JP2006281264A - Method for manufacturing gear - Google Patents

Method for manufacturing gear Download PDF

Info

Publication number
JP2006281264A
JP2006281264A JP2005103985A JP2005103985A JP2006281264A JP 2006281264 A JP2006281264 A JP 2006281264A JP 2005103985 A JP2005103985 A JP 2005103985A JP 2005103985 A JP2005103985 A JP 2005103985A JP 2006281264 A JP2006281264 A JP 2006281264A
Authority
JP
Japan
Prior art keywords
gear
heating device
heating
rolling
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005103985A
Other languages
Japanese (ja)
Inventor
Toshinaka Shinbutsu
利仲 新仏
Mitsuie Takemasu
光家 竹増
Shuichi Amano
秀一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Co Ltd
Original Assignee
Nissei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Co Ltd filed Critical Nissei Co Ltd
Priority to JP2005103985A priority Critical patent/JP2006281264A/en
Publication of JP2006281264A publication Critical patent/JP2006281264A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for manufacturing a gear, which technique can keep an appropriate temperature, and can make the gear compact by reducing its porosity. <P>SOLUTION: A sintered gear material 1 processed by sintering is heated by heating devices 2, 3, and is rolled by the warm-rolling process. The heating devices 2, 3 are coaxially arranged with the sintered gear material 1 rotatably mounted so as to surround and cover tooth flank portions. The sintered gear material 1 is heated by moving the heating devices 2, 3 in the direction parallel with the axis of the sintered gear material 1. Dies 6a, 6b of a rolling apparatus advance and are pushed into the sintered gear material 1 to roll the gear in the state that the sintered gear material 1 is heated and the heated temperature is kept. By this rolling process, the sintered gear material 1 becomes a compact gear product having a small porosity. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、焼結素材歯車を転造して製品歯車を製造する技術に関する。更に詳しくは、焼結素材歯車を加熱して転造し歯面を緻密化させた製品歯車を製造するための製造技術に関する。   The present invention relates to a technique for producing a product gear by rolling a sintered material gear. More specifically, the present invention relates to a manufacturing technique for manufacturing a product gear in which a sintered material gear is heated and rolled to densify a tooth surface.

素材の段階の焼結素材歯車を転造加工する際、歯面を硬化させ密度を向上させることは、従来から成形密度を向上させることで、室温で成形する冷間成形技術、又、高温で成形する熱間成形技術が知られている。最近は、その中間の温度の成形として温間成形技術が知られている。歯車の転造成形は、歯部に噛み合う転造ダイスにより転造加工を行うことで行われる。   When rolling a sintered material gear at the raw material stage, the tooth surface is hardened and the density is improved by improving the forming density from the conventional cold forming technology that forms at room temperature or at high temperature. A hot forming technique for forming is known. Recently, a warm molding technique is known as molding at an intermediate temperature. Rolling molding of a gear is performed by performing rolling processing with a rolling die that meshes with a tooth portion.

この転造加工も種々な方法が知られている。その一例として2つのダイスを対向させて素材歯車に押し込み転造するプランジャカット加工がある。この方法は冷間成形や熱間成形あるいは温間成形に適用されていて汎用性があり能率的な一般的な成形方法である。一般に転造される素材歯車を転造し緻密化することは、特に焼結歯車の場合は、空孔率を小さくして歯面の強度を高めることになる。この空孔率を小さくすることは、転造方法によっても左右される。   Various methods are also known for this rolling process. As an example, there is a plunger cutting process in which two dies are opposed to each other and pushed into a material gear for rolling. This method is applied to cold forming, hot forming, or warm forming, and is a general forming method that is versatile and efficient. In general, rolling and densifying a material gear to be rolled, particularly in the case of a sintered gear, reduces the porosity and increases the strength of the tooth surface. Reducing the porosity also depends on the rolling method.

従来例えば焼結歯車を緻密化する技術においては、ダイスの回転速度と焼結歯車の軸方向の送りを相関的に管理して緻密化の転造加工を行う等(例えば、特許文献1参照)の技術が知られている。しかし、従来の製造実績から、焼結歯車の場合、温間成形が冷間成形等より空孔率を小さくできることが実証されている。焼結歯車において、空孔率を小さくすることは、緻密度を高めることになり、面圧疲労強度や曲げ疲労強度を改善することになる。   Conventionally, for example, in a technology for densifying a sintered gear, the rolling speed of the densification is controlled by correlating the rotational speed of the die and the axial feed of the sintered gear (for example, see Patent Document 1). The technology is known. However, conventional manufacturing results have demonstrated that in the case of sintered gears, warm forming can lower the porosity than cold forming or the like. In the sintered gear, reducing the porosity increases the density and improves the surface fatigue strength and bending fatigue strength.

このようなことから、最近このための製造技術が種々提案されている。その一例として、歯面に高周波加熱をして焼結歯車を緻密化する技術(例えば、特許文献2、3参照)が知られている。しかし、さらに能率よく短時間で緻密な転造ができ、低コストで精度のよい焼結歯車の製造技術が望まれている。
特開2000−129312号公報 特開2003−13111号公報 特許第3278262号公報
For these reasons, various manufacturing techniques for this purpose have recently been proposed. As an example thereof, a technique (for example, see Patent Documents 2 and 3) for densifying a sintered gear by high-frequency heating of the tooth surface is known. However, there is a demand for a technology for manufacturing a sintered gear that is more efficient and can be densely rolled in a short time, and that is low-cost and accurate.
Japanese Patent Laid-Open No. 2000-129312 JP 2003-13111 A Japanese Patent No. 3278262

従来からも前述したように、緻密化向上のために、歯車転造における諸問題を解決してそれなりの対策は施されている。しかしながら、最近は様々な分野で高精度化とともに高能率化が要求されており、歯車の転造技術においても例外ではない。特に、熱間成形あるいは温間成形について従来の転造技術を分析すると、その製造工程は必ずしも能率的でなく、必ずしも温度を一定にして均一に一様に加熱し緻密にする工程になっているとは言い難い。   As described above, in order to improve densification, various measures in gear rolling are solved and appropriate measures are taken. Recently, however, high precision and high efficiency are required in various fields, and gear rolling technology is no exception. In particular, when analyzing the conventional rolling technology for hot forming or warm forming, the manufacturing process is not necessarily efficient, and the process is not necessarily efficient, and is a process of heating uniformly and uniformly to make the temperature constant. It's hard to say.

例えば、特許文献2の技術は、温間成形技術として開示されているものであるが、素材歯車に対する加熱方法は、高周波加熱装置により誘導電流を歯車の表層部に流し加熱するものである。加熱そのものは公知の手段を利用しているものであるが、高周波加熱装置のコイルを水平状態に設置される歯車の加熱位置に対し、待機位置から上昇、下降させるようにしている。   For example, the technique of Patent Document 2 is disclosed as a warm forming technique, but the heating method for the material gear is to heat an induction current through the surface layer of the gear by a high-frequency heating device. The heating itself uses known means, but the coil of the high-frequency heating device is raised and lowered from the standby position with respect to the heating position of the gear installed in a horizontal state.

即ち、コイルを歯車の特定位置に部分的に近づけたり、離したりする構成であり、歯車を回転させることにより歯面全体を加熱させるものである。転造加工の際は、このコイルを待機位置に下降させ歯車から離している。この方法は、歯車の温度を均等に保持する構成とは言い難い。   That is, the coil is partially moved close to or away from a specific position of the gear, and the entire tooth surface is heated by rotating the gear. During the rolling process, the coil is lowered to the standby position and separated from the gear. This method is hard to say that the temperature of the gear is kept uniform.

又、特許文献3の技術は、歯車の加熱装置は前述同様に高周波加熱装置を利用したものであるが、誘導コイルに加え補助誘導コイルを設けた構成のものである。製造技術は転造される対象の歯車を誘導コイルで加熱した後、歯車をチャックから外して取り付け直し補助コイルで加熱し転造する構成である。この方法によると、加熱温度は1000℃以上で行っており、歯車を移動させている。この製造技術も能率的とは言い難く、温間成形に適用した場合には制約を受ける方法である。   The technique of Patent Document 3 uses a high-frequency heating device as described above for the gear heating device, but has a configuration in which an auxiliary induction coil is provided in addition to the induction coil. The manufacturing technology is a configuration in which a gear to be rolled is heated by an induction coil, then the gear is detached from the chuck, reattached, and heated by an auxiliary coil for rolling. According to this method, the heating temperature is 1000 ° C. or more, and the gear is moved. This manufacturing technique is also not efficient, and is a method subject to restrictions when applied to warm forming.

一般に焼結歯車は焼結後は本来ポラスになっていて空孔率が大きい。このためこれを転造により押圧して緻密化し、空孔率を小さくして歯車の強化を図っている。これを安定的に転造し品質の高い製品歯車にするためには、温度制御、言い換えると適正な温度管理が要求される。歯車の緻密化向上の成否は、この温度管理に左右される。温度を一定に保持して短時間に転造が可能で、空孔率を小さくして緻密に転造ができる低コストの製造技術が望まれている。   Generally, sintered gears are inherently porous after sintering and have a high porosity. For this reason, this is pressed and densified by rolling, and the porosity is reduced to strengthen the gear. In order to stably roll this into a high quality product gear, temperature control, in other words, proper temperature control is required. The success or failure of improving the densification of the gear depends on this temperature control. There is a demand for a low-cost manufacturing technique that can be rolled in a short time while keeping the temperature constant and that can be rolled densely with a reduced porosity.

本発明は、これら従来の問題点を解決し、特に温間成形による製造方法として開発し次の目的を達成した。
本発明の目的は、焼結素材歯車を適正な温度を保持して転造するようにし、空孔率を小さくして緻密化を図った歯車の製造方法の提供にある。本発明の他の目的は、構成を簡素にして低コストを達成した歯車の製造方法の提供にある。
The present invention has solved these conventional problems and has been developed as a manufacturing method by warm forming, and has achieved the following object.
An object of the present invention is to provide a gear manufacturing method in which a sintered material gear is rolled while maintaining an appropriate temperature, the porosity is reduced, and the gear is densified. Another object of the present invention is to provide a gear manufacturing method that achieves low cost by simplifying the structure.

本発明は、前記目的を達成するために次の手段をとる。   The present invention takes the following means in order to achieve the object.

本発明1の歯車の製造方法は、焼結処理がなされた焼結素材歯車を加熱装置により加熱して転造装置により転造し製品歯車を製造する方法において、前記加熱装置は回転自在に取り付けられた前記焼結素材歯車に同軸的に囲繞し歯面部を覆って配置させ、この加熱装置を前記焼結素材歯車の加熱位置に前記焼結素材歯車の軸線方向と平行に移動させて加熱する工程と、前記加熱装置が前記加熱位置に位置し前記焼結素材歯車が加熱状態にあるとき前記転造装置が前記焼結素材歯車に前進し押し込み転造する工程とからなっている。   The gear manufacturing method according to the first aspect of the present invention is a method of manufacturing a product gear by heating a sintered material gear that has been subjected to sintering treatment with a heating device and rolling it with a rolling device, wherein the heating device is rotatably attached. The sintered material gear is coaxially surrounded and disposed so as to cover the tooth surface, and this heating device is moved to the heating position of the sintered material gear in parallel with the axial direction of the sintered material gear and heated. And when the heating device is positioned at the heating position and the sintered material gear is in a heated state, the rolling device advances to the sintered material gear and pushes and rolls.

本発明2の歯車の製造方法は、本発明1において、
前記加熱装置は高周波加熱装置であり、前記焼結素材歯車に位置決めされて加熱する第1加熱装置と、この第1加熱装置による加熱後に移動して前記焼結素材歯車を加熱する第2加熱装置とから構成されていることを特徴とする。
The gear manufacturing method of the second aspect of the present invention is the first aspect of the present invention.
The heating device is a high frequency heating device, a first heating device that is positioned and heated by the sintered material gear, and a second heating device that moves after heating by the first heating device and heats the sintered material gear. It is comprised from these.

本発明3の歯車の製造方法は、本発明1において、
前記加熱装置による加熱温度は、200℃〜500℃の範囲であることを特徴とする。
The gear manufacturing method of the third aspect of the present invention is the first aspect of the present invention.
The heating temperature by the heating device is in the range of 200 ° C to 500 ° C.

本発明4の歯車の製造方法は、本発明1において、
前記第1加熱装置と前記第2加熱装置は一体的に構成され同時に移動させるようにしたことを特徴とする。
The gear manufacturing method according to the fourth aspect of the present invention is the first aspect of the present invention.
The first heating device and the second heating device are integrally formed and moved simultaneously.

以上説明したように、転造に際し、2つの加熱装置で焼結素材歯車を加熱するようにした。この2つの加熱装置を同時に軸方向にシフトできるようにした。これにより、第1加熱装置で加熱された焼結素材歯車を次の第2加熱装置で温度低下のないように加熱保持することができ、この状態で転造加工ができるようになった。この結果、転造された製品歯車は空孔率が小さく、緻密化された歯車として製造ができるようになった。又、簡素な構成で低コストで製造できることとなった。   As described above, during rolling, the sintered material gear is heated by two heating devices. These two heating devices can be shifted in the axial direction simultaneously. Thus, the sintered material gear heated by the first heating device can be heated and held by the next second heating device so as not to lower the temperature, and the rolling process can be performed in this state. As a result, the rolled product gear has a low porosity and can be manufactured as a densified gear. In addition, it can be manufactured at a low cost with a simple configuration.

以下、本発明に関わる歯車の製造方法について、その詳細を説明する。図1、図2は、焼結処理がなされた焼結素材歯車(以下「素材歯車」という)1の転造加工の構成を示す外観図である。図1は、誘導コイルを有する高周波加熱装置の第1加熱装置2で素材歯車1の加熱を行っている状態を示す外観図である。図2は、補助誘導コイルを有する高周波加熱装置の第2加熱装置3で素材歯車1の加熱を行っている状態を示す外観図である。   Hereinafter, the details of the gear manufacturing method according to the present invention will be described. 1 and 2 are external views showing the configuration of a rolling process of a sintered material gear (hereinafter referred to as “material gear”) 1 that has been subjected to a sintering process. FIG. 1 is an external view showing a state in which a material gear 1 is heated by a first heating device 2 of a high-frequency heating device having an induction coil. FIG. 2 is an external view showing a state where the material gear 1 is heated by the second heating device 3 of the high-frequency heating device having the auxiliary induction coil.

図3、図4は、前述の構成を模式的に表した説明図である。図3は図1に対応し、図4は図2に対応している。図において、素材歯車1は、回転可能に支持具4を介してチャック5に取り付けられている。この素材歯車1を挟んでこの素材歯車1の半径方向に対向して2つのダイス6a,6bが設けられ、この2つのダイス6a,6bが素材歯車1に向かって前進し、この素材歯車に押し込み転造加工を行う。   3 and 4 are explanatory views schematically showing the above-described configuration. 3 corresponds to FIG. 1, and FIG. 4 corresponds to FIG. In the drawing, the material gear 1 is rotatably attached to a chuck 5 via a support 4. Two dies 6a and 6b are provided in the radial direction of the material gear 1 with the material gear 1 interposed therebetween, and the two dies 6a and 6b move forward toward the material gear 1 and are pushed into the material gear. Perform rolling process.

図3、図4は、展開図としての説明図であり、加熱装置とダイスは簡略的に1つの構成図としているが、実際は図1、図2に示す形態となっている。この転造装置の構成は、プランジ式転造方式で、一般に適用されている公知のものと同様構成である。加熱装置はこの転造装置に設けられている。この転造装置には、基体7に焼結処理のなされた素材歯車1が支持具4を介して一方をセンター8側で支持され、チャック5に回転自在に取り付けられている。   FIG. 3 and FIG. 4 are explanatory diagrams as development views, and the heating device and the die are simply shown as one configuration diagram, but the actual configuration is shown in FIG. 1 and FIG. The configuration of this rolling device is a plunge type rolling method and is the same configuration as a publicly known one that is generally applied. The heating device is provided in this rolling device. In this rolling apparatus, a material gear 1 sintered on a base body 7 is supported on the center 8 side via a support 4 and is rotatably attached to a chuck 5.

又、この基体7には、素材歯車1を挟んで前述のように対向して2つのダイス6a,6bが案内可能に設けられている。このダイス6a,6bは素材歯車1と類似形状を有し、素材歯車1に対して図示しない駆動装置により駆動され、回転しながら押し込み転造する。素材歯車1は2つのダイス6a,6bの押し込みにより、ダイス6a,6bに倣い従動して回転する。   The base body 7 is provided with two dice 6a and 6b so as to be opposed to each other with the material gear 1 interposed therebetween as described above. The dies 6a and 6b have a shape similar to that of the material gear 1, and are driven by a driving device (not shown) with respect to the material gear 1, and are pushed and rolled while rotating. The material gear 1 rotates by following the dies 6a and 6b by pushing the two dies 6a and 6b.

一方、加熱装置は、素材歯車1を覆う状態になるように設けられている。本実施の形態において加熱装置は、素材歯車1の軸線方向に沿って2つの加熱部を有している。一方は、素材歯車1にコイル部が同軸的にほぼ全周を囲繞し、歯面部を覆う状態を可能とする第1加熱装置2である。即ち、素材歯車1は第1加熱装置の内周に沿って対峙し設けられることになる。加熱装置の他方は、この第1加熱装置2に対し軸線方向に平行に配置され、コイル部が同軸的に一部を素材歯車1に囲繞し、歯面部を覆う状態を可能とする第2加熱装置3である。   On the other hand, the heating device is provided so as to cover the material gear 1. In the present embodiment, the heating device has two heating portions along the axial direction of the material gear 1. One is the 1st heating apparatus 2 which enables the state which the coil part coaxially surrounds the raw material gearwheel 1 and the tooth surface part is covered substantially coaxially. That is, the material gear 1 is provided facing the inner circumference of the first heating device. The other of the heating devices is arranged parallel to the axial direction with respect to the first heating device 2, and the coil portion coaxially surrounds a part of the material gear 1 and enables a state of covering the tooth surface portion. Device 3.

この第2加熱装置3は、第1加熱装置2で加熱した素材歯車1の加熱温度を保持するために補助誘導コイルが設けられたものである。加熱装置は、第1加熱装置2と第2加熱装置3とも素材歯車1の軸線方向に図示しない駆動装置により、移動が可能である。この移動は、第1加熱装置2と第2加熱装置3を各々独立させて移動させてもよいが、本実施の形態においては一体的に同時に移動させる構成としている。   The second heating device 3 is provided with an auxiliary induction coil in order to maintain the heating temperature of the material gear 1 heated by the first heating device 2. Both the first heating device 2 and the second heating device 3 can be moved in the axial direction of the material gear 1 by a driving device (not shown). In this movement, the first heating device 2 and the second heating device 3 may be moved independently of each other, but in the present embodiment, they are configured to move together at the same time.

第1加熱装置2で加熱する場合は、図3に示すように第1加熱装置2を矢印のようにシフト移動させて、素材歯車1の歯面を覆うようにして加熱する。このときダイス6a,6bは矢印のように退避させておく。第1加熱装置2での加熱後は、加熱装置は図4に示す矢印のようにシフト移動し、第2加熱装置3が素材歯車1の一部、即ち、ダイス6a,6bの浸入領域を外れる範囲を囲繞する。   When heating with the 1st heating apparatus 2, as shown in FIG. 3, the 1st heating apparatus 2 is shifted and moved like an arrow, and it heats so that the tooth surface of the raw material gear 1 may be covered. At this time, the dies 6a and 6b are retracted as shown by arrows. After the heating by the first heating device 2, the heating device shifts as shown by the arrow shown in FIG. 4, and the second heating device 3 leaves part of the material gear 1, that is, the intrusion area of the dies 6a and 6b. Enclose the range.

従って、この第2加熱装置は素材歯車1の全周を囲繞するのでなく、実際は上下方向位置に分割して設けられる状態となる。この状態で第2加熱装置3は、素材歯車1の歯面温度を一定の温度を保持するように補助的に加熱する。この状態で2つのダイス6a,6bを矢印のように素材歯車1側へ第2加熱装置3との干渉を避けて前進させ、押し込み動作をして素材歯車1を転造する。素材歯車1に対する加熱は前述のように、誘導コイルに電流を流して誘導熱で加熱する高周波加熱である。この加熱方法は公知であるので詳細説明は省略する。   Therefore, the second heating device does not surround the entire circumference of the material gear 1 but is actually provided in a state of being divided into vertical positions. In this state, the second heating device 3 supplementarily heats the tooth surface temperature of the material gear 1 so as to maintain a constant temperature. In this state, the two dies 6a and 6b are advanced to the material gear 1 side while avoiding interference with the second heating device 3 as indicated by arrows, and the material gear 1 is rolled by performing a pushing operation. As described above, the material gear 1 is heated by high-frequency heating in which an electric current is passed through the induction coil and heated by induction heat. Since this heating method is well-known, detailed description is abbreviate | omitted.

加熱温度は温間成形を前提にしているので、再結晶温度以下の約200℃〜500℃の比較的低い温度領域である。加熱装置は、第1加熱装置2と第2加熱装置3が一体的に構成されているので、第1加熱装置2が移動するときは第2加熱装置3も同時に移動して退避し、同様に第2加熱装置3が移動するときは第1加熱装置2も同時に移動して退避する。この相互の移動は、短時間で行われるので、素材歯車1の歯面部の温度低下を招くことはない。   Since the heating temperature is premised on warm forming, it is a relatively low temperature range of about 200 ° C. to 500 ° C. below the recrystallization temperature. Since the 1st heating apparatus 2 and the 2nd heating apparatus 3 are comprised integrally as a heating apparatus, when the 1st heating apparatus 2 moves, the 2nd heating apparatus 3 also moves and retracts simultaneously, and similarly When the second heating device 3 moves, the first heating device 2 also moves and retracts at the same time. Since the mutual movement is performed in a short time, the temperature of the tooth surface portion of the material gear 1 is not lowered.

2つのダイス6a,6bは所定の温度を保持したままの素材歯車1を転造することになる。従って、素材歯車1は、ダイス6a,6bの押し込みにより、どの歯面においても均一に空孔率を小さくすることができ、結果的に緻密度を大幅に向上させることとなる。本実施の形態においては、加熱温度を低いものとする温間成形を前提にしている。従って、加熱装置は容量が小さく規模の小さい装置でよいことになる。   The two dies 6a and 6b roll the material gear 1 while maintaining a predetermined temperature. Therefore, the material gear 1 can uniformly reduce the porosity in any tooth surface by pressing the dies 6a and 6b, and as a result, the density is greatly improved. In the present embodiment, it is premised on warm forming with a low heating temperature. Therefore, the heating device may be a device having a small capacity and a small scale.

又、加熱装置の移動は、第1加熱装置2と第2加熱装置3の2つの加熱装置を一体的に同時に素材歯車1の軸線方向に平行に行うのみであるので、構成が簡素である。従来のように、素材歯車1を部分的に加熱する方法に比べ、歯面を均一に安定した温度を保持できる。又、加熱装置が固定的に設置され、素材歯車1を移動させて設置する構成に比較しても、構成が簡素で低コストで実現できる。このように本発明によれば、本実施の形態で説明したように、焼結素材歯車の空孔率を小さくし緻密度を大幅に高めることができ、面圧疲労強度及び曲げ疲労強度を高めることができる。   Further, the movement of the heating device is simple because the two heating devices of the first heating device 2 and the second heating device 3 are integrally and simultaneously performed parallel to the axial direction of the material gear 1. Compared to the conventional method of partially heating the material gear 1, the tooth surface can be maintained at a uniform and stable temperature. In addition, the configuration is simple and can be realized at a low cost as compared with the configuration in which the heating device is fixedly installed and the material gear 1 is moved and installed. Thus, according to the present invention, as explained in the present embodiment, the porosity of the sintered material gear can be reduced and the density can be greatly increased, and the surface pressure fatigue strength and the bending fatigue strength are increased. be able to.

次に、以上説明した実施の形態例に従って実施した素材歯車の製造方法の実施例について説明する。この実施例を説明するに当たって、素材歯車と工具との関係において、図5に示す構成で定義する。即ち、工具(ダイス)及び素材歯車の加工進行方向の素材歯車の歯面側をドリブンとし、工具(ダイス)及び素材歯車の加工進行方向の反対の素材歯車の歯面側をフォロアとする。この実施例の結果は、図6、図7に示す。   Next, an example of a material gear manufacturing method implemented according to the embodiment described above will be described. In describing this embodiment, the relationship between the material gear and the tool is defined by the configuration shown in FIG. That is, the tooth surface side of the material gear in the machining progress direction of the tool (die) and the material gear is driven, and the tooth surface side of the material gear opposite to the tool (die) and the material gear in the machining progress direction is the follower. The results of this example are shown in FIGS.

この実施例は、圧縮成形圧:686Mpa(7ton/cm),焼結条件:1150℃,20分,窒素ガス雰囲気で組成したものであり、組成はFe(Bal.)+0.06%C+0.55%Ni+1.03%Mo+0.2%Mn、焼結後平均密度:700g/cm(神戸製鋼(株)製の一回圧縮一回焼結して成形した焼結材である1P1S材)を用いた。素材の空孔率は約10%である。この素材を用いたモジュールm=3の歯車を冷間成形(室温による)、及び温間成形(高周波加熱による)の各条件で、仕上げ転造加工した場合の転造後の歯表面層の空孔率分布の比較を行った結果である。図において、横軸を歯の表面からの距離(mm)(緻密深さ)とし、縦軸を空孔率(%)とし、その分布をドリブン側とフォロア側についてプロットしたものである。 In this example, compression molding pressure: 686 Mpa (7 ton / cm 2 ), sintering condition: 1150 ° C., 20 minutes, composition in nitrogen gas atmosphere, the composition is Fe (Bal.) + 0.06% C + 0. 55% Ni + 1.03% Mo + 0.2% Mn, average density after sintering: 700 g / cm 3 (1P1S material, which is a sintered material formed by one-time compression once sintered by Kobe Steel) Using. The porosity of the material is about 10%. An empty tooth surface layer after rolling of a gear m of module m = 3 using this material under the conditions of cold forming (by room temperature) and warm forming (by high frequency heating). It is the result of having compared the porosity distribution. In the figure, the horizontal axis is the distance (mm) (dense depth) from the tooth surface, the vertical axis is the porosity (%), and the distribution is plotted for the driven side and the follower side.

図6は、冷間転造した場合の焼結合金歯車の歯表面空孔率分布を示した分布図である。工具の半径方向片側押し込み量を0.45mmと0.60mmに設定して行った。図7は、温間転造した場合の焼結合金歯車の歯表面空孔率分布を示した分布図である。図6の場合と同様に、工具の半径方向片側押し込み量を0.45mmと0.60mmに設定して行った。   FIG. 6 is a distribution diagram showing the tooth surface porosity distribution of the sintered alloy gear when cold rolled. The amount of pressing on one side in the radial direction of the tool was set to 0.45 mm and 0.60 mm. FIG. 7 is a distribution diagram showing the tooth surface porosity distribution of the sintered alloy gear in the case of warm rolling. As in the case of FIG. 6, the pressing amount in the radial direction of the tool was set to 0.45 mm and 0.60 mm.

両者の比較から、例えば1%以下の空孔率で比較してみると、図6の場合、0.45mmの押し込み量では、フォロア側で僅かに散見できる程度となっていて、0.60mmの押し込み量では、表面層約0.4mmまでの範囲に散見されるのみである。これに対し、図7の場合、0.45mmの押し込み量では、ドリブン側、フォロア側どちらも表面層0.5mmまでが1%以下であり、0.60mmの押し込み量では、ドリブン側、フォロア側どちらも表面層1.3mmまでが1%以下を達成している。   From a comparison between the two, for example, in comparison with a porosity of 1% or less, in the case of FIG. 6, when the push amount is 0.45 mm, it can be slightly scattered on the follower side, and is 0.60 mm. In the amount of indentation, the surface layer is only scattered in a range up to about 0.4 mm. On the other hand, in the case of FIG. 7, when the push amount is 0.45 mm, the surface layer is 0.5% or less on both the driven side and the follower side, and when the push amount is 0.60 mm, the driven side and the follower side. In both cases, a surface layer of up to 1.3 mm achieves 1% or less.

冷間転造に比し、温間転造の場合が空孔率を小さくする点で達成度が大きく、結果的に高密度化が表面層に集中し理想的な転造結果となっている。従って、温間成形による本発明の効果を確認した結果となっている。   Compared to cold rolling, warm rolling achieves a high degree of achievement in terms of reducing the porosity, and as a result, densification is concentrated on the surface layer, resulting in an ideal rolling result. . Therefore, it is the result which confirmed the effect of the present invention by warm forming.

図1は、第1加熱装置で加熱する状態を示す転造装置の外観図である。FIG. 1 is an external view of a rolling device showing a state of heating with a first heating device. 図2は、第2加熱装置で加熱する状態を示す転造装置の外観図である。FIG. 2 is an external view of the rolling device showing a state of being heated by the second heating device. 図3は、図1に相当する実施の形態の説明図である。FIG. 3 is an explanatory diagram of an embodiment corresponding to FIG. 図4は、図2に相当する実施の形態の説明図である。FIG. 4 is an explanatory diagram of an embodiment corresponding to FIG. 図5は、歯形におけるドリブンとフォロアの位置関係を示す説明図である。FIG. 5 is an explanatory diagram showing the positional relationship between driven and follower in the tooth profile. 図6は、冷間転造した場合の焼結合金歯車の歯表面層空孔率分布を示すデータ図である。FIG. 6 is a data diagram showing a tooth surface layer porosity distribution of a sintered alloy gear in the case of cold rolling. 図7は、温間転造した場合の焼結合金歯車の歯表面層空孔率分布を示すデータ図である。FIG. 7 is a data diagram showing a tooth surface layer porosity distribution of a sintered alloy gear in the case of warm rolling.

符号の説明Explanation of symbols

1…素材歯車
2…第1加熱装置
3…第2加熱装置
4…支持具
5…チャック
6a、6b…ダイス
7…基体
8…センター
DESCRIPTION OF SYMBOLS 1 ... Raw material gear 2 ... 1st heating apparatus 3 ... 2nd heating apparatus 4 ... Supporting tool 5 ... Chuck 6a, 6b ... Dice 7 ... Base | substrate 8 ... Center

Claims (4)

焼結処理がなされた焼結素材歯車を加熱装置により加熱して転造装置により転造し製品歯車を製造する方法において、
前記加熱装置は回転自在に取り付けられた前記焼結素材歯車に同軸的に囲繞し歯面部を覆って配置させ、この加熱装置を前記焼結素材歯車の加熱位置に前記焼結素材歯車の軸線方向と平行に移動させて加熱する工程と、
前記加熱装置が前記加熱位置に位置し前記焼結素材歯車が加熱状態にあるとき前記転造装置が前記焼結素材歯車に前進し押し込み転造する工程と
からなる歯車の製造方法。
In a method of manufacturing a product gear by heating a sintered material gear that has been subjected to a sintering process by a heating device and rolling by a rolling device,
The heating device is coaxially surrounded by the sintered material gear that is rotatably attached and is disposed so as to cover the tooth surface portion. The heating device is disposed at the heating position of the sintered material gear in the axial direction of the sintered material gear. And moving in parallel with the heating,
A method of manufacturing a gear comprising: a step in which the rolling device moves forward and pushes into the sintered material gear when the heating device is located at the heating position and the sintered material gear is in a heated state.
請求項1に記載の歯車の製造方法において、
前記加熱装置は高周波加熱装置であり、前記焼結素材歯車に位置決めされて加熱する第1加熱装置と、この第1加熱装置による加熱後に移動して前記焼結素材歯車を加熱する第2加熱装置とから構成されている
ことを特徴とする歯車の製造方法。
In the manufacturing method of the gear according to claim 1,
The heating device is a high frequency heating device, a first heating device that is positioned and heated by the sintered material gear, and a second heating device that moves after heating by the first heating device and heats the sintered material gear. A gear manufacturing method characterized by comprising the following.
請求項1に記載の歯車の製造方法において、
前記加熱装置による加熱温度は、200℃〜500℃の範囲である
ことを特徴とする歯車の製造方法。
In the manufacturing method of the gear according to claim 1,
The heating temperature by the heating device is in a range of 200 ° C to 500 ° C.
請求項2に記載の歯車の製造方法において、
前記第1加熱装置と前記第2加熱装置は一体的に構成され同時に移動させるようにした ことを特徴とする歯車の製造方法。
In the manufacturing method of the gear of Claim 2,
The gear manufacturing method, wherein the first heating device and the second heating device are configured integrally and moved simultaneously.
JP2005103985A 2005-03-31 2005-03-31 Method for manufacturing gear Pending JP2006281264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005103985A JP2006281264A (en) 2005-03-31 2005-03-31 Method for manufacturing gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005103985A JP2006281264A (en) 2005-03-31 2005-03-31 Method for manufacturing gear

Publications (1)

Publication Number Publication Date
JP2006281264A true JP2006281264A (en) 2006-10-19

Family

ID=37403700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005103985A Pending JP2006281264A (en) 2005-03-31 2005-03-31 Method for manufacturing gear

Country Status (1)

Country Link
JP (1) JP2006281264A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101425966B1 (en) 2013-05-23 2014-08-01 태림산업(주) form rolling device for form rolling a output shaft of steering apparatus and manufacturing method thereof
CN104438993A (en) * 2014-10-22 2015-03-25 山东大学 Gear rolling forming method for overcoming tooth-form lug defect
WO2020207622A1 (en) 2019-04-10 2020-10-15 Sew-Eurodrive Gmbh & Co. Kg Gear unit comprising a rotatably mounted toothed part, and process for manufacturing a gear unit comprising a toothed part
US11060595B2 (en) 2017-01-05 2021-07-13 Gkn Sinter Metals, Llc NVH modification for differential assembly

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101425966B1 (en) 2013-05-23 2014-08-01 태림산업(주) form rolling device for form rolling a output shaft of steering apparatus and manufacturing method thereof
CN104438993A (en) * 2014-10-22 2015-03-25 山东大学 Gear rolling forming method for overcoming tooth-form lug defect
CN104438993B (en) * 2014-10-22 2016-04-06 山东大学 A kind of gear rolling manufacturing process improving profile of tooth lug defect
US11060595B2 (en) 2017-01-05 2021-07-13 Gkn Sinter Metals, Llc NVH modification for differential assembly
WO2020207622A1 (en) 2019-04-10 2020-10-15 Sew-Eurodrive Gmbh & Co. Kg Gear unit comprising a rotatably mounted toothed part, and process for manufacturing a gear unit comprising a toothed part

Similar Documents

Publication Publication Date Title
JP2006523775A (en) Method and apparatus for toughening powder metal gears by ausforming
CN102085555B (en) Roll forming method of TC25 titanium alloy thin-walled ring forging
CN105018824B (en) A kind of preparation method of P/M cam
JP2017217676A (en) Manufacturing device and manufacturing method of preformed brazing filler metal and preformed brazing filler metal
JP2006281264A (en) Method for manufacturing gear
US20200047254A1 (en) Method for Manufacturing Iron-based Powder Metallurgical Parts
WO2007142298A1 (en) Shell needle bearing with seal ring and its manufacturing method
CN101704181B (en) Short-process preparation method of noble/base metal stratified composite material parts
KR20110075130A (en) A semi-finished ring rolling machine and manufacturing method for profiled ring
CN104368816A (en) Method for manufacturing iron-based powder metallurgy components
JP2001524606A (en) Densification of sintered metal powder by point contact
JP2008527166A (en) Method for producing surface densified powder metal parts
CN101786135B (en) Mould for locking ring of wheel type construction mechanical wheel
CN101486141B (en) Technology for manufacturing lock ring for wheeled engineering machinery wheel and shaping mold thereof
CN108115364A (en) Slab double rotary wheel heats general revolving shaping method
CN203599337U (en) Titanium alloy cylindrical part spinning device
CN105773074A (en) Manufacturing method of molybdenum alloy boat
CN115722667A (en) Horizontal continuous material-increasing spiral extrusion equipment for section bar and preparation method
JP2003013111A (en) Method of manufacturing toothed gear
CN113477859A (en) Die forging production process of NiWCo alloy for uniform crystal shaped charge liner
JP2004115898A (en) Sintered alloy having dynamic pressure generation groove, and method for manufacturing the same
JP2017030023A (en) Manufacturing method of ring gear for differential
JP7477612B2 (en) Sintered parts and manufacturing method thereof
CN104582874B (en) Forming method and the teeth portion component manufactured according to the forming method
JP2005282706A (en) Method for manufacture of roller