JP2005106204A - Retainer for rolling bearing - Google Patents

Retainer for rolling bearing Download PDF

Info

Publication number
JP2005106204A
JP2005106204A JP2003341353A JP2003341353A JP2005106204A JP 2005106204 A JP2005106204 A JP 2005106204A JP 2003341353 A JP2003341353 A JP 2003341353A JP 2003341353 A JP2003341353 A JP 2003341353A JP 2005106204 A JP2005106204 A JP 2005106204A
Authority
JP
Japan
Prior art keywords
cage
oxide particles
layer
rolling bearing
retainer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003341353A
Other languages
Japanese (ja)
Other versions
JP4487530B2 (en
Inventor
Koji Ueda
光司 植田
Yasuyuki Shimizu
康之 清水
Takashi Murai
隆司 村井
Susumu Iwasaki
進 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34535976&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2005106204(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2003341353A priority Critical patent/JP4487530B2/en
Publication of JP2005106204A publication Critical patent/JP2005106204A/en
Application granted granted Critical
Publication of JP4487530B2 publication Critical patent/JP4487530B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a retainer for a rolling bearing excellent in wear resistance applicable to a rolling bearing used in a high speed and high PV zone. <P>SOLUTION: A press retainer for a self-aligning roller bearing is manufactured by press forming from cold rolling sheet steel SPCC material or hot rolling sheet steel SPHD material and soft nitriding treatment and heat treatment are applied to the same. Nitride layer is formed on a surface of the retainer and a fine layer composed of oxide particles is formed on outside hereof. Average particle diameter of the oxide particles is 0.5-0.8μm and thickness of the fine layer composed of oxide particles is 3μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、転がり軸受に組み込まれる鋼製の保持器に関する。   The present invention relates to a steel cage incorporated in a rolling bearing.

従来から、負荷が作用する転がり軸受には、強度に優れる高力黄銅製のもみ抜き保持器がよく使用されている。しかしながら、高力黄銅は自己潤滑性を有し摺動性,耐摩耗性に優れるものの高価であるので、高力黄銅製のもみ抜き保持器は材料コストが高いという問題点があった。また、もみ抜きにより加工されるため、加工費が高く、材料歩留まりも低い。よって、高力黄銅製のもみ抜き保持器は、特殊用途に限定されていた。
そのため、近年においては、保持器の設計を最適化してコストダウンや保持器強度の向上を図ることによって、SPCC材に代表される冷間圧延鋼板やSPHD材に代表される熱間圧延鋼板から製造されたプレス保持器が使用されるようになっている。
Conventionally, a high-strength brass machined cage that is excellent in strength is often used for a rolling bearing on which a load acts. However, high-strength brass is self-lubricating and excellent in slidability and wear resistance, but is expensive. Therefore, a high-strength brass machined cage has a problem of high material cost. In addition, since it is processed by milling, the processing cost is high and the material yield is low. Therefore, the high-strength brass machined cage has been limited to special applications.
Therefore, in recent years, it has been manufactured from cold-rolled steel plates typified by SPCC materials and hot-rolled steel plates typified by SPHD materials by optimizing the cage design to reduce costs and improve cage strength. A pressed press holder is used.

一般にSPCC材は高力黄銅と比較して摺動性,耐摩耗性が劣るため、潤滑条件が厳しい場合には、転動体と保持器ポケットとの接触部や、保持器の案内面と軌動輪との接触部で摩耗が著しく進行して、回転精度が低下する場合があり、最悪の場合には焼付きが生じて破損に至る場合があった。このため、SPCC材製又はSPHD材製の保持器には、塩浴窒化処理やガス軟窒化処理に代表される軟窒化処理を施して、鉄と窒素の化合物からなる硬質な窒化物層を保持器表面に形成して耐摩耗性を向上させる努力がなされてきた。   In general, SPCC materials are inferior in sliding property and wear resistance compared to high-strength brass. Therefore, when the lubrication conditions are severe, the contact portion between the rolling element and the cage pocket, the guide surface of the cage and the race wheel Wear may significantly progress at the contact area with the material, and rotation accuracy may be reduced. In the worst case, seizure may occur and damage may occur. For this reason, the cage made of SPCC material or SPHD material is subjected to soft nitriding treatment represented by salt bath nitriding treatment or gas soft nitriding treatment to hold a hard nitride layer made of a compound of iron and nitrogen. Efforts have been made to improve wear resistance by forming on the vessel surface.

例えば、特許文献1には、鋼板製プレス保持器に軟窒化処理を施して表面に窒化物層を形成し、耐摩耗性を改善する技術が開示されている。窒化物層の耐摩耗性は窒化物層の構造に支配されるので、表面側に形成される多孔質層と、多孔質層の直下に形成される緻密層との厚さを規定することにより、多孔質層の油溜まりとしての効果を高め、保持器の耐摩耗性を改善している。
特開2001−90734号公報
For example, Patent Document 1 discloses a technique for improving wear resistance by applying a soft nitriding treatment to a steel plate press cage to form a nitride layer on the surface. Since the wear resistance of the nitride layer is governed by the structure of the nitride layer, by defining the thickness of the porous layer formed on the surface side and the dense layer formed immediately below the porous layer, The effect of the porous layer as an oil reservoir is enhanced, and the wear resistance of the cage is improved.
JP 2001-90734 A

しかしながら、特許文献1に記載の保持器は、転がり軸受の使用条件が通常の条件である場合は、多孔質層の油溜まりの効果によって安定した耐摩耗性を発揮することができるが、転がり軸受が許容回転速度に近い高速で回転され、保持器と転動体との滑り速度が15m/sとなるような高PV領域で使用される場合は、強度が低い最表面側の多孔質層が脱落し、耐摩耗性が不十分となる場合があった。
そこで、本発明は前述のような従来の転がり軸受用保持器が有する問題点を解決し、高速回転,高PV領域で使用される転がり軸受にも適用可能な耐摩耗性に優れた転がり軸受用保持器を提供することを課題とする。
However, the cage described in Patent Document 1 can exhibit stable wear resistance due to the effect of the oil accumulation in the porous layer when the usage conditions of the rolling bearing are normal conditions. Is rotated at a high speed close to the permissible rotational speed, and when used in a high PV region where the sliding speed between the cage and the rolling element is 15 m / s, the outermost porous layer with low strength falls off. However, the wear resistance may be insufficient.
Accordingly, the present invention solves the problems of the conventional rolling bearing retainer as described above, and is applicable to rolling bearings used in high-speed rotation and high PV ranges, and has excellent wear resistance. It is an object to provide a cage.

前記課題を解決するため、本発明は次のような構成からなる。すなわち、本発明に係る請求項1の転がり軸受用保持器は、鋼製の転がり軸受用保持器において、窒化処理による窒化物層が表面に形成され、酸化物粒子で構成された緻密層が前記窒化物層の外側にさらに形成されていることを特徴とする。
窒化処理により形成された窒化物層は、通常は表面側の多孔質層と母材側の緻密層とを有しているが、本発明の転がり軸受用保持器は、その最表面に(すなわち多孔質層の外側に)酸化物粒子で構成された緻密層が形成されているので、表面に形成されている被膜全体(窒化物層及び酸化物粒子で構成された緻密層)としての強度が高い。よって、本発明の転がり軸受用保持器は、耐摩耗性が優れている。
In order to solve the above problems, the present invention has the following configuration. That is, the rolling bearing cage of claim 1 according to the present invention is the steel rolling bearing cage, wherein a nitride layer formed by nitriding is formed on the surface, and the dense layer composed of oxide particles is It is further formed outside the nitride layer.
The nitride layer formed by the nitriding treatment usually has a porous layer on the surface side and a dense layer on the base material side, but the rolling bearing retainer of the present invention is on the outermost surface (that is, Since a dense layer composed of oxide particles is formed on the outside of the porous layer, the strength of the entire coating film formed on the surface (dense layer composed of nitride layer and oxide particles) high. Therefore, the rolling bearing cage of the present invention has excellent wear resistance.

また、本発明に係る請求項2の転がり軸受用保持器は、請求項1に記載の転がり軸受用保持器において、前記酸化物粒子の平均粒径が1μm以下であり、前記緻密層の厚さが0.5μm以上5μm以下であることを特徴とする。
酸化物粒子で構成された緻密層は、酸化物粒子が多孔質層の空孔を埋めるようにして形成される。酸化物粒子の粒径が大きすぎると、多孔質層の空孔が酸化物粒子で完全に充填されず、酸化物粒子で構成された緻密層の緻密さが不十分となる場合があるので、酸化物粒子の平均粒径は1μm以下が好ましく、800nm以下がより好ましい。
また、緻密層の厚さが0.5μm未満であると、緻密層が薄いため、表面に形成されている被膜全体(窒化物層及び酸化物粒子で構成された緻密層)としての強度が低くなるおそれがある。一方、緻密層の厚さが5μm超過であると、酸化物粒子で構成された緻密層は窒化物層よりも硬さが低いので、耐摩耗性が劣化するおそれがある。
The rolling bearing cage according to claim 2 of the present invention is the rolling bearing cage according to claim 1, wherein the average particle diameter of the oxide particles is 1 μm or less, and the thickness of the dense layer is Is not less than 0.5 μm and not more than 5 μm.
The dense layer composed of oxide particles is formed such that the oxide particles fill the pores of the porous layer. If the particle size of the oxide particles is too large, the pores of the porous layer are not completely filled with the oxide particles, and the dense layer composed of the oxide particles may not be sufficiently dense, The average particle size of the oxide particles is preferably 1 μm or less, and more preferably 800 nm or less.
Moreover, since the dense layer is thin when the thickness of the dense layer is less than 0.5 μm, the strength of the entire coating film formed on the surface (the dense layer composed of the nitride layer and the oxide particles) is low. There is a risk. On the other hand, if the thickness of the dense layer is more than 5 μm, the dense layer composed of oxide particles has a lower hardness than the nitride layer, which may deteriorate the wear resistance.

本発明の転がり軸受用保持器は、耐摩耗性が優れている。   The rolling bearing cage of the present invention is excellent in wear resistance.

本発明に係る転がり軸受用保持器の実施の形態を、図面を参照しながら説明する。
SPCC材やSPHD材に代表される低炭素鋼板に軟窒化処理等の窒化処理を施すと、鋼表面で窒素と鉄とが反応し、窒素原子が鋼中に拡散して行き、最表面では窒素濃度に応じてFe2 N,Fe3 N,Fe4 N等の鉄と窒素との化合物からなる硬質な窒化物層が形成される。窒化物層の硬さは一般的にはHv400以上で、母材に比較して硬度が増している。また、窒化物層が形成された鋼製の転がり軸受用保持器においては、転動体と保持器との間の金属接触や、摺動する案内面と保持器との間の金属接触が窒化物層により防止されるので、耐摩耗性,耐焼付性が改善される。
Embodiments of a rolling bearing cage according to the present invention will be described with reference to the drawings.
When nitriding such as soft nitriding is applied to a low carbon steel plate represented by SPCC material or SPHD material, nitrogen and iron react on the steel surface and nitrogen atoms diffuse into the steel, and nitrogen is diffused on the outermost surface. Depending on the concentration, a hard nitride layer made of a compound of iron and nitrogen such as Fe 2 N, Fe 3 N, and Fe 4 N is formed. The hardness of the nitride layer is generally Hv400 or more, and the hardness is increased as compared with the base material. Further, in a steel rolling bearing cage formed with a nitride layer, the metal contact between the rolling element and the cage, or the metal contact between the sliding guide surface and the cage is nitride. Since it is prevented by the layer, the wear resistance and seizure resistance are improved.

図1に、鋼の表面に形成された窒化物層の模式的な断面図を示す。冷間圧延鋼板,熱間圧延鋼板から製造された転がり軸受用保持器に軟窒化処理を施すと、鋼である母材1の上に拡散層2が形成され、さらにその上に窒化物層3が形成される。そして、この窒化物層3は、表面側の多孔質層4と母材側の緻密層5とで構成されている(二層構造)。
多孔質層4はポーラスであり多数の空孔4aを有しているので、前述したように油溜まりとして機能する。よって、このような保持器は、転がり軸受に組み込んで潤滑油やグリースの潤滑下で使用すると、摩擦摩耗特性が優れている。しかしながら、転がり軸受が高速回転,高PV領域で使用される場合には、多孔質層の強度が低いために転動体や案内面との接触により脱落してしまい、油溜まりの効果があっても耐摩耗性が不十分となってしまう。したがって、転がり軸受用保持器に優れた耐摩耗性を付与するためには、窒化物層の最表面を緻密化し、被膜の強度を向上させることが有効である。
FIG. 1 shows a schematic cross-sectional view of a nitride layer formed on the surface of steel. When a soft nitriding treatment is applied to a rolling bearing cage manufactured from a cold-rolled steel sheet or a hot-rolled steel sheet, a diffusion layer 2 is formed on the base material 1 that is steel, and a nitride layer 3 is further formed thereon. Is formed. The nitride layer 3 is composed of a porous layer 4 on the surface side and a dense layer 5 on the base material side (two-layer structure).
Since the porous layer 4 is porous and has a large number of pores 4a, it functions as an oil reservoir as described above. Therefore, such a cage has excellent friction and wear characteristics when used in a rolling bearing and lubricated with lubricating oil or grease. However, when the rolling bearing is used in a high-speed rotation and high-PV region, the strength of the porous layer is so low that it comes off due to contact with the rolling elements and the guide surface, and there is an effect of an oil reservoir. Wear resistance will be insufficient. Therefore, in order to impart excellent wear resistance to the rolling bearing cage, it is effective to improve the strength of the coating by densifying the outermost surface of the nitride layer.

多孔質層が少なく緻密な窒化物層を形成するためには、被膜の形成速度を遅くする方法が有効であり、具体的には、480℃以下の低温での軟窒化処理や、イオン窒化法等のような特殊な窒化方法があげられる。しかしながら、これらの方法では、十分な厚さの窒化物層を形成するために非常に長い時間を要する。また、これらの方法を用いても、窒化物層の厚さが増すと、最表面には多孔質層が形成される傾向がある。さらに、イオン窒化法は特殊な設備を必要とするので、処理コストが大きくなり量産には適していない。   In order to form a dense nitride layer with few porous layers, a method of slowing the formation rate of the film is effective. Specifically, soft nitriding at a low temperature of 480 ° C. or lower, ion nitriding A special nitriding method such as However, these methods require a very long time to form a sufficiently thick nitride layer. Even if these methods are used, when the thickness of the nitride layer increases, a porous layer tends to be formed on the outermost surface. Furthermore, since ion nitriding requires special equipment, the processing cost increases and is not suitable for mass production.

このように、一般的な軟窒化処理のみを施した場合には、窒化物層の最表面に形成される多孔質層を無くして、窒化物層の全体を緻密層とすることは困難である。そこで、本実施形態においては、前述のような特殊な窒化方法を用いることなく、480〜570℃程度の比較的高温条件での窒化処理により窒化物層を形成させた後に、緻密化処理を施すことにより、最表面に形成された多孔質層を緻密化させた。この緻密化処理としては、例えば、酸素の存在下(例えば空気中)において軟窒化処理温度よりも低温の350〜450℃で1〜5時間保持する熱処理があげられる。   Thus, when only a general soft nitriding treatment is performed, it is difficult to eliminate the porous layer formed on the outermost surface of the nitride layer and to make the entire nitride layer a dense layer. . Therefore, in this embodiment, a densification process is performed after a nitride layer is formed by a nitriding process at a relatively high temperature of about 480 to 570 ° C. without using the special nitriding method as described above. As a result, the porous layer formed on the outermost surface was densified. As this densification treatment, for example, a heat treatment is performed in the presence of oxygen (for example, in the air) that is held at 350 to 450 ° C., which is lower than the soft nitriding temperature, for 1 to 5 hours.

図2に、熱処理により緻密化した後の窒化物層の模式的な断面図を示す。上記のような熱処理により、窒化物層3の表面から内部に向かって酸化反応が進行し、窒化物層3の最表面に緻密な酸化物層6が形成される。このときに形成される酸化物は、非常に微細な粒子であり、酸化物粒子が多孔質層4の空孔4aを埋めて多孔質層4を緻密化することにより酸化物層6(本発明の構成要件である「酸化物粒子で構成された緻密層」である)が形成される。このようにして、従来の軟窒化処理のみでは形成することが困難であった緻密層を、窒化物層の最表面に形成することができる。   FIG. 2 shows a schematic cross-sectional view of the nitride layer after being densified by heat treatment. By the heat treatment as described above, an oxidation reaction proceeds from the surface of the nitride layer 3 toward the inside, and a dense oxide layer 6 is formed on the outermost surface of the nitride layer 3. The oxide formed at this time is very fine particles, and the oxide particles fill the pores 4a of the porous layer 4 and densify the porous layer 4 to thereby form the oxide layer 6 (the present invention). Is a “dense layer composed of oxide particles”. In this manner, a dense layer that has been difficult to form only by conventional soft nitriding can be formed on the outermost surface of the nitride layer.

さらに、この熱処理においては、加熱により、多孔質層4の空孔4aを埋めるように窒化物の拡散が進行して、多孔質層4自体が緻密化されるという現象も起きる。すなわち、熱処理によって、酸化物粒子が多孔質層4の空孔4aを埋めて緻密な酸化物層6が形成されるとともに、窒化物の拡散による窒化物層3の緻密化が生じて、窒化物層3の最表面に緻密層が形成されるのである。その結果、摩耗の原因となる多孔質層の脱落が抑制されることとなり、保持器の耐摩耗性が著しく改善される。   Further, in this heat treatment, a phenomenon occurs in which the diffusion of nitride proceeds so as to fill the pores 4a of the porous layer 4 by heating, and the porous layer 4 itself becomes dense. That is, by heat treatment, oxide particles fill the pores 4a of the porous layer 4 to form a dense oxide layer 6, and the nitride layer 3 is densified due to the diffusion of nitride. A dense layer is formed on the outermost surface of the layer 3. As a result, the loss of the porous layer that causes wear is suppressed, and the wear resistance of the cage is remarkably improved.

また、前述の熱処理は、酸素の存在下で加熱保持するだけでよいので、特別な設備を必要とせず、安価に処理が可能である。
なお、軟窒化処理の種類は特に限定されるものではなく、例としては、一般的な軟窒化処理であるガス軟窒化処理や塩浴窒化処理があげられる。また、熱処理は、軟窒化処理がどのような種類のものであっても同様の効果があり、窒化物層の最表面に緻密層を形成することができる。
In addition, since the above-described heat treatment only needs to be heated and held in the presence of oxygen, it does not require special equipment and can be processed at low cost.
The type of soft nitriding is not particularly limited, and examples thereof include gas soft nitriding and salt bath nitriding which are general soft nitriding. The heat treatment has the same effect regardless of the type of soft nitriding treatment, and a dense layer can be formed on the outermost surface of the nitride layer.

〔実施例〕
以下に、さらに具体的な実施例を示して、本発明を説明する。
冷間圧延鋼板SPCC材からプレス成形にて自動調心ころ軸受(呼び番号22211)用のプレス保持器を作製し、その保持器に軟窒化処理及び熱処理を表1及び表2に示すように種々組み合わせて施した。軟窒化処理を施した後に行う熱処理は、空気中で加熱するというものである。その条件は、表1及び表2中の条件Aは400〜430℃で2時間加熱した後に放冷するというものであり、条件Bは400〜430℃で0.5時間加熱した後に放冷するというものであり、条件Cは550℃で1時間加熱した後に放冷するというものである。なお、表1及び表2に記載のような条件で各種窒化処理を施した後の冷却は、ガス軟窒化処理の場合は炉冷であり、その他の窒化処理の場合は油冷である。
〔Example〕
Hereinafter, the present invention will be described with reference to more specific examples.
A press cage for a self-aligning roller bearing (nominal number 22211) is manufactured by press forming from a cold rolled steel plate SPCC material, and soft nitriding treatment and heat treatment are variously performed on the cage as shown in Tables 1 and 2. Made in combination. The heat treatment performed after the soft nitriding treatment is heating in air. The conditions are that condition A in Tables 1 and 2 is to cool after heating at 400 to 430 ° C. for 2 hours, and condition B is to cool after heating at 400 to 430 ° C. for 0.5 hours. Condition C is that heating is performed at 550 ° C. for 1 hour and then allowed to cool. The cooling after performing various nitriding treatments under the conditions shown in Tables 1 and 2 is furnace cooling in the case of gas soft nitriding treatment, and oil cooling in the case of other nitriding treatments.

このような条件で軟窒化処理を施すことにより、保持器の表面に、多孔質層と緻密層との二層構造を有する窒化物層が形成される。そして、さらに熱処理を施すことにより、窒化物層の最表面部分が酸化され、酸化物粒子からなる緻密な緻密層が形成される。
酸化物粒子からなる緻密層の厚さは、以下のようにして測定した。熱処理後の保持器を小さく切断し、樹脂に埋め込んで切断面を研磨した。研磨した切断面を走査型電子顕微鏡(SEM)で観察し、顕微鏡写真を解析することにより、酸化物粒子からなる緻密層の厚さを測定した。また、酸化物粒子の平均粒径は、熱処理後の保持器の表面をSEMで観察し、顕微鏡写真を解析することにより測定した。
By performing the soft nitriding treatment under such conditions, a nitride layer having a two-layer structure of a porous layer and a dense layer is formed on the surface of the cage. Further, by performing heat treatment, the outermost surface portion of the nitride layer is oxidized, and a dense dense layer made of oxide particles is formed.
The thickness of the dense layer made of oxide particles was measured as follows. The cage after the heat treatment was cut into small pieces, embedded in resin, and the cut surface was polished. The polished cut surface was observed with a scanning electron microscope (SEM), and the thickness of the dense layer made of oxide particles was measured by analyzing the micrograph. The average particle diameter of the oxide particles was measured by observing the surface of the cage after the heat treatment with an SEM and analyzing a micrograph.

酸化物粒子の平均粒径と、酸化物粒子からなる緻密層の厚さとを、表1及び表2に示す。また、保持器の切断面(切断部位は保持器の柱である)の拡大図(SEMによる顕微鏡写真)の例を、図3,4に示す。図3は実施例5の保持器であり、図4は比較例5の保持器である。軟窒化処理のみである比較例5の保持器は、最表面に多孔質層が形成されているのに対し、軟窒化処理及び熱処理が施された実施例5の保持器は、多孔質層の外側に酸化物粒子で構成された緻密層が形成されていることが分かる。   Tables 1 and 2 show the average particle diameter of the oxide particles and the thickness of the dense layer made of the oxide particles. Moreover, the example of the enlarged view (micrograph by SEM) of the cut surface (a cutting site | part is a pillar of a holder | retainer) of a holder | retainer is shown to FIG. FIG. 3 shows the cage of Example 5, and FIG. 4 shows the cage of Comparative Example 5. The cage of Comparative Example 5, which is only soft nitriding, has a porous layer formed on the outermost surface, whereas the cage of Example 5, which has been subjected to soft nitriding and heat treatment, has a porous layer. It can be seen that a dense layer composed of oxide particles is formed on the outside.

次に、実施例1〜8及び比較例1〜10の保持器の耐摩耗性を評価した。すなわち、保持器を自動調心ころ軸受(呼び番号22211)に組み込んで高速回転試験を行い、回転試験後の保持器の摩耗状況を質量変化によって評価した。回転試験の条件は、以下の通りである。
・荷重 :15415N
・回転速度:6750min-1
・潤滑条件:グリース潤滑
・試験時間:24時間
Next, the abrasion resistance of the cages of Examples 1 to 8 and Comparative Examples 1 to 10 was evaluated. That is, the cage was assembled in a self-aligning roller bearing (nominal number 22211) and a high-speed rotation test was conducted, and the wear situation of the cage after the rotation test was evaluated by mass change. The conditions of the rotation test are as follows.
・ Load: 15415N
・ Rotation speed: 6750 min -1
・ Lubrication condition: Grease lubrication ・ Test time: 24 hours

保持器の摩耗量を表1及び表2に併せて示す。なお、保持器の摩耗量は、比較例1の保持器の摩耗量を1とした場合の相対値で示してある。
実施例1〜8の保持器は、平均粒径0.5〜0.8μmの酸化物粒子で構成された厚さ0.5μm以上の緻密層が形成されているため、酸化物粒子で構成された緻密層が形成されていない比較例1〜8の保持器と比較して、摩耗量が少なく耐摩耗性が大幅に優れていた。また、軟窒化処理の種類に関係なく、熱処理による耐摩耗性の向上効果があることも分かる。
Table 1 and Table 2 show the wear amount of the cage. The wear amount of the cage is shown as a relative value when the wear amount of the cage of Comparative Example 1 is 1.
The cages of Examples 1 to 8 are composed of oxide particles because a dense layer having a thickness of 0.5 μm or more composed of oxide particles having an average particle diameter of 0.5 to 0.8 μm is formed. Compared with the cages of Comparative Examples 1 to 8 in which no dense layer was formed, the wear amount was small and the wear resistance was significantly superior. It can also be seen that there is an effect of improving the wear resistance by heat treatment regardless of the type of soft nitriding treatment.

比較例9の保持器は、熱処理の時間が短く、酸化物粒子で構成された緻密層の厚さが0.5μm未満であるため、耐摩耗性が不十分であった。また、比較例10の保持器は、熱処理の温度が高すぎるため、酸化物粒子が粗大となった。そのため、緻密層が構成されにくくなり、酸化物粒子で構成された緻密層がポーラスとなって、耐摩耗性が不十分となった。
なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。例えば、保持器を構成する鋼の種類は特に限定されるものではなく、冷間圧延鋼板や熱間圧延鋼板以外の材料を用いて保持器を製造してもよい。また、保持器の製造法も特に限定されるものではなく、プレス保持器に限らず、もみ抜き保持器でもよい。
The cage of Comparative Example 9 had insufficient heat resistance because the heat treatment time was short and the thickness of the dense layer composed of oxide particles was less than 0.5 μm. Moreover, since the temperature of the heat treatment was too high, the cage of Comparative Example 10 had coarse oxide particles. For this reason, the dense layer becomes difficult to be formed, and the dense layer made of oxide particles becomes porous, resulting in insufficient wear resistance.
In addition, this embodiment shows an example of this invention and this invention is not limited to this embodiment. For example, the type of steel constituting the cage is not particularly limited, and the cage may be manufactured using a material other than a cold rolled steel plate or a hot rolled steel plate. Further, the manufacturing method of the cage is not particularly limited, and is not limited to the press cage and may be a machined cage.

さらに、本実施形態においては、自動調心ころ軸受用の保持器を例示して説明したが、転がり軸受の種類は自動調心ころ軸受に限定されるものではなく、本発明は様々な種類の転がり軸受に対して適用することができる。例えば、深溝玉軸受,アンギュラ玉軸受,自動調心玉軸受,円筒ころ軸受,円すいころ軸受,針状ころ軸受等のラジアル形の転がり軸受や、スラスト玉軸受,スラストころ軸受等のスラスト形の転がり軸受である。   Furthermore, in the present embodiment, the cage for the self-aligning roller bearing has been described as an example. However, the type of the rolling bearing is not limited to the self-aligning roller bearing, and the present invention includes various types. It can be applied to rolling bearings. For example, radial rolling bearings such as deep groove ball bearings, angular contact ball bearings, self-aligning ball bearings, cylindrical roller bearings, tapered roller bearings, needle roller bearings, and thrust type rolling bearings such as thrust ball bearings and thrust roller bearings It is a bearing.

本発明の転がり軸受用保持器は、一般産業機械,工作機械,振動篩,鉄鋼用機械等に使用される転がり軸受に好適である。   The rolling bearing cage of the present invention is suitable for rolling bearings used in general industrial machines, machine tools, vibration sieves, steel machines and the like.

窒化処理後の保持器の表面の構造を説明する模式的断面図である。It is typical sectional drawing explaining the structure of the surface of the holder | retainer after nitriding treatment. 熱処理後の保持器の表面の構造を説明する模式的断面図である。It is typical sectional drawing explaining the structure of the surface of the holder | retainer after heat processing. 実施例5の保持器の切断面の拡大図である。It is an enlarged view of the cut surface of the holder | retainer of Example 5. FIG. 比較例5の保持器の切断面の拡大図である。It is an enlarged view of the cut surface of the holder | retainer of the comparative example 5.

符号の説明Explanation of symbols

3 窒化物層
4 多孔質層
6 酸化物層(酸化物粒子で構成された緻密層)
3 Nitride layer 4 Porous layer 6 Oxide layer (dense layer composed of oxide particles)

Claims (2)

鋼製の転がり軸受用保持器において、窒化処理による窒化物層が表面に形成され、酸化物粒子で構成された緻密層が前記窒化物層の外側にさらに形成されていることを特徴とする転がり軸受用保持器。   A rolling bearing retainer made of steel, wherein a nitride layer formed by nitriding is formed on a surface, and a dense layer composed of oxide particles is further formed outside the nitride layer. Bearing cage. 前記酸化物粒子の平均粒径が1μm以下であり、前記緻密層の厚さが0.5μm以上5μm以下であることを特徴とする請求項1に記載の転がり軸受用保持器。   2. The rolling bearing cage according to claim 1, wherein an average particle diameter of the oxide particles is 1 μm or less and a thickness of the dense layer is 0.5 μm or more and 5 μm or less.
JP2003341353A 2003-09-30 2003-09-30 Roller bearing cage and manufacturing method thereof Expired - Lifetime JP4487530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003341353A JP4487530B2 (en) 2003-09-30 2003-09-30 Roller bearing cage and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003341353A JP4487530B2 (en) 2003-09-30 2003-09-30 Roller bearing cage and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005106204A true JP2005106204A (en) 2005-04-21
JP4487530B2 JP4487530B2 (en) 2010-06-23

Family

ID=34535976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003341353A Expired - Lifetime JP4487530B2 (en) 2003-09-30 2003-09-30 Roller bearing cage and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4487530B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169922A (en) * 2007-01-11 2008-07-24 Ntn Corp Differential device
JP2009109018A (en) * 2008-12-09 2009-05-21 Ntn Corp Rolling bearing
JP2010001991A (en) * 2008-06-20 2010-01-07 Ntn Corp Base isolation device
US8182155B2 (en) 2005-09-02 2012-05-22 Ntn Corporation Lubricating grease and lubricating grease-enclosed roller bearing
JP2012154396A (en) * 2011-01-25 2012-08-16 Nsk Ltd Thrust roller bearing
JP2016080028A (en) * 2014-10-14 2016-05-16 大同工業株式会社 Bearing portion for chain, pin, and chain using the same
JP2016080027A (en) * 2014-10-14 2016-05-16 大同工業株式会社 Bearing portion for chain, pin, its manufacturing method, and chain using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194061A (en) * 1984-03-15 1985-10-02 Teikoku Piston Ring Co Ltd Production of sliding member
JPH06341442A (en) * 1993-05-31 1994-12-13 Nippon Seiko Kk Anticorrosion rolling bearing
JPH09184058A (en) * 1995-12-28 1997-07-15 Dowa Mining Co Ltd Steel with corrosion resistance and wear resistance and its production
JPH09228972A (en) * 1996-12-26 1997-09-02 Hitachi Ltd Iron slide part of compressor, its surface treatment method and compressor
JP2001090734A (en) * 1999-07-21 2001-04-03 Nsk Ltd Cage for roller bearing
JP2001123193A (en) * 1999-10-26 2001-05-08 Nsk Ltd Grease for traction drive
WO2002101253A1 (en) * 2001-06-12 2002-12-19 Nsk Ltd. Retainer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194061A (en) * 1984-03-15 1985-10-02 Teikoku Piston Ring Co Ltd Production of sliding member
JPH06341442A (en) * 1993-05-31 1994-12-13 Nippon Seiko Kk Anticorrosion rolling bearing
JPH09184058A (en) * 1995-12-28 1997-07-15 Dowa Mining Co Ltd Steel with corrosion resistance and wear resistance and its production
JPH09228972A (en) * 1996-12-26 1997-09-02 Hitachi Ltd Iron slide part of compressor, its surface treatment method and compressor
JP2001090734A (en) * 1999-07-21 2001-04-03 Nsk Ltd Cage for roller bearing
JP2001123193A (en) * 1999-10-26 2001-05-08 Nsk Ltd Grease for traction drive
WO2002101253A1 (en) * 2001-06-12 2002-12-19 Nsk Ltd. Retainer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8182155B2 (en) 2005-09-02 2012-05-22 Ntn Corporation Lubricating grease and lubricating grease-enclosed roller bearing
JP2008169922A (en) * 2007-01-11 2008-07-24 Ntn Corp Differential device
JP2010001991A (en) * 2008-06-20 2010-01-07 Ntn Corp Base isolation device
JP2009109018A (en) * 2008-12-09 2009-05-21 Ntn Corp Rolling bearing
JP2012154396A (en) * 2011-01-25 2012-08-16 Nsk Ltd Thrust roller bearing
JP2016080028A (en) * 2014-10-14 2016-05-16 大同工業株式会社 Bearing portion for chain, pin, and chain using the same
JP2016080027A (en) * 2014-10-14 2016-05-16 大同工業株式会社 Bearing portion for chain, pin, its manufacturing method, and chain using the same

Also Published As

Publication number Publication date
JP4487530B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
US6471410B1 (en) Coated rolling element bearing
JP4399905B2 (en) Roller bearing
JPH11236920A (en) Rolling bearing
CN1625656B (en) Oil-impregnated sintered sliding bearing
JP2003193200A (en) Antifriction bearing
JP4487530B2 (en) Roller bearing cage and manufacturing method thereof
JP4487340B2 (en) Method for manufacturing rolling bearing cage
JP5163183B2 (en) Rolling bearing
JP3013452B2 (en) Rolling bearing
JP2004360707A (en) Retainer
JP2006071022A (en) Rolling bearing
JP4375038B2 (en) Thrust needle roller bearing
JP2021050399A (en) Slide member
JP2006250316A (en) Rolling device
JP2002195266A (en) Roller bearing
JP2006308080A (en) Rolling bearing
TWI833113B (en) Angled ball bearings
JP2006329265A (en) Rolling bearing
JP2004011793A (en) Linear guide
JPS59208219A (en) Solid lubricating bearing
JP3719847B2 (en) Sliding material and manufacturing method thereof
WO2024048601A1 (en) Rolling bearing and rolling body production method
JP2005337335A (en) Rolling bearing
JPS6212305B2 (en)
JP2008032108A (en) Cage for rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4487530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

EXPY Cancellation because of completion of term