experimental products (A) to (E) were produced under the same conditions as the test examples (X) to (Z) in which the raw material powder used had the composition shown in Table 1 below.

Figure 2008189954
本発明では、前記基部2を下にした状態で、前記焼結(S3)を行うことにより、焼結時に溶融したCuが基部2に移動することにより、基部2の密度が上がり、焼結合金1の密度均一化が図られ、これは上記の表1も明らかである。
Figure 2008189954
In the present invention, by performing the sintering (S3) with the base portion 2 facing down, the molten Cu at the time of sintering moves to the base portion 2, thereby increasing the density of the base portion 2 and the sintered alloy. 1 is made uniform, which is clear from Table 1 above.

このように本実施例では、請求項1に対応して、3〜8重量%のCuを含んだ鉄系の原料粉末を成形金型の充填部に充填し、この原料粉末を軸方向から加圧して圧粉体を成形し、この圧粉体を焼結してなるFe基焼結合金1において、軸方向一側の基部2と軸方向他側に設けられ基部2より広い拡大部3とを備え、この拡大部3の長さL3と全体の長さLの比が2〜5であり、拡大部3より基部2のCu含有率が高いから、圧粉体を成形した状態で、拡大部3より基部2の密度が低くても、拡大部3より基部2のCu含有率が高い分だけ、基部2の密度が上がり、均一な密度を備えたFe基焼結合金となる。   Thus, in this embodiment, corresponding to claim 1, iron-based raw material powder containing 3 to 8% by weight of Cu is filled in the filling portion of the molding die, and this raw material powder is added from the axial direction. In the Fe-based sintered alloy 1 formed by pressing and forming the green compact, and sintering the green compact, a base portion 2 on one side in the axial direction and an enlarged portion 3 wider than the base portion 2 provided on the other side in the axial direction; The ratio of the length L3 of the enlarged portion 3 to the entire length L is 2 to 5, and the Cu content of the base portion 2 is higher than that of the enlarged portion 3, so that the green compact is expanded in a molded state. Even if the density of the base part 2 is lower than that of the part 3, the density of the base part 2 increases as the Cu content of the base part 2 is higher than that of the enlarged part 3, and the Fe-based sintered alloy having a uniform density is obtained.

そして、原料粉末におけるCuの割合が3重量%未満では、密度の均一化効果が発揮できず、一方、8重量%を超えると、寸法精度が低下するため、上記の範囲が有効であることを見出した。   And if the ratio of Cu in the raw material powder is less than 3% by weight, the effect of uniformizing the density cannot be exhibited. On the other hand, if it exceeds 8% by weight, the dimensional accuracy is lowered, so that the above range is effective. I found it.

また、このように本実施例では、請求項2に対応して、軸方向の貫通孔4を備え、この貫通孔4の直径Dと全体の長さLとの比が1.5〜8であるから、全体の長さLが貫通孔直径Dの1.5倍未満では密度差の問題が生じず、一方、8倍を越えるとCuの移動による密度均一化効果が得られ難いため、上記の範囲が有効であることを見出した。   Thus, in this embodiment, corresponding to claim 2, the axial through hole 4 is provided, and the ratio of the diameter D of the through hole 4 to the overall length L is 1.5 to 8. Therefore, if the overall length L is less than 1.5 times the through-hole diameter D, the problem of density difference does not occur. On the other hand, if it exceeds 8 times, it is difficult to obtain a density uniforming effect due to the movement of Cu. We found that the range of is valid.

また、このように本実施例では、請求項3に対応して、0.08〜1.6重量%のMnを含むから、Cuの融点が下がり、移動し易くなり、密度の低い基部2にCu合金が移動し易くなる。そして、Mnの割合が0.08%未満では融点の降下が発揮できず、一方、1.6%を超えると、靭性が低下するため、上記の範囲が有効であることを見出した。   As described above, in this embodiment, corresponding to claim 3, since 0.08 to 1.6% by weight of Mn is contained, the melting point of Cu is lowered, it becomes easy to move, and the base 2 having a low density is formed. Cu alloy moves easily. And when the ratio of Mn was less than 0.08%, the melting point could not be lowered. On the other hand, when it exceeded 1.6%, the toughness was lowered, so the above range was found to be effective.

このように本実施例では、請求項4に対応して、軸方向一側の基部2と軸方向他側に設けられ基部2より広い拡大部3とを備え、この拡大部3の長さL3と全体の長さLの比が2〜5であるFe基焼結合金1の製造方法において、3〜8重量%のCuを含有した鉄系の原料粉末を成形金型の充填部に充填し、この原料粉末を軸方向から加圧して圧粉体を成形し、基部2を下にして圧粉体を焼結するから、圧粉体を成形した状態で、拡大部3より基部2の密度が低くても、焼結時にCuが溶けて基部2側に移動して基部2の密度が上昇し、均一な密度を備えたFe基焼結合金となる。   Thus, in the present embodiment, corresponding to claim 4, the base portion 2 on one side in the axial direction and the enlarged portion 3 provided on the other side in the axial direction are wider than the base portion 2, and the length L3 of the enlarged portion 3 is provided. In the manufacturing method of the Fe-based sintered alloy 1 in which the ratio of the total length L is 2 to 5, an iron-based raw material powder containing 3 to 8% by weight of Cu is filled in the filling part of the molding die. The raw material powder is pressed from the axial direction to form a green compact, and the green compact is sintered with the base 2 facing downward. Even if it is low, Cu melts at the time of sintering and moves to the base 2 side, the density of the base 2 increases, and an Fe-based sintered alloy having a uniform density is obtained.

そして、原料粉末におけるCuの割合が3重量%未満では、密度の均一化効果が発揮できず、一方、8重量%を超えると、寸法精度が低下するため、上記の範囲が有効であることを見出した。   And if the ratio of Cu in the raw material powder is less than 3% by weight, the effect of uniformizing the density cannot be exhibited. On the other hand, if it exceeds 8% by weight, the dimensional accuracy is lowered, so that the above range is effective. I found it.

また、このように本実施例では、請求項5に対応して、前記Fe基焼結合金は、軸方向の貫通孔4を備え、この貫通孔4の直径Dと全体の長さLとの比が1.5〜8であるから、全体の長さLが貫通孔直径Dの1.5倍未満では密度差の問題が生じず、一方、8倍を越えるとCuの移動による密度均一化効果が得られ難いため、上記の範囲が有効であることを見出した。   Thus, in this embodiment, in correspondence with claim 5, the Fe-based sintered alloy includes an axial through hole 4, and the diameter D of the through hole 4 and the overall length L Since the ratio is 1.5 to 8, if the overall length L is less than 1.5 times the through-hole diameter D, the problem of density difference does not occur. On the other hand, if it exceeds 8 times, the density is uniformized by the movement of Cu. Since it is difficult to obtain the effect, the inventors have found that the above range is effective.

また、このように本実施例では、請求項6に対応して、0.08〜1.6重量%のMnを含むから、Cuの融点が下がり焼結時に密度の低い基部にCu合金が移動し易くなる。そして、Mnの割合が0.08%未満では融点の降下が発揮できず、一方、1.6%を超えると、靭性が低下するため、上記の範囲が有効であることを見出した。   In this way, in this example, corresponding to claim 6, since 0.08 to 1.6 wt% of Mn is contained, the melting point of Cu is lowered, and the Cu alloy moves to a low density base during sintering. It becomes easy to do. And when the ratio of Mn was less than 0.08%, the melting point could not be lowered. On the other hand, when it exceeded 1.6%, the toughness was lowered, so the above range was found to be effective.

図5及び図6は、本発明の実施例2を示し、上記実施例1と同一部分に同一符号を付し、その詳細な説明を省略して詳述すると、同図に示すように、Fe基焼結合金1Aは、拡大部3が貫通孔4に対して偏心しており、この例においても、拡大部3のCuが移動して密度の均一化を図ることができ、本実施例においても、各請求項に対応して、上記実施例1と同様な作用・効果を奏する。   5 and 6 show a second embodiment of the present invention, where the same reference numerals are given to the same portions as those in the first embodiment, and detailed description thereof is omitted. As shown in FIG. In the base sintered alloy 1A, the enlarged portion 3 is eccentric with respect to the through hole 4, and in this example as well, Cu in the enlarged portion 3 can move to achieve a uniform density. Corresponding to each claim, the same operations and effects as the first embodiment are obtained.

図7は、本発明の実施例3を示し、上記各実施例と同一部分に同一符号を付し、その詳細な説明を省略して詳述すると、同図に示すように、Fe基焼結合金1Bは、貫通孔4を備えておらず、基部2及び貫通孔4が中実に形成されており、この例の基部2の直径D2´は、前記直径D2から直径Dを引いた寸法(D2´=D2−D)であり、拡大部3の直径D3´は、前記直径D2から直径Dを引いた寸法(D3´=D3−D)である。   FIG. 7 shows a third embodiment of the present invention, where the same reference numerals are given to the same parts as those of the above-mentioned embodiments, and detailed description thereof is omitted. As shown in FIG. The gold 1B is not provided with the through hole 4, and the base 2 and the through hole 4 are solidly formed. The diameter D2 ′ of the base 2 in this example is a dimension obtained by subtracting the diameter D from the diameter D2 (D2 '= D2-D), and the diameter D3' of the enlarged portion 3 is a dimension obtained by subtracting the diameter D from the diameter D2 (D3 '= D3-D).

この例においても、拡大部3のCuが基部2へ移動して密度の均一化を図ることができ、本実施例においても、請求項1,3,4,6に対応して、上記実施例1と同様な作用・効果を奏する。   Also in this example, the Cu in the enlarged portion 3 can move to the base portion 2 and the density can be made uniform. Also in this embodiment, the embodiment described above corresponds to claims 1, 3, 4, and 6. The same operation and effect as 1 are produced.

尚、本発明は、前記実施形態に限定されるものではなく、種々の変形実施が可能である。例えば、拡大部及び基部は、背景技術に記載したようなギアでもよく、また、断面角形でもよい。さらに、歯付のギアの場合は、歯底円の直径をそれぞれの直径とすればよい。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation implementation is possible. For example, the enlarged portion and the base portion may be a gear as described in the background art or may have a square cross section. Further, in the case of a toothed gear, the diameter of the root circle may be the respective diameter.

本発明の実施例1を示す縦断面図である。It is a longitudinal cross-sectional view which shows Example 1 of this invention. 同上、平面図である。It is a top view same as the above. 同上、製造方法のフローチャート図である。It is a flowchart figure of a manufacturing method same as the above. 同上、焼結時の断面図である。It is sectional drawing at the time of sintering same as the above. 本発明の実施例2を示す縦断面図である。It is a longitudinal cross-sectional view which shows Example 2 of this invention. 同上、平面図である。It is a top view same as the above. 本発明の実施例3を示す縦断面図である。It is a longitudinal cross-sectional view which shows Example 3 of this invention. 従来例を示す縦断面図である。It is a longitudinal cross-sectional view which shows a prior art example.

符号の説明Explanation of symbols

1 Fe基焼結合金
2 基部
3 拡大部
4 貫通孔
L 長さ(全体の長さ)
L3 長さ(拡大部の長さ)
D 直径
1 Fe-based sintered alloy 2 Base 3 Enlarged portion 4 Through hole L Length (total length)
L3 length (length of the enlarged part)
D Diameter

Claims (6)

3〜8重量%のCuを含んだ鉄系の原料粉末を成形金型の充填部に充填し、この原料粉末を軸方向から加圧して圧粉体を成形し、この圧粉体を焼結してなるFe基焼結合金において、軸方向一側の基部と軸方向他側に設けられ前記基部より広い拡大部とを備え、全体の長さが前記拡大部の長さの2〜5倍であり、前記拡大部より前記基部のCu含有率が高いことを特徴とするFe基焼結合金。 An iron-based raw material powder containing 3 to 8% by weight of Cu is filled in the filling part of the molding die, and this raw material powder is pressed from the axial direction to form a green compact, and this green compact is sintered. An Fe-based sintered alloy comprising a base portion on one axial side and an enlarged portion provided on the other axial side and wider than the base portion, the overall length being 2 to 5 times the length of the enlarged portion A Fe-based sintered alloy characterized in that the Cu content of the base is higher than that of the enlarged portion. 前記軸方向の貫通孔を備え、全体の長さが前記貫通孔の直径の1.5〜8倍であることを特徴とする請求項1記載のFe基焼結合金。 2. The Fe-based sintered alloy according to claim 1, wherein the Fe-based sintered alloy includes the through-holes in the axial direction and has an overall length of 1.5 to 8 times the diameter of the through-holes. 0.08〜1.6重量%のMnを含むことを特徴とする請求項1又は2記載のFe基焼結合金。 The Fe-based sintered alloy according to claim 1 or 2, comprising 0.08 to 1.6% by weight of Mn. 軸方向一側の基部と軸方向他側に設けられ前記基部より広い拡大部とを備え、全体の長さが前記拡大部の長さの2〜5倍であるFe基焼結合金の製造方法において、3〜8重量%のCuを含有した鉄系の原料粉末を成形金型の充填部に充填し、この原料粉末を軸方向から加圧して圧粉体を成形し、前記圧粉体を焼結することを特徴とするFe基焼結合金の製造方法。 A method for producing an Fe-based sintered alloy comprising a base on one side in the axial direction and an enlarged portion provided on the other side in the axial direction and wider than the base, the total length being 2 to 5 times the length of the enlarged portion In this method, an iron-based raw material powder containing 3 to 8% by weight of Cu is filled in a filling part of a molding die, the raw material powder is pressed from the axial direction to form a green compact, A method for producing an Fe-based sintered alloy, comprising sintering. 前記Fe基焼結合金は、前記軸方向の貫通孔を備え、全体の長さが前記貫通孔の直径の1.5〜8倍であることを特徴とする請求項4記載のFe基焼結合金の製造方法。 5. The Fe-based sintered bond according to claim 4, wherein the Fe-based sintered alloy has through-holes in the axial direction, and the entire length is 1.5 to 8 times the diameter of the through-holes. Gold manufacturing method. 0.08〜1.6重量%のMnを含むことを特徴とする請求項4又は5記載のFe基焼結合金の製造方法。 The method for producing an Fe-based sintered alloy according to claim 4 or 5, comprising 0.08 to 1.6% by weight of Mn.
JP2007023451A 2007-02-01 2007-02-01 Method for producing Fe-based sintered alloy and Fe-based sintered alloy Expired - Fee Related JP5177787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007023451A JP5177787B2 (en) 2007-02-01 2007-02-01 Method for producing Fe-based sintered alloy and Fe-based sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007023451A JP5177787B2 (en) 2007-02-01 2007-02-01 Method for producing Fe-based sintered alloy and Fe-based sintered alloy

Publications (2)

Publication Number Publication Date
JP2008189954A true JP2008189954A (en) 2008-08-21
JP5177787B2 JP5177787B2 (en) 2013-04-10

Family

ID=39750323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007023451A Expired - Fee Related JP5177787B2 (en) 2007-02-01 2007-02-01 Method for producing Fe-based sintered alloy and Fe-based sintered alloy

Country Status (1)

Country Link
JP (1) JP5177787B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111937A (en) * 2008-11-10 2010-05-20 Kobe Steel Ltd High-strength composition iron powder and sintered component using the same
JP2016011687A (en) * 2014-06-27 2016-01-21 日立化成株式会社 Sintered gear and planetary gear unit using the same
CN108866452A (en) * 2017-05-15 2018-11-23 丰田自动车株式会社 The manufacturing method of sintering forging component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116106A (en) * 1990-09-03 1992-04-16 Akane Tekko Kk Pressure-sintering method
WO2006080554A1 (en) * 2005-01-31 2006-08-03 Komatsu Ltd. Sintered material, iron-based sintered sliding material and process for producing the same, sliding member and process for producing the same, and connecting apparatus
JP2006291233A (en) * 2005-04-05 2006-10-26 Sumitomo Denko Shoketsu Gokin Kk Method for heat-treating end surface of cylindrical part of machine component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116106A (en) * 1990-09-03 1992-04-16 Akane Tekko Kk Pressure-sintering method
WO2006080554A1 (en) * 2005-01-31 2006-08-03 Komatsu Ltd. Sintered material, iron-based sintered sliding material and process for producing the same, sliding member and process for producing the same, and connecting apparatus
JP2006291233A (en) * 2005-04-05 2006-10-26 Sumitomo Denko Shoketsu Gokin Kk Method for heat-treating end surface of cylindrical part of machine component

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012005056; 石丸安彦: 粉末冶金の基礎と応用 , 19930520, P.95〜98, 株式会社技術書院 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111937A (en) * 2008-11-10 2010-05-20 Kobe Steel Ltd High-strength composition iron powder and sintered component using the same
JP2016011687A (en) * 2014-06-27 2016-01-21 日立化成株式会社 Sintered gear and planetary gear unit using the same
CN108866452A (en) * 2017-05-15 2018-11-23 丰田自动车株式会社 The manufacturing method of sintering forging component
JP2018193575A (en) * 2017-05-15 2018-12-06 トヨタ自動車株式会社 Sintering forging member

Also Published As

Publication number Publication date
JP5177787B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
JP4252625B2 (en) High density forming process using ferroalloy and prealloy
JP2016188432A (en) Production method of powder metallurgy workpiece and workpiece
JP6688287B2 (en) Pre-alloyed iron-based powder, iron-based powder mixture containing pre-alloyed iron-based powder, and method of manufacturing press-formed and sintered parts from the iron-based powder mixture
JPWO2012077750A1 (en) Manufacturing method and manufacturing apparatus for high-strength sintered compact
JP2008069384A (en) Fe-BASED SINTERED METAL BEARING AND ITS MANUFACTURING METHOD
JP3774625B2 (en) Method for forging sintered parts
US20090129964A1 (en) Method of forming powder metal components having surface densification
JP5177787B2 (en) Method for producing Fe-based sintered alloy and Fe-based sintered alloy
JP2016540114A (en) Method for obtaining airtight components by powder metallurgy
CN114245761B (en) Method for producing pressed powder and method for producing sintered body
TW201542337A (en) Self-lubricating composite material and method for the production thereof
JP6065105B2 (en) Sintered machine parts and manufacturing method thereof
JPS596301A (en) High densification of powder metal parts
KR100644198B1 (en) Sliding bearing comprising of segment sintered material
JP2010156059A (en) Iron-based powdery mixture for warm die lubrication molding
JP2009167482A (en) Method for producing connecting rod, and connecting rod
JP2009167489A (en) Method for producing sintered component having excellent dimensional precision
JPH07278605A (en) Production of complicated shaped articles by powder metallurgy
JP4753290B2 (en) Manufacturing method of machine parts
JP2015010249A (en) Method for manufacturing thrust bearing for turbocharger, and thrust bearing for turbocharger
JP6728530B2 (en) Sintered body manufacturing method
JP2016069715A (en) Composite sintered body and method of manufacturing the same
JPH07242914A (en) Tungsten-based alloy, inertial body of the same alloy and production thereof
JP2005272934A (en) Method for manufacturing metal member using fine atomized metal powder, and metal member using fine atomized metal powder
JP2008068166A (en) Method for manufacturing sintered metal-made filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Ref document number: 5177787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121230

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees