JP2007057068A - Method for manufacturing hydrodynamic bearing - Google Patents

Method for manufacturing hydrodynamic bearing Download PDF

Info

Publication number
JP2007057068A
JP2007057068A JP2005246053A JP2005246053A JP2007057068A JP 2007057068 A JP2007057068 A JP 2007057068A JP 2005246053 A JP2005246053 A JP 2005246053A JP 2005246053 A JP2005246053 A JP 2005246053A JP 2007057068 A JP2007057068 A JP 2007057068A
Authority
JP
Japan
Prior art keywords
bearing
sintered body
treatment
steam treatment
fluid dynamic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005246053A
Other languages
Japanese (ja)
Other versions
JP2007057068A5 (en
Inventor
Masanori Kikuchi
眞紀 菊池
Yoji Takezaki
陽二 竹崎
Daisuke Sato
大介 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
POORAITO KK
Original Assignee
POORAITO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by POORAITO KK filed Critical POORAITO KK
Priority to JP2005246053A priority Critical patent/JP2007057068A/en
Publication of JP2007057068A publication Critical patent/JP2007057068A/en
Publication of JP2007057068A5 publication Critical patent/JP2007057068A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a hydrodynamic bearing which can improve its corrosion resistance and wear resistance by improving its surface roughness by forming a coating film of triiron tetraoxide (Fe<SB>3</SB>O<SB>4</SB>) on the bearing. <P>SOLUTION: The coating film of Fe<SB>3</SB>O<SB>4</SB>is formed on a porous material of pressed powder sintered metallic body by carrying out the steam treatment within the atmospheric temperature from 400 to 600°C. By this method, the corrosion resistance and wear resistance can be improved. In addition, the coating film is suitable for the substrate treatment for plating, and is particularly optimum for the hydrodynamic bearing. Further, the reduction of costs is expectable. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は非接触摺動で回転軸を支持する流体動圧軸受の製造方法に関し、モータの耐久性および回転精度の向上ならびに低ノイズ化、さらにはコストの低減をはかることを目的とする。   The present invention relates to a method of manufacturing a fluid dynamic bearing that supports a rotating shaft by non-contact sliding, and an object thereof is to improve motor durability and rotational accuracy, reduce noise, and reduce costs.

近年AV機器やOA機器類等の高精度化に伴い、とくにハードディスクドライブや、各種DVDあるいはCD読み取り用等のスピンドルモータ、あるいはファンモータ等のモータの回転精度向上、低ノイズ化の要請が著しく高まりつつあり、これらの要請に応えるべく非接触でモータ軸を支持する流体動圧型の軸受が注目されている。   In recent years, with the increase in accuracy of AV equipment and OA equipment, there has been a significant increase in demands for improving the rotational accuracy and reducing noise of motors such as hard disk drives, spindle motors for reading various DVDs and CDs, and fan motors. In order to meet these demands, fluid dynamic pressure type bearings that support a motor shaft in a non-contact manner are attracting attention.

ヘリングボーン溝付きなど、軸受内周面や端面に溝を施した流体動圧型軸受の普及に伴い、回転精度の向上等さらなる性能の向上や低コスト化の要請が高まるなか、軸受内周面や端面への溝の切削加工が不要な金属粉末の圧粉焼結体が多用されるようになった。金属粉末の圧粉焼結体により成型される軸受は、従来の軸受装置の課題、すなわち真鍮など銅系の軸受とステンレス回転軸との組み合わせのような、それぞれの部材の熱線膨張係数差による使用環境温度範囲が狭いこと、また回転軸と軸受間の適正クリアランス維持が困難であるところから回転精度の向上には自ずと限界があること、等の課題を一応解決できる。   With the widespread use of fluid dynamic pressure bearings with grooves on the inner peripheral surface and end surface of the bearing, such as with herringbone grooves, the demand for further improvements in performance such as improved rotational accuracy and lower costs has increased. Metal powder compacts that do not require cutting of grooves on the end face have come to be used frequently. Bearings molded from metal powder compacts are used due to differences in the coefficient of thermal expansion of each component, such as the problem of conventional bearing devices, that is, the combination of brass bearings such as brass and stainless steel rotating shafts. Problems such as a narrow environmental temperature range and a difficulty in maintaining an appropriate clearance between the rotating shaft and the bearing are inherently limited in improving rotational accuracy.

また、軸受の材質を鉄系のものにすることで回転軸との熱線膨張係数差を縮小することもできるが、一般的に鉄系材は動圧溝などの切削加工性が悪く、切削工具の短寿命化や切削後の軸受内径精度悪化による管理費増大などにより量産性ならびに低コスト化が困難となるので現実的ではない等の課題も解決することが可能ではある。   In addition, by making the bearing material iron-based, the difference in the coefficient of thermal expansion from the rotating shaft can be reduced, but generally iron-based materials have poor cutting workability such as dynamic pressure grooves, and cutting tools It is possible to solve problems that are not practical because it is difficult to reduce mass production and cost due to an increase in management costs due to the shortening of the service life and the deterioration of the bearing inner diameter accuracy after cutting.

しかし、圧粉焼結体により成型される軸受は金属粉末を原料として用いるために、通常の工程では焼結体粒子間の空隙による連通孔の存在を完全に無くすことが不可能であるところから通気性が高まり、軸受表面で発生した動圧が上記した連通孔を通じて漏れ、圧力低下や回転軸の剛性、回転精度に悪影響を及ぼしやすい。   However, since bearings molded from a sintered compact use metal powder as a raw material, it is impossible to completely eliminate the presence of communication holes due to voids between sintered particles in a normal process. The air permeability is enhanced, and the dynamic pressure generated on the bearing surface leaks through the above-described communication holes, and tends to adversely affect the pressure drop, the rigidity of the rotating shaft, and the rotation accuracy.

そこで、焼結体軸受に樹脂を含浸させて気孔を封孔するようにした技術がすでに提案されている(特許文献1参照)。また純鉄では焼結体軸受に樹脂を含浸させて気孔を封孔した後に表面硬度不足を補うためにメッキを施すこともおこなわれている。さらに焼結体軸受に樹脂、あるいは金属、ガラスなどの物質を含浸させて気孔を封孔した後に焼結体軸受表面に金属粒子や樹脂粒子を用いたショットブラストを施すことにより気孔開口部を縮小させることも考えられる。
特開平8−221897号公報
Thus, a technique has been proposed in which a sintered body bearing is impregnated with resin to seal pores (see Patent Document 1). In pure iron, a sintered body bearing is impregnated with resin to seal pores, and then plated to compensate for insufficient surface hardness. Furthermore, the pores are reduced by impregnating the sintered body with resin, metal, glass or other material to seal the pores, and then subjecting the sintered body bearing surface to shot blasting using metal particles or resin particles. It is possible to make it.
JP-A-8-221897

しかしながら、圧粉焼結体軸受に樹脂を含浸させる場合においては、通常の工程において樹脂含浸材が軸受材表面に残留しやすく、寸法精度に悪影響を及ぼしやすいこと、また樹脂表面にはメッキが付き難く、樹脂含浸前の空孔が大きい場合には後処理としてのメッキが不完全になりがちであること、さらに純鉄では表面硬度不足を補う必要から軸受材表面にメッキ処理を施すが、空孔内のメッキ液の完全除去が困難であるところから、残留メッキ液による金属腐食を招き易いこと、さらに樹脂含浸量の管理が難しく、しかも樹脂含浸により真密度(=空孔無し)に達する可能性もあるために樹脂含浸後の寸法精度向上を目的とした金型内再圧縮は難しいこと、などのさらなる課題が残されている。   However, when impregnating a powder sintered compact bearing with resin, the resin impregnated material tends to remain on the surface of the bearing material in a normal process, and the dimensional accuracy is likely to be adversely affected, and the resin surface is plated. It is difficult, and if the pores before resin impregnation are large, plating as a post-treatment tends to be incomplete. In addition, pure iron is plated on the bearing material surface because it is necessary to compensate for insufficient surface hardness. Since it is difficult to completely remove the plating solution in the hole, it is easy to cause metal corrosion due to the residual plating solution. Furthermore, it is difficult to control the amount of resin impregnation, and it is possible to reach true density (= no voids) by resin impregnation. Further problems remain, such as difficulty in re-compression within the mold for the purpose of improving dimensional accuracy after resin impregnation.

また樹脂含浸後には個々の軸受材について洗浄をおこなう必要があるが、これらを一括しておこなうと、軸受材同士が当たって打痕ができるところから、打痕を嫌う場合には各軸受材を個別洗浄する必要があるところからコストの上昇に繋がること、さらには含浸させた樹脂が流体動圧軸受ユニットに用いられる潤滑油などの流体と反応して膨潤や収縮を起こす場合があり、やはり精度上の不安材料となりがちである等の問題がある。   In addition, after the resin impregnation, it is necessary to clean the individual bearing materials, but if these are performed all at once, the bearing materials will hit each other and a dent will be formed. This leads to cost increase from the need for individual cleaning, and the impregnated resin may react with fluids such as lubricating oil used in fluid dynamic bearing units, causing swelling and shrinkage. There are problems such as tending to be anxiety above.

さらに、焼結体軸受に樹脂その他の物質を含浸させて気孔を封孔した後に焼結体軸受表面にショットブラストを施す場合においては、一般的に軸受の表面粗さが悪化し、流体動圧用軸受としては不向きとなるのみならず、寸法精度も悪化して製品バラツキを生ずるほか、軸受材に残留するショット粉除去のための洗浄工程を別途必要とするためコスト高となる等の問題もある。   Furthermore, when a sintered body bearing is impregnated with resin or other substances to seal pores and then shot blasted on the surface of the sintered body bearing, the surface roughness of the bearing generally deteriorates and the fluid dynamic pressure is reduced. Not only is it unsuitable as a bearing, but also the dimensional accuracy deteriorates, resulting in product variations, and there is a problem that the cost is high because a separate cleaning process for removing shot powder remaining on the bearing material is required. .

そこで本発明は、上記した従来技術では不十分とされる金属粉末焼結体による軸受の課題を解決し、流体動圧軸受を用いたモータの耐久性および回転精度の向上ならびに低ノイズ化、さらにはコストの低減をはかるようにしたものであって、具体的には第1の発明は、圧粉成型金属焼結体素材に水蒸気処理を施すことにより、多孔質表面にFe3O4皮膜を形成するようにした流体動圧軸受の製造方法に関する。さらに第2の発明は、圧粉成型金属焼結体素材に対し、400〜600℃の雰囲気温度内において水蒸気処理を施すことにより、多孔質表面にFe3O4皮膜を形成するようにした流体動圧軸受の製造方法に関する。   Therefore, the present invention solves the problem of the bearing using the metal powder sintered body, which is insufficient with the above-described conventional technology, improves the durability and rotational accuracy of the motor using the fluid dynamic pressure bearing, and reduces noise. Is to reduce the cost. Specifically, in the first invention, the Fe3O4 film is formed on the porous surface by subjecting the green compact metal sintered body to water vapor treatment. The present invention relates to a method for manufacturing a fluid dynamic pressure bearing. Further, the second invention is a fluid dynamic pressure bearing in which a Fe3O4 film is formed on a porous surface by subjecting a powder-molded metal sintered body material to a water vapor treatment at an ambient temperature of 400 to 600 ° C. It relates to the manufacturing method.

本発明は上記したように、圧粉成型金属焼結体の多孔質素材に水蒸気処理を施すことにより、多孔質表面にFe3O4皮膜を形成するようにし、また圧粉成型金属焼結体の多孔質素材に400〜600℃の雰囲気温度内において水蒸気処理を施すことにより、Fe3O4皮膜を形成するようにしたものであるために、焼結体素材の空孔を通じて内部にまでFe3O4皮膜が生成され、多孔質の空孔が十分に封孔されて機械的強度が増すばかりでなく焼結体軸受の表面粗さが改善され、しかも含浸される材料が樹脂ではなくFe3O4皮膜であるところから耐食性や耐摩耗性の向上をはかることができ、またメッキの下地処理としても好都合であり、また出来上がった軸受製品は、とくに流体動圧軸受として最適である。   In the present invention, as described above, the porous material of the compacted metal sintered body is subjected to water vapor treatment to form a Fe3O4 film on the porous surface, and the porous compacted metal sintered body is porous. Since the Fe3O4 film is formed by subjecting the material to water vapor treatment at an ambient temperature of 400 to 600 ° C., the Fe3O4 film is generated to the inside through the pores of the sintered material, and is porous. The quality pores are sufficiently sealed to increase the mechanical strength and the surface roughness of the sintered body bearing is improved, and the impregnated material is Fe3O4 film instead of resin, so it has corrosion resistance and wear resistance. It is possible to improve the performance, and it is convenient as a base treatment for plating, and the finished bearing product is particularly suitable as a fluid dynamic pressure bearing.

以下において本発明の具体的な内容を説明すると、第1の発明は圧粉成型金属焼結体(スリーブ)素材の多孔質素材に水蒸気処理を施すことにより、四三酸化鉄(Fe3O4)皮膜を形成するようにしたものである。この場合、圧粉成型に用いる金属粉末については、真鍮など銅系のものでもよいが、モータの回転軸との熱線膨張係数差を小さくするためには鉄系の粉末が好ましい。鉄粉を圧粉成型した後、これを焼結して軸受用の焼結体素材とする。   The specific contents of the present invention will be described below. In the first invention, a porous material of a compacted metal sintered body (sleeve) material is subjected to a steam treatment to form a ferric oxide trioxide (Fe3O4) film. It is to be formed. In this case, the metal powder used for compacting may be copper-based such as brass, but iron-based powder is preferable in order to reduce the difference in the coefficient of thermal expansion from the rotation shaft of the motor. After iron powder is compacted, it is sintered to form a sintered body material for bearings.

焼結体素材は多孔質であり、これを流体動圧軸受として用いた場合には動圧漏れによる圧力低下を招くために、サイジング処理を経た金属焼結軸受素材に対し、少なくともその内周面のモータ軸と摺接する部分に四三酸化鉄(Fe3O4)皮膜を形成する。しかしこの場合に、単に金属焼結軸受素材の表面に水蒸気処理により四三酸化鉄(Fe3O4)皮膜を施したとしても金属焼結軸受素材の表面が十分に封孔され難く、モータの駆動中に潤滑油を吸引して重量を増すなどの不具合を生じやすい。   The sintered body material is porous, and when this is used as a fluid dynamic pressure bearing, in order to cause a pressure drop due to dynamic pressure leakage, at least the inner peripheral surface of the sintered metal bearing material subjected to sizing treatment A triiron tetroxide (Fe 3 O 4) film is formed on the portion that is in sliding contact with the motor shaft. However, in this case, even if the surface of the sintered metal bearing material is simply subjected to a water treatment, the surface of the sintered metal bearing material is not easily sealed, and the motor is driven. It tends to cause problems such as increasing the weight by sucking lubricant.

そこで金属焼結軸受素材に対し、この四三酸化鉄(Fe3O4)皮膜を形成する方法が本発明の第2の発明であって、第2の発明は、圧粉成型金属焼結体素材に対し、400〜600℃の雰囲気温度内において水蒸気処理を施すことにより、多孔質表面にFe3O4皮膜を形成するようにしたものである。   Therefore, the method of forming this triiron tetroxide (Fe3O4) film on the sintered metal bearing material is the second invention of the present invention, and the second invention is based on the compacted metal sintered body material. The Fe3O4 film is formed on the porous surface by performing water vapor treatment in an ambient temperature of 400 to 600 ° C.

水蒸気処理は一般的に飽和水蒸気中に通した水素ガスを供給することにより酸化させるなどの手法により、これまではせいぜい230℃以下の比較的低温雰囲気で木材の成分分離や変形の永久固定、木質ボード類の寸法安定性付与、あるいは食品類についての安定化手段として知られているものであるが、処理温度および処理時間を変えることにより金属焼結軸受材に転用することに成功した。   Steam treatment is generally performed by supplying hydrogen gas that has been passed through saturated steam to oxidize the material, so far, the separation of wood components and permanent fixation of wood in a relatively low temperature atmosphere of 230 ° C or less, woody Although known as a means for imparting dimensional stability to boards or stabilizing foods, it has been successfully transferred to sintered metal bearing materials by changing the treatment temperature and treatment time.

水蒸気処理に用いるのは耐圧構造の熱処理炉が好ましく、内部に金属焼結軸受素材と水とを入れて施蓋により内部を密封した後、400〜600℃の高温度まで加熱する。加熱によって内部の水が蒸発し、チャンバー内の圧力が上昇して金属焼結軸受素材の熱処理が開始される。炉内温度にもよるが概ね水蒸気処理時間が25〜80分経過すると、金属焼結軸受素材表面にスピネル相酸化物であるFe3O4の緻密で安定的な酸化皮膜が生成される。因みにこの場合の皮膜厚は5μm程度であり軸受の寸法精度への影響は殆どない。   A heat-resistant furnace having a pressure-resistant structure is preferably used for the steam treatment. A sintered metal bearing material and water are put inside, the inside is sealed with a lid, and then heated to a high temperature of 400 to 600 ° C. The internal water evaporates by heating, the pressure in the chamber rises, and heat treatment of the sintered metal bearing material is started. Although depending on the temperature in the furnace, when a steam treatment time of about 25 to 80 minutes elapses, a dense and stable oxide film of Fe3O4 which is a spinel phase oxide is formed on the surface of the sintered metal bearing material. Incidentally, the film thickness in this case is about 5 μm, and there is almost no influence on the dimensional accuracy of the bearing.

なお、水蒸気処理の雰囲気温度については、400℃未満では軸受素材に対するFe3O4の十分な皮膜生成がおこなわれない。また反対に600℃を超えてもFe3O4の生成に変化はなく、また熱処理炉が高価となるところから400〜600℃の範囲内、さらに好ましくは450〜550℃の範囲内であるのが経済的観点よりみて理想的である。   Note that if the atmospheric temperature of the steam treatment is less than 400 ° C., sufficient film formation of Fe 3 O 4 on the bearing material is not performed. On the other hand, even if the temperature exceeds 600 ° C., there is no change in the formation of Fe 3 O 4, and it is economical that the heat treatment furnace is expensive and within the range of 400 to 600 ° C., more preferably within the range of 450 to 550 ° C. Ideal from a viewpoint.

また水蒸気処理に要する時間についても、雰囲気温度が上記したように400〜600℃の範囲内であるとした場合にFe3O4の5μm程度の皮膜厚を得るためには雰囲気温度600℃で凡そ25分間、550℃の場合で凡そ40分間、450℃の場合で凡そ65分間、400℃の場合で凡そ80分間程度であるから25〜80分間の範囲内であるのが好ましい。   As for the time required for the water vapor treatment, in order to obtain a film thickness of about 5 μm of Fe 3 O 4 when the atmospheric temperature is in the range of 400 to 600 ° C. as described above, the atmospheric temperature is 600 ° C. for about 25 minutes. In the case of 550 ° C., about 40 minutes, in the case of 450 ° C., about 65 minutes, and in the case of 400 ° C., about 80 minutes, it is preferably within the range of 25 to 80 minutes.

さらに、水蒸気処理後の封孔性および表面粗さ改善効果を十分にするためには、使用する金属焼結軸受素材の相対密度がある程度高くなければならない。すなわち金属焼結軸受素材の相対密度が低いとFe3O4による封孔性が十分ではなく、表面粗さがあまり改善されないばかりでなくモータの使用中に潤滑油を吸引しやすくなる。   Furthermore, in order to sufficiently improve the sealing performance and the surface roughness improvement effect after the steam treatment, the relative density of the sintered metal bearing material to be used must be high to some extent. That is, when the relative density of the sintered metal bearing material is low, the sealing performance by Fe3O4 is not sufficient, the surface roughness is not improved so much, and the lubricating oil is easily sucked during use of the motor.

そこで本発明者らが、この点に関してさらに実験を重ねた結果、この場合に使用する金属焼結軸受素材の相対密度について、80%未満のものでは表面粗さが目立ち、また封孔性が十分ではなかった。さらに80%以上のもの、さらに好ましくは85%以上のものでは表面粗さならびに封孔性が十分となることがわかった。   Therefore, as a result of further experiments conducted by the present inventors, the relative density of the sintered metal bearing material used in this case is less than 80%, and the surface roughness is conspicuous and the sealing property is sufficient. It wasn't. Further, it was found that the surface roughness and the sealing performance are sufficient when the content is 80% or more, more preferably 85% or more.

上記の水蒸気処理をおこなった金属焼結軸受素材については、その後必要に応じて再度サイジング処理を施すことにより、さらなる精度の向上をはかることができる。水蒸気処理を施した焼結軸受は耐蝕性や耐摩耗性、さらに機械的強度が向上するばかりでなく、表面が金属により覆われることになるためにメッキの下地処理としても優れ、とくに空孔が埋まることにより表面粗さがなくなり、流体動圧軸受として最適に利用しうる。   About the metal sintered bearing raw material which performed said water vapor | steam processing, the further improvement of a precision can be aimed at by performing a sizing process again as needed after that. Sintered bearings that have undergone steam treatment not only improve corrosion resistance, wear resistance, and mechanical strength, but are also excellent as a base treatment for plating because the surface is covered with metal. By filling it, the surface roughness is eliminated and it can be optimally used as a fluid dynamic pressure bearing.

これらの諸点について具体的に説明をすると、圧粉成型金属焼結体の多孔質素材に400〜600℃の雰囲気温度内において水蒸気処理を施すことにより、空孔を小さくすることが可能で、樹脂表面に対するメッキ付着の困難性を減少してその後のメッキ処理の効果を良好にし、また処理条件によっては通気性をほぼゼロにすることが可能となり、動圧漏れによる圧力低下をなくし、軸剛性および回転精度を向上させることができるほか、メッキ液の浸入を防いで耐蝕性を良好にすることができ、また場合によってはメッキ処理自体を不要にすることもできる。   When these points are specifically described, the pores can be reduced by subjecting the porous material of the compacted metal sintered body to a water vapor treatment at an ambient temperature of 400 to 600 ° C. The difficulty of plating adhesion to the surface is reduced to improve the effect of subsequent plating treatment, and depending on the treatment conditions, it is possible to make the air permeability almost zero, eliminating the pressure drop due to dynamic pressure leakage, shaft rigidity and In addition to improving the rotation accuracy, the plating solution can be prevented from entering and the corrosion resistance can be improved, and in some cases, the plating process itself can be made unnecessary.

さらに樹脂を含浸させる場合に比べ、圧力や処理時間など水蒸気処理条件の管理が容易で生成されるFe3O4の皮膜厚についても自在に調整が可能であり、また標準膜厚が5μm程度であるために、樹脂含浸の場合にみられる含浸樹脂の表面残留による寸法精度悪化量がきわめて小さく、また金型を用いた再圧縮による寸法矯正も可能となる。   Furthermore, compared with the case of impregnating with resin, it is easy to control the steam treatment conditions such as pressure and treatment time, and the film thickness of Fe3O4 produced can be freely adjusted, and the standard film thickness is about 5 μm. In addition, the amount of deterioration in dimensional accuracy due to the residual surface of the impregnated resin seen in the case of resin impregnation is extremely small, and dimensional correction by recompression using a mold is also possible.

水蒸気処理をおこなう場合においては、個々の軸受材同士を衝突させることなく処理作業を進めることができるので製品に打痕を生ずることがなく、また処理前に内部に残留した加工油を高温処理して除去することができるため、余分な洗浄工程を必要としない。さらに生成されたFe3O4皮膜は、従来の樹脂含浸による場合のような軸受ユニットの潤滑油と反応し膨潤や収縮したりすることがなく、きわめて安定的である。   In the case of performing steam treatment, the processing work can be carried out without causing the individual bearing materials to collide with each other, so there is no dent in the product, and the processing oil remaining inside is treated at a high temperature before the treatment. This eliminates the need for an extra cleaning step. Further, the produced Fe3O4 film is extremely stable without reacting with the lubricating oil of the bearing unit as in the case of conventional resin impregnation, and does not swell or shrink.

さらに在来技術のような、焼結体軸受に樹脂等を含浸させて気孔を封孔した後に焼結体軸受表面にショットブラストを施す場合に比べて皮膜面の粗さがなく粗度がきわめて小さいこと、さらに寸法精度や製品歩留り率が高いことから、とくに流体動圧軸受モータユニットに適しており、しかも残留ショット粉除去のための洗浄工程も必要としないからコストの低減をはかることもできる。   Furthermore, compared with conventional technology, the sintered body bearing is impregnated with resin, etc., and the pores are sealed, and then the surface of the sintered body bearing is shot blasted and the surface roughness is extremely low. Because of its small size and high dimensional accuracy and product yield, it is particularly suitable for fluid dynamic pressure bearing motor units, and it does not require a cleaning process to remove residual shot powder, so costs can be reduced. .

鉄系粉末を圧粉した後、これを焼結し、さらにサイジングを施して3種類の軸受用素材を得、これを耐圧構造の熱処理炉〔東京熱処理工業(株)のバッチ式ホモ処理炉〕内に入れ、550℃まで水蒸気加熱した後、これを55分間維持して水蒸気処理を実施した。その結果各軸受用素材表面に平均5.0μm厚のFe3O4皮膜層が形成された。これをサンプル1〜3として以下の試験をおこなった。 なおこの場合に使用する熱処理炉については、上記のものに限らず、このほかにも例えばサンレー冷熱株式会社製の工業用過熱水蒸気処理炉(ST炉)やあるいはビット炉と蒸気発生装置の組み合わせなどであってもよい。   After compacting the iron-based powder, it is sintered and further sized to obtain three types of bearing materials, which are pressure-resistant heat treatment furnaces (batch-type homo-processing furnaces of Tokyo Heat Treatment Industry Co., Ltd.) It was put in and heated with steam to 550 ° C., and then maintained for 55 minutes to perform steam treatment. As a result, an Fe3O4 coating layer having an average thickness of 5.0 μm was formed on the surface of each bearing material. The following tests were conducted using this as samples 1 to 3. In addition, the heat treatment furnace used in this case is not limited to the above, but other than that, for example, an industrial superheated steam treatment furnace (ST furnace) manufactured by Sunray Cooling Co., Ltd., or a combination of a bit furnace and a steam generator. It may be.

サンプル1〜3と従来品であるショットブラスト後に樹脂含浸を施したサンプルについて寸法、通気性、表面粗さについて計測した結果を図面に示す。図1はサイジング後であって水蒸気処理前、図2はサイジング後であって水蒸気処理後、図3はサイジング前であって水蒸気処理前、図4はサイジング前であって水蒸気処理後、図5はサイジング後であってショットブラストして樹脂含浸させたものをあらわしている。   The results of measuring the dimensions, air permeability, and surface roughness of Samples 1 to 3 and a sample impregnated with resin after shot blasting are shown in the drawings. 1 is after sizing and before steaming, FIG. 2 is after sizing and after steaming, FIG. 3 is before sizing and before steaming, FIG. 4 is before sizing and after steaming, FIG. Represents a product after shot blasting and impregnated with resin.

〔外径変化〕
各サンプルの外径変化について比較すると、

〔処 理〕 〔サンプル〕 〔外径(mm)〕

[サイジング後、水蒸気処理前] 1 11.497
2 11.496
3 11.498
Ave. 11.4970

[サイジング後、水蒸気処理] 1 11.505
2 11.505
3 11.506
Ave. 11.5053

※上記のように水蒸気処理による外径の変化量は0.0083、平均膜厚は0.004程度であり、 水蒸気処理の前後で各サンプル共に外径寸法についてバラツキ幅に大きな差は認められ ず、また酸化膜厚は平均して安定していた。
[Change in outer diameter]
When comparing the outer diameter change of each sample,

(Process) (Sample) (Outer diameter (mm))

[After sizing and before steaming] 1 11.497
2 11.496
3 11.498
Ave. 11.4970

[After sizing, steam treatment] 1 11.505
2 11.505
3 11.506
Ave. 11.5053

* As mentioned above, the amount of change in the outer diameter due to steam treatment is 0.0083 and the average film thickness is about 0.004. The thickness was stable on average.

〔通気性〕
各サンプルの通気性について比較すると、

〔処 理〕 〔サンプル〕 〔圧力差(mmH2O)〕 〔流量(cm3)〕

[サイジング後、水蒸気処理前] 1 1781 37
2 1786 31
3 1789 44

[サイジング後、水蒸気処理後] 1 1798 2
2 1816 1
3 1810 0

[サイジング前、水蒸気処理前] 1 1778 307
2 1783 388
3 1785 373

[サイジング前、水蒸気処理後] 1 1804 2
2 1834 2
3 1828 2

[サイジング後、ショットブラスト+樹脂含浸]
4 1819 4
5 1807 2
6 1815 1

※サイジングの前後に拘わらず、水蒸気処理を施したサンプルの通気性は、いずれも4以 下であり、この場合測定誤差を考慮すると略ゼロであると考えられる。
(Breathability)
When comparing the breathability of each sample,

(Process) (Sample) (Pressure difference (mmH2O)) (Flow rate (cm3))

[After sizing and before steaming] 1 1781 37
2 1786 31
3 1789 44

[After sizing, after steam treatment] 1 1798 2
2 1816 1
3 1810 0

[Before sizing, before steam treatment] 1 1778 307
2 1783 388
3 1785 373

[Before sizing, after steam treatment] 1 1804 2
2 1834 2
3 1828 2

[After sizing, shot blasting + resin impregnation]
4 1819 4
5 1807 2
6 1815 1

* Regardless of before and after sizing, the vapor permeability of the samples subjected to steam treatment is 4 or less, and in this case, it is considered to be almost zero considering the measurement error.

〔表面粗さ〕
各サンプルの表面粗さについて比較すると、

〔処 理〕 〔サンプル〕 〔Ra(μm)〕〔Rmax(μm)〕

[サイジング後、水蒸気処理前] 1 0.1708 8.216
2 0.1014 4.292
3 0.1250 4.504
Ave. 0.1324 5.6707

[サイジング後、水蒸気処理後] 1 0.1368 2.008
2 0.3479 5.792
3 0.3085 4.608
Ave. 0.2644 4.1360

[サイジング前、水蒸気処理前] 1 0.1726 2.984
2 0.1632 3.924
3 0.1966 4.676
Ave. 0.1775 3.8613

[サイジング前、水蒸気処理後] 1 0.3997 5.640
2 0.5214 6.088
3 0.5044 7.004
Ave. 0.4752 6.2440

[サイジング後、ショットブラストおよび樹脂含浸]
4 0.7616 9.456
5 0.8493 6.784
6 0.5481 6.600
Ave. 0.7197 7.6133
〔Surface roughness〕
When comparing the surface roughness of each sample,

[Process] [Sample] [Ra (μm)] [Rmax (μm)]

[After sizing and before steaming] 1 0.1708 8.216
2 0.1014 4.292
3 0.1250 4.504
Ave. 0.1324 5.6707

[After sizing, after steam treatment] 1 0.1368 2.008
2 0.3479 5.792
3 0.3085 4.608
Ave. 0.2644 4.1360

[Before sizing, before steam treatment] 1 0.1726 2.984
2 0.1632 3.924
3 0.1966 4.676
Ave. 0.1775 3.8613

[Before sizing, after steam treatment] 1 0.3997 5.640
2 0.5214 6.088
3 0.5044 7.004
Ave. 0.4752 6.2440

[After sizing, shot blasting and resin impregnation]
4 0.7616 9.456
5 0.8493 6.784
6 0.5481 6.600
Ave. 0.7197 7.6133

上記の表面粗さについて検討してみると、
※1.Raについては、水蒸気処理により若干悪化の傾向があるが、ショットブラスト+ 樹脂含浸の場合に比べると十分に改善傾向がみられる。
※2.Rmaxについては、サイジング前では水蒸気処理により若干悪化の傾向がみられるが、サイジング後では十分に改善された。これは水蒸気処理前の空孔量の差が影響し たものと考えられる。
※3.ショットブラスト+樹脂含浸の場合と比べると、サイジングの前後を問わず、水蒸 気処理を施した場合のほうが格段に良好であった。
When considering the above surface roughness,
* 1. As for Ra, there is a tendency to be slightly deteriorated by the steam treatment, but a sufficient improvement tendency is seen as compared with the case of shot blast + resin impregnation.
* 2. Regarding Rmax, there was a tendency to be slightly deteriorated by steam treatment before sizing, but it was sufficiently improved after sizing. This is thought to be due to the difference in pore volume before steaming.
* 3. Compared to shot blasting + resin impregnation, water vapor treatment was much better both before and after sizing.

なお、本発明における圧粉成型金属焼結体の多孔質素材に対する水蒸気処理として400〜600℃の雰囲気温度内であることを条件としたが、このほかにも無酸化(不活性)条件での加熱加工を容易に行うことができる過熱水蒸気処理に遠赤外線加熱を併用することにより、上記の雰囲気温度範囲よりも低い低エネルギー負荷型の過熱水蒸気処理装置を用いてより低い温度条件により同様のFe3O4皮膜形成をおこなうことも可能である。   It should be noted that the steam treatment for the porous material of the compacted metal sintered body in the present invention was performed under the condition that the atmosphere temperature was 400 to 600 ° C. By using far-infrared heating together with superheated steam treatment that can be easily heat-processed, the same Fe3O4 can be obtained at lower temperature conditions using a low energy load type superheated steam treatment apparatus lower than the above atmospheric temperature range. It is also possible to form a film.

過熱水蒸気処理は伝熱速度は高いが熱効率が低い欠点を有するため、上記の無酸素加熱加工処理法によれば、過熱水蒸気処理の長所に加えて極めて高い熱効率を実現することができ、軸受品質の向上のほか、処理時間の短縮化とコストの低減をはかることができる。   The superheated steam treatment has the disadvantage that the heat transfer rate is high but the thermal efficiency is low.According to the above oxygen-free heat treatment method, in addition to the advantages of the superheated steam treatment, extremely high thermal efficiency can be realized, and the bearing quality In addition to improving the process time, the processing time can be shortened and the cost can be reduced.

サイジング後であって水蒸気処理前の寸法、通気性、表面粗さについて計測した結果をあらわしたパラメータグラフ。A parameter graph showing the measurement results of dimensions, air permeability, and surface roughness after sizing and before steam treatment. サイジング後であって水蒸気処理後の寸法、通気性、表面粗さについて計測した結果をあらわしたパラメータグラフ。A parameter graph showing the results of measurements on dimensions, air permeability, and surface roughness after sizing and steam treatment. サイジング前であって水蒸気処理前の寸法、通気性、表面粗さについて計測した結果をあらわしたパラメータグラフ。A parameter graph showing the measurement results of dimensions, air permeability, and surface roughness before sizing and before steaming. サイジング前であって水蒸気処理後の寸法、通気性、表面粗さについて計測した結果をあらわしたパラメータグラフ。A parameter graph showing the results of measurement of dimensions, air permeability and surface roughness after sizing and after steam treatment. サイジング後であってショットブラストして樹脂含浸させた場合の寸法、通気性、表面粗さについて計測した結果をあらわしたパラメータグラフ。A parameter graph showing the results of measurement of dimensions, air permeability, and surface roughness after sizing and shot blasting and impregnating with resin.

Claims (6)

圧粉成型金属焼結体素材に水蒸気処理を施すことにより、多孔質表面にFe3O4皮膜を形成するようにした流体動圧軸受の製造方法。   A method for manufacturing a fluid dynamic pressure bearing in which a Fe3O4 film is formed on a porous surface by subjecting a powder-molded metal sintered body to water vapor treatment. 圧粉成型金属焼結体素材に対し、400〜600℃の雰囲気温度内において水蒸気処理を施すことにより、多孔質表面にFe3O4皮膜を形成するようにした流体動圧軸受の製造方法。   A method for manufacturing a fluid dynamic pressure bearing in which a Fe3O4 coating is formed on a porous surface by subjecting a compacted metal sintered body material to a water vapor treatment at an ambient temperature of 400 to 600C. 圧粉成型金属焼結体素材に対する水蒸気処理時間が25〜80分であるところの請求項2に記載の流体動圧軸受の製造方法。   The method for producing a fluid dynamic bearing according to claim 2, wherein the steam treatment time for the compacted metal sintered body material is 25 to 80 minutes. 圧粉成型金属焼結体素材に対し、450〜550℃の雰囲気温度内において水蒸気処理を施すことにより、多孔質表面にFe3O4皮膜を形成するようにした流体動圧軸受の製造方法。   A method for producing a fluid dynamic pressure bearing in which a Fe3O4 coating is formed on a porous surface by subjecting a compacted metal sintered body material to steam treatment at an atmospheric temperature of 450 to 550C. 圧粉成型金属焼結体素材に対する水蒸気処理時間が40〜65分であるところの請求項4に記載の流体動圧軸受の製造方法。   The method for producing a fluid dynamic bearing according to claim 4, wherein the steam treatment time for the compacted metal sintered body material is 40 to 65 minutes. 圧粉成型金属焼結体素材の体積密度が80%以上、さらに好ましくは85%以上であるところの請求項1・2・4のいずれか1に記載の流体動圧軸受の製造方法。   The method for producing a fluid dynamic pressure bearing according to any one of claims 1, 2, and 4, wherein a volume density of the compacted metal sintered body material is 80% or more, more preferably 85% or more.
JP2005246053A 2005-08-26 2005-08-26 Method for manufacturing hydrodynamic bearing Pending JP2007057068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005246053A JP2007057068A (en) 2005-08-26 2005-08-26 Method for manufacturing hydrodynamic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005246053A JP2007057068A (en) 2005-08-26 2005-08-26 Method for manufacturing hydrodynamic bearing

Publications (2)

Publication Number Publication Date
JP2007057068A true JP2007057068A (en) 2007-03-08
JP2007057068A5 JP2007057068A5 (en) 2008-08-28

Family

ID=37920718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005246053A Pending JP2007057068A (en) 2005-08-26 2005-08-26 Method for manufacturing hydrodynamic bearing

Country Status (1)

Country Link
JP (1) JP2007057068A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA014742B1 (en) * 2009-03-11 2011-02-28 Штефан, Василий Николаевич Tribotechnical compound-revitalizant
WO2016084546A1 (en) * 2014-11-28 2016-06-02 Ntn株式会社 Dynamic pressure bearing and method for manufacturing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115898A (en) * 2002-09-27 2004-04-15 Mitsubishi Materials Corp Sintered alloy having dynamic pressure generation groove, and method for manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115898A (en) * 2002-09-27 2004-04-15 Mitsubishi Materials Corp Sintered alloy having dynamic pressure generation groove, and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA014742B1 (en) * 2009-03-11 2011-02-28 Штефан, Василий Николаевич Tribotechnical compound-revitalizant
WO2016084546A1 (en) * 2014-11-28 2016-06-02 Ntn株式会社 Dynamic pressure bearing and method for manufacturing same
JP2016102553A (en) * 2014-11-28 2016-06-02 Ntn株式会社 Dynamic pressure bearing and manufacturing method thereof
CN107110209A (en) * 2014-11-28 2017-08-29 Ntn株式会社 Hydrodynamic bearing and its manufacture method
US10099287B2 (en) 2014-11-28 2018-10-16 Ntn Corporation Dynamic pressure bearing and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP5643567B2 (en) Method for manufacturing fluid dynamic bearing
CN106086766B (en) A kind of preparation method of high wear-resistant low-friction coefficient thermal Sperayed Ceramic Coatings
JP2005082867A (en) Method for manufacturing iron/copper base sintered alloy for oilless bearing
US20110044837A1 (en) Sleeve for hydrodynamic bearing device, hydrodynamic bearing device and spindle motor using the same, and method for manufacturing sleeve
CN107110209B (en) Hydrodynamic bearing and its manufacturing method
JP2007057068A (en) Method for manufacturing hydrodynamic bearing
CN108130501B (en) Preparation method of steel backing copper-based bearing copper coating
JP6310906B2 (en) Carbon material for bearing and sliding member made of carbon material for bearing
JP6502085B2 (en) Powder compact and method for producing the same
JP5789866B2 (en) Sealing method for ferrous sintered parts
JP6961332B2 (en) Dynamic pressure bearings and their manufacturing methods
CN113883341B (en) Wear-resistant corrosion-resistant petroleum pipeline and preparation method thereof
US20160311026A1 (en) Machine component using powder compact and method for producing same
CN111945140B (en) Phosphating method for contact type sealing surface
TWI785213B (en) Dynamic pressure bearing and manufacturing method thereof
JP6999259B2 (en) Plain bearing
JP2005106204A (en) Retainer for rolling bearing
WO2018047765A1 (en) Slide bearing
JPH11124604A (en) Production of wear resistant ferrous sintered alloy
CN107502939B (en) Wear-resistant bearing rolling body
WO2022149330A1 (en) Slide bearing, slide bearing device, and pump
WO2022149329A1 (en) Sliding bearing, sliding bearing device, and pump
JP2002323141A (en) Sliding part and manufacturing method therefor
JPH07216411A (en) Sliding member and method for improving frictional characteristic of sliding member
JP2005207464A (en) Dynamic-pressure bearing device and its processing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110125