JP2004360707A - Retainer - Google Patents
Retainer Download PDFInfo
- Publication number
- JP2004360707A JP2004360707A JP2003115607A JP2003115607A JP2004360707A JP 2004360707 A JP2004360707 A JP 2004360707A JP 2003115607 A JP2003115607 A JP 2003115607A JP 2003115607 A JP2003115607 A JP 2003115607A JP 2004360707 A JP2004360707 A JP 2004360707A
- Authority
- JP
- Japan
- Prior art keywords
- cage
- nitride layer
- retainer
- treatment
- phosphate coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/46—Cages for rollers or needles
- F16C33/56—Selection of substances
- F16C33/565—Coatings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/46—Cages for rollers or needles
- F16C33/54—Cages for rollers or needles made from wire, strips, or sheet metal
- F16C33/542—Cages for rollers or needles made from wire, strips, or sheet metal made from sheet metal
- F16C33/543—Cages for rollers or needles made from wire, strips, or sheet metal made from sheet metal from a single part
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/22—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
- F16C19/34—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
- F16C19/38—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C23/00—Bearings for exclusively rotary movement adjustable for aligning or positioning
- F16C23/06—Ball or roller bearings
- F16C23/08—Ball or roller bearings self-adjusting
- F16C23/082—Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
- F16C23/086—Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Rolling Contact Bearings (AREA)
- Chemical Treatment Of Metals (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、転がり軸受用の保持器に関する。
【0002】
【従来の技術】
従来より、高負荷がかかる転がり軸受用の保持器としては、強度に優れた高力黄銅製のもみ抜き保持器が使用されている。この保持器は、自己潤滑性を有するため摺動性および耐摩耗性に優れるが、材料コストが高いとともに、加工費も高く、歩留まりも低いため、特殊な用途にのみ使用されている。
【0003】
これに対して、SPCCに代表される冷間圧延鋼板やSPHDに代表される熱間圧延鋼板を、プレスにより所定形状に加工して形成されるプレス保持器は、高力黄銅製のもみ抜き保持器と比較して、コストの点で有利であるが、摺動性および耐摩耗性の点では劣っている。そのため、窒化処理を施して保持器の表面に硬質な窒化物層を形成することにより、プレス保持器の摺動性および耐摩耗性を向上させることが行われている(例えば、特許文献1参照)。
【0004】
一般に、SPCCやSPHD等の低炭素鋼(炭素含有率0.25重量%以下の鉄鋼材料)からなる鉄鋼部材(素材)に窒化処理を施すと、鉄鋼部材の表面で窒素と鉄が反応し、窒素原子が鉄鋼部材の中に拡散し、表面に窒素化合物からなる層(窒化物層)が形成される。この窒化物層は、部材の表面側に向かうにつれて窒素濃度が高い相になっている。すなわち、窒化物層の相は、最も内側の母材との境界付近から最表面に向かって、γ’相(Fe4 N)、ε相(Fe2 〜 3 N)、ζ相(Fe2 N)の順に変化する。
【0005】
特許文献1にも記載されているように、従来のプレス保持器で行われている窒化処理(タフトライド法およびガス軟窒化法)では、550〜600℃の高温で窒化処理が行われるため、表面のε相およびζ相は多孔質構造になり易い。ガス軟窒化法で得られた窒化物層の表層部の硬さの分布をナノインデンテーション法によって数μmの間隔で精密に測定すると、10μm程度の深さではHv600以上となっているが、最表部ではHv500未満となる場合もある。
【0006】
また、前記従来の方法では、保持器の使用時に摩耗によって窒化物層の厚さが減少する分を考慮して、窒化処理の際に処理時間を長くしたり、処理雰囲気の窒素ポテンシャルを高くしたりすることで、窒化物層の厚さを厚く形成している。これに伴って、窒化物層の窒素濃度が高くなり、窒化物層の大部分がζ相となっていることもある。このζ相は靱性に乏しく、転動体との滑り摩擦によって容易に剪断破壊され易く、保持器面から脱落し易い。その結果、摺動性および耐摩耗性の向上効果が得られ難い。
【0007】
一方、特許文献2には、窒化処理の前に保持器の表面の酸化物を金属フッ化膜に置き換えるフッ化処理を行うことにより、平均粒子径が1μm以下の窒化物からなる均一で緻密な窒化物層を、保持器の表面に形成することが記載されている。しかしながら、保持器の耐摩耗性は窒化層の種類や硬さに大きく依存するため、前記公報に記載の保持器のように、最表面の窒化物粒子径を細かくするだけでは、摺動性および耐摩耗性が不十分な場合がある。
【0008】
【特許文献1】
特開平6−49623号公報
【特許文献2】
特開平10−2336号公報
【0009】
【発明が解決しようとする課題】
上述のように、炭素含有率0.25重量%以下の鉄鋼材料を用いて所定形状に加工した後に窒化処理を行うことで、表面に窒化物層が形成されている保持器には、摺動性および耐摩耗性の点で改善の余地がある。特に、転動体と保持器との接触部の滑り速度が15m/秒を超えるような高速回転下で使用した場合に長時間安定した性能が得られる保持器が求められているが、上記従来技術ではこの要求を達成できない。
【0010】
本発明は、従来技術の未解決な課題に着目してなされたものであり、炭素含有率0.25重量%以下の鉄鋼材料を用いて形成された保持器であって、転動体と保持器との接触部の滑り速度が15m/秒を超えるような高速回転下で使用した場合でも長時間安定した性能が得られる保持器を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明は、転がり軸受用の保持器であって、炭素含有率0.25重量%以下の鉄鋼材料(低炭素鋼)からなる素材を所定形状に加工した後、窒化処理を行うことにより表面に硬さHv650以上の窒化物層を形成し、次いで、リン酸塩被膜処理または浸硫処理を行うことにより、1.0μm以上10.0μm以下の厚さで潤滑性被膜を形成して得られたことを特徴とする保持器を提供する。
【0012】
低炭素鋼からなる素材を窒化処理した後の表面は、窒化処理を施さない場合の表面よりも多孔質な状態となっている。この多孔質表面に潤滑性被膜を形成することで、多孔質表面が潤滑剤を保持するため、安定した摺動性が長期間確保される。
潤滑性被膜の厚さが1.0μm未満であると十分な性能が得られない。潤滑性被膜の厚さが10.0μmを超えると、得られる性能は飽和し、潤滑性被膜の形成にかかるコストが過大となる。
【0013】
硬さHv650以上の窒化物層を低炭素鋼に形成する方法としては、▲1▼窒素ガスとアンモニアガスとの混合ガス中に、450〜540℃で1〜4時間保持する方法(低温でのガス軟窒化法)、▲2▼NF3 (三フッ化窒素)等のフッ素ガスを用いて200〜400℃程度でフッ化処理を行った後、NH3 ガス中に、400〜540℃で1〜48時間保持する方法(エアウオーター(株)の商品名「Nv超窒化」)、▲3▼特殊な塩浴中に浸漬して、タフトライド処理より低温の450〜550℃で1〜4時間保持する方法(日本パーカライジング(株)の登録商標「パルソナイト処理」)、▲4▼窒素と水素の混合ガス雰囲気で、保持器を陰極、処理炉の内壁を陽極として、550℃程度の温度で10時間程度グロー放電する方法(イオン窒化)等が挙げられる。
【0014】
ここで、本発明の保持器の耐摩耗性を示すデータとして、試験片を用いたサバン式摩耗試験の結果を示す。
試験片として、窒化物層と潤滑性被膜をそれぞれ単独でSPCC鋼板に形成した各試験片と、SPCC鋼板に対して窒化物層を形成した後に潤滑性被膜を形成した試験片を用意した。窒化物層の形成は「Nv超窒化」により行い、表面の硬さをHv700以上とした。潤滑性被膜の形成は、リン酸マンガン被膜処理により行い、潤滑性被膜(リン酸マンガン被膜)の厚さを3μmとした。
【0015】
また、試験に用いる回転体として、SUJ2製の円筒に焼入れ焼戻しを行ったものを用意した。この焼入れとしては、840℃に加熱した後に60℃の油に入れる油焼入れを行い、焼戻しは170℃で2時間の条件で行った。
図1に示すように、この試験片5を回転体6の上に載せて荷重をかけ、回転体6の下部を潤滑油(「VG68」)7に入れた状態で、回転体6を滑り速度20m/秒で1分間回転させる試験を行った。上記3種類の試験片を多数用意し、試験片にかける面圧を変えて多数の試験を行った。各試験片について試験後に摩耗体積を測定した。この試験の結果を図2に、縦軸を摩耗体積、横軸を面圧としたグラフで示す。
【0016】
このグラフから分かるように、窒化物層のみの形成では、面圧が200MPaで摩耗体積が急激に増加する(焼き付きが生じる)が、潤滑性被膜(リン酸マンガン被膜)のみの形成では、摩耗体積が急激に増加する面圧(焼き付き面圧)は270MPa以上であり、「窒化物層+潤滑性被膜」の形成では焼き付き面圧は300MPa以上であった。また、同じ面圧での摩耗体積は「窒化物層+潤滑性被膜」の形成で最も少なかった。
【0017】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
先ず、SPPC製の冷間圧延鋼板を用いて、自動調心ころ軸受(JIS呼び番号22211)用の保持器をプレス成形法により作製した。図3はこの自動調心ころ軸受の断面図であり、図4はこの保持器の断面図である。
【0018】
図3に示すように、この自動調心ころ軸受は、内輪1、外輪2、ころ3、保持器4で構成されている。内輪1には2列の内輪軌道11が形成され、両軌道11の間に案内輪12が設けてある。外輪2の軌道21は球面に形成されている。図4に示すように、この保持器4はかご形であって、周面にポケット41が形成されている。
【0019】
次に、上記▲1▼〜▲3▼または下記の▲5▼▲6▼の処理を各条件で行うことにより、各保持器の表面に窒化物層を各種硬さで形成した。
▲5▼シアン化ナトリウムとシアン酸ナトリウムとの混合塩浴中に保持器を浸漬して、550〜600℃で1〜4時間加熱処理する方法(タフトライド法)。▲6▼RXガスとアンモニアガスとの混合ガス中に、550〜570℃で1〜4時間保持する方法(従来のガス軟窒化法)。
【0020】
No. 1〜6では、▲1▼の方法(キャリアガスとして窒素を用いた、低温でのガス軟窒化法)を温度および処理時間を変化させることにより行った後、油冷した。これらのうちNo. 1〜5については、窒化物層の形成後にリン酸マンガン被膜処理(リン酸塩被膜処理)を行うことにより、窒化物層の表面にリン酸マンガン被膜を形成した。
【0021】
リン酸マンガン被膜の形成方法は以下の通りである。先ず、60〜80℃のアルカリ洗浄液(pH12以上)を用いた前洗浄を行って油分を取り除いた。次に、95℃に保持されたMn濃度3.0〜10g/l(ICPによる測定値)のリン酸マンガン水溶液(pH3.2)に浸漬した。次に、60℃の水で洗浄後、エアーを吹きつけて乾燥した。なお、Mn濃度と浸漬時間を変える(浸漬時間は最大で10分間)ことにより、異なる厚さのリン酸マンガン被膜が形成されるようにした。
【0022】
No. 7〜13では、▲2▼の方法(Nv超窒化)のフッ化処理を行った後、NH3 ガス雰囲気に保持する処理を、温度および処理時間を変化させることにより行った。次いで、空冷した後、350〜450℃に再加熱し、さらに急冷処理を行った。これらのうちNo. 7〜11については、窒化物層の形成後に、窒化物層の表面にリン酸マンガン被膜を形成した。リン酸マンガン被膜の形成はNo. 1〜5の場合と同様に行った。
【0023】
No. 12については、窒化物層の形成後にリン酸亜鉛被膜処理(リン酸塩被膜処理)を行うことにより、窒化物層の表面にリン酸亜鉛被膜を形成した。
リン酸亜鉛被膜の形成方法は以下の通りである。先ず、60〜80℃のアルカリ洗浄液(pH12以上)を用いた前洗浄を行って油分を取り除いた。次に、95℃に保持されたZn濃度2.0〜10g/l(ICPによる測定値)のリン酸亜鉛水溶液(pH3.8)に10分間浸漬した。次に、60℃の水で洗浄後、エアーを吹きつけて乾燥した。
【0024】
No. 13については、窒化物層の形成後に浸硫処理をすることにより、窒化物層の表面に硫化鉄(Fe2 S)被膜を形成した。浸硫処理は、NaSCNとKSCNとの混合塩(硫黄を含むアルカリ塩)を190℃に加熱して溶融し、この溶融塩中に10分間浸漬することにより行った。
No. 14〜17では、▲3▼の方法(パルソナイト処理)を、温度および処理時間を変化させることにより行った後、水冷した。これらのうちNo. 14〜15については、窒化物層の形成後に、窒化物層の表面にリン酸マンガン被膜を形成した。リン酸マンガン被膜の形成はNo. 1〜5の場合と同様に行った。
【0025】
No. 16については、窒化物層の形成後にリン酸亜鉛被膜処理を行うことにより、窒化物層の表面にリン酸亜鉛被膜を形成した。リン酸亜鉛被膜の形成はNo. 12と同じ方法で行った。
No. 17については、窒化物層の形成後に浸硫処理をすることにより、窒化物層の表面に硫化鉄(Fe2 S)被膜を形成した。浸硫処理はNo. 13と同じ方法で行った。
【0026】
No. 18〜19では、▲5▼の方法(タフトライド法)を、温度および処理時間を変化させることにより行った後、油冷した。次に、窒化物層の表面にリン酸マンガン被膜を形成した。リン酸マンガン被膜の形成はNo. 1〜5の場合と同様に行った。
No. 20〜21では、▲6▼の方法(従来のガス軟窒化法)を、温度および処理時間を変化させることにより行った後、油冷した。次に、窒化物層の表面にリン酸マンガン被膜を形成した。リン酸マンガン被膜の形成はNo. 1〜5の場合と同様に行った。
【0027】
No. 22では、窒化物層の形成を行わずに、SPPCからなる保持器4の表面に、No. 1〜5と同じ方法でリン酸マンガン被膜を形成した。
次に、得られた各保持器を用いて自動調心ころ軸受を組み立て、油浴から潤滑剤「VG68」を供給し、試験荷重:15415N、回転速度9520min−1で24時間、軸受を回転させる試験を行った。この回転条件は、ころと保持器ポケットとの滑り速度が15m/秒を超える場合に相当する。
【0028】
そして、試験前後に保持器の重量を測定し、重量減少量を摩耗量として算出した。また、各摩耗量をNo. 22を「1」とした相対値に換算した。
また、得られた各保持器について、保持器の柱を切断し、切断面を研磨して、研磨面の押し込み硬さを、最表面から深さ2〜4μmとなる位置で、(株)エリオニクス製の超微小押し込み硬さ試験機「ENT−1100a」を用いて、押し込み荷重5gf(49×10−3N)で測定した。また、予め、マイクロビッカース硬さ標準試験片(Hv400,Hv600)の押し込み硬さを前記試験機で測定し、検量線を作成しておいた。この検量線を用いて、前記試験機で測定した押し込み硬さをビッカース硬さに変換した。
これらの測定結果を下記の表1に示す。
【0029】
【表1】
【0030】
また、得られた結果から、保持器表面の窒化物層の硬さと保持器の摩耗量との関係を示すグラフを作成した。このグラフを図5に示す。
この結果から分かるように、本発明の要件(窒化物層の硬さHv650以上+厚さ1.0μm以上10μm以下の潤滑性被膜)を満たすNo. 1〜3とNo. 7〜17(実施例、図5のプロット「◆」)は、本発明の要件を満たさないNo. 4〜6とNo. 18〜22(比較例、図5のプロット「■」)と比較して、保持器の摩耗量が著しく少なくなっている。すなわち、No. 1〜3とNo. 7〜17の保持器によれば、ころと保持器ポケットとの滑り速度が15m/秒を超える高速回転下で使用される場合であっても、長時間安定した性能が得られる。
【0031】
なお、No. 7〜11では、同じ窒化処理とリン酸マンガン被膜の形成を行っており、リン酸マンガン被膜の厚さを変化させている。これらの結果の比較から、リン酸マンガン被膜の厚さを5.0μmを超えて形成しても、耐摩耗性は5.0μmの場合と同等程度である。そのため、リン酸マンガン被膜の形成にかかる処理コストを抑えるという点から、リン酸マンガン被膜の厚さは1.0μm以上5.0μm以下の範囲とすることが好ましい。
【0032】
また、窒化物層の硬さが硬いほど摩耗量を少なくする効果が大きいが、転動体や軌道輪より保持器表面の硬さが硬いと、これに起因して転動体や軌道輪に摩耗を生じさせる可能性もあるため、この点から保持器の窒化物層の硬さの上限値はHv900とすることが好ましい。
なお、上記実施形態では、自動調心ころ軸受用の保持器を用いて試験を行っているが、本発明は、軸受の種類に関わらず、玉軸受、円筒ころ軸受、円錐ころ軸受等全ての転がり軸受用の保持器に適用できる。
【0033】
【発明の効果】
以上説明したように、本発明の保持器によれば、炭素含有率0.25重量%以下の鉄鋼材料を用いて形成されていながら、転動体と保持器との接触部の滑り速度が15m/秒を超えるような高速回転下で使用される場合でも、長時間安定した性能が得られる。
【図面の簡単な説明】
【図1】本発明の保持器の耐摩耗性を示すデータを得るために行ったサバン式摩耗試験を説明する図である。
【図2】サバン式摩耗試験の結果を示す、縦軸を摩耗体積、横軸を面圧としたグラフである。
【図3】実施形態で作製した自動調心ころ軸受を示す断面図である。
【図4】実施形態で作製した保持器を示す断面図である。
【図5】実施形態の試験で得られた結果による、保持器表面の窒化物層の硬さと保持器の摩耗量との関係を示すグラフである。
【符号の説明】
1 内輪
11 内輪軌道
12 案内輪
2 外輪
21 外輪軌道
3 ころ(転動体)
4 保持器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cage for a rolling bearing.
[0002]
[Prior art]
BACKGROUND ART Conventionally, as a cage for a rolling bearing to which a high load is applied, a machined cage made of high-strength brass having excellent strength has been used. This cage has excellent lubricity and abrasion resistance due to its self-lubricating properties, but is used only for special applications because of its high material cost, high processing cost and low yield.
[0003]
On the other hand, a press cage formed by processing a cold-rolled steel plate represented by SPCC or a hot-rolled steel plate represented by SPHD into a predetermined shape by pressing is formed by holding a high-strength brass. Although it is advantageous in terms of cost as compared with a container, it is inferior in terms of slidability and wear resistance. Therefore, the slidability and wear resistance of the press cage are improved by performing a nitriding treatment to form a hard nitride layer on the surface of the cage (for example, see Patent Document 1). ).
[0004]
Generally, when a steel member (material) made of low carbon steel (steel material having a carbon content of 0.25% by weight or less) such as SPCC or SPHD is subjected to nitriding treatment, nitrogen and iron react on the surface of the steel member, Nitrogen atoms diffuse into the steel member, and a layer (nitride layer) made of a nitrogen compound is formed on the surface. The nitride layer has a phase in which the nitrogen concentration is higher toward the surface side of the member. That is, the phases of the nitride layer are, from the vicinity of the boundary with the innermost base material to the outermost surface, a γ ′ phase (Fe 4 N), an ε phase (Fe 2 to 3 N), and a ζ phase (Fe 2 N). ).
[0005]
As described in
[0006]
In addition, in the conventional method, in consideration of the thickness of the nitride layer being reduced due to abrasion when the cage is used, the processing time is increased in the nitriding treatment or the nitrogen potential of the processing atmosphere is increased. As a result, the thickness of the nitride layer is increased. Along with this, the nitrogen concentration of the nitride layer may increase, and most of the nitride layer may be in the ζ phase. This ζ phase has poor toughness, is easily sheared and broken by sliding friction with a rolling element, and easily falls off from the cage surface. As a result, it is difficult to obtain the effect of improving the slidability and wear resistance.
[0007]
On the other hand,
[0008]
[Patent Document 1]
JP-A-6-49623 [Patent Document 2]
Japanese Patent Application Laid-Open No. 10-2336
[Problems to be solved by the invention]
As described above, a steel having a carbon content of 0.25% by weight or less is processed into a predetermined shape and then subjected to nitriding treatment, so that the cage having a nitride layer formed on its surface can be slid. There is room for improvement in terms of properties and abrasion resistance. In particular, there is a need for a cage that can provide stable performance for a long time when used under high-speed rotation such that the sliding speed of the contact portion between the rolling element and the cage exceeds 15 m / sec. Cannot meet this requirement.
[0010]
The present invention has been made in view of an unsolved problem of the prior art, and is a cage formed using a steel material having a carbon content of 0.25% by weight or less, comprising a rolling element and a cage. It is an object of the present invention to provide a cage capable of obtaining stable performance for a long period of time even when used under a high-speed rotation in which a sliding speed of a contact portion of the cage exceeds 15 m / sec.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention relates to a cage for a rolling bearing, which is obtained by processing a material made of a steel material (low carbon steel) having a carbon content of 0.25% by weight or less into a predetermined shape, A nitride layer having a hardness of
[0012]
The surface of the material made of low carbon steel after nitriding is more porous than the surface without nitriding. By forming a lubricating film on the porous surface, the porous surface holds the lubricant, so that stable slidability is ensured for a long period of time.
If the thickness of the lubricating coating is less than 1.0 μm, sufficient performance cannot be obtained. When the thickness of the lubricating film exceeds 10.0 μm, the performance obtained is saturated, and the cost for forming the lubricating film becomes excessive.
[0013]
As a method of forming a nitride layer having a hardness of
[0014]
Here, as the data indicating the wear resistance of the cage of the present invention, results of a Savan-type abrasion test using test pieces are shown.
As test pieces, there were prepared each test piece in which a nitride layer and a lubricating coating were formed independently on an SPCC steel sheet, and a test piece in which a nitride layer was formed on a SPCC steel sheet and then a lubricating coating was formed. The formation of the nitride layer was performed by "Nv super-nitriding", and the hardness of the surface was set to Hv700 or more. The formation of the lubricating film was performed by a manganese phosphate film treatment, and the thickness of the lubricating film (manganese phosphate film) was 3 μm.
[0015]
In addition, as a rotating body used for the test, one obtained by quenching and tempering a cylinder made of SUJ2 was prepared. As the quenching, oil quenching was performed after heating to 840 ° C. and then in oil at 60 ° C., and tempering was performed at 170 ° C. for 2 hours.
As shown in FIG. 1, the
[0016]
As can be seen from this graph, when the nitride layer alone is formed, the wear volume sharply increases (seizure occurs) at a surface pressure of 200 MPa, but when only the lubricating film (manganese phosphate film) is formed, the wear volume increases. Was sharply increased to 270 MPa or more, and in the formation of the “nitride layer + lubricating film”, the seizure surface pressure was 300 MPa or more. Further, the wear volume at the same surface pressure was smallest in the formation of the “nitride layer + lubricating film”.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
First, a retainer for a self-aligning roller bearing (JIS No. 22211) was manufactured by a press molding method using a cold-rolled steel plate manufactured by SPPC. FIG. 3 is a sectional view of the self-aligning roller bearing, and FIG. 4 is a sectional view of the cage.
[0018]
As shown in FIG. 3, the self-aligning roller bearing includes an
[0019]
Next, the above-mentioned processes (1) to (3) or the following processes (5) and (6) were performed under various conditions to form nitride layers on the surface of each cage with various hardnesses.
{Circle around (5)} A method of immersing the retainer in a mixed salt bath of sodium cyanide and sodium cyanate and performing a heat treatment at 550 to 600 ° C. for 1 to 4 hours (a tuftride method). {Circle around (6)} A method of maintaining the mixed gas of RX gas and ammonia gas at 550 to 570 ° C. for 1 to 4 hours (conventional gas soft nitriding method).
[0020]
No. In the
[0021]
The method for forming the manganese phosphate coating is as follows. First, pre-cleaning was performed using an alkaline cleaning solution (
[0022]
No. In Nos. 7 to 13, after performing the fluoridation treatment of the method (2) (Nv super-nitriding), the treatment for keeping the NH 3 gas atmosphere was performed by changing the temperature and the treatment time. Next, after air-cooling, it was reheated to 350 to 450 ° C. and further quenched. Among these, No. For 7 to 11, a manganese phosphate coating was formed on the surface of the nitride layer after the formation of the nitride layer. The formation of the manganese phosphate coating is described in Performed in the same manner as in
[0023]
No. For No. 12, a zinc phosphate coating was formed on the surface of the nitride layer by performing a zinc phosphate coating (phosphate coating) after the formation of the nitride layer.
The method for forming the zinc phosphate coating is as follows. First, pre-cleaning was performed using an alkaline cleaning solution (
[0024]
No. As for No. 13, an iron sulfide (Fe 2 S) film was formed on the surface of the nitride layer by performing a sulfurizing treatment after the formation of the nitride layer. The sulfurizing treatment was performed by melting a mixed salt of NaSCN and KSCN (an alkali salt containing sulfur) by heating to 190 ° C. and immersing the mixed salt in the molten salt for 10 minutes.
No. In 14-17, the method (3) (pulsonite treatment) was performed by changing the temperature and the treatment time, and then water-cooled. Among these, No. For Nos. 14 and 15, a manganese phosphate coating was formed on the surface of the nitride layer after the formation of the nitride layer. The formation of the manganese phosphate coating is described in Performed in the same manner as in
[0025]
No. For No. 16, a zinc phosphate coating was formed on the surface of the nitride layer by performing a zinc phosphate coating treatment after the formation of the nitride layer. The formation of the zinc phosphate coating is described in Performed in the same manner as 12.
No. For No. 17, an iron sulfide (Fe 2 S) film was formed on the surface of the nitride layer by performing a sulfurizing treatment after the formation of the nitride layer. The sulfuration treatment is No. Performed in the same manner as 13.
[0026]
No. In Nos. 18 to 19, the method (5) (taftride method) was performed by changing the temperature and the treatment time, and then oil-cooled. Next, a manganese phosphate coating was formed on the surface of the nitride layer. The formation of the manganese phosphate coating is described in Performed in the same manner as in
No. In Nos. 20 to 21, the method (6) (conventional gas nitrocarburizing method) was performed by changing the temperature and the processing time, followed by oil cooling. Next, a manganese phosphate coating was formed on the surface of the nitride layer. The formation of the manganese phosphate coating is described in Performed in the same manner as in
[0027]
No. In No. 22, No. 22 was formed on the surface of the
Next, a self-aligning roller bearing is assembled using each of the obtained cages, a lubricant “VG68” is supplied from an oil bath, and the bearing is rotated at a test load of 15415 N at a rotation speed of 9520 min −1 for 24 hours. The test was performed. This rotation condition corresponds to the case where the sliding speed between the rollers and the cage pocket exceeds 15 m / sec.
[0028]
The weight of the cage was measured before and after the test, and the amount of weight loss was calculated as the amount of wear. In addition, No. 22 was converted to a relative value with “1”.
Further, for each of the obtained cages, the pillars of the cage were cut and the cut surface was polished, and the indentation hardness of the polished surface was adjusted to a depth of 2 to 4 μm from the outermost surface by Elionix Co., Ltd. It was measured with an indentation load of 5 gf (49 × 10 −3 N) using an ultra-fine indentation hardness tester “ENT-1100a” manufactured by Toshiba Corporation. In addition, the indentation hardness of the micro Vickers hardness standard test pieces (Hv400, Hv600) was measured in advance by the tester, and a calibration curve was prepared. Using this calibration curve, the indentation hardness measured by the tester was converted to Vickers hardness.
The results of these measurements are shown in Table 1 below.
[0029]
[Table 1]
[0030]
Also, a graph showing the relationship between the hardness of the nitride layer on the cage surface and the wear amount of the cage was created from the obtained results. This graph is shown in FIG.
As can be seen from these results, No. 1 satisfying the requirements of the present invention (lubricity coating having hardness of
[0031]
In addition, No. In Nos. 7 to 11, the same nitriding treatment and formation of the manganese phosphate coating are performed, and the thickness of the manganese phosphate coating is changed. From the comparison of these results, even if the thickness of the manganese phosphate coating exceeds 5.0 μm, the abrasion resistance is about the same as that of the case of 5.0 μm. Therefore, the thickness of the manganese phosphate coating is preferably in the range of 1.0 μm or more and 5.0 μm or less from the viewpoint of reducing the processing cost required for forming the manganese phosphate coating.
[0032]
Also, the harder the nitride layer, the greater the effect of reducing the amount of wear.However, if the hardness of the cage surface is higher than that of the rolling elements and races, wear on the rolling elements and races will result. Therefore, the upper limit of the hardness of the nitride layer of the cage is preferably set to Hv900.
In the above-described embodiment, the test is performed using a cage for a self-aligning roller bearing, but the present invention is applicable to all types of ball bearings, cylindrical roller bearings, tapered roller bearings, etc. Applicable to cages for rolling bearings.
[0033]
【The invention's effect】
As described above, according to the cage of the present invention, while being formed using a steel material having a carbon content of 0.25% by weight or less, the sliding speed of the contact portion between the rolling element and the cage is 15 m / m. Even when used under a high-speed rotation of more than a second, stable performance can be obtained for a long time.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a Savan-type abrasion test performed to obtain data indicating the abrasion resistance of a cage of the present invention.
FIG. 2 is a graph showing the results of a Savan-type abrasion test, in which the vertical axis represents the wear volume and the horizontal axis represents the surface pressure.
FIG. 3 is a cross-sectional view showing the self-aligning roller bearing manufactured in the embodiment.
FIG. 4 is a cross-sectional view showing a cage manufactured in the embodiment.
FIG. 5 is a graph showing the relationship between the hardness of the nitride layer on the surface of the cage and the wear amount of the cage, based on the results obtained in the test of the embodiment.
[Explanation of symbols]
DESCRIPTION OF
4 cage
Claims (1)
炭素含有率0.25重量%以下の鉄鋼材料からなる素材を所定形状に加工した後、窒化処理を行うことにより表面に硬さHv650以上の窒化物層を形成し、次いで、リン酸塩被膜処理または浸硫処理を行うことにより、1.0μm以上10.0μm以下の厚さで潤滑性被膜を形成して得られたことを特徴とする保持器。A cage for a rolling bearing,
After processing a steel material having a carbon content of 0.25% by weight or less into a predetermined shape, a nitride layer having a hardness of Hv650 or more is formed on the surface by performing a nitriding treatment, and then a phosphate coating treatment is performed. Or a cage obtained by forming a lubricating film with a thickness of 1.0 μm or more and 10.0 μm or less by performing a sulfurizing treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003115607A JP2004360707A (en) | 2003-04-10 | 2003-04-21 | Retainer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003105996 | 2003-04-10 | ||
JP2003115607A JP2004360707A (en) | 2003-04-10 | 2003-04-21 | Retainer |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004360707A true JP2004360707A (en) | 2004-12-24 |
Family
ID=34066904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003115607A Pending JP2004360707A (en) | 2003-04-10 | 2003-04-21 | Retainer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004360707A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007119898A (en) * | 2005-09-27 | 2007-05-17 | Toyota Motor Corp | Sliding member |
JP2007177842A (en) * | 2005-12-27 | 2007-07-12 | Ntn Corp | Rolling bearing |
JP2007270886A (en) * | 2006-03-30 | 2007-10-18 | Ntn Corp | Retainer for taper roller bearing |
JP2009162103A (en) * | 2008-01-07 | 2009-07-23 | Hitachi Appliances Inc | Scroll compressor |
JP2013053342A (en) * | 2011-09-05 | 2013-03-21 | Dowa Thermotech Kk | Surface treatment method of steel member and treated article of steel member |
CN103115070A (en) * | 2013-02-22 | 2013-05-22 | 山东凯美瑞轴承科技有限公司 | Self-aligning roller bearing retainer for brass entity, and forming method of retainer |
JP2014025529A (en) * | 2012-07-26 | 2014-02-06 | Ntn Corp | Self-aligning roller bearing |
CN109252162A (en) * | 2018-11-09 | 2019-01-22 | 中国石油大学(华东) | A kind of high-entropy alloy with properties of antifriction and wear resistance |
CN109487263A (en) * | 2018-11-09 | 2019-03-19 | 中国石油大学(华东) | A kind of multiple elements design sulfide solid lubricant film and its preparation method and application |
WO2019225203A1 (en) * | 2018-05-23 | 2019-11-28 | 日産自動車株式会社 | Sliding spline shaft device |
-
2003
- 2003-04-21 JP JP2003115607A patent/JP2004360707A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007119898A (en) * | 2005-09-27 | 2007-05-17 | Toyota Motor Corp | Sliding member |
JP2007177842A (en) * | 2005-12-27 | 2007-07-12 | Ntn Corp | Rolling bearing |
JP4536650B2 (en) * | 2005-12-27 | 2010-09-01 | Ntn株式会社 | Rolling bearing |
JP2007270886A (en) * | 2006-03-30 | 2007-10-18 | Ntn Corp | Retainer for taper roller bearing |
JP2009162103A (en) * | 2008-01-07 | 2009-07-23 | Hitachi Appliances Inc | Scroll compressor |
JP4510098B2 (en) * | 2008-01-07 | 2010-07-21 | 日立アプライアンス株式会社 | Scroll compressor |
JP2013053342A (en) * | 2011-09-05 | 2013-03-21 | Dowa Thermotech Kk | Surface treatment method of steel member and treated article of steel member |
JP2014025529A (en) * | 2012-07-26 | 2014-02-06 | Ntn Corp | Self-aligning roller bearing |
CN103115070A (en) * | 2013-02-22 | 2013-05-22 | 山东凯美瑞轴承科技有限公司 | Self-aligning roller bearing retainer for brass entity, and forming method of retainer |
WO2019225203A1 (en) * | 2018-05-23 | 2019-11-28 | 日産自動車株式会社 | Sliding spline shaft device |
US11927225B2 (en) | 2018-05-23 | 2024-03-12 | Nissan Motor Co., Ltd. | Sliding spline shaft device |
CN109252162A (en) * | 2018-11-09 | 2019-01-22 | 中国石油大学(华东) | A kind of high-entropy alloy with properties of antifriction and wear resistance |
CN109487263A (en) * | 2018-11-09 | 2019-03-19 | 中国石油大学(华东) | A kind of multiple elements design sulfide solid lubricant film and its preparation method and application |
CN109252162B (en) * | 2018-11-09 | 2020-07-14 | 中国石油大学(华东) | High-entropy alloy with antifriction and wear-resistant properties |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009052745A (en) | Manufacturing method of press cage for rolling bearing | |
WO2015128973A1 (en) | Anti-friction bearing | |
JP6040700B2 (en) | Rolling bearing | |
JP2004360707A (en) | Retainer | |
EP2888379B1 (en) | Method for heat treating a steel component | |
JP4487340B2 (en) | Method for manufacturing rolling bearing cage | |
JP2003193200A (en) | Antifriction bearing | |
JP2006250316A (en) | Rolling device | |
JP2002364648A (en) | Rolling bearing | |
US11401973B2 (en) | Thrust roller bearing | |
JPH10131970A (en) | Rolling bearing and its manufacture | |
JPH06341442A (en) | Anticorrosion rolling bearing | |
JP2008151236A (en) | Rolling bearing | |
JP2009204076A (en) | Rolling bearing | |
JP4375038B2 (en) | Thrust needle roller bearing | |
JP2007314811A (en) | Rolling bearing | |
JP2008232212A (en) | Rolling device | |
JP6015251B2 (en) | Rolling bearing | |
JP2005106204A (en) | Retainer for rolling bearing | |
JP2009191294A (en) | Method for manufacturing sliding member, and sliding member | |
JP2010209965A (en) | Cage for rolling bearing | |
JP2006045591A (en) | Tapered roller bearing | |
JP2007170426A (en) | Rolling unit | |
JP2003148488A (en) | Rolling device, and method for manufacturing the same | |
JP2008032108A (en) | Cage for rolling bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080812 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081209 |