JP6728530B2 - Sintered body manufacturing method - Google Patents

Sintered body manufacturing method Download PDF

Info

Publication number
JP6728530B2
JP6728530B2 JP2016228041A JP2016228041A JP6728530B2 JP 6728530 B2 JP6728530 B2 JP 6728530B2 JP 2016228041 A JP2016228041 A JP 2016228041A JP 2016228041 A JP2016228041 A JP 2016228041A JP 6728530 B2 JP6728530 B2 JP 6728530B2
Authority
JP
Japan
Prior art keywords
powder
mass
iron
sintered body
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016228041A
Other languages
Japanese (ja)
Other versions
JP2018083970A (en
Inventor
堅 楊
堅 楊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Priority to JP2016228041A priority Critical patent/JP6728530B2/en
Publication of JP2018083970A publication Critical patent/JP2018083970A/en
Application granted granted Critical
Publication of JP6728530B2 publication Critical patent/JP6728530B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、焼結体の製造方法に関する。 The present invention relates to a method for manufacturing a sintered body.

鉄粉などの鉄基粉末を加圧成形して焼結した焼結体(焼結合金)が、自動車部品や機械部品などに利用されている。焼結体を利用した部品(焼結部品)としては、例えばギア、カム、スプロケットなどが挙げられる。一般に、焼結体は、鉄基粉末を加圧成形して成形体を作製し、その成形体を焼結することで製造されている(例えば、特許文献1を参照)。 BACKGROUND ART A sintered body (sintered alloy) obtained by press-molding iron-based powder such as iron powder and sintering it is used for automobile parts, machine parts and the like. Examples of parts (sintered parts) using a sintered body include gears, cams, and sprockets. Generally, a sintered body is manufactured by press-molding an iron-based powder to prepare a molded body and sintering the molded body (see, for example, Patent Document 1).

焼結体の製造には、例えば、ローラーハース炉と呼ばれる連続焼結炉が用いられている(例えば、特許文献2を参照)。ローラーハース炉とは、成形体を炉内のローラにより連続的に搬送しながら焼結する連続焼結炉である。特許文献2には、脱ガス室、予熱室、焼結室が順に連続して設けられた連続焼結炉が記載されている。 A continuous sintering furnace called a roller hearth furnace is used for manufacturing the sintered body (see, for example, Patent Document 2). The roller hearth furnace is a continuous sintering furnace that sinters a molded body while continuously conveying the molded body by rollers in the furnace. Patent Document 2 describes a continuous sintering furnace in which a degassing chamber, a preheating chamber, and a sintering chamber are sequentially provided in sequence.

特開2013−204112号公報JP, 2013-204112, A 特開2015−14041号公報JP, 2005-14041, A

焼結体の高疲労強度化の要求が高まっている。焼結体は、鉄基粉末の粒子同士が焼結によって結合することにより形成されており、焼結体中には空孔(粉末3重点)が存在するため、溶製材に比べて疲労強度が低いという問題がある。したがって、焼結体の疲労強度の向上が望まれる。 There is an increasing demand for higher fatigue strength of sintered bodies. The sintered body is formed by binding particles of iron-based powder to each other by sintering. Since the sintered body has pores (powder triple point), the fatigue strength is higher than that of the ingot material. There is a problem of being low. Therefore, it is desired to improve the fatigue strength of the sintered body.

そこで、焼結体の疲労強度を向上させる焼結体の製造方法を提供することを目的の一つとする。 Then, it aims at providing the manufacturing method of the sintered compact which improves the fatigue strength of a sintered compact.

本開示に係る焼結体の製造方法は、
Cu粉を添加した鉄系原料粉末を加圧成形して成形体を作製する成形工程と、
前記成形体を、800℃以上1000℃以下の予熱温度で予熱する予熱工程と、
前記予熱された成形体を、前記予熱温度から80℃/分以上の昇温速度で昇温し、1120℃以上1300℃以下の焼結温度で焼結する焼結工程とを備える。
The manufacturing method of the sintered body according to the present disclosure,
A molding step in which an iron-based raw material powder added with Cu powder is pressure-molded to produce a molded body;
A preheating step of preheating the molded body at a preheating temperature of 800° C. or higher and 1000° C. or lower;
And a sintering step of heating the preheated compact at a temperature rising rate of 80° C./min or more from the preheating temperature and sintering at a sintering temperature of 1120° C. or more and 1300° C. or less.

上記焼結体の製造方法は、焼結体の疲労強度を向上させることができる。 The method for producing a sintered body described above can improve the fatigue strength of the sintered body.

実施形態に係る焼結体の製造方法により製造された焼結体中に存在する空孔を示す模式図である。It is a schematic diagram which shows the hole which exists in the sintered compact manufactured by the manufacturing method of the sintered compact which concerns on embodiment.

本発明者は、焼結体の疲労特性について鋭意検討した結果、以下の知見を得た。 The present inventor has earnestly studied the fatigue characteristics of the sintered body, and has obtained the following findings.

圧縮応力を焼結体に負荷した場合は、通常、空孔の存在が疲労強度に与える影響は小さいと考えられる。一方、引張応力と圧縮応力とを交互に繰り返す引張‐圧縮応力を焼結体に負荷した場合は、内部の空孔が最大応力位置になり易く、空孔の存在が疲労強度に大きな影響を与えるため、焼結体の引張‐圧縮疲労強度が低い原因となっている可能性が高いと考えられる。 When compressive stress is applied to the sintered body, it is generally considered that the existence of pores has a small effect on fatigue strength. On the other hand, when tensile-compressive stress, in which tensile stress and compressive stress are alternately repeated, is applied to the sintered body, the internal voids are likely to be at the maximum stress position, and the presence of voids has a large effect on fatigue strength. Therefore, it is highly possible that the tensile-compressive fatigue strength of the sintered body is low.

本発明者は、焼結体中の空孔(粉末3重点)の形状に着目した。その結果、従来の焼結体では、粉末3重点において、粒子界面で形成される空孔の角部が鋭角に尖っていることが分かった。そのため、焼結体に引張‐圧縮応力を負荷した場合は、この空孔の鋭角部が最大応力位置になり、応力集中部になる可能性が高い。その結果、引張‐圧縮応力では、空孔の鋭角部が応力集中によって破壊の起点になると考えられる。 The present inventor has paid attention to the shape of pores (three points of powder) in the sintered body. As a result, it was found that in the conventional sintered body, at the powder triple point, the corners of the pores formed at the grain interfaces were sharply pointed. Therefore, when a tensile-compressive stress is applied to the sintered body, the acute-angled portion of this hole becomes the maximum stress position, and there is a high possibility that it will become a stress-concentrated portion. As a result, in tensile-compressive stress, it is considered that the acute-angled portion of the hole becomes the starting point of fracture due to stress concentration.

そこで、本発明者は、焼結体中の空孔の角部を丸くすることで応力集中を下げることにより、疲労強度(引張‐圧縮疲労強度)の向上を図る方法について研究を進めた。そして、本発明者の鋭意研究の結果、焼結体の原料としてCu粉を添加混合した鉄系原料粉末を用いると共に、予熱温度から焼結温度までの昇温速度を速くすることで、焼結体の疲労強度が向上することを見出した。 Therefore, the present inventor has conducted research on a method for improving fatigue strength (tensile-compressive fatigue strength) by rounding the corners of pores in a sintered body to reduce stress concentration. As a result of earnest research by the present inventor, sintering was performed by using an iron-based raw material powder to which Cu powder was added and mixed as a raw material of a sintered body and increasing the temperature rising rate from the preheating temperature to the sintering temperature. It has been found that the fatigue strength of the body is improved.

本発明者は、焼結体の原料となる鉄系原料粉末に焼結温度より融点が低いCu粉を添加混合することにより、焼結する際にCuの液相が出現し、Cuの液相が空孔の鋭角部に入り込むことで、焼結体中の空孔の角部を丸くすることを考えた。しかし、従来の製造方法では、焼結時の昇温速度についてあまり考慮されておらず、せいぜい40℃/分以下であった。昇温速度が遅いと、CuがFe中に固溶していって融点が高くなり、Cuの液相が出現しない、或いは、液相が出現しても少量となるため、Cuの液相が空孔の鋭角部に十分に入り込まず、空孔の角部が丸くなる現象が起こり難い。昇温速度を速くすると、昇温初期にCuの液相が発生し、Cuの液相が濡れ広がり、空孔の鋭角部に入り込む。空孔の鋭角部に入り込んだCuの液相は、Fe中に徐々に固溶していって融点が上昇し、焼結温度で固化することにより、焼結時に空孔の角部を丸くする。 The present inventor adds a Cu powder having a melting point lower than the sintering temperature to an iron-based raw material powder, which is a raw material of a sintered body, so that a liquid phase of Cu appears during sintering, and a liquid phase of Cu appears. It was considered that the corners of the holes in the sintered body were rounded by entering into the sharp corners of the holes. However, in the conventional manufacturing method, the rate of temperature rise during sintering is not taken into consideration so much, and it was at most 40° C./min. When the heating rate is slow, Cu is solid-dissolved in Fe and the melting point is high, so that the liquid phase of Cu does not appear, or even if the liquid phase appears, the amount becomes small, so that the liquid phase of Cu becomes The phenomenon that the corners of the holes are not rounded sufficiently does not easily enter the sharp corners of the holes. When the rate of temperature rise is increased, a liquid phase of Cu is generated in the initial stage of temperature rise, the liquid phase of Cu wets and spreads, and enters the acute-angled portion of the hole. The liquid phase of Cu that has entered the sharp corners of the pores gradually dissolves in Fe to increase its melting point and solidify at the sintering temperature, thereby rounding the corners of the pores during sintering. ..

[本発明の実施形態の説明]
以下、本発明の実施態様を列挙して説明する。
[Description of Embodiments of the Present Invention]
Hereinafter, embodiments of the present invention will be listed and described.

(1)本発明の一態様に係る焼結体の製造方法は、
Cu粉を添加した鉄系原料粉末を加圧成形して成形体を作製する成形工程と、
前記成形体を、800℃以上1000℃以下の予熱温度で予熱する予熱工程と、
前記予熱された成形体を、前記予熱温度から80℃/分以上の昇温速度で昇温し、1120℃以上1300℃以下の焼結温度で焼結する焼結工程とを備える。
(1) The method for manufacturing a sintered body according to one aspect of the present invention is
A molding step in which an iron-based raw material powder added with Cu powder is pressure-molded to produce a molded body;
A preheating step of preheating the molded body at a preheating temperature of 800° C. or higher and 1000° C. or lower;
And a sintering step of heating the preheated compact at a temperature rising rate of 80° C./min or more from the preheating temperature and sintering at a sintering temperature of 1120° C. or more and 1300° C. or less.

Cu粉は、焼結工程の昇温初期に液相として出現し、Cuの液相が空孔(粉末3重点)の鋭角部に入り込むことで、焼結体中の空孔の角部を丸くする働きがあり、焼結体の疲労強度(引張‐圧縮疲労強度)の向上に効果がある。上記焼結体の製造方法によれば、予熱温度から焼結温度までの昇温速度を80℃/分以上とすることで、Cuの液相が出現して空孔の鋭角部に入り込むことにより、焼結体中の空孔の角部が丸くなる。これにより、焼結体の疲労強度を向上させることができる。 The Cu powder appears as a liquid phase in the early stage of temperature rise in the sintering process, and the liquid phase of Cu enters into the sharp corners of the pores (triangle of powder) to round the corners of the pores in the sintered body. And has an effect of improving the fatigue strength (tensile-compression fatigue strength) of the sintered body. According to the above method for producing a sintered body, by setting the rate of temperature increase from the preheating temperature to the sintering temperature to 80° C./min or more, the liquid phase of Cu appears and enters the sharp corners of the holes. , The corners of the holes in the sintered body are rounded. This can improve the fatigue strength of the sintered body.

予熱温度を800℃以上とすることで、予熱温度から焼結温度までの昇温時間を短くでき、昇温時にCuがFe中に固溶することを抑制できる。予熱温度を1000℃以下とすることで、予熱時にCuがFe中に固溶することを抑制できる。 By setting the preheating temperature to 800° C. or higher, the temperature rising time from the preheating temperature to the sintering temperature can be shortened and Cu can be prevented from forming a solid solution in Fe during the temperature rising. By setting the preheating temperature to 1000° C. or less, Cu can be prevented from forming a solid solution in Fe during preheating.

(2)上記焼結体の製造方法の一態様として、前記鉄系原料粉末におけるCu粉の含有量が1.0質量%以上3.0質量%以下であることが挙げられる。 (2) As one aspect of the method for producing the sintered body, the content of the Cu powder in the iron-based raw material powder is 1.0% by mass or more and 3.0% by mass or less.

Cu粉の含有量が1.0質量%以上であることで、Cuの液相が十分出現して、空孔の角部を効果的に丸くすることができ、疲労強度の向上効果が高い。Cu粉を3.0質量%以上含有しても、それ以上疲労強度の向上に寄与しないため、Cu粉の含有量の上限は3.0質量%とする。Cu粉の含有量は、好ましくは1.5質量%以上2.5質量%以下とすることが挙げられる。 When the content of Cu powder is 1.0% by mass or more, the liquid phase of Cu sufficiently appears, the corners of the pores can be effectively rounded, and the effect of improving fatigue strength is high. Even if the content of Cu powder is 3.0 mass% or more, it does not contribute to the improvement of fatigue strength any more, so the upper limit of the content of Cu powder is 3.0 mass %. The content of Cu powder is preferably 1.5% by mass or more and 2.5% by mass or less.

(3)上記焼結体の製造方法の一態様として、前記鉄系原料粉末が、Crを1.0質量%以上3.5質量%以下、Moを0.2質量%以上1.0質量%以下、Cを0.4質量%以上1.0質量%以下、Niを0.5質量%以上2.0質量%以下含有することが挙げられる。 (3) As one aspect of the method for producing the sintered body, the iron-based raw material powder contains Cr in an amount of 1.0% by mass to 3.5% by mass and Mo in an amount of 0.2% by mass to 1.0% by mass. Hereinafter, the content of C is 0.4% by mass or more and 1.0% by mass or less, and Ni is 0.5% by mass or more and 2.0% by mass or less.

Cr、Mo、Niは、焼結体の焼入れ性を改善して、焼結体の高強度化に寄与する。また、Cは、Feと合金化して、焼結体の高強度化に寄与する。各元素の含有量がそれぞれ上記範囲内であることで、その効果が十分に得られる。Feの含有量は90質量%以上が好ましい。 Cr, Mo, and Ni improve the hardenability of the sintered body and contribute to the high strength of the sintered body. Further, C alloys with Fe and contributes to the strengthening of the sintered body. When the content of each element is within the above range, the effect can be sufficiently obtained. The Fe content is preferably 90% by mass or more.

[本発明の実施形態の詳細]
本発明の実施形態に係る焼結体の製造方法の具体例を以下に説明する。本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
A specific example of the method for manufacturing a sintered body according to the embodiment of the present invention will be described below. The present invention is not limited to these exemplifications, but is defined by the scope of the claims, and is intended to include meanings equivalent to the scope of the claims and all modifications within the scope.

<焼結体の製造方法>
実施形態に係る焼結体の製造方法は、鉄系原料粉末を加圧成形して成形体を作製する成形工程と、成形体を予熱する予熱工程と、予熱された成形体を昇温して焼結する焼結工程とを備える。実施形態に係る焼結体の製造方法の特徴の1つは、焼結体の原料としてCu粉を添加混合した鉄系原料粉末を用い、予熱温度から焼結温度までの昇温速度を80℃/分以上とする点にある。以下、各工程について詳しく説明する。
<Sintered body manufacturing method>
The manufacturing method of the sintered body according to the embodiment, a molding step of press-molding the iron-based raw material powder to produce a molded body, a preheating step of preheating the molded body, and raising the temperature of the preheated molded body. And a sintering step of sintering. One of the characteristics of the method for manufacturing a sintered body according to the embodiment is that an iron-based raw material powder to which Cu powder is added and mixed is used as a raw material of the sintered body, and the temperature rising rate from the preheating temperature to the sintering temperature is 80° C. /Min or more. Hereinafter, each step will be described in detail.

(鉄系原料粉末)
鉄系原料粉末は、Feを主成分とする純鉄粉や鉄合金粉(鋼粉など)といった鉄基粉末を主体とし、更にCu粉を添加した混合粉である。鉄系原料粉末には、Cu粉の他、黒鉛紛などの合金成分となる添加元素粉末を含んでいてもよい。添加元素粉末を添加混合した場合、焼結時にFe中に添加元素が拡散して合金化し得る。純鉄粉や鉄合金粉としては、例えば、水アトマイズ粉、ガスアトマイズ粉、カルボニル粉、還元粉を使用できる。
(Iron-based raw material powder)
The iron-based raw material powder is a mixed powder containing iron-based powder such as pure iron powder and iron alloy powder (steel powder, etc.) containing Fe as a main component, and Cu powder added thereto. In addition to Cu powder, the iron-based raw material powder may contain additive element powder such as graphite powder, which is an alloy component. When the additive element powder is added and mixed, the additive element may diffuse into Fe during the sintering to form an alloy. As the pure iron powder and iron alloy powder, for example, water atomized powder, gas atomized powder, carbonyl powder, and reduced powder can be used.

(Cu)
鉄系原料粉末に添加混合したCu粉は、昇温時に液相となり、焼結体中の空孔を丸くする働きがあり、焼結体の疲労強度(引張‐圧縮疲労強度)を向上させる効果がある。Cu粉の含有量は、例えば1.0質量%以上3.0質量%以下、好ましくは1.5質量%以上2.5質量%以下とすることが挙げられる。Cu粉の含有量を1.0質量%以上とすることで、Cuの液相が十分出現して、空孔の角部を効果的に丸くすることができ、疲労強度の向上効果が高い。Cu粉を3.0質量%以上含有しても、それ以上疲労強度の向上に寄与しないため、Cu粉の含有量の上限は3.0質量%とする。また、Cuが焼結時にFe中に拡散することで膨張して、焼結時の収縮を相殺するように作用し、焼結体の寸法精度を高めることができる。
(Cu)
The Cu powder added to and mixed with the iron-based raw material powder becomes a liquid phase when the temperature rises, and has the function of rounding the pores in the sintered body, which has the effect of improving the fatigue strength (tensile-compression fatigue strength) of the sintered body. There is. The content of Cu powder is, for example, 1.0% by mass or more and 3.0% by mass or less, preferably 1.5% by mass or more and 2.5% by mass or less. By setting the content of Cu powder to 1.0% by mass or more, the liquid phase of Cu sufficiently appears, the corners of the holes can be effectively rounded, and the effect of improving fatigue strength is high. Even if the content of Cu powder is 3.0 mass% or more, it does not contribute to the improvement of fatigue strength any more, so the upper limit of the content of Cu powder is 3.0 mass %. Further, Cu diffuses in Fe during sintering and expands to act so as to cancel the contraction during sintering, thereby improving the dimensional accuracy of the sintered body.

(Cr、Mo、C、Ni)
また、鉄系原料粉末は、Cr、Mo、C、Niなどを合金成分として含有してもよい。これらの元素は、焼結体の強度の向上に有効である。各元素の含有量は、目的とする機械的特性が得られるように適宜調整すればよい。例えば、Crの含有量は1.0質量%以上3.5質量%以下、好ましくは2.5質量%以上とすることが挙げられる。Moの含有量は0.2質量%以上1.0質量%以下、好ましくは0.4質量%以上0.8質量%以下とすることが挙げられる。Cの含有量は0.4質量%以上1.0質量%以下、好ましくは0.8質量%以下とすることが挙げられる。Niの含有量は0.5質量%以上2.0質量%以下、好ましくは1.5質量%以下とすることが挙げられる。C及びNiは、粉末の形で鉄系原料粉末に添加混合してもよい。鉄系原料粉末におけるFeの含有量は90質量%以上とすることが挙げられる。鉄系原料粉末(鉄基粉末)として、Cを予め合金化した鋼粉を用いた場合、硬く成形し難いため、成形体の成形密度を高めることが難しい。よって、Cを予め合金化させずに、鉄系原料粉末にC粉(例えば黒鉛紛)を添加することが好ましく、これにより成形体の成形密度を高めることができ、焼結体を高密度化し易い。
(Cr, Mo, C, Ni)
Further, the iron-based raw material powder may contain Cr, Mo, C, Ni or the like as an alloy component. These elements are effective in improving the strength of the sintered body. The content of each element may be appropriately adjusted so as to obtain the desired mechanical properties. For example, the Cr content is 1.0% by mass or more and 3.5% by mass or less, and preferably 2.5% by mass or more. The content of Mo is 0.2 mass% or more and 1.0 mass% or less, preferably 0.4 mass% or more and 0.8 mass% or less. The content of C is 0.4 mass% or more and 1.0 mass% or less, preferably 0.8 mass% or less. The Ni content may be 0.5% by mass or more and 2.0% by mass or less, preferably 1.5% by mass or less. C and Ni may be added to and mixed with the iron-based raw material powder in the form of powder. The content of Fe in the iron-based raw material powder may be 90% by mass or more. When a steel powder in which C is prealloyed is used as the iron-based raw material powder (iron-based powder), it is hard to mold and it is difficult to increase the molding density of the molded body. Therefore, it is preferable to add C powder (for example, graphite powder) to the iron-based raw material powder without previously alloying C, which can increase the molding density of the molded body and increase the density of the sintered body. easy.

鉄系原料粉末において、純鉄粉や鉄合金粉といった鉄基粉末の平均粒径は、例えば20μm以上200μm以下、更に50μm以上150μm以下とすることが挙げられる。鉄基粉末の平均粒径を上記範囲内とすることで、取り扱い易く、加圧成形し易い。鉄基粉末の平均粒径を20μm以上とすることで、流動性を確保し易い。鉄基粉末の平均粒径を200μm以下とすることで、緻密な組織の焼結体を得易い。また、Cu粉や黒鉛粉、Ni粉などの添加元素粉末の平均粒径は、鉄基粉末の平均粒径よりも小さくすることが好ましく、これにより、添加元素粉末の粒子が鉄基粉末の粒子間に均一に分散し易くなり、合金化が進行し易くなる。Cu粉及びNi粉などの平均粒径は、例えば1μm以上20μm以下、更に10μm以下とすることが挙げられる。黒鉛粉の平均粒径は、例えば1μm以上10μm以下とすることが挙げられる。ここでいう「平均粒径」は、レーザ回折式粒度分布測定装置により測定した体積粒度分布における累積体積が50%となる粒径(D50)のことである。 In the iron-based raw material powder, the average particle size of the iron-based powder such as pure iron powder or iron alloy powder is, for example, 20 μm or more and 200 μm or less, and further 50 μm or more and 150 μm or less. By setting the average particle size of the iron-based powder within the above range, it is easy to handle and press-mold easily. By setting the average particle size of the iron-based powder to 20 μm or more, it is easy to ensure the fluidity. By setting the average particle size of the iron-based powder to 200 μm or less, it is easy to obtain a sintered body having a dense structure. The average particle size of the additive element powder such as Cu powder, graphite powder, and Ni powder is preferably smaller than the average particle size of the iron-based powder, whereby the particles of the additive element powder are the particles of the iron-based powder. It becomes easy to disperse evenly between them, and alloying easily proceeds. The average particle diameter of the Cu powder, the Ni powder and the like is, for example, 1 μm or more and 20 μm or less, and further 10 μm or less. The average particle size of the graphite powder is, for example, 1 μm or more and 10 μm or less. The "average particle size" here is the particle size (D50) at which the cumulative volume in the volume particle size distribution measured by a laser diffraction particle size distribution measuring device is 50%.

(潤滑剤)
鉄系原料粉末の成形性を向上する目的で、鉄系原料粉末に対して潤滑剤を添加混合することが挙げられる。潤滑剤には、固体潤滑剤を用いることが好ましく、例えば、ステアリン酸亜鉛などのステアリン酸金属塩、ステアリン酸アミドなどの脂肪酸アミド、エチレンビスステアリン酸アミドなどのアルキレンビス脂肪酸アミドの少なくとも1種を単独で又は組み合わせて用いることができる。潤滑剤には、公知のものを用いることができる。鉄系原料粉末に対する潤滑剤の添加量は、鉄系原料粉末を100質量%とするとき、例えば0.3質量%以上1.0質量%以下とすることが挙げられる。
(lubricant)
For the purpose of improving the moldability of the iron-based raw material powder, a lubricant may be added to and mixed with the iron-based raw material powder. A solid lubricant is preferably used as the lubricant. For example, at least one of stearic acid metal salts such as zinc stearate, fatty acid amides such as stearic acid amide, and alkylene bis fatty acid amides such as ethylene bis stearic acid amide is used. They can be used alone or in combination. A known lubricant can be used as the lubricant. The amount of the lubricant added to the iron-based raw material powder is, for example, 0.3 mass% or more and 1.0 mass% or less when the iron-based raw material powder is 100 mass %.

(成形工程)
成形工程は、Cu粉を添加した鉄系原料粉末を加圧成形して成形体を作製する工程である。具体的には、鉄系原料粉末を金型に充填してプレス成形することが挙げられ、加圧成形は公知のプレス装置を利用できる。加圧成形する際の成形圧を高くするほど、成形体を高密度化でき、焼結体を高強度化できる。成形圧は、例えば600MPa以上、更に700MPa以上とすることが挙げられる。成形圧の上限は、例えば1000MPa以下とすることが挙げられる。
(Molding process)
The molding step is a step of pressure-molding the iron-based raw material powder to which Cu powder is added to produce a molded body. Specifically, it is possible to fill the mold with the iron-based raw material powder and press-mold it. For press-molding, a known press machine can be used. The higher the molding pressure at the time of pressure molding, the higher the density of the molded body and the higher the strength of the sintered body. The molding pressure is, for example, 600 MPa or more, and further 700 MPa or more. The upper limit of the molding pressure is, for example, 1000 MPa or less.

(予熱工程)
予熱工程は、成形体を、800℃以上1000℃以下の予熱温度で予熱する工程である。予熱温度を800℃以上とすることで、予熱温度から焼結温度までの昇温時間を短くでき、昇温時にCuがFe中に固溶することを抑制できる。予熱温度を1000℃以下とすることで、予熱時にCuがFe中に固溶することを抑制できる。予熱温度は、例えば850℃以上950℃以下とすることが好ましい。予熱工程では、成形体全体を予熱温度まで加熱できればよく、予熱時間は、成形体の形状やサイズに応じて適宜設定すればよい。但し、予熱時間が長くなり過ぎると、CuのFe中への固溶が促進される可能性があることから、予熱時間は、例えば5分以上30分以下、更に8分以上20分以下とすることが挙げられる。
(Preheating process)
The preheating step is a step of preheating the compact at a preheating temperature of 800° C. or higher and 1000° C. or lower. By setting the preheating temperature to 800° C. or higher, the temperature rising time from the preheating temperature to the sintering temperature can be shortened and Cu can be prevented from forming a solid solution in Fe during the temperature rising. By setting the preheating temperature to 1000° C. or less, Cu can be prevented from forming a solid solution in Fe during preheating. The preheating temperature is preferably 850° C. or higher and 950° C. or lower, for example. In the preheating step, it suffices that the entire compact can be heated to the preheating temperature, and the preheating time may be set appropriately according to the shape and size of the compact. However, if the preheating time is too long, the solid solution of Cu in Fe may be promoted, so the preheating time is, for example, 5 minutes or more and 30 minutes or less, and further 8 minutes or more and 20 minutes or less. It can be mentioned.

(焼結工程)
焼結工程は、予熱された成形体を、予熱温度から80℃/分以上の昇温速度で昇温し、1120℃以上1300℃以下の焼結温度で焼結する工程である。具体的には、予熱工程に続いて焼結工程を連続して行い、予熱工程で予熱された状態の成形体を予熱温度から焼結温度まで昇温する。成形体を焼結することによって、鉄基粉末の粒子同士が接触して結合された焼結体が得られる。焼結温度は、例えば1200℃以上1300℃以下とすることが好ましい。焼結時間は、例えば15分以上150分以下、更に20分以上60分以下とすることが挙げられる。
(Sintering process)
The sintering step is a step of raising the temperature of the preheated compact at a temperature rising rate of 80° C./min or more from the preheating temperature and sintering at a sintering temperature of 1120° C. or more and 1300° C. or less. Specifically, the sintering step is continuously performed after the preheating step, and the compact preheated in the preheating step is heated from the preheating temperature to the sintering temperature. By sintering the compact, it is possible to obtain a sintered body in which particles of the iron-based powder are in contact with each other and bonded. The sintering temperature is preferably 1200° C. or higher and 1300° C. or lower, for example. The sintering time is, for example, 15 minutes or more and 150 minutes or less, and further 20 minutes or more and 60 minutes or less.

(昇温速度)
予熱温度から焼結温度までの昇温速度は80℃/分以上とする。これにより、昇温初期にCuの液相が出現し、Cuの液相が濡れ広がり、鉄系原料粉末の成形体中に存在する空孔(粉末3重点)の鋭角部に入り込む。そして、空孔の鋭角部に入り込んだCuの液相がFe中に徐々に固溶して焼結温度で固化することで、焼結体中の空孔の角部が丸くなる。昇温速度が速いほど、Cuの液相が出現し易いため、昇温速度は、例えば100℃/分以上、更に120°/分以上、150℃/分以上、200℃/分以上、300℃/分以上とすることが挙げられる。また、昇温速度を速くすることによって、予熱温度から焼結温度までの昇温時間が短くなり、CuがFe中に固溶することを抑制できる。昇温速度の上限は、特に限定されないが、例えば、昇温速度は400℃/分以下とすることが挙げられる。
(Rate of heating)
The rate of temperature increase from the preheating temperature to the sintering temperature is 80° C./min or more. As a result, the liquid phase of Cu appears in the initial stage of the temperature rise, the liquid phase of Cu spreads wet, and enters into the acute-angled portion of the pores (three points of powder) existing in the compact of the iron-based raw material powder. Then, the liquid phase of Cu that has entered the acute corners of the pores gradually dissolves in Fe and solidifies at the sintering temperature, so that the corners of the pores in the sintered body become round. Since the liquid phase of Cu is more likely to appear as the heating rate is faster, the heating rate is, for example, 100° C./min or more, further 120°/min or more, 150° C./min or more, 200° C./min or more, 300° C. /Minute or more. Further, by increasing the temperature rising rate, the temperature rising time from the preheating temperature to the sintering temperature is shortened, and Cu can be suppressed from forming a solid solution in Fe. The upper limit of the rate of temperature increase is not particularly limited, but for example, the rate of temperature increase is 400° C./min or less.

また、鉄系原料粉末にCの粉末(例、黒鉛紛など)を添加混合した場合、焼結温度がFe‐C共晶点(1153℃)以上で、CがFeと部分的に共晶反応して、Fe‐Cの接触界面で液相が出現する可能性がある。 When a C powder (eg, graphite powder) is added to and mixed with the iron-based raw material powder, the sintering temperature is the Fe-C eutectic point (1153°C) or higher, and C partially reacts with Fe to form a eutectic reaction. Then, a liquid phase may appear at the contact interface of Fe-C.

《作用効果》
上述した実施形態の焼結体の製造方法は、次の効果を奏する。
《Action effect》
The method for manufacturing a sintered body according to the above-described embodiment has the following effects.

Cu粉を添加した鉄系原料粉末の成形体を焼結する際に予熱温度から焼結温度までの昇温速度を80℃/分以上とすることにより、Cuの液相が出現して空孔(粉末3重点)の鋭角部に入り込むことで、焼結体中の空孔の角部が丸くなる。これにより、焼結体の疲労強度(引張‐圧縮疲労強度)を向上させることができる。具体的には、図1に示すように、焼結体を構成する鉄基粉末の粒子pの3重点に存在する空孔vにおいて、焼結時に空孔vの鋭角部(図中、右下がりのハッチングで示す部分)にCuの液相が入り込み、固化することによって、空孔vの角部が丸く形成される。昇温速度が速いので、Fe中にCuが完全に拡散せず、一部のCu(Cu中にFeが拡散している場合を含む)が空孔vの角部に残留する。 When the temperature rise rate from the preheating temperature to the sintering temperature is set to 80° C./min or more when sintering the formed body of the iron-based raw material powder to which Cu powder is added, the liquid phase of Cu appears and the voids are generated. By entering into the sharp corner of (powder 3 point), the corner of the void in the sintered body becomes round. Thereby, the fatigue strength (tensile-compression fatigue strength) of the sintered body can be improved. Specifically, as shown in FIG. 1, in the pores v existing at the triple points of the particles p of the iron-based powder forming the sintered body, the acute-angled portion of the pores v (downward to the right in the figure) at the time of sintering. The liquid phase of Cu enters into the hatched portion (1) and solidifies to form rounded corners of the holes v. Since the rate of temperature rise is high, Cu does not completely diffuse into Fe, and some Cu (including the case where Fe diffuses into Cu) remains at the corners of the holes v.

実施形態の製造方法により製造された焼結体は、引張‐圧縮疲労特性に優れることから、引張‐圧縮疲労応力がかかる部品に好適に利用できる。 Since the sintered body manufactured by the manufacturing method of the embodiment has excellent tensile-compressive fatigue properties, it can be suitably used for parts to which tensile-compressive fatigue stress is applied.

[試験例1]
質量比で、Cr:3.0%、Mo:0.5%、C:0.5%、Ni:1.0%、Cu:1.0%含有し、残部がFe及び不可避的不純物からなる組成(Fe‐3.0Cr‐0.5Mo‐0.5C‐1.0Ni‐1.0Cu)を有する鉄系原料粉末を用意した。ここでは、Fe、Cr及びMoを含有するFe‐Cr‐Moの鉄合金粉(平均粒径(D50):100μm)を用意し、これにCu粉(D50:10μm)、黒鉛紛(D50:10μm)及びNi粉(D50:2.5μm)を添加混合して、所定の組成に調整した混合粉を鉄系原料粉末として用いた。この鉄系原料粉末に対して固体潤滑剤を0.6質量%添加して混合し、700MPaの成形圧で加圧成形して、縦×横×長さが14.5mm×14.5mm×95mmの四角柱状の成形体を作製した。固体潤滑剤には、ステアリン酸亜鉛(D50:100μm)を用いた。この成形体を焼結炉に入れ、950℃の予熱温度で8分間保持して予熱した後、昇温し、1250℃の焼結温度で30分間保持して焼結することにより、焼結体を製造した。
[Test Example 1]
By mass ratio, Cr: 3.0%, Mo: 0.5%, C: 0.5%, Ni: 1.0%, Cu: 1.0% are contained, and the balance is Fe and inevitable impurities. An iron-based raw material powder having a composition (Fe-3.0Cr-0.5Mo-0.5C-1.0Ni-1.0Cu) was prepared. Here, an iron alloy powder of Fe-Cr-Mo containing Fe, Cr and Mo (average particle diameter (D50): 100 μm) is prepared, and Cu powder (D50:10 μm) and graphite powder (D50:10 μm) are prepared. ) And Ni powder (D50: 2.5 μm) were added and mixed, and a mixed powder adjusted to a predetermined composition was used as an iron-based raw material powder. 0.6 mass% of a solid lubricant is added to and mixed with the iron-based raw material powder, and the mixture is pressure-molded at a molding pressure of 700 MPa, and the length×width×length is 14.5 mm×14.5 mm×95 mm. A rectangular column shaped molded body of was produced. Zinc stearate (D50: 100 μm) was used as the solid lubricant. The compact was placed in a sintering furnace, preheated at a preheating temperature of 950° C. for 8 minutes to be preheated, heated, and then sintered at a sintering temperature of 1250° C. for 30 minutes to sinter the sintered body Was manufactured.

試験例1では、焼結炉のヒータを制御して予熱温度(950℃)から焼結温度(1250℃)までの昇温速度を変更し、表1に示す試料No.1−1〜1−6の焼結体を得た。 In Test Example 1, the heater of the sintering furnace was controlled to change the heating rate from the preheating temperature (950° C.) to the sintering temperature (1250° C.). Sintered bodies 1-1 to 1-6 were obtained.

試料No.1−1〜1−6の焼結体について、引張‐圧縮疲労強度を評価した。その結果を表1に示す。ここでは、各試料の焼結体を加工して、JIS Z 2274に準じて疲労試験片(1号試験片、ゲージ部:直径8mm×長さ30mm)を作製し、各試験片に対して疲労試験を行った。引張‐圧縮疲労強度の評価は、JIS Z 2274に準じて小野式回転曲げ疲労試験機で疲労試験を行い、試験片が破断するまでの繰り返し回数を測定した。この回数が多いほど、引張‐圧縮疲労強度が高いことを意味する。測定条件は、回転数3600rpm、応力比R=−1(両振り)とし、試験片に±300MPaの引張‐圧縮応力を繰り返し負荷した。 Sample No. Tensile-compressive fatigue strength was evaluated for the sintered bodies 1-1 to 1-6. The results are shown in Table 1. Here, the sintered body of each sample was processed to produce a fatigue test piece (No. 1 test piece, gauge part: diameter 8 mm x length 30 mm) according to JIS Z 2274, and fatigue was applied to each test piece. The test was conducted. The tensile-compression fatigue strength was evaluated by performing a fatigue test with an Ono-type rotary bending fatigue tester according to JIS Z 2274, and measuring the number of repetitions until the test piece broke. The larger the number of times, the higher the tensile-compressive fatigue strength. The measurement conditions were a rotation speed of 3600 rpm and a stress ratio R=-1 (both swings), and a tensile-compressive stress of ±300 MPa was repeatedly applied to the test piece.

Figure 0006728530
Figure 0006728530

表1の結果から、昇温速度を80℃/分以上とした試料No.1−1〜1−5は、引張‐圧縮疲労強度が1×10回超であり、昇温速度が遅い試料No.1−6〜1−8に比べて引張‐圧縮疲労強度が高いことが分かる。この結果から、予熱温度から焼結温度までの昇温速度を速くすることで、焼結体の引張‐圧縮疲労強度を向上できると考えられる。これは、鉄系原料粉末にCu粉を添加し、予熱温度から焼結温度までの昇温速度を80℃/分以上としたことで、焼結時にCuの液相が空孔(粉末3重点)の鋭角部に入り込み、焼結体中の空孔の角部が丸くなることにより、応力集中が緩和され、疲労強度が向上したものと推測される。 From the results of Table 1, sample No. with a temperature rising rate of 80° C./min or more. Sample Nos. 1-1 to 1-5 have tensile-compression fatigue strength of more than 1×10 6 times and have a slow heating rate. It can be seen that the tensile-compressive fatigue strength is higher than those of 1-6 to 1-8. From this result, it is considered that the tensile-compression fatigue strength of the sintered body can be improved by increasing the temperature rising rate from the preheating temperature to the sintering temperature. This is because Cu powder was added to the iron-based raw material powder, and the temperature rising rate from the preheating temperature to the sintering temperature was set to 80° C./min or more, so that the liquid phase of Cu was vacant during the sintering (powder triple point). It is presumed that the stress concentration is relaxed and the fatigue strength is improved by entering into the acute angle portion of) and rounding the corner portion of the void in the sintered body.

[試験例2]
試験例2では、Cu粉の含有量を変更した以外は試験例1と同じ組成の鉄系原料粉末を用意し、Cu粉の含有量が異なる鉄系原料粉末を用い、試験例1と同様にして焼結体を製造した。ここでは、昇温速度を120℃/分とし、表2に示す試料No.2−0〜2−3の焼結体を得た。試料No.2−0は、鉄系原料粉末にCu粉を添加混合していない。試料No.2−0〜2−3の焼結体について、試験例1と同様に引張‐圧縮疲労強度を評価した。その結果を表2に示す。
[Test Example 2]
In Test Example 2, an iron-based raw material powder having the same composition as in Test Example 1 was prepared except that the content of Cu powder was changed, and iron-based raw material powders having different Cu powder contents were used. To produce a sintered body. Here, the temperature rising rate was set to 120° C./min, and the sample No. A sintered body of 2-0 to 2-3 was obtained. Sample No. In No. 2-0, Cu powder was not added to and mixed with the iron-based raw material powder. Sample No. For the sintered bodies 2-0 to 2-3, the tensile-compression fatigue strength was evaluated in the same manner as in Test Example 1. The results are shown in Table 2.

Figure 0006728530
Figure 0006728530

表2の結果から、Cu粉を添加した鉄系原料粉末を用いた試料No.2−1〜2−3は、引張‐圧縮疲労強度が1×10回超であり、引張‐圧縮疲労特性に優れることが分かる。これに対し、Cu粉を添加していない鉄系原料粉末を用いた試料No.2−0は、試料No.2−1〜2−3よりも引張‐圧縮疲労強度が低く、劣っていることが分かる。この結果から、鉄系原料粉末にCu粉を添加することで、焼結体の引張‐圧縮疲労強度を向上できると考えられる。 From the result of Table 2, sample No. using the iron-based raw material powder to which Cu powder was added. 2-1 to 2-3 have a tensile-compressive fatigue strength of more than 1×10 6 times, and it is understood that the tensile-compressive fatigue properties are excellent. On the other hand, the sample No. using the iron-based raw material powder to which Cu powder was not added was used. 2-0 is sample No. It can be seen that the tensile-compression fatigue strength is lower than 2-1 to 2-3 and is inferior. From this result, it is considered that the tensile-compression fatigue strength of the sintered body can be improved by adding Cu powder to the iron-based raw material powder.

p 粒子
v 空孔
p particle v hole

Claims (3)

Cu粉を添加した鉄系原料粉末を加圧成形して成形体を作製する成形工程と、
前記成形体を、800℃以上1000℃以下の予熱温度で予熱する予熱工程と、
前記予熱された成形体を、前記予熱温度から80℃/分以上の昇温速度で昇温し、1120℃以上1300℃以下の焼結温度で焼結する焼結工程とを備える焼結体の製造方法。
A molding step in which an iron-based raw material powder added with Cu powder is pressure-molded to produce a molded body;
A preheating step of preheating the molded body at a preheating temperature of 800° C. or higher and 1000° C. or lower;
A sintering step of heating the preheated compact at a temperature rising rate of 80° C./min or more from the preheating temperature and sintering at a sintering temperature of 1120° C. or more and 1300° C. or less. Production method.
前記鉄系原料粉末におけるCu粉の含有量が1.0質量%以上3.0質量%以下である請求項1に記載の焼結体の製造方法。 The method for producing a sintered body according to claim 1, wherein the content of Cu powder in the iron-based raw material powder is 1.0% by mass or more and 3.0% by mass or less. 前記鉄系原料粉末が、Crを1.0質量%以上3.5質量%以下、Moを0.2質量%以上1.0質量%以下、Cを0.4質量%以上1.0質量%以下、Niを0.5質量%以上2.0質量%以下含有する請求項1又は請求項2に記載の焼結体の製造方法。 The iron-based raw material powder contains 1.0 mass% or more and 3.5 mass% or less of Cr, 0.2 mass% or more and 1.0 mass% or less of Mo, and 0.4 mass% or more and 1.0 mass% of C. Hereinafter, the manufacturing method of the sintered compact according to claim 1 or 2, which contains 0.5% by mass or more and 2.0% by mass or less of Ni.
JP2016228041A 2016-11-24 2016-11-24 Sintered body manufacturing method Active JP6728530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016228041A JP6728530B2 (en) 2016-11-24 2016-11-24 Sintered body manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016228041A JP6728530B2 (en) 2016-11-24 2016-11-24 Sintered body manufacturing method

Publications (2)

Publication Number Publication Date
JP2018083970A JP2018083970A (en) 2018-05-31
JP6728530B2 true JP6728530B2 (en) 2020-07-22

Family

ID=62237097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016228041A Active JP6728530B2 (en) 2016-11-24 2016-11-24 Sintered body manufacturing method

Country Status (1)

Country Link
JP (1) JP6728530B2 (en)

Also Published As

Publication number Publication date
JP2018083970A (en) 2018-05-31

Similar Documents

Publication Publication Date Title
Bekoz et al. Effects of carbamide shape and content on processing and properties of steel foams
JP4737107B2 (en) Iron-based powder mixture, iron-based powder molded body, and method for producing iron-based powder sintered body
CA2911031C (en) Alloy steel powder for powder metallurgy and method of producing iron-based sintered body
JP2016188432A (en) Production method of powder metallurgy workpiece and workpiece
JP5958144B2 (en) Iron-based mixed powder for powder metallurgy, high-strength iron-based sintered body, and method for producing high-strength iron-based sintered body
JP2010090470A (en) Iron-based sintered alloy and method for producing the same
JP5929967B2 (en) Alloy steel powder for powder metallurgy
CA2922018A1 (en) Alloy steel powder for powder metallurgy and method of producing iron-based sintered body
KR20180031749A (en) Iron-based sintered compact and method for producing same
JPWO2016092827A1 (en) Iron-base alloy powder for powder metallurgy and sintered forged parts
JP2011094187A (en) Method for producing high strength iron based sintered compact
CN106424716B (en) Improve the method for copper-manganese damping sintered alloy performance with ferrous oxalate
JP6728530B2 (en) Sintered body manufacturing method
JPWO2018216461A1 (en) Manufacturing method of sintered member
JP4060092B2 (en) Alloy steel powder for powder metallurgy and sintered body thereof
JP5786755B2 (en) Method for producing ferrous sintered material
JP2006241533A (en) Iron based mixed powder for high strength sintered component
JP2009263697A (en) Method for manufacturing sintered steel
JP2001294905A (en) Method for producing micromodule gear
JP2014025109A (en) Mixed powder for powder metallurgy
JPWO2018142778A1 (en) Mixed powder for powder metallurgy, sintered body, and method for producing sintered body
JP5177787B2 (en) Method for producing Fe-based sintered alloy and Fe-based sintered alloy
JP2008240031A (en) Preform for pressing using iron powder as raw material, and its manufacturing method
JP4808375B2 (en) Iron-based powder mixture for powder metallurgy
JP7039692B2 (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20190521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200605

R150 Certificate of patent or registration of utility model

Ref document number: 6728530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250