JP3719847B2 - Sliding material and manufacturing method thereof - Google Patents

Sliding material and manufacturing method thereof Download PDF

Info

Publication number
JP3719847B2
JP3719847B2 JP13132098A JP13132098A JP3719847B2 JP 3719847 B2 JP3719847 B2 JP 3719847B2 JP 13132098 A JP13132098 A JP 13132098A JP 13132098 A JP13132098 A JP 13132098A JP 3719847 B2 JP3719847 B2 JP 3719847B2
Authority
JP
Japan
Prior art keywords
chlorine
ions
coating layer
tin coating
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13132098A
Other languages
Japanese (ja)
Other versions
JPH11302830A (en
Inventor
淳 三尾
宣弘 仁平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Government
Original Assignee
Tokyo Metropolitan Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Government filed Critical Tokyo Metropolitan Government
Priority to JP13132098A priority Critical patent/JP3719847B2/en
Publication of JPH11302830A publication Critical patent/JPH11302830A/en
Application granted granted Critical
Publication of JP3719847B2 publication Critical patent/JP3719847B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、無潤滑で用いることができ、相手側材料の損傷や焼き付きを起こしにくい摺動性材料及びその製造方法に係る。
【0002】
【従来の技術】
一般に、窒化チタン(TiN)膜は、硬質耐摩耗性膜として金型、切削工具等に広範囲に使用されており、近年には摺動部品への適用も図られている。通常、無潤滑状態下でTiN膜が金属材料それ自体、もしくは相手材と摩擦される場合、相手材が膜表面に凝着するために摩擦係数は必ずしも低くならない。しかしながら、本発明者の検討によれば、プラズマCVD法で成膜されたTiN膜と金属材料との摩擦係数は比較的低いことが一連の継続的研究結果から明らかになった。この理由は定かではないが、プラズマCVD法を適用する場合の成膜時に原料である塩化チタンの未分解に由来する塩素、特に成膜時温度の低い場合に分解し切れずに残った塩素がTiN膜全面に混入するためと推測される。しかし、このTiN膜全面に混入した塩素は素材である金属材料と接触することにより素材を酸化侵食するという重大な問題点を有するものであり、そのまま実用化し得ないものであった。
【0003】
【発明が解決しようとする課題】
かかる現状に鑑み、本発明は無潤滑で用いることができ、相手側材料の損傷や焼き付きを起こしにくい摺動性材料及びその製造方法を提供することを目的とするものである。このような課題のもと、本発明者らはプラズマCVD法での塩素含有による耐摩耗性改善効果に着目し、TiN膜全面に塩素を含有させず、表面にのみ塩素注入層を形成すること、成膜時に塩素混入を来さないTiN成膜法と組み合わせることに想起し、本発明を為すに至ったものである。
【0004】
【問題点を解決するための手段】
すなわち、本発明は金型用または摺動部品用の自己潤滑性を有する摺動性材料であって、硬質金属からなる母材の表面部位に、物理的蒸着法もしくは粉末冶金法で形成されたTiN被覆層が形成され、このTiN被覆層表面から塩素がその表面濃度が1×1016ions/cm2以上の濃度、好ましくは1×1016ions/cm2〜1×1017ions/cm2の濃度でイオン注入されてなり、かつ該TiN被覆層の前記母材との界面近傍には塩素イオンが存在しないことを特徴とする摺動性材料、並びに金型用または摺動部品用の自己潤滑性を有する摺動性材料の製造方法であって、硬質金属からなる母材の表面部位に、物理的蒸着法もしくは粉末冶金法で形成されたTiN被覆層を形成し、このTiN被覆層表面から塩素をその表面濃度が1×1016ions/cm2以上の濃度、好ましくは1×1016ions/cm2〜1×1017ions/cm2の濃度でイオン注入し、かつ該TiN被覆層の前記母材との界面近傍には塩素イオンが存在しないようにイオン注入することを特徴とする摺動性材料の製造方法により、前記課題を達成したものである。
【0005】
【発明の実施の態様】
上記本発明によれば、金属材料表面に物理的蒸着法もしくは粉末冶金法で形成されたTiN被覆層の表面にその表面塩素濃度が1×1016ions/cm2以上の濃度、好ましくは1×1016ions/cm2〜1×1017ions/cm2の濃度でイオン注入されているため、この塩素注入層が自己潤滑性を有し、相手材が軟質の金属材料であっても低摩擦系数であるために相手材の付着を防止でき、また硬質であるTiN層の特徴を維持して摩耗し難い。また低摩擦係数でかつ耐摩耗性に優れるのみならず、TiN層が形成された金属素材層近傍のTiN層部分には塩素が含有されていないので、素材の腐食の問題も解消される。
【0006】
図1は本発明の説明図であり、(a)は母材1のみを示し、(b)は母材片面にTiN層2を形成した状態を、そして(c)はTiN層表面に塩素を注入した塩素注入層3を形成した状態をそれぞれ示す。母材1は通常の高速度工具鋼、合金工具鋼、軸受鋼、ステンレス鋼、耐熱鋼、アルミニウム及びその合金、チタン及びその合金、超硬、各種セラミックス等が使用でき、TiN層2の成膜に先だってその成膜される片面表面を研磨加工により鏡面仕上げしておく。TiN層2の成膜は物理的蒸着法、所謂PVD法、具体的にはイオンプレーティング法、真空蒸着法、スパッタリング法、イオンビームミキシング法等の蒸着法、もしくは粉末冶金法により形成するようにする。なお、本発明ではこのような方法によりTiN層2の成膜を行うものであるが、化学的蒸着法のうち熱CVD法ではプラズマCVD法と同様に原料として塩化チタンを用いるが工程時処理温度が極めて高いので未分解の塩素がTiN 層2に残存しないので、適用可能である。要は本発明は実質的に膜全面に塩素が含有されない手段であれば如何なる方法によってもよい。TiN層2の膜厚はその形成方法にもよるが、通常の硬質耐摩耗性膜として適用される0.2〜10μmの範囲とすることが好ましい。0.2μmより薄いと次工程である塩素注入時に母材界面近傍にまで塩素イオンが到達する恐れが大きくなる。逆に10μmより厚くしても成膜時間、費用が嵩む割には耐摩耗性の向上はそれ程期待できない。
【0007】
TiN層2上には、塩素を注入して塩素注入層3を形成する。イオン注入は半導体技術で汎用される技術であり、本発明はこれら半導体製造時に使用されるイオン注入装置をそのまま使用することができる。これらの注入装置は通常、100keV程度の加速エネルギーを有し、この程度の加速エネルギーで塩素注入を実施することにより適度の濃度で適度な深さまで塩素注入が施すことができる。勿論加速エネルギーをより高レベルとすれば塩素はそれだけ表面からより深くまで到達することは当然であるが、本発明ではTiN層2の表面における塩素注入層3の濃度が1×1016ions/cm2〜1×1017ions/cm2の濃度でイオン注入し、かつ母材1とTiN層2との界面近傍のTiN層2内には塩素が存在しないことが肝要であり、その点から従前の半導体製造装置用注入装置等をそのまま使用することが好ましい。塩素注入層3の塩素濃度がTiN層2表面において1×1016ions/cm2より少ないと無潤滑状態における耐摩耗性の向上効果もしくは低摩擦係数とならず、所期の課題が達成できなくなる。なお、TiN層2表面における塩素注入層3はTiN層2の膜厚方向に深くなるに従って漸次濃度を減少していき、およそ膜厚の約1/10〜8/10程度で殆どゼロとなる。以下に本発明の実施例を示すが、本発明はこれら実施例に限定されるものではない。
【0008】
【実施例】
基板として市販の粉末高速度工具鋼を用いた。機械加工により、φ25mm、厚さ約4mmに調整し、焼入れ、焼戻しの後、片面をダイヤモンド砥粒により鏡面研磨した。この基板の全面に中空陰極放電型の工業用イオンプレーティング装置を用いて厚さ約2μmのTiN膜を生成し、試験片とした。成膜中は723Kに温度設定したヒーターで基板加熱を行った。
【0009】
塩素イオン注入には半導体製造用の装置を用い、イオン源に装填した固体蒸発源にて純度99.99%の三塩化アルミニウムを気化した後、イオン化し、質量分離して一価の塩素イオンのみを選択した。加速エネルギーは100keV、イオン注入量は1×1016ions/cm2〜1×1017ions/cm2の範囲とした。イオン注入中の平均イオンビーム電流密度は約4μA/cm2であった。なお、処理中の温度制御は行わなかった。
【0010】
摺動特性の評価にはボール・オン・ディスク型の摩擦摩耗試験機を用い、相手材としてSUS304及び超硬(WC)のボールを選んだ。試験条件は、荷重2または5N、摺動速度10または100mm/sとし、摩擦係数の変化を記録した。また、試料表面の摩耗痕を走査型電子顕微鏡(SEM)により観察し、さらにエネルギー分散型X線分光装置(EDS)により元素分析を行った。
【0011】
その結果、摩擦係数の変化を図2及び図3に示す。これら図より、TiN層表面に注入される塩素の量は1×1016ions/cm2のものでは試験開始直後から低い摩擦係数を示し、その効果は1×1017ions/cm2程度の量において十分であることがわかる。また、試験後の試料表面の摩耗痕を走査型電子顕微鏡(SEM)により観察したところ、塩素注入を行わなかった試料面には凝着した相手材が認められ、EDSによる元素分析の結果、該凝着が認められた摩耗痕部分には大量の酸素が検出され、酸化が同時に起こっていることがわかった。これに反し本発明に係る実施例ではSEMによる摩耗痕の観察及び元素分析の結果から相手材の凝着は全く認められず、酸素の存在も確認できなかった。これらの結果から本発明耐摩耗性膜は自己潤滑性能を具備し、無潤滑状態での使用が可能である各種硬質膜として摺動部品等へも適用することができるものであることが明になった。なお、上記実施例において注入される塩素がTiN層表面で1×1016ions/cm2程度の量である場合、TiN層の通常の厚さが2μmであるとして表面から1/10以深では塩素イオンは実質的に含有されておらず、特に母材近傍のTiN層には全く存在しないものである。
【0012】
【発明の効果】
以上のような本発明によれば、従来は潤滑剤を必要とした金型においても耐摩耗性を維持したまま潤滑剤を不要にできる。また摺動部品においても潤滑剤を不要にし、さらに摩擦係数の低減により、エネルギーロスを減少できる。以上により、本発明による硬質材料を適用した場合、省資源、廃棄物低減の効果が期待できる。その適用範囲には以下のものがある。
(1)曲げ、絞り加工:金型の寿命改善、材料の付着防止、加工精度向上
(2)切削加工:工具寿命の改善、材料の付着防止、加工精度向上
(3)自動車部品:耐摩耗性向上、低摩擦係数、エネルギー効率向上、排気ガス低減
【図面の簡単な説明】
【図1】本発明に係る製造工程を示す説明図である。
【図2】実施例において相手材SUS304で荷重2Nの場合における摺動距離と摩擦係数との関係図である。
【図3】実施例において相手材WCで荷重5Nの場合における摺動距離と摩擦係数との関係図である。
【符号の説明】
1 母材
2 TiN層
3 塩素注入層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a slidable material that can be used without lubrication and hardly causes damage or seizure of a counterpart material, and a method for manufacturing the same.
[0002]
[Prior art]
In general, a titanium nitride (TiN) film is widely used as a hard wear-resistant film in dies, cutting tools, and the like, and in recent years, it is also applied to sliding parts. Normally, when the TiN film is rubbed against the metal material itself or the counterpart material in an unlubricated state, the friction coefficient does not necessarily decrease because the counterpart material adheres to the film surface. However, according to the study of the present inventor, it has become clear from a series of continuous research results that the friction coefficient between the TiN film formed by the plasma CVD method and the metal material is relatively low. The reason for this is not clear, but chlorine derived from undecomposition of titanium chloride, which is a raw material during film formation when applying the plasma CVD method, particularly chlorine that remains undecomposed when the temperature during film formation is low. It is presumed to be mixed into the entire surface of the TiN film. However, the chlorine mixed in the entire surface of the TiN film has a serious problem that it oxidizes and erodes the material by coming into contact with the metal material, and cannot be put into practical use as it is.
[0003]
[Problems to be solved by the invention]
In view of the present situation, an object of the present invention is to provide a slidable material that can be used without lubrication and hardly cause damage or seizure of the mating material, and a method for manufacturing the same. Under such a problem, the present inventors pay attention to the effect of improving the wear resistance by containing chlorine in the plasma CVD method, and do not contain chlorine on the entire surface of the TiN film, and form a chlorine injection layer only on the surface. The present invention has been conceived in combination with a TiN film forming method that does not cause chlorine contamination during film formation.
[0004]
[Means for solving problems]
That is, the present invention is a slidable material having a self-lubricating property for molds or sliding parts, and is formed on a surface portion of a base material made of a hard metal by a physical vapor deposition method or a powder metallurgy method. A TiN coating layer is formed, and chlorine concentration from the surface of the TiN coating layer is a concentration of 1 × 10 16 ions / cm 2 or more, preferably 1 × 10 16 ions / cm 2 to 1 × 10 17 ions / cm 2. And a slidable material characterized in that chlorine ions are not present in the vicinity of the interface of the TiN coating layer with the base material, and self for molds or sliding parts A method for producing a slidable material having lubricity, wherein a TiN coating layer formed by physical vapor deposition or powder metallurgy is formed on a surface portion of a base material made of hard metal, and the surface of this TiN coating layer the surface concentration of chlorine from the 1 × 10 16 ions / cm 2 or more concentration, preferably 1 × 10 16 ions / cm 2 to 1 10 17 ions / cm implanted at 2 concentrations, and the production method of a sliding material which is in the vicinity of the interface between the base material of the TiN coating layer, characterized in that the ion implantation such that there is chloride ion Thus, the above-mentioned problem has been achieved.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the present invention, the surface chlorine concentration on the surface of the TiN coating layer formed on the metal material surface by physical vapor deposition or powder metallurgy is 1 × 10 16 ions / cm 2 or more, preferably 1 ×. Since the ions are implanted at a concentration of 10 16 ions / cm 2 to 1 × 10 17 ions / cm 2 , this chlorine implanted layer has a self-lubricating property and low friction even when the counterpart material is a soft metal material. Due to the series number, it is possible to prevent adhesion of the mating material, and it is difficult to wear while maintaining the characteristics of the hard TiN layer. In addition to the low friction coefficient and excellent wear resistance, the TiN layer near the metal material layer on which the TiN layer is formed does not contain chlorine, so the problem of corrosion of the material is also eliminated.
[0006]
FIG. 1 is an explanatory view of the present invention, where (a) shows only the base material 1, (b) shows a state where a TiN layer 2 is formed on one side of the base material, and (c) shows chlorine on the surface of the TiN layer. The states in which the injected chlorine injection layer 3 is formed are respectively shown. The base material 1 can be made of normal high speed tool steel, alloy tool steel, bearing steel, stainless steel, heat resistant steel, aluminum and its alloys, titanium and its alloys, carbide, various ceramics, etc., and the TiN layer 2 is formed. Prior to this, one surface of the film to be deposited is mirror-finished by polishing. The TiN layer 2 is formed by physical vapor deposition, so-called PVD method, specifically, ion plating method, vacuum vapor deposition method, sputtering method, ion beam mixing method or the like, or powder metallurgy method. To do. In the present invention, the TiN layer 2 is formed by such a method. In the chemical vapor deposition method, the thermal CVD method uses titanium chloride as a raw material in the same manner as the plasma CVD method. Is extremely high, so that undecomposed chlorine does not remain in the TiN layer 2 and is applicable. In short, the present invention may be applied by any method as long as it does not contain chlorine on the entire surface of the film. The thickness of the TiN layer 2 is preferably in the range of 0.2 to 10 μm, which is applied as a normal hard wear-resistant film, although it depends on the formation method. If the thickness is less than 0.2 μm, there is a greater possibility that chlorine ions will reach the vicinity of the base material interface when chlorine is injected in the next step. On the other hand, even if it is thicker than 10 μm, the improvement in wear resistance cannot be expected so much though the deposition time and cost increase.
[0007]
On the TiN layer 2, chlorine is injected to form a chlorine injection layer 3. Ion implantation is a technique widely used in semiconductor technology, and the present invention can use an ion implantation apparatus used at the time of manufacturing a semiconductor as it is. These injection apparatuses usually have an acceleration energy of about 100 keV, and chlorine injection can be performed at an appropriate concentration to an appropriate depth by performing chlorine injection with such an acceleration energy. Of course, if the acceleration energy is set to a higher level, it is natural that chlorine reaches deeper from the surface. In the present invention, the concentration of the chlorine implantation layer 3 on the surface of the TiN layer 2 is 1 × 10 16 ions / cm. It is important that ions are implanted at a concentration of 2 to 1 × 10 17 ions / cm 2 and that there is no chlorine in the TiN layer 2 in the vicinity of the interface between the base material 1 and the TiN layer 2. It is preferable to use an injection device for semiconductor manufacturing equipment or the like as it is. If the chlorine concentration of the chlorine injection layer 3 is less than 1 × 10 16 ions / cm 2 on the surface of the TiN layer 2, the effect of improving wear resistance in a non-lubricated state or a low friction coefficient will not be obtained, and the desired problem cannot be achieved. . The chlorine injection layer 3 on the surface of the TiN layer 2 gradually decreases in concentration as it becomes deeper in the film thickness direction of the TiN layer 2, and becomes almost zero at about 1/10 to 8/10 of the film thickness. Examples of the present invention are shown below, but the present invention is not limited to these Examples.
[0008]
【Example】
Commercial powder high speed tool steel was used as the substrate. By machining, the diameter was adjusted to 25 mm and the thickness was about 4 mm. After quenching and tempering, one surface was mirror-polished with diamond abrasive grains. A TiN film having a thickness of about 2 μm was formed on the entire surface of the substrate using a hollow cathode discharge industrial ion plating apparatus, and used as a test piece. During film formation, the substrate was heated with a heater set at a temperature of 723K.
[0009]
Chlorine ion implantation uses a semiconductor manufacturing device. After vaporizing 99.99% purity aluminum trichloride with a solid evaporation source loaded in the ion source, ionization and mass separation select only monovalent chlorine ions. did. The acceleration energy was 100 keV, and the ion implantation amount was in the range of 1 × 10 16 ions / cm 2 to 1 × 10 17 ions / cm 2 . The average ion beam current density during ion implantation was about 4 μA / cm 2 . In addition, temperature control during processing was not performed.
[0010]
For evaluation of sliding characteristics, a ball-on-disk type friction and wear tester was used, and SUS304 and carbide (WC) balls were selected as counterpart materials. The test conditions were a load of 2 or 5 N, a sliding speed of 10 or 100 mm / s, and the change in the friction coefficient was recorded. Further, the wear scar on the sample surface was observed with a scanning electron microscope (SEM), and further elemental analysis was performed with an energy dispersive X-ray spectrometer (EDS).
[0011]
As a result, the change of the friction coefficient is shown in FIGS. From these figures, the amount of chlorine injected into the TiN layer surface is 1 × 10 16 ions / cm 2 , which shows a low coefficient of friction immediately after the start of the test, and the effect is about 1 × 10 17 ions / cm 2 . It can be seen that this is sufficient. Further, when the wear scar on the sample surface after the test was observed with a scanning electron microscope (SEM), a coherent partner material was found on the sample surface where chlorine injection was not performed. A large amount of oxygen was detected in the wear scars where adhesion was observed, indicating that oxidation occurred simultaneously. On the other hand, in the examples according to the present invention, no adhesion of the counterpart material was observed from the results of observation of wear marks by SEM and elemental analysis, and the presence of oxygen could not be confirmed. From these results, it is clear that the wear-resistant film of the present invention has self-lubricating performance and can be applied to sliding parts as various hard films that can be used in a non-lubricated state. became. Note that when the amount of chlorine implanted in the above embodiment is about 1 × 10 16 ions / cm 2 on the surface of the TiN layer, it is assumed that the normal thickness of the TiN layer is 2 μm and the chlorine is 1/10 or deeper than the surface. Ions are not substantially contained and are not present at all in the TiN layer near the base material.
[0012]
【The invention's effect】
According to the present invention as described above, it is possible to eliminate the need for a lubricant while maintaining wear resistance even in a mold that conventionally requires a lubricant. In addition, the lubricant can be eliminated from the sliding parts, and the energy loss can be reduced by reducing the friction coefficient. As described above, when the hard material according to the present invention is applied, resource saving and waste reduction effects can be expected. The scope of application includes the following.
(1) Bending and drawing: Improving tool life, preventing material adhesion, and improving processing accuracy
(2) Cutting: Improvement of tool life, prevention of material adhesion, improvement of machining accuracy
(3) Automobile parts: improved wear resistance, low friction coefficient, improved energy efficiency, reduced exhaust gas [Brief description of drawings]
FIG. 1 is an explanatory view showing a manufacturing process according to the present invention.
FIG. 2 is a relationship diagram between a sliding distance and a friction coefficient when a load of 2N is used with the counterpart material SUS304 in the embodiment.
FIG. 3 is a diagram showing the relationship between the sliding distance and the friction coefficient when the counter member WC has a load of 5 N in the embodiment.
[Explanation of symbols]
1 Base material 2 TiN layer 3 Chlorine injection layer

Claims (4)

金型用または摺動部品用の自己潤滑性を有する摺動性材料であって、
硬質金属からなる母材の表面部位に、物理的蒸着法もしくは粉末冶金法で形成されたTiN被覆層が形成され、
このTiN被覆層には、表面から塩素がその表面濃度が1×1016ions/cm2以上の濃度でイオン注入されてなり、かつ該TiN被覆層の前記母材との界面近傍には塩素イオンが存在しないことを特徴とする摺動性材料
A slidable material having a self-lubricating property for molds or sliding parts,
A TiN coating layer formed by physical vapor deposition or powder metallurgy is formed on the surface of the base material made of hard metal ,
In this TiN coating layer, chlorine is ion-implanted from the surface at a surface concentration of 1 × 10 16 ions / cm 2 or more, and chlorine ions are present in the vicinity of the interface with the base material of the TiN coating layer. A slidable material characterized by the absence of
前記TiN被覆層表面から塩素がその表面濃度が1×1016ions/cm2〜1×1017ions/cm2濃度でイオン注入されてなる請求項1記載の摺動性材料 2. The slidable material according to claim 1, wherein chlorine is ion-implanted from the surface of the TiN coating layer at a surface concentration of 1 × 10 16 ions / cm 2 to 1 × 10 17 ions / cm 2 . 金型用または摺動部品用の自己潤滑性を有する摺動性材料の製造方法であって、
硬質金属からなる母材の表面部位に、物理的蒸着法もしくは粉末冶金法によりTiN被覆層を形成し、
このTiN被覆層に、表面から塩素をその表面濃度が1×1016ions/cm2以上の濃度でイオン注入し、かつ該TiN被覆層の前記母材との界面近傍には塩素イオンが存在しないようにイオン注入することを特徴とする摺動性材料の製造方法。
A method for producing a slidable material having self-lubricity for a mold or a sliding part,
A TiN coating layer is formed by physical vapor deposition or powder metallurgy on the surface of a base material made of hard metal ,
Into this TiN coating layer, chlorine is ion-implanted from the surface at a surface concentration of 1 × 10 16 ions / cm 2 or more, and there is no chlorine ion in the vicinity of the interface of the TiN coating layer with the base material. A method for producing a slidable material , characterized by ion implantation.
前記TiN被覆層表面からイオン注入する塩素をその表面濃度が1×1016ions/cm2〜1×1017ions/cm2の濃度となるようにして行う請求項3記載の摺動性材料の製造方法。The slidable material according to claim 3, wherein chlorine is ion-implanted from the surface of the TiN coating layer so as to have a surface concentration of 1 × 10 16 ions / cm 2 to 1 × 10 17 ions / cm 2 . Production method.
JP13132098A 1998-04-24 1998-04-24 Sliding material and manufacturing method thereof Expired - Fee Related JP3719847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13132098A JP3719847B2 (en) 1998-04-24 1998-04-24 Sliding material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13132098A JP3719847B2 (en) 1998-04-24 1998-04-24 Sliding material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11302830A JPH11302830A (en) 1999-11-02
JP3719847B2 true JP3719847B2 (en) 2005-11-24

Family

ID=15055206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13132098A Expired - Fee Related JP3719847B2 (en) 1998-04-24 1998-04-24 Sliding material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3719847B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7498089B2 (en) 2004-09-17 2009-03-03 Sumitomo Electric Hardmetal Corp. Coated cutting tool having coating film on base

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005099945A1 (en) 2004-04-13 2005-10-27 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7498089B2 (en) 2004-09-17 2009-03-03 Sumitomo Electric Hardmetal Corp. Coated cutting tool having coating film on base

Also Published As

Publication number Publication date
JPH11302830A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
Hirvonen et al. Present progress in the development of low friction coatings
EP1290239B1 (en) Bearing with amorphous boron carbide coating
Kharanzhevskiy et al. Tribological performance of boron-based superhard coatings sliding against different materials
GB2458518A (en) An aerospace bearing
CN1300352A (en) Coated rolling element bearing
JP2002307129A (en) Coating tool for warm and hot working having excellent lubricant adhesion and wear resistance
JP2009006439A (en) Cutting tool
Oohira Characteristics and Applications of DLC films
JP3719847B2 (en) Sliding material and manufacturing method thereof
JP3666640B2 (en) Manufacturing method of solid lubricant film for coating tool
US6602829B1 (en) Method for applying a lubricating layer on an object and object with an adhesive lubricating layer
Bendo et al. Surface Mo-Enrichment and plasma carburizing on sintered iron: microstructure and tribological properties
JP4487530B2 (en) Roller bearing cage and manufacturing method thereof
JP2000046083A (en) Self-lubricating friction material and manufacture thereof
Ajayi et al. Tribological behavior of oil-lubricated TiN-coated steel
Korhonen et al. Surface engineering with light alloys—hard coatings, thin films, and plasma nitriding
EP1052306A1 (en) s METAL-BASED GRADIENT COMPOSITE MATERIAL HAVING GOOD LUBRICATION AND WEAR RESISTANCE PROPERTY, THE PRODUCTION AND THE USE OF THE SAME
Macedo et al. Study of Surface Modification of Niobium Caused by Nitriding and Cathodic Cage Deposition
JP2006037152A (en) Method for manufacturing member coated with hard film, and film formed by the method
WO2018207803A1 (en) Hard carbon film, manufacturing method for same, and sliding member
Hui et al. Friction–Wear performances of cathodic arc ion plated CrN coating at elevated temperatures
Çiçek et al. Effect of thermal oxidation on structural and tribological properties of MoS2 films
JP2001227550A (en) Rolling member
JP6915549B2 (en) Sliding member and its manufacturing method
JP2797717B2 (en) Wear-resistant Ti or Ti-based alloy member with excellent lubricity

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050527

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees