JP2004108466A - Copper-based bearing material - Google Patents

Copper-based bearing material Download PDF

Info

Publication number
JP2004108466A
JP2004108466A JP2002270992A JP2002270992A JP2004108466A JP 2004108466 A JP2004108466 A JP 2004108466A JP 2002270992 A JP2002270992 A JP 2002270992A JP 2002270992 A JP2002270992 A JP 2002270992A JP 2004108466 A JP2004108466 A JP 2004108466A
Authority
JP
Japan
Prior art keywords
copper
alloy
layer
based bearing
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002270992A
Other languages
Japanese (ja)
Other versions
JP3839765B2 (en
Inventor
Koji Saito
斉藤 康志
Eisaku Inoue
井上 栄作
Hiroaki Yoshida
吉田 広明
Yoshitake Suzuki
鈴木 良剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Daido Metal Co Ltd
Original Assignee
Daido Steel Co Ltd
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Daido Metal Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2002270992A priority Critical patent/JP3839765B2/en
Publication of JP2004108466A publication Critical patent/JP2004108466A/en
Application granted granted Critical
Publication of JP3839765B2 publication Critical patent/JP3839765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper-based bearing material with a titanium or titanium alloy back plate by a continuous sintering method and a continuous roll pressure-welding method suitable for mass production and manufacturable at a low cost. <P>SOLUTION: The back plate 3 is formed of Ti or Ti alloy, and an intermediate layer 4 formed of Fe or Fe-Cr alloy is provided between a copper-based bearing layer 2 and the back plate 3. The direct contact of Ti or Ti alloy with metal liable to form an intermetallic compound or with gas is thereby prevented to suppress the formation of the intermetallic compound or a compound with gas. Furthermore, since Fe and Cr used for the intermediate layer 4 are not liable to form an intermetallic compound with Ti at a heat treatment temperature after sintering and pressure welding of a Cu alloy, the copper-based bearing material 1 using Ti or Ti alloy for the back plate 3 can be manufactured without lowering the strength of the copper-based bearing material 1 by the continuous sintering method or the continuous roll pressure-welding method manufacturable at a low cost while allowing sintering and heat treatment. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、裏金の一側面に銅又は銅合金からなる銅系軸受層を固着してなる銅系軸受材料に関するものである。
【0002】
【従来の技術】
従来、内燃機関のコネクティングロッド用銅系軸受材料は、例えば、特開平6−159367号公報に示されるように、低炭素鋼上に銅合金粉末を焼結したものが知られている。そして内燃機関の中でも特に軽量化及び高出力が要求される用途の内燃機関のコネクティングロッドには軽量で強度が高いチタン合金製のものが使用されている。コネクティングロッドに用いる軸受は、軸受の外形をコネクティングロッド内径より若干大きくし、締め代を持たせてコネクティングロッドに組み付け、軸受半径方向に一定以上の応力を発生させることによりハウジングに固定し、軸との供回りやハウジングから抜け出ることを防いでいる。
【0003】
【特許文献1】
特開平6−159367号公報(段落0014)
通常、軸受の締め代は、内燃機関の常用運転時の軸受部温度で適正な半径方向応力が発生するように設計されるが、チタン合金コネクティングロッドと従来の鋼裏金軸受の組み合わせであるとチタン合金と鋼の熱膨張率が異なるため軸受部温度が変化すると半径方向応力も変化する。自動車用等、大部分の内燃機関は長時間連続的に運転する場合よりも、運転、停止が繰り返されるような運転条件の場合のほうが多い。この場合、運転開始から常用運転温度に達する間は適正な軸受半径方向応力以下で運転されるため、軸受の軸との供回りやコネクティングロッドからの抜け出しが起こりやすいという問題がある。さらに、軸受半径方向応力によりコネクティングロッド内径が拡大するが、この拡大量も軸受部温度により変化するのでコネクティングロッド組み込み時の軸受内径が変化することになる。また、軸受設計上、最も重要な要素の一つとして軸受内径と軸とのクリアランスがあり、このクリアランスも内燃機関の常用運転時の軸受部温度にて適正な値となるように設計されるが、内燃機関の運転開始から常用運転温度に達するまでの間は適正クリアランス以下となるため、軸と軸受内面が接触し焼きつきが起こりやすいという問題もある。これらの問題を解決するには、コネクティングロッドと同等な熱膨張を有するチタン又はチタン合金裏金軸受が必要とされていた。
【0004】
【発明が解決しようとする課題】
しかし、金属の中でも活性な金属であるチタン及びチタン合金は一般的な内燃機関用銅系軸受材料である銅鉛合金、鉛青銅、青銅の主成分、添加成分、不純物である銅、鉛、スズ、ニッケル、銀、リン等と容易に金属間化合物となり、又、焼結や熱処理に必要な還元性ガスや不活性ガスの成分である水素、窒素、一酸化炭素、二酸化炭素とも容易に化合物となるか大量に固溶し脆化するため、最も大量生産に適し、安価に製造できる連続焼結法や連続ロール圧接法によるチタン又はチタン合金裏金付銅系軸受材料がなかった。
【0005】
一方、チタン及びチタン合金裏金付銅系軸受材料は、HIP等真空雰囲気にて軸受層である銅合金成分と裏金層のチタン及びチタン合金との化合物の生成速度を遅らせ、低温で長時間焼結することにより製造できる可能性はあるが、生産性が非常に悪く、高価となるため実用化は困難である。他にも、チタン又はチタン合金上に銅合金粉末を溶射する方法が挙げられるが、素地と溶射粉末の接着がほぼ機械的な接着であるため化合物はできにくいものの、溶射法の中では最も素地と溶射金属層の接着力が高く、溶射層中の空孔が少なくできるとされる高速ガス溶射法を用いても従来の鋼上に銅合金を焼結したものより接着力は弱いという欠点がある。さらに、高速ガス溶射法では銅合金層中の空孔も多くなるという欠点もある。また、従来の焼結及び圧接法による銅合金層中には酸化物はほとんど含まれていないが、溶射法による銅合金層中には酸化物を多く含むため銅合金層中の強度も弱くなるという欠点もある。本発明は、上記した事情に鑑みなされたもので、その目的とするところは、大量生産に適し、安価に製造できる連続焼結法及び連続ロール圧接法によるチタン又はチタン合金裏金付銅系軸受材料を提供することにある。
【0006】
【課題を解決するための手段】
上記した目的を達成するために、請求項1に係る発明においては、裏金の一側面に銅(Cu)又は銅(Cu)合金からなる銅系軸受層を固着してなる銅系軸受材料において、前記裏金は、チタン(Ti)又はチタン(Ti)合金で構成されると共に、前記銅系軸受層との間に鉄(Fe)又は鉄(Fe)−クロム(Cr)合金からなる中間層を設けたことを特徴とする。このように構成することにより、銅系軸受層と裏金との間にFe又はFe−Cr合金からなる中間層を設けたため、金属間化合物となりやすい金属又はガスとTi又はTi合金とが直接接することを防ぎ、金属間化合物又はガスとの化合物の生成を抑えることができる。更に、中間層に用いたFe及びCrはCu合金の焼結や圧接後の熱処理温度ではTiとの金属間化合物を生成しにくいため、焼結及び熱処理が可能となり、安価に製造できる連続焼結法又は連続ロール圧接法により銅系軸受材料の強度を落とすことなくTi又はTi合金を裏金に用いた銅系軸受材料の製造が可能となる。
【0007】
また、請求項2に係る発明においては、前記裏金の他側面に前記中間層と同一成分の背面層を固着したことを特徴とする。このように構成することにより、銅系軸受層が積層されない裏金の他側面が中間層と同一成分の背面層によって覆われるため、Ti又はTi合金と焼結やロール圧接後の熱処理に必要な還元性ガス、不活性ガス成分であるN、H、CO、CO等と反応して化合物を生成したり、大量に固溶して脆化したりすることがなくなり、還元性ガス、不活性ガス中で加熱することができ、Ti又はTi合金を裏金に用いた銅系軸受材料が大量生産に向き安価に製造できる連続焼結法又は連続ロール圧接法を利用して製造することが可能となる。
【0008】
また、請求項3に係る発明においては、前記中間層は、Fe又はFe−Cr合金に含有される炭素(C)、硫黄(S)及びリン(P)の合計が0.5質量%以下であることを特徴とする。このように構成することにより、金属間化合物となりやすい成分を少量しか含まないため、金属間化合物が生成してもその量が少なく、Ti又はTi合金からなる裏金とFe又はFe−Cr合金からなる中間層との接着力を低下させることがない。即ち、C、S及びPの合計が0.5質量%を超えると、Ti又はTi合金とFe又はFe−Cr合金界面でのTiとC,S,Pとの化合物が多く生成され、接着力が低くなりすぎてしまう。
【0009】
また、請求項4に係る発明においては、前記背面層は、Fe又はFe−Cr合金に含有される炭素(C)、硫黄(S)及びリン(P)の合計が0.5質量%以下であることを特徴とする。このように構成することにより、金属間化合物となりやすい成分を少量しか含まないため、金属間化合物が生成してもその量が少なく、Ti又はTi合金からなる裏金とFe又はFe−Cr合金からなる背面層との接着力を低下させることがない。即ち、C、S及びPの合計が0.5質量%を超えると、Ti又はTi合金とFe又はFe−Cr合金界面でのTiとC,S,Pとの化合物が多く生成され、接着力が低くなりすぎてしまう。
【0010】
また、請求項5に係る発明においては、前記中間層及び背面層は、それぞれ1μm以上の厚みを有し、且つ前記裏金の厚さの20%以下であることを特徴とする。このように構成することにより、中間層及び背面層に破断部ができにくくしてTi又はTi合金や銅系軸受層と還元性ガス又は不活性ガスとが直接接触することを防ぐことができる一方、中間層及び背面層におけるTi又はTi合金からなる裏金に対する厚さを薄くしたため、Ti又はTi合金からなる裏金の熱膨張率をTi合金製コンロッドの熱膨張率とほぼ同等の熱膨張率に維持することができる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について図面及び表を参照して説明する。図1は、本実施形態に係る銅系軸受材料1の断面の模式図である。
【0012】
銅系軸受材料1は、図1に示すように銅又は銅合金からなる銅系軸受層2と、銅系軸受層2を固着するTi又はTi合金からなる裏金3と、からなる。裏金3と銅系軸受層2との間には、中間層4が設けられている。更に裏金3の中間層4が設けられない他側面に背面層5が設けられている。
【0013】
次に本実施形態に用いた銅系焼結軸受材料1の作製方法及び銅系軸受層2と裏金3の接着力測定について表1、図2を参照して説明する。表1は本実施形態に用いた銅系軸受材料1の組成及び接着力試験結果である。図2は接着力測定用試験片7の模式図である。
【0014】
【表1】

Figure 2004108466
【0015】
実施例のNo.1〜3の試料は、予め表1の組成のTi又はTi合金からなる裏金3に中間層4、背面層5として表1の組成のFeまたはFe−Cr合金を厚さがそれぞれ20μmとなり総厚が1.35mmとなるように圧接したものを用いた。この裏金3上に銅系軸受層2としてアトマイズ法により製造した組成がCu−10質量%Snの青銅粉(−60メッシュ)を0.8mmの厚さで散布し、還元性雰囲気を有する焼結炉にて温度850℃で20分焼結後、ロールで冷間圧延を施し、再び同一条件で焼結及び圧延を施すことにより中間層4、背面層5の厚さがそれぞれ約15μm、総厚が1.5mmとなるように銅系軸受材料1を作製した。
【0016】
実施例のNo.4の試料は予め裏金3のTiに中間層4、背面層5としてFeを厚さが40μmとなり総厚が2.0mmとなる様にロール圧接したものを用い、銅系軸受層2として組成がCu−10質量%Snで厚さが0.7mmの青銅板をロール圧接後、還元性雰囲気を有する焼結炉にて温度700℃で30分の熱処理を施し、その後、ロールで5%の冷間圧延を施して、中間層4、背面層5の厚さがそれぞれ約15μm、総厚が1.5mmとなるように銅系軸受材料1を作製した。
【0017】
比較例のNo.1は、裏金3に従来の一般的な銅系軸受材料でありS10C相当の組成の鋼を用い、比較例のNo.2は裏金3としてTiを用いた。比較例のNo.1及び2は、中間層4、背面層5を設けていない以外は実施例のNo.1〜3と同じ焼結方法で銅系軸受材料1を作製した。
【0018】
比較例のNo.3は、比較例のNo.2の試料に中間層4、背面層5を設けた以外は同じ方法で作製したものであるが、中間層4、背面層5として本発明範囲外であるC,S,Pを総量で0.6質量%含むFe−Cr合金層を用いた銅系軸受材料1を作製した。
【0019】
上記の方法により作製された銅系軸受材料1を、図2に示す試験片7に加工した。試験片7には、円形の開口8が2つ設けられ、その円形開口8を引張試験機にて引っ張ることにより銅系軸受層2と裏金3との接着力を測定した。試験結果を表1に示す。
【0020】
表1から明らかなように、本実施形態におけるTi又はTi合金からなる裏金3、Fe又はFe−Cr合金からなる中間層4及び背面層5、銅系軸受層2からなる銅系軸受材料1は従来の一般的な低炭素鋼裏金付銅系軸受材料である比較例1に対し、銅系軸受層2と裏金3との接着力は同等以上であることがわかる。
【0021】
比較例のNo.2は、銅系軸受層2とTiからなる裏金3が直接接触した状態で焼結されたものであるが、銅系軸受層2と裏金3との界面部に金属間化合物が多量に生成し、接着力測定試験片加工時に剥離してしまい接着力測定を行うことができなかった。
【0022】
比較例のNo.3は、中間層4、背面層5として用いたFe−Cr合金が本発明範囲外であるC,S,Pを総量で0.6質量%含むもので、焼結時の加熱により裏金3のTiと中間層4及び背面層5のFe−Cr合金層界面でC,S,PとTiの化合物が多く生成している。そのため、接着力測定では、C,S,PとTiの化合物から剥離がおき、従来の一般的な低炭素鋼裏金付銅系軸受材料である比較例のNo.1に対して銅系軸受層2と裏金3との接着力は低くなった。
【0023】
以上、実施形態に係る銅系軸受材料1の構造及び作用について説明してきたが、本実施形態によれば、裏金3の一側面にCu又はCu合金からなる銅系軸受層2を固着してなる銅系軸受材料1において、前記裏金3は、Ti又はTi合金で構成されると共に、前記銅系軸受層2との間にFe又はFe−Cr合金からなる中間層4を設けたことにより、金属間化合物となりやすい金属又はガスとTi又はTi合金とが直接接することを防ぎ、金属間化合物又はガスとの化合物の生成を抑えることができる。更に、中間層4に用いたFe及びCrはCu合金の焼結や圧接後の熱処理温度ではTiとの金属間化合物を生成しにくい性質があるため、焼結及び熱処理が可能となり、安価に製造できる連続焼結法又は連続ロール圧接法により銅系軸受材料1の強度を落とすことなくTi又はTi合金を裏金3に用いた銅系軸受材料1の製造が可能となる。
【0024】
また、前記裏金3の他側面に前記中間層4と同一成分の背面層5を固着したことにより、銅系軸受層2が積層されない裏金3の他側面が中間層4と同一成分の背面層5によって覆われるため、Ti又はTi合金と焼結やロール圧接後の熱処理に必要な還元性ガス、不活性ガス成分であるN、H、CO、CO等と反応して化合物を生成したり、大量に固溶して脆化したりすることがなくなり、還元性ガス、不活性ガス中で加熱することができ、Ti又はTi合金を裏金3に用いた銅系軸受材料1が大量生産に向き安価に製造できる連続焼結法又は連続ロール圧接法を利用して製造することが可能となる。
【0025】
また、前記中間層4は、Fe又はFe−Cr合金に含有されるC、S及びPの合計が0.5質量%以下であることにより、金属間化合物となりやすい成分を少量しか含まないため、金属間化合物が生成してもその量が少なく、Ti又はTi合金からなる裏金とFe又はFe−Cr合金からなる中間層4との接着力を低下させることがない。
【0026】
また、前記背面層5は、Fe又はFe−Cr合金に含有されるC、S及びPの合計が0.5質量%以下であることにより、金属間化合物となりやすい成分を少量しか含まないため、金属間化合物が生成してもその量が少なく、Ti又はTi合金からなる裏金とFe又はFe−Cr合金からなる背面層5との接着力を低下させることがない。
【0027】
また、前記中間層4及び背面層5は、それぞれ1μm以上の厚みを有し、且つ前記裏金3の厚さの20%以下であることにより、中間層4及び背面層5に破断部ができにくくしてTi又はTi合金や銅系軸受層2と還元性ガス又は不活性ガスとが直接接触することを防ぐことができる一方、中間層4及び背面層5におけるTi又はTi合金からなる裏金3に対する厚さを薄くしたため、Ti又はTi合金からなる裏金3の熱膨張率をTi合金製コンロッドの熱膨張率とほぼ同等の熱膨張率に維持することができる。
【0028】
なお、本発明に用いる裏金3のTi合金は、以下に示す1種又は複数種の元素をTiに含む組成であっても良い。
【0029】
元素           添加量
バナジウム(V)   :25質量%以下
モリブデン(Mo)  :16質量%以下
アルミニウム(Al) :8質量%以下
スズ(Sn)     :5質量%以下
ジルコニウム(Zr) :7質量%以下
鉄(Fe)      :5質量%以下
クロム(Cr)    :12質量%以下
ケイ素(Si)    :0.5質量%以下
鉛(Pd)      :0.25質量%以下
また、本実施形態における銅系焼結軸受材料1は、銅系軸受層2と裏金3とからなるバイメタルタイプであるが、これに限定されるものではなく、例えば銅系軸受層2の上部表面にオーバレイ層を設けたものであってもよい。
【0030】
【発明の効果】
以上説明したところから明らかなように、請求項1の発明においては銅系軸受層と裏金との間にFe又はFe−Cr合金からなる中間層を設けたため、金属間化合物となりやすい金属又はガスとTi又はTi合金とが直接接することを防ぎ、金属間化合物又はガスとの化合物の生成を抑えることができる。更に、中間層に用いたFe及びCrはCu合金の焼結や圧接後の熱処理温度ではTiとの金属間化合物を生成しにくいため、焼結及び熱処理が可能となり、安価に製造できる連続焼結法又は連続ロール圧接法により銅系軸受材料の強度を落とすことなくTi又はTi合金を裏金に用いた銅系軸受材料の製造が可能となる。
【0031】
また、請求項2の発明においては、銅系軸受層が積層されない裏金の他側面が中間層と同一成分の背面層によって覆われるため、Ti又はTi合金と焼結やロール圧接後の熱処理に必要な還元性ガス、不活性ガス成分であるN、H、CO、CO等と反応して化合物を生成したり、大量に固溶して脆化したりすることがなくなり、還元性ガス、不活性ガス中で加熱することができ、Ti又はTi合金を裏金に用いた銅系軸受材料が大量生産に向き安価に製造できる連続焼結法又は連続ロール圧接法を利用して製造することが可能となる。
【0032】
また、請求項3の発明においては、金属間化合物となりやすい成分を少量しか含まないため、金属間化合物が生成してもその量が少なく、Ti又はTi合金からなる裏金とFe又はFe−Cr合金からなる中間層との接着力を低下させることがない。
【0033】
また、請求項4の発明においては、金属間化合物となりやすい成分を少量しか含まないため、金属間化合物が生成してもその量が少なく、Ti又はTi合金からなる裏金とFe又はFe−Cr合金からなる背面層との接着力を低下させることがない。
【0034】
また、請求項5の発明においては、中間層及び背面層に破断部ができにくくしてTi又はTi合金や銅系軸受層と還元性ガス又は不活性ガスとが直接接触することを防ぐことができる一方、中間層及び背面層におけるTi又はTi合金からなる裏金に対する厚さを薄くしたため、Ti又はTi合金からなる裏金の熱膨張率をTi合金製コンロッドの熱膨張率とほぼ同等の熱膨張率に維持することができる。
【図面の簡単な説明】
【図1】本実施形態に係る銅系軸受材料1の断面の模式図である。
【図2】接着力測定用試験片の模式図である。
【符号の説明】
1 銅系軸受材料
2 銅系軸受層
3 裏金
4 中間層
5 背面層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a copper-based bearing material in which a copper-based bearing layer made of copper or a copper alloy is fixed to one side surface of a back metal.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a copper-based bearing material for a connecting rod of an internal combustion engine, for example, as disclosed in Japanese Patent Application Laid-Open No. H6-15967, a material obtained by sintering a copper alloy powder on low carbon steel is known. Among the internal combustion engines, a lightweight and high-strength titanium alloy is used as a connecting rod for an internal combustion engine that is particularly required to be lightweight and have high output. The bearing used for the connecting rod has the outer shape of the bearing slightly larger than the inner diameter of the connecting rod, has an interference, is assembled to the connecting rod, and is fixed to the housing by generating a certain stress or more in the radial direction of the bearing. To prevent it from rotating around and getting out of the housing.
[0003]
[Patent Document 1]
JP-A-6-15967 (paragraph 0014)
Normally, the interference of the bearing is designed so that an appropriate radial stress is generated at the temperature of the bearing part during the normal operation of the internal combustion engine.However, if the combination of the titanium alloy connecting rod and the conventional steel back metal bearing is used, the interference of the titanium is determined. Since the thermal expansion coefficients of the alloy and steel are different, when the temperature of the bearing changes, the radial stress also changes. Most internal combustion engines, such as those for automobiles, are more likely to be operated and stopped repeatedly under operating conditions than when operated continuously for a long time. In this case, since the bearing is operated with an appropriate bearing radial stress or less from the start of the operation until the normal operating temperature is reached, there is a problem that the bearing rotates with the shaft or comes off from the connecting rod easily. Further, the inner diameter of the connecting rod is increased by the stress in the bearing radial direction, and the amount of the expansion also changes depending on the temperature of the bearing portion, so that the inner diameter of the bearing when the connecting rod is incorporated changes. Also, one of the most important factors in bearing design is the clearance between the bearing inner diameter and the shaft, and this clearance is also designed to be an appropriate value at the temperature of the bearing during normal operation of the internal combustion engine. However, since the clearance is not more than the appropriate clearance from the start of the operation of the internal combustion engine to the normal operating temperature, there is a problem that the shaft and the inner surface of the bearing come into contact with each other and seizure easily occurs. To solve these problems, a titanium or titanium alloy back metal bearing having a thermal expansion equivalent to that of a connecting rod has been required.
[0004]
[Problems to be solved by the invention]
However, among the metals, titanium and titanium alloys, which are active metals, are commonly used as copper-based bearing materials for internal combustion engines, such as copper-lead alloy, lead bronze, and the main components, additional components, and impurities such as copper, lead, and tin. Easily becomes an intermetallic compound with nickel, silver, phosphorus, etc., and easily forms compounds such as hydrogen, nitrogen, carbon monoxide and carbon dioxide which are components of reducing gas and inert gas necessary for sintering and heat treatment. Because of its solid solution and embrittlement, the copper-based bearing material with titanium or titanium alloy back metal by the continuous sintering method or the continuous roll pressing method, which is most suitable for mass production and can be manufactured at low cost, has not been available.
[0005]
On the other hand, the copper-based bearing material with titanium and titanium alloy backing metal slows down the generation rate of the compound between the copper alloy component of the bearing layer and the titanium and titanium alloy of the backing metal layer in a vacuum atmosphere such as HIP, and is sintered at low temperature for a long time. Although there is a possibility that it can be manufactured by performing the method, it is difficult to put it to practical use because the productivity is very low and the cost is high. Another method is to spray copper alloy powder on titanium or titanium alloy.However, although the bonding between the base and the sprayed powder is almost mechanical, it is difficult to produce a compound. The disadvantage is that even with the high-speed gas spraying method, which is said to have a high adhesive strength between the sprayed metal layer and the pores in the sprayed layer and can reduce the porosity in the sprayed layer, the adhesive strength is lower than that of a conventional copper alloy sintered on steel. is there. Further, the high-speed gas spraying method has a disadvantage that the number of holes in the copper alloy layer increases. In addition, the copper alloy layer formed by the conventional sintering and pressure welding method contains almost no oxide, but the copper alloy layer formed by the thermal spraying method contains a large amount of oxide, so that the strength in the copper alloy layer also decreases. There is also a disadvantage. SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a copper-based bearing material having a titanium or titanium alloy backing metal by a continuous sintering method and a continuous roll pressing method, which is suitable for mass production and can be manufactured at low cost. Is to provide.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, in the invention according to claim 1, a copper-based bearing material in which a copper-based bearing layer made of copper (Cu) or a copper (Cu) alloy is fixed to one side surface of a back metal, The back metal is made of titanium (Ti) or a titanium (Ti) alloy, and an intermediate layer made of iron (Fe) or an iron (Fe) -chromium (Cr) alloy is provided between the back metal and the copper-based bearing layer. It is characterized by having. With such a configuration, since the intermediate layer made of Fe or Fe-Cr alloy is provided between the copper-based bearing layer and the back metal, the metal or gas that easily becomes an intermetallic compound and Ti or Ti alloy directly contact with each other. And the formation of a compound with an intermetallic compound or a gas can be suppressed. Furthermore, since the Fe and Cr used for the intermediate layer are unlikely to form an intermetallic compound with Ti at the heat treatment temperature after sintering or pressing of the Cu alloy, sintering and heat treatment become possible, and continuous sintering that can be manufactured at low cost It is possible to manufacture a copper-based bearing material using Ti or a Ti alloy for the backing metal without reducing the strength of the copper-based bearing material by the method or the continuous roll pressing method.
[0007]
The invention according to claim 2 is characterized in that a back layer having the same composition as the intermediate layer is fixed to the other side surface of the back metal. With this configuration, the other side surface of the backing metal on which the copper-based bearing layer is not laminated is covered with the backing layer having the same composition as the intermediate layer, so that the reduction required for heat treatment after sintering or roll pressing with Ti or Ti alloy is performed. It does not react with reactive gases or inert gas components such as N 2 , H 2 , CO, CO 2 to form compounds, or to dissolve in large quantities to form embrittlement. It can be heated in a gas, and can be manufactured using a continuous sintering method or a continuous roll pressing method that can produce copper-based bearing materials using Ti or Ti alloy for backing metal for mass production at low cost. Become.
[0008]
In the invention according to claim 3, the intermediate layer has a total of carbon (C), sulfur (S), and phosphorus (P) contained in Fe or Fe—Cr alloy of 0.5% by mass or less. There is a feature. With such a configuration, since only a small amount of a component that easily becomes an intermetallic compound is contained, even if an intermetallic compound is generated, the amount is small, and the back metal made of Ti or Ti alloy and Fe or Fe-Cr alloy are used. There is no decrease in adhesion to the intermediate layer. That is, when the total of C, S, and P exceeds 0.5% by mass, a large amount of a compound of Ti and C, S, P at the interface of Ti or Ti alloy and Fe or Fe—Cr alloy is generated, and the adhesive force Is too low.
[0009]
Further, in the invention according to claim 4, the back layer has a total content of carbon (C), sulfur (S) and phosphorus (P) contained in Fe or Fe—Cr alloy of 0.5% by mass or less. There is a feature. With such a configuration, since only a small amount of a component that easily becomes an intermetallic compound is contained, even if an intermetallic compound is generated, the amount is small, and the back metal made of Ti or Ti alloy and Fe or Fe-Cr alloy are used. There is no decrease in adhesion to the back layer. That is, when the total of C, S, and P exceeds 0.5% by mass, a large amount of a compound of Ti and C, S, P at the interface of Ti or Ti alloy and Fe or Fe—Cr alloy is generated, and the adhesive force Is too low.
[0010]
In the invention according to claim 5, the intermediate layer and the back layer each have a thickness of 1 μm or more and 20% or less of the thickness of the back metal. With this configuration, it is difficult to form a broken portion in the intermediate layer and the back layer, and it is possible to prevent direct contact between the reducing gas or the inert gas and the Ti or Ti alloy or the copper-based bearing layer. Since the thickness of the intermediate layer and the back layer with respect to the back metal made of Ti or Ti alloy is reduced, the coefficient of thermal expansion of the back metal made of Ti or Ti alloy is maintained at a thermal expansion coefficient substantially equal to that of the connecting rod made of Ti alloy. can do.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings and tables. FIG. 1 is a schematic diagram of a cross section of the copper-based bearing material 1 according to the present embodiment.
[0012]
As shown in FIG. 1, the copper-based bearing material 1 includes a copper-based bearing layer 2 made of copper or a copper alloy, and a back metal 3 made of Ti or a Ti alloy that fixes the copper-based bearing layer 2. An intermediate layer 4 is provided between the back metal 3 and the copper-based bearing layer 2. Further, a back layer 5 is provided on the other side of the back metal 3 where the intermediate layer 4 is not provided.
[0013]
Next, a method of manufacturing the copper-based sintered bearing material 1 used in the present embodiment and a measurement of an adhesive force between the copper-based bearing layer 2 and the back metal 3 will be described with reference to Table 1 and FIG. Table 1 shows the composition of the copper-based bearing material 1 used in the present embodiment and the results of the adhesion test. FIG. 2 is a schematic view of the test piece 7 for measuring adhesive strength.
[0014]
[Table 1]
Figure 2004108466
[0015]
No. of the embodiment. Samples 1 to 3 had a thickness of 20 μm each of Fe or Fe—Cr alloy having the composition shown in Table 1 as a middle layer 4 and a back layer 5 previously formed on a back metal 3 made of Ti or a Ti alloy having the composition shown in Table 1. Was pressed so as to be 1.35 mm. A bronze powder (-60 mesh) having a composition of Cu-10 mass% Sn manufactured by an atomizing method as a copper-based bearing layer 2 is sprayed on the back metal 3 at a thickness of 0.8 mm, and sintered with a reducing atmosphere. After sintering at a temperature of 850 ° C. for 20 minutes in a furnace, cold rolling with a roll, and sintering and rolling again under the same conditions, the thickness of the intermediate layer 4 and the back layer 5 are each about 15 μm, and the total thickness. Was made to be 1.5 mm.
[0016]
No. of the embodiment. The sample No. 4 was prepared by pressing rolls of Ti on the back metal 3 in advance so that the intermediate layer 4 and the back layer 5 were Fe-pressed to a thickness of 40 μm and a total thickness of 2.0 mm. A bronze plate having a thickness of 0.7 mm with Cu-10 mass% Sn is roll-welded, and then subjected to a heat treatment at a temperature of 700 ° C. for 30 minutes in a sintering furnace having a reducing atmosphere. Cold rolling was performed to produce a copper-based bearing material 1 such that the thickness of each of the intermediate layer 4 and the back layer 5 was about 15 μm, and the total thickness was 1.5 mm.
[0017]
No. of the comparative example. No. 1 is a conventional general copper-based bearing material for the back metal 3 and uses steel having a composition equivalent to S10C. 2 used Ti as the back metal 3. No. of the comparative example. Nos. 1 and 2 of the Examples except that the intermediate layer 4 and the back layer 5 were not provided. A copper-based bearing material 1 was produced by the same sintering method as in Examples 1 to 3.
[0018]
No. of the comparative example. No. 3 is No. of the comparative example. Sample 2 was prepared by the same method except that the intermediate layer 4 and the back layer 5 were provided. However, C, S, and P, which are out of the range of the present invention, were used as the intermediate layer 4 and the back layer 5 in a total amount of 0.1. A copper-based bearing material 1 using an Fe-Cr alloy layer containing 6% by mass was produced.
[0019]
The copper-based bearing material 1 produced by the above method was processed into a test piece 7 shown in FIG. The test piece 7 was provided with two circular openings 8 and the adhesive force between the copper-based bearing layer 2 and the back metal 3 was measured by pulling the circular openings 8 with a tensile tester. Table 1 shows the test results.
[0020]
As is clear from Table 1, the backing metal 3 made of Ti or Ti alloy, the intermediate layer 4 and the back surface layer 5 made of Fe or Fe—Cr alloy, and the copper-based bearing material 1 made of the copper-based bearing layer 2 in the present embodiment are: It can be seen that the adhesive strength between the copper-based bearing layer 2 and the back metal 3 is equal to or greater than Comparative Example 1 which is a conventional general low-carbon steel backed copper-based bearing material.
[0021]
No. of the comparative example. No. 2 is sintered in a state where the copper-based bearing layer 2 and the back metal 3 made of Ti are in direct contact with each other, but a large amount of intermetallic compound is generated at the interface between the copper-based bearing layer 2 and the back metal 3. In addition, the test piece was peeled off during the processing of the adhesive force measurement specimen, so that the adhesive force measurement could not be performed.
[0022]
No. of the comparative example. Reference numeral 3 denotes a material in which the Fe—Cr alloy used as the intermediate layer 4 and the back layer 5 contains C, S, and P in a total amount of 0.6% by mass, which is outside the scope of the present invention. Many compounds of C, S, P and Ti are generated at the interface between Ti and the Fe—Cr alloy layer between the intermediate layer 4 and the back layer 5. For this reason, in the measurement of the adhesive strength, peeling occurred from the compound of C, S, P, and Ti, and No. 1 of Comparative Example, which is a conventional general low-carbon steel-backed copper bearing material. The adhesive strength between the copper bearing layer 2 and the back metal 3 was lower than that of No. 1.
[0023]
Although the structure and operation of the copper-based bearing material 1 according to the embodiment have been described above, according to the embodiment, the copper-based bearing layer 2 made of Cu or a Cu alloy is fixed to one side surface of the back metal 3. In the copper-based bearing material 1, the back metal 3 is made of Ti or a Ti alloy, and the intermediate layer 4 made of Fe or an Fe—Cr alloy is provided between the backing metal 3 and the copper-based bearing layer 2. It is possible to prevent a metal or gas that easily becomes an intermetallic compound from directly contacting Ti or a Ti alloy, and to suppress the generation of a compound with an intermetallic compound or gas. Further, since Fe and Cr used for the intermediate layer 4 have a property that it is difficult to generate an intermetallic compound with Ti at a heat treatment temperature after sintering and pressing of the Cu alloy, sintering and heat treatment can be performed, and the production is inexpensive. The copper-based bearing material 1 using Ti or a Ti alloy for the back metal 3 can be manufactured without reducing the strength of the copper-based bearing material 1 by a continuous sintering method or a continuous roll pressing method.
[0024]
Further, since the back layer 5 having the same component as the intermediate layer 4 is fixed to the other side surface of the back metal 3, the other side surface of the back metal 3 on which the copper-based bearing layer 2 is not laminated is the same as the back layer 5 having the same component as the intermediate layer 4. Since it is covered with Ti or a Ti alloy, it reacts with N 2 , H 2 , CO, CO 2, etc., which are the reducing gas and inert gas components necessary for heat treatment after sintering or roll pressing, to form compounds. , And can be heated in a reducing gas or an inert gas, and the copper-based bearing material 1 using Ti or a Ti alloy for the back metal 3 can be mass-produced. It can be manufactured using a continuous sintering method or a continuous roll pressing method that can be manufactured at low cost.
[0025]
Further, since the intermediate layer 4 contains only 0.5% by mass or less of the total of C, S, and P contained in Fe or the Fe—Cr alloy, it contains only a small amount of a component that easily becomes an intermetallic compound. Even if an intermetallic compound is generated, the amount thereof is small, and the adhesion between the back metal made of Ti or Ti alloy and the intermediate layer 4 made of Fe or Fe—Cr alloy does not decrease.
[0026]
In addition, the back layer 5 contains only a small amount of a component that easily becomes an intermetallic compound because the total of C, S, and P contained in Fe or the Fe—Cr alloy is 0.5% by mass or less. Even if an intermetallic compound is generated, the amount thereof is small, and the adhesion between the back metal made of Ti or Ti alloy and the back layer 5 made of Fe or Fe—Cr alloy does not decrease.
[0027]
Further, the intermediate layer 4 and the back layer 5 each have a thickness of 1 μm or more, and are not more than 20% of the thickness of the back metal 3, so that the intermediate layer 4 and the back layer 5 are not easily broken. To prevent direct contact between the reducing gas or the inert gas and the Ti or Ti alloy or the copper-based bearing layer 2, while preventing the back metal 3 made of Ti or the Ti alloy in the intermediate layer 4 and the back layer 5. Since the thickness is reduced, the coefficient of thermal expansion of the back metal 3 made of Ti or Ti alloy can be maintained at a coefficient of thermal expansion substantially equal to the coefficient of thermal expansion of the connecting rod made of Ti alloy.
[0028]
The Ti alloy of the back metal 3 used in the present invention may have a composition containing one or more of the following elements in Ti.
[0029]
Element Vanadium (V): 25% by mass or less Molybdenum (Mo): 16% by mass or less Aluminum (Al): 8% by mass or less Tin (Sn): 5% by mass or less Zirconium (Zr): 7% by mass or less Iron ( Fe): 5% by mass or less Chromium (Cr): 12% by mass or less Silicon (Si): 0.5% by mass or less Lead (Pd): 0.25% by mass or less Reference numeral 1 denotes a bimetal type including a copper-based bearing layer 2 and a back metal 3, but is not limited thereto. For example, an overlay layer may be provided on the upper surface of the copper-based bearing layer 2. .
[0030]
【The invention's effect】
As is apparent from the above description, in the invention of claim 1, since the intermediate layer made of Fe or Fe-Cr alloy is provided between the copper-based bearing layer and the backing metal, the metal or the gas that easily becomes an intermetallic compound is formed. It can prevent direct contact with Ti or a Ti alloy, and can suppress generation of a compound with an intermetallic compound or a gas. Furthermore, since the Fe and Cr used for the intermediate layer are unlikely to form an intermetallic compound with Ti at the heat treatment temperature after sintering or pressing of the Cu alloy, sintering and heat treatment become possible, and continuous sintering that can be manufactured at low cost It is possible to manufacture a copper-based bearing material using Ti or a Ti alloy for the backing metal without reducing the strength of the copper-based bearing material by the method or the continuous roll pressing method.
[0031]
According to the second aspect of the present invention, the other side surface of the back metal on which the copper-based bearing layer is not laminated is covered with the back layer having the same composition as the intermediate layer, so that it is necessary for sintering with Ti or Ti alloy or heat treatment after roll pressing. Reacts with various reducing gas and inert gas components such as N 2 , H 2 , CO, and CO 2 to form a compound or to be dissolved in a large amount to be embrittled. It can be heated in an inert gas, and can be manufactured using a continuous sintering method or a continuous roll pressing method that can produce copper-based bearing materials using Ti or Ti alloy as backing metal for mass production at low cost. It becomes possible.
[0032]
Further, in the invention of claim 3, since only a small amount of a component that easily becomes an intermetallic compound is contained, even if an intermetallic compound is generated, the amount is small, and a back metal made of Ti or Ti alloy and Fe or Fe-Cr alloy are formed. Does not decrease the adhesive strength with the intermediate layer composed of
[0033]
Further, in the invention of claim 4, since only a small amount of a component that easily becomes an intermetallic compound is contained, even if an intermetallic compound is formed, the amount is small, and a back metal made of Ti or Ti alloy and Fe or Fe-Cr alloy are formed. The adhesive strength with the back layer made of is not reduced.
[0034]
Further, in the invention of claim 5, it is difficult to form a broken portion in the intermediate layer and the back layer to prevent direct contact between the reducing gas or the inert gas and the Ti or Ti alloy or the copper-based bearing layer. On the other hand, since the thickness of the intermediate layer and the back layer with respect to the back metal made of Ti or Ti alloy is reduced, the coefficient of thermal expansion of the back metal made of Ti or Ti alloy is almost equal to the coefficient of thermal expansion of the connecting rod made of Ti alloy. Can be maintained.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a cross section of a copper-based bearing material 1 according to the present embodiment.
FIG. 2 is a schematic view of a test piece for measuring adhesive strength.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Copper-based bearing material 2 Copper-based bearing layer 3 Back metal 4 Intermediate layer 5 Back layer

Claims (5)

裏金の一側面に銅又は銅合金からなる銅系軸受層を固着してなる銅系軸受材料において、
前記裏金は、チタン又はチタン合金で構成されると共に、前記銅系軸受層との間に鉄又は鉄−クロム合金からなる中間層を設けたことを特徴とする銅系軸受材料。
In a copper-based bearing material obtained by fixing a copper-based bearing layer made of copper or a copper alloy to one side of a back metal,
The copper-based bearing material, wherein the back metal is made of titanium or a titanium alloy, and an intermediate layer made of iron or an iron-chromium alloy is provided between the back metal and the copper-based bearing layer.
前記裏金の他側面に前記中間層と同一成分の背面層を固着したことを特徴とする請求項1記載の銅系軸受材料。The copper-based bearing material according to claim 1, wherein a back layer having the same composition as the intermediate layer is fixed to the other side surface of the back metal. 前記中間層は、鉄又は鉄−クロム合金に含有される炭素、硫黄及びリンの合計が0.5質量%以下であることを特徴とする請求項1又は請求項2記載の銅系軸受材料。3. The copper-based bearing material according to claim 1, wherein the intermediate layer has a total of carbon, sulfur, and phosphorus contained in iron or an iron-chromium alloy of 0.5 mass% or less. 4. 前記背面層は、鉄又は鉄−クロム合金に含有される炭素、硫黄及びリンの合計が0.5質量%以下であることを特徴とする請求項1又は請求項2記載の銅系軸受材料。3. The copper-based bearing material according to claim 1, wherein the back layer has a total of carbon, sulfur, and phosphorus contained in iron or an iron-chromium alloy of 0.5% by mass or less. 4. 前記中間層及び背面層は、それぞれ1μm以上の厚みを有し、且つ前記裏金の厚さの20%以下であることを特徴とする請求項1乃至請求項3のいずれかに記載の銅系軸受材料。4. The copper bearing according to claim 1, wherein the intermediate layer and the back layer each have a thickness of 1 μm or more and 20% or less of a thickness of the back metal. 5. material.
JP2002270992A 2002-09-18 2002-09-18 Copper bearing material Expired - Fee Related JP3839765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002270992A JP3839765B2 (en) 2002-09-18 2002-09-18 Copper bearing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002270992A JP3839765B2 (en) 2002-09-18 2002-09-18 Copper bearing material

Publications (2)

Publication Number Publication Date
JP2004108466A true JP2004108466A (en) 2004-04-08
JP3839765B2 JP3839765B2 (en) 2006-11-01

Family

ID=32268435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002270992A Expired - Fee Related JP3839765B2 (en) 2002-09-18 2002-09-18 Copper bearing material

Country Status (1)

Country Link
JP (1) JP3839765B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT513255B1 (en) * 2012-12-28 2014-03-15 Miba Gleitlager Gmbh Multilayer plain bearings

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT513255B1 (en) * 2012-12-28 2014-03-15 Miba Gleitlager Gmbh Multilayer plain bearings
AT513255A4 (en) * 2012-12-28 2014-03-15 Miba Gleitlager Gmbh Multilayer plain bearings

Also Published As

Publication number Publication date
JP3839765B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
US3129069A (en) Oxidation-resistant turbine blades
JPH03177598A (en) Plain bearing
JP5108976B2 (en) Fuel cell separator
JPS6344942A (en) Preparation of catalyst substrate for automobile exhaust gas purifying device
JP2011502786A (en) Workpiece joining method and material welding method having a work piece region made of titanium aluminum alloy
US20100087346A1 (en) Solid film lubricated high oxidation temperature rhenium material
JP2017210658A (en) HEAT-RESISTANT Ti ALLOY AND HEAT-RESISTANT Ti ALLOY MATERIAL
JP2010215951A (en) Sintered composite sliding component and manufacturing method therefor
JPH06192774A (en) Copper alloy plain bearing having high strength back plate and its production
JPWO2017018514A1 (en) Titanium composite and titanium material for hot rolling
JP3839765B2 (en) Copper bearing material
JP6787428B2 (en) Titanium material for hot rolling
JP3929198B2 (en) Metal exhaust gas purification metal carrier composed of thin metal foil and method for producing the same
JPH05202706A (en) Engine valve and manufacture thereof
JP5108986B2 (en) Fuel cell separator
JP2008291316A (en) Method for manufacturing slide bearing
JP3196389B2 (en) Ni-base alloy for metallurgy
JP4349719B2 (en) Aluminum bronze sintered bearing material and manufacturing method thereof
JP3534633B2 (en) Joint member and turbine member
JP2003253423A (en) Heat resistant alloy material with excellent high- temperature corrosion resistance, and its manufacturing method
JP4276426B2 (en) Tungsten alloy material having oxidation resistance and manufacturing method thereof
JP3195506B2 (en) Surface treatment method for tungsten heavy alloy
JP6842739B2 (en) Covering member
JPH05179420A (en) Aluminum material excellent in wear resistance and its production
JPS5834538B2 (en) How to use it

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060803

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees