JP2008291316A - Method for manufacturing slide bearing - Google Patents

Method for manufacturing slide bearing Download PDF

Info

Publication number
JP2008291316A
JP2008291316A JP2007138066A JP2007138066A JP2008291316A JP 2008291316 A JP2008291316 A JP 2008291316A JP 2007138066 A JP2007138066 A JP 2007138066A JP 2007138066 A JP2007138066 A JP 2007138066A JP 2008291316 A JP2008291316 A JP 2008291316A
Authority
JP
Japan
Prior art keywords
bearing
base material
metal base
back metal
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007138066A
Other languages
Japanese (ja)
Inventor
Teruo Asai
輝雄 浅井
Yasushi Umemoto
靖 梅本
Takanori Kuroki
隆憲 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuroki Kogyosho Co Ltd
Original Assignee
Kuroki Kogyosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuroki Kogyosho Co Ltd filed Critical Kuroki Kogyosho Co Ltd
Priority to JP2007138066A priority Critical patent/JP2008291316A/en
Publication of JP2008291316A publication Critical patent/JP2008291316A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for bonding different materials in the manufacture of a slide bearing that employs a bearing material made from an Al-Sn alloy containing no environmental pollutants, which shows a high degree of freedom in a size and a shape, reduces the number of parts, the number of steps and a cost, and shortens the delivery time. <P>SOLUTION: This method for manufacturing the slide bearing that employs the bearing material made from the Al-Sn alloy includes adopting a HIP (hot isostatic pressing) process, and using stainless steel for a base material of a back metal or making nickel exist in the interface between the slide bearing and the base material of the back metal. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、比較的軟質の軸受材と通常炭素鋼からなる裏金母材で構成されるすべり軸受の製造法に関する。   The present invention relates to a method for manufacturing a plain bearing composed of a relatively soft bearing material and a back metal base material usually made of carbon steel.

駆動部をもつあらゆる製品に用いられる機械要素としてのすべり軸受は、回転する軸を回転面で支えるジャーナル軸受と軸方向で支えるスラスト軸受が代表的なものである。   Typical examples of the slide bearing as a mechanical element used in any product having a drive unit include a journal bearing that supports a rotating shaft with a rotating surface and a thrust bearing that supports the shaft in the axial direction.

この回転軸を面で支えて、すべりの相対運動を行う軸受をとくに、「すべり軸受」と呼び、点接触する玉を用いた「ころがり軸受」とは区別する。   A bearing that supports the rotating shaft by a surface and performs relative movement of the slide is particularly called a “slide bearing”, and is distinguished from a “rolling bearing” using a point contact ball.

図1は、このすべり軸受における代表的な(イ)にジャーナル軸受と、(ロ)にスラスト軸受の代表的な形態を示す。 (イ)と(ロ)のそれぞれにおいて、軸の断面とのX−X線に沿っての断面を示す。   FIG. 1 shows a typical form of a journal bearing in (a) and a typical form of a thrust bearing in (b). In each of (a) and (b), a cross section along the line XX with the cross section of the shaft is shown.

一般に、すべり軸受は比較的軟質の軸受材1と裏金母材2で構成され、裏金には汎用性や剛性がある鉄合金、通常炭素鋼や軟鋼などが用いられることが多い。   In general, a plain bearing is composed of a relatively soft bearing material 1 and a back metal base material 2, and an iron alloy having general versatility and rigidity, usually carbon steel or mild steel, is often used for the back metal.

近年、係るすべり軸受の軸受材1としては、鉛(Pb)系または錫(Sn)系のホワイトメタルやPbを含有したCu合金に替わり、より軽量な材質であるAl合金が用いられるようになってきた。   In recent years, as a bearing material 1 of such a sliding bearing, an Al alloy, which is a lighter material, is used instead of a lead (Pb) -based or tin (Sn) -based white metal or a Cu alloy containing Pb. I came.

これは、Pbが本来もつ環境負荷性を低減することも含め、軸受への荷重や速度などの負荷条件も増えて、材質的に耐えられない条件があることによる。   This is because the load conditions such as the load and the speed on the bearing are increased, including the reduction of the environmental load inherent in Pb, and there are conditions that cannot be endured in terms of material.

この軸受材としては、含有するPbやSnは、異物埋収性やなじみ性という、すべり軸受としては必要不可欠な特性があり、それぞれが固溶しない組合せであり、固溶することなく軸受材中に分散することで、軸受材における軟質材としての特性をより発現できる。   As this bearing material, the contained Pb and Sn have indispensable characteristics as a slide bearing, such as foreign matter burying property and conformability, and they are a combination in which they do not dissolve, and they do not dissolve in the bearing material. By dispersing in, the characteristics as a soft material in the bearing material can be expressed more.

例えば、Snを含むAl合金として、Al−40重量%Sn−1重量%CuからなるA40という軸受合金がよく知られている。この合金はCuを1重量%含むAl合金母相中に40重量%ものSnを固溶しない第2相として含んでいる。   For example, a bearing alloy called A40 made of Al-40 wt% Sn-1 wt% Cu is well known as an Al alloy containing Sn. This alloy contains 40% by weight of Sn as a second phase which does not dissolve in an Al alloy matrix containing 1% by weight of Cu.

ところで、このような軸受材において、Cuまたは、Al合金母材に、多量の軟質材を固溶しない第2相として含む軸受材とした軸受は、従来から、粉末焼結法、または帯板圧接法、またはこれらを複合させた製法によって製造されている。(特許文献1〜3参照)   By the way, in such a bearing material, a bearing material including a second phase that does not dissolve a large amount of soft material in a Cu or Al alloy base material has been conventionally used in a powder sintering method or a strip pressure welding. It is manufactured by the method or the manufacturing method which combined these. (See Patent Documents 1 to 3)

ところが、ジャーナル軸受の場合には、粉末焼結法や帯板圧接法においては、曲げ加工して軸受を製作する必要から、裏金母材が曲げ加工できる程度の板厚が薄くて、しかも、比較的軟質の炭素鋼または軟鋼などの鉄合金に限られることになる。したがって、剛性が必要な軸受や大型軸受の場合には、さらに剛性のある硬質の鉄合金で軸受を収納する容器を別途に製作して軸受位置に設置することが必要となる。   However, in the case of journal bearings, the powder sintering method and strip pressure welding method require bending to produce the bearing, so the plate thickness is thin enough to allow the back metal base material to be bent. Limited to ferrous alloys such as carbon steel or mild steel. Therefore, in the case of a bearing that requires rigidity or a large-sized bearing, it is necessary to separately manufacture a container for housing the bearing with a hard iron alloy having rigidity, and install it at the bearing position.

従来の粉末圧延法および帯板圧接法による軸受の製作においては、軸受材1と裏金母材2は曲げ加工をできることが、寸法および材質の選定においてそれらの双方に必須であり、当然ながら、製品特性にも制限が加わってくることは自明である。   In the production of bearings by the conventional powder rolling method and strip plate pressure welding method, the bearing material 1 and the back metal base material 2 can be bent, and it is essential to select both dimensions and materials. It is self-evident that the characteristics are also limited.

(イ)に示すジャーナル軸受の場合、従来法では曲げ加工で製作された薄い裏金母材2をもった軸受材1を、剛性がより高い形状および寸法をもった異材の裏金補強材で全体を構成する必要があり、この場合も部品数および工程数の増加は避けがたいという製造法特有の欠点があり、コストおよび納期的にも不利であった。   In the case of the journal bearing shown in (a), the bearing material 1 having a thin backing metal base material 2 manufactured by bending in the conventional method is entirely made of a different backing metal reinforcing material having a shape and size having higher rigidity. In this case as well, there is a disadvantage inherent to the manufacturing method in that an increase in the number of parts and the number of processes is unavoidable, which is disadvantageous in terms of cost and delivery time.

そして、すべり軸受の他の形態である回転軸の荷重を軸方向から支える(ロ)に示すスラスト軸受においては、裏金母材2が厚く曲げ加工ができないため、従来法によるジャーナル軸受とは異なる製造工程が採用され、品質や工程管理の面で複雑になっていた。つまり、ジャーナル軸受では連続した製造ラインで効率よく製造することが可能であったが、スラスト軸受では従来とは異なる製造ラインで不連続的に製造するしかなく、別々の管理方法、製造条件を採用する必要がある点ではコストおよび納期的にも不利であった。   Further, in the thrust bearing shown in (b) that supports the load of the rotating shaft from the axial direction, which is another form of the slide bearing, the back metal base material 2 is thick and cannot be bent, so that it is manufactured differently from the journal bearing according to the conventional method. The process was adopted, and it was complicated in terms of quality and process control. In other words, journal bearings could be manufactured efficiently on a continuous production line, but thrust bearings could only be produced discontinuously on a production line different from conventional ones, and different management methods and production conditions were adopted. It was also disadvantageous in terms of costs and delivery time in terms of what had to be done.

また、粉末焼結法あるいは帯板圧接法で得られた軸受も、軸受材と裏金母材との間には、それぞれの熱膨張の差によって熱応力が発生したり、脆弱な反応層が形成したり、低品質の軸受となる恐れがあった。
特許第3195042号 特開2004−76039 特開2002−38230
Also, in bearings obtained by powder sintering or strip pressure welding, thermal stress occurs due to the difference in thermal expansion between the bearing material and the back metal base material, and a fragile reaction layer is formed. Or there was a risk of low quality bearings.
Japanese Patent No. 3195042 JP 2004-76039 A JP 2002-38230 A

本発明の課題は、多量の軟質材を固溶しない第2相として含む軸受材とした従来の軸受の粉末焼結法あるいは帯板圧接法によって得られた軸受の上記欠点を解消することにある。   An object of the present invention is to eliminate the above-mentioned drawbacks of a bearing obtained by a powder sintering method or a band plate pressure welding method of a conventional bearing which is a bearing material containing a large amount of a soft material as a second phase that does not dissolve in a solid solution. .

具体的には、粉末焼結法あるいは帯板圧接法によって得られた軸受において、軸受材と裏金母材との接合界面における熱応力の発生を低減し、かつ、接合界面における脆弱な反応層の形成を防止することによって、信頼性の高い軸受を安定的に得ることにある。   Specifically, in a bearing obtained by a powder sintering method or a strip pressure welding method, the generation of thermal stress at the joint interface between the bearing material and the back metal base material is reduced, and a fragile reaction layer at the joint interface is reduced. By preventing the formation, it is to stably obtain a highly reliable bearing.

本発明は、先の図1において、従来の粉末圧延法および帯板圧接法による軸受の製作においては、軸受材1と裏金母材2は曲げ加工ができることが、寸法および材質の選定においてそれらの双方に必須であり、このことによって、当然ながら、製品特性にも制限が加わってくることは自明であり、製品により近い形状および寸法であるいわゆるニアネット形状で一体製作できるHIP法が適しているという認識に基づく。   In the present invention, in FIG. 1, in the production of the bearing by the conventional powder rolling method and the strip pressure welding method, the bearing material 1 and the back metal base material 2 can be bent. It is essential for both, and, of course, it is obvious that the product characteristics are also limited, and the HIP method that can be integrally manufactured in a so-called near net shape, which is a shape and size closer to the product, is suitable. Based on the recognition.

本発明は、多量の軟質材を固溶しない第2相として含む母材を軸受材とし、且つ、複雑な形状をもつ軸受の製造に、複雑形状やニヤネット形状製品の製造に適しているHIP(熱間等方加圧)法による拡散接合法を適用したものである。   The present invention uses a base material containing a large amount of a soft material as a second phase that does not form a solid solution as a bearing material, and is suitable for manufacturing a bearing having a complicated shape and a complex shape or near net shape product. A diffusion bonding method using a hot isostatic pressing method is applied.

そして、このHIP法による拡散接合法を適応することによって得られた軸受は、軸受材が裏金母材である鋼と界面接合によって一体化され、これによって、接合界面における熱膨張率の差異による熱応力の発生を低減し、且つ、前記裏金母材である鋼の少なくとも軸受材側の一部をステンレス鋼とすることによって接合界面における脆弱な反応層の形成を抑止することができる。   The bearing obtained by applying the diffusion bonding method by the HIP method is integrated with the steel, which is the backing metal base material, by interfacial bonding, whereby heat due to the difference in thermal expansion coefficient at the bonding interface is obtained. The formation of a fragile reaction layer at the joint interface can be suppressed by reducing the generation of stress and by using at least a part of the steel as the backing metal base on the bearing material side as stainless steel.

とくに、Cu合金を軸受材としたすべり軸受よりもさらに軽量化および軟質化され、さらに環境負荷成分を含まないAl−Sn合金を軸受材としたすべり軸受の製造において、裏金母材である鋼との反応によるAl−Fe系の金属間化合物の形成と熱膨張率の差とによって、寸法および形状の自由度が高く、しかも部品数および工程数の省略をはじめ、コストおよび納期的にも有利となる異材接合方法を得る必要がある。   In particular, in the manufacture of a sliding bearing using an Al-Sn alloy bearing material that is lighter and softer than a sliding bearing using a Cu alloy as a bearing material and does not contain environmental load components, Due to the formation of Al-Fe-based intermetallic compounds by the reaction of and the difference in coefficient of thermal expansion, the degree of freedom in dimensions and shape is high, and it is advantageous in terms of cost and delivery, including the omission of the number of parts and processes. It is necessary to obtain a different material joining method.

Al−Sn合金を軸受材は、その主要成分であるAlとSnは低温においても容易に酸化変質する性質があるため、できるだけ真空雰囲気、少なくとも酸化しない非酸化雰囲気で製造する必要があるが、その点、HIP法は真空容器内に原料を収納した清浄な状態で処理を行うため、雰囲気によって酸化劣化することは皆無となる。   Al-Sn alloy bearing materials, Al and Sn, which are the main components, have the property of being easily oxidized and deteriorated even at low temperatures, so it is necessary to manufacture them in a vacuum atmosphere, at least in a non-oxidizing atmosphere that does not oxidize. On the other hand, since the HIP process is performed in a clean state in which the raw material is stored in a vacuum vessel, there is no oxidative deterioration due to the atmosphere.

Al合金の場合は、Cu合金と比べて、鋼に対する熱膨張率差がかなり大きく(アルミは約24×10−6、銅は約16×10−6、鋼は約12×10−6)、また、Alと鋼の主要成分である鉄(Fe)とは容易に反応してAl−Fe系の金属間化合物を生成しやすいという問題がある。 In the case of Al alloy, the thermal expansion coefficient difference with respect to steel is considerably larger than that of Cu alloy (about 24 × 10 −6 for aluminum, about 16 × 10 −6 for copper, and about 12 × 10 −6 for steel), Further, there is a problem that Al and iron (Fe) which is a main component of steel easily react to generate an Al—Fe-based intermetallic compound.

例えば、接合界面を構成するAl合金と鋼における熱膨張率の過大な差異は界面接合後の冷却過程において過大な熱応力を発生させることによる界面剥離の原因となり、接合界面における熱応力の緩和が必要となってくる。   For example, an excessive difference in the coefficient of thermal expansion between the Al alloy and steel constituting the bonding interface causes interface peeling due to excessive thermal stress generated in the cooling process after the interface bonding, and the thermal stress at the bonding interface is relaxed. It becomes necessary.

また、接合界面に生成したAl−Fe系の金属間化合物は、本来脆性であるため、接合界面に発生した熱応力によって容易に破壊しやすい基本的な性質があり、過剰な金属間化合物の生成は熱応力の発生に伴って界面剥離の原因となってしまう可能性がある。   In addition, Al-Fe intermetallic compounds generated at the bonding interface are inherently brittle, so they have the basic property of being easily broken by the thermal stress generated at the bonding interface, producing excessive intermetallic compounds. May cause interfacial delamination with the generation of thermal stress.

このように、HIP法においてAl−Sn合金を軸受材としたすべり軸受を製造する場合には、接合界面における熱応力の発生を極力低く抑えて、かつ金属間化合物の生成量も極力少なくする方策が必要となってくる。   Thus, when manufacturing a plain bearing using an Al—Sn alloy as a bearing material in the HIP method, a measure to suppress the generation of thermal stress at the joint interface as much as possible and to reduce the amount of intermetallic compound generated as much as possible. Will be needed.

つまり、Al合金の場合は、Cu合金に比べて接合温度であるHIP保持温度は低いため、通常の裏金母材である炭素鋼との特性の差異による影響は若干小さくなることは予測される。   That is, in the case of Al alloy, since the HIP holding temperature, which is a bonding temperature, is lower than that of Cu alloy, it is predicted that the influence due to the difference in characteristics from the carbon steel that is a normal backing metal base material is slightly reduced.

そこで、熱応力の発生を低く抑えるために少なくとも接合界面における熱膨張率の差異を小さくするため、裏金としてAl−Sn合金に近い熱膨張率をもった鋼であるステンレス鋼(熱膨張率は約14〜16×10−6)を採用すること、またはニッケル(熱膨張率は約13×10−6)を界面層として介在させることが非常に有効である。 Therefore, in order to minimize the occurrence of thermal stress, at least the difference in the thermal expansion coefficient at the joint interface is reduced, so that stainless steel, which has a thermal expansion coefficient close to that of the Al—Sn alloy, is used as the back metal (the thermal expansion coefficient is about 14 to 16 × 10 −6 ) or nickel (thermal expansion coefficient is about 13 × 10 −6 ) as an interface layer is very effective.

つまり、本発明であるHIP法におけるAl−Sn合金を軸受材としたすべり軸受の製造において、裏金母材として少なくとも一部にオーステナイト組織を含むオーステナイト系ステンレス鋼を採用すること、またはニッケルを界面層として介在させることは、接合界面における熱応力緩和と界面反応抑止の両方において効果がある。   That is, in the manufacture of a sliding bearing using an Al—Sn alloy as a bearing material in the HIP method of the present invention, an austenitic stainless steel containing at least a part of an austenitic structure is adopted as a back metal base material, or nickel is used as an interface layer. As an intermediary, there is an effect in both thermal stress relaxation and interface reaction suppression at the bonding interface.

このAl−Sn系の軸受材自体は従来から知られた軸受用合金であり、Pbなどの環境汚染成分を含まず、すべり軸受の軟質化と軽量化を同時に達成できる軸受材である。ただし、潤滑材として機能する錫を多量に含むAl−Sn合金は、インゴットのような溶製材で製造すると、母相であるアルミよりも低融点の錫が原因となって粗大化や偏析を起こすので均一な組織や特性が得られないため、粉末の形態とする必要がある。   The Al—Sn bearing material itself is a conventionally known bearing alloy, and does not include environmental contamination components such as Pb, and can simultaneously achieve softening and weight reduction of the sliding bearing. However, when an Al—Sn alloy containing a large amount of tin that functions as a lubricant is manufactured from a molten material such as an ingot, it causes coarsening and segregation due to tin having a melting point lower than that of aluminum as a parent phase. Therefore, since a uniform structure and characteristics cannot be obtained, it is necessary to use a powder form.

粉末の製造法としては、従来から用いられてきたアトマイズ法としてガスアトマイズ法が好適である。   As a powder production method, a gas atomization method is suitable as an atomization method conventionally used.

そして、もうひとつの主要な軸受構成材である裏金母材は、熱応力緩和と界面反応抑制のために少なくとも裏金母材側の界面の一部をステンレス鋼とするか、またはニッケルを界面に介在させる。   The back metal base material, which is another major bearing component, is made of stainless steel or at least part of the interface on the back metal base side for thermal stress relaxation and interface reaction control, or nickel intervenes in the interface. Let

例えば、少なくとも裏金母材側の界面付近をステンレス鋼とする例として、最も基本的で単純な例は裏金母材全体をステンレス鋼とすることであり、製造コストおよび納期対応の点で最も有利である。もちろん、接合界面となる界面側がステンレス鋼である2層クラッド材でも使用可能ではあるが、価格も高価で、所定の寸法範囲仕様からすると市場での入手も容易ではないと思われる。   For example, as an example where stainless steel is used at least near the interface on the back metal base material side, the most basic and simple example is to use stainless steel for the entire back metal base material, which is most advantageous in terms of manufacturing cost and delivery time. is there. Of course, it is possible to use a two-layer clad material in which the interface side serving as the bonding interface is stainless steel, but the price is also expensive, and it is not easy to obtain in the market based on the specification of a predetermined size range.

ステンレス鋼の材質としては、最も汎用性の高いオーステナイト系ステンレス鋼が熱膨張率の範囲からは好適である。つまり、SUS304やSUS316を代表例とするオーステナイト系ステンレス鋼は適度のNiを含み、ステンレス鋼の中でも熱膨張率が高く、Al−Sn合金との界面反応性や熱膨張率の差異をより小さく設定できる。SUS430のようなフェライト系ステンレス鋼ではNiを含まず熱膨張率が比較的低く(約9×10−6)、SUS410のようなマルテンサイト系ステンレス鋼では低い熱膨張率のほかにも、磁性があるためアーク溶接が困難であるなど本発明には適さない。もちろん、Niを含んで、少なくとも一部にオーステナイト組織をもつ析出硬化系ステンレス鋼SUS630や2相系ステンレス鋼SUS329も適用可能である。 As the material of the stainless steel, the most versatile austenitic stainless steel is preferable from the range of the coefficient of thermal expansion. In other words, SUS304 and SUS316 as a representative example, austenitic stainless steel contains moderate Ni, has a high thermal expansion coefficient among stainless steels, and sets a smaller difference in interfacial reactivity and thermal expansion coefficient with the Al-Sn alloy. it can. Ferritic stainless steel such as SUS430 does not contain Ni and has a relatively low coefficient of thermal expansion (about 9 × 10 −6 ), and martensitic stainless steel such as SUS410 has a low thermal expansion coefficient. Therefore, arc welding is difficult, and it is not suitable for the present invention. Of course, precipitation hardening stainless steel SUS630 and duplex stainless steel SUS329 having Ni and having an austenite structure at least in part are also applicable.

そして、もうひとつの方法としてニッケル(Ni)を界面に介在させることは熱膨張率(約13×10−6)というよりも、Al−Fe間の界面反応抑制の面から評価される。もちろん、Al−Ni間にも金属間化合物は存在するが、Al−Fe系よりも成長が遅いとか、より脆性の小さい金属間化合物である点から、比較的に有利である。 As another method, interposing nickel (Ni) at the interface is evaluated from the viewpoint of suppressing the interfacial reaction between Al—Fe rather than the coefficient of thermal expansion (about 13 × 10 −6 ). Of course, an intermetallic compound exists between Al-Ni, but it is relatively advantageous in that it is slower in growth than the Al-Fe system or is a less brittle intermetallic compound.

ニッケルを界面に介在させる方法として電気めっきが好適例として挙げられる。介在層としてめっき層に求められる特性は、不可避不純物を含む純Niであればよく、厚さも平均して10μ以上であれば反応抑制には効果があり、厚くしてもめっき後に剥離しやすいとか、処理時間が長くなることでめっき費用が高くなるなどの不利なことのほうが多くなるだけである。   Electroplating is a preferred example of a method for interposing nickel at the interface. The characteristics required of the plating layer as the intervening layer may be pure Ni containing inevitable impurities, and if the average thickness is 10 μm or more, the reaction is effective, and even if it is thick, it is easy to peel off after plating. However, the disadvantage is that the plating time becomes higher due to the longer processing time.

本発明において、HIPに用いる装置は、加熱と加圧が同時または個別に行える装置であればよく、処理品は容器に真空封入して加圧アルゴンまたは窒素ガスによって所定の等方圧を負荷できる機能を備えていればよい。   In the present invention, the apparatus used for the HIP may be any apparatus that can perform heating and pressurization simultaneously or individually, and the processed product can be vacuum-sealed in a container and loaded with a predetermined isotropic pressure by pressurized argon or nitrogen gas. What is necessary is just to have a function.

本発明で使用するHIP法であれば、粉末焼結と拡散接合が同時に行えるので、この点においてもやはり製造方法として最適である。   If the HIP method used in the present invention is used, powder sintering and diffusion bonding can be performed at the same time.

軟質材を固溶しない第2相として含む母材からなるCu−Pb,Al−Sn合金系の軸受材とする軸受の製作に、HIP法による拡散接合法を適用したことによって、粉末焼結法や帯板圧接法に比べて寸法および形状の自由度は高くなり、しかも、部品数および工程数が省略できる。   Powder sintering method by applying diffusion bonding method by HIP method to manufacture bearings made of Cu-Pb, Al-Sn alloy-based bearing material made of base material containing second phase that does not dissolve soft material as solid phase Compared with the band plate pressure welding method, the degree of freedom in dimensions and shape is increased, and the number of parts and the number of processes can be omitted.

また、HIP法による拡散接合法を適用したことによって、熱応力の発生が低減され、接合界面において脆弱な反応層の形成を防止することによって、すべり軸受の中でも、ジャーナル軸受において、軽量化、軟質化が達成される。とくに、環境負荷成分を含まないAl−Sn合金を軸受材とする軸受の製作に適したものである。   Moreover, by applying the diffusion bonding method by the HIP method, the generation of thermal stress is reduced, and the formation of a fragile reaction layer at the bonding interface is prevented. Is achieved. In particular, it is suitable for manufacturing a bearing using an Al—Sn alloy containing no environmental load component as a bearing material.

HIP法であれば、粉末焼結と拡散接合が同時に行えるので、この点においてもやはり製造方法として最適である。   In the case of the HIP method, powder sintering and diffusion bonding can be performed at the same time.

ジャーナル軸受およびスラスト軸受ともHIP装置が共通して使えるため、同一の管理方法、製造条件が採用でき、寸法および形状に関係なく制限容量内で同バッチ処理することも可能であるため、コストおよび納期的にも有利となる。   Because journal bearings and thrust bearings can be used in common for HIP devices, the same management method and manufacturing conditions can be used, and batch processing can be performed within the limited capacity regardless of size and shape. This is also advantageous.

以下、本発明の実施の形態の一つを、組成がCuを1重量%含むAl合金母相中に40重量%ものSnを固溶しない第2相として含むAl−Sn合金の軸受材を有するリング状の形態で回転軸の荷重を放射方向から支えるジャーナル軸受に適用した実施例で示す。   Hereinafter, one of the embodiments of the present invention has an Al—Sn alloy bearing material that contains 40% by weight of Sn as a second phase that does not form a solid solution in an Al alloy matrix containing 1% by weight of Cu. An embodiment will be described in which the present invention is applied to a journal bearing that supports a load of a rotating shaft in a ring shape from the radial direction.

HIP法においては、容器中に処理品を真空封入して処理するものであるが、本発明においては、裏金母材を容器として使用してHIP処理する。   In the HIP method, a processed product is vacuum-sealed in a container for processing, but in the present invention, the back metal base material is used as a container for HIP processing.

図2は、図1に示すジャーナル軸受(イ)とスラスト軸受(ロ)において、裏金母材2を容器に兼用している。   FIG. 2 uses the backing metal base material 2 as a container in the journal bearing (A) and the thrust bearing (B) shown in FIG.

すなわち、ジャーナル軸受(イ)の場合、軸受材1を、裏金母材2と収納容器を構成するふた3と内管4とによって溶接構造容器とした形態を採ることができる。その溶接の形態としては、アーク溶接の場合はTIG溶接、特殊溶接としては電子ビーム溶接(EBW)を採用できるが、HIP処理の場合の雰囲気制御も同時に行うようにすることを考慮すれば電子ビーム溶接は特に好適である。   That is, in the case of the journal bearing (A), the bearing material 1 can take the form of a welded structure container made up of the back metal base material 2, the lid 3 constituting the storage container, and the inner tube 4. As the form of welding, TIG welding can be adopted in the case of arc welding, and electron beam welding (EBW) can be adopted as the special welding. However, considering that the atmosphere control in the case of HIP processing is also performed at the same time, the electron beam can be used. Welding is particularly suitable.

また、スラスト軸受(ロ)の場合は、裏金母材2の外面に形成した凹部に軸受材1をセットし、さらにその外周面をふた3によってシールし、軸受材1は裏金母材2とふたによって形成された容器に真空封入した形態を採る。   In the case of a thrust bearing (b), the bearing material 1 is set in a recess formed on the outer surface of the back metal base material 2, and the outer peripheral surface thereof is sealed with a lid 3. The bearing material 1 is covered with the back metal base material 2. The container is formed in a vacuum-sealed form.

このように、裏金母材2を、軸受材1を真空封入した収納容器の構造部材として採用することによって容器構造が簡略化され、製造コストおよび工程上も有利となる。

Figure 2008291316
Thus, by using the back metal base material 2 as a structural member of a storage container in which the bearing material 1 is vacuum-sealed, the container structure is simplified, and the manufacturing cost and the process are advantageous.
Figure 2008291316

表1は、図2に示すすべり軸受の軸受材と裏金母材、それに内管の組成の代表例を示す。   Table 1 shows representative examples of the composition of the bearing material, the back metal base material, and the inner pipe of the slide bearing shown in FIG.

同表において、A40は、一般に軸受材としてのAl−Sn合金であり、Snを40重量%も含むジャーナル軸受およびスラスト軸受に共通した材質である。   In the table, A40 is generally an Al—Sn alloy as a bearing material, and is a material common to journal bearings and thrust bearings containing Sn as much as 40% by weight.

STKM13Aは、機械構造用炭素鋼鋼管であり、ジャーナル軸受の場合、図2に示す内管4となる材質である。そして、ジャーナル軸受の裏金母材は通常炭素鋼S45Cで、スラスト軸受の場合は炭素鋼S25Cであり、本発明による熱応力緩和と界面反応抑制のためにジャーナル軸受において一部ステンレス鋼SUS304を採用することで効果を得た。また、図2において容器を構成するふた3には炭素鋼S25C相当または軟鋼板を、スラスト軸受のふた3にも軟鋼板を用いる。

Figure 2008291316
STKM 13A is a carbon steel pipe for machine structure, and in the case of a journal bearing, it is a material that becomes the inner pipe 4 shown in FIG. The backing metal base material of the journal bearing is usually carbon steel S45C, and in the case of the thrust bearing, carbon steel S25C, and the stainless steel SUS304 is partially used in the journal bearing for thermal stress relaxation and interface reaction suppression according to the present invention. The effect was obtained. Further, in FIG. 2, a carbon steel S25C equivalent or mild steel plate is used for the lid 3 constituting the container, and a mild steel plate is also used for the lid 3 of the thrust bearing.
Figure 2008291316

表2は、すべり軸受の軸受材として上記A40を用い、裏金母材として各種のものを用い、さらに、裏金母材の表面に各種のめっきを施したものも含め、HIP処理条件としての保持温度、保持圧力および保持時間をそれぞれ500℃、98MPaおよび90分とした。   Table 2 shows the holding temperature as HIP processing conditions, including the above A40 as the bearing material of the sliding bearing, various materials as the back metal base material, and those having various platings on the surface of the back metal base material. The holding pressure and holding time were 500 ° C., 98 MPa and 90 minutes, respectively.

同表において、No.1からNo.5がジャーナル軸受であり、No.6からNo.8がスラスト軸受である。   In the table, no. 1 to No. No. 5 is a journal bearing. 6 to No. 8 is a thrust bearing.

ジャーナル軸受のうち、No.1からNo.4は、裏金母材をS45Cとし、界面に介在させる各種めっき層を変化させた場合を示す。   Among journal bearings, No. 1 to No. 4 shows a case where the back metal base material is S45C and various plating layers interposed at the interface are changed.

めっきなしまたは無電解Ni−Pめっきの場合にはHIP処理直後における超音波探傷試験(UT)による検査の結果、一部の接合界面に欠陥が見つかり不合格となった。また電気めっきによるCu(銅)およびNiめっきの場合の両者とも接合界面に欠陥は見つからず、UT検査は合格であった。   In the case of no plating or electroless Ni—P plating, as a result of the inspection by the ultrasonic flaw detection test (UT) immediately after the HIP treatment, a defect was found at a part of the bonding interface and failed. In addition, in both cases of Cu (copper) and Ni plating by electroplating, no defect was found at the joint interface, and the UT inspection passed.

そして、裏金母材全体をオーステナイト系ステンレス鋼SUS304としたNo.5の場合は、接合界面に欠陥は見つからず、UT検査は合格であり、接合界面が適度の接合強度をもつことが分かった。   And the whole back metal base material made the austenitic stainless steel SUS304 No .. In the case of 5, no defect was found at the bonding interface, the UT inspection passed, and it was found that the bonding interface had an appropriate bonding strength.

No.6はめっきなしのスラスト軸受の場合であるが、HIP処理直後におけるUT検査の結果、一部の接合界面に欠陥が見つかり、不合格となった。   No. 6 is a case of a thrust bearing without plating, but as a result of the UT inspection immediately after the HIP processing, a defect was found in a part of the joining interface and it was rejected.

No.7およびNo.8に示すスラスト軸受の場合は、界面介在層としてのCuおよびNiめっきを実施したが、やはり両者とも接合界面に欠陥は見つからずUT検査は合格であった。   No. 7 and no. In the case of the thrust bearing shown in FIG. 8, Cu and Ni plating as an interface intervening layer was carried out. However, no defect was found in the joint interface, and the UT inspection passed.

接合界面における健全性を定量的に評価する方法として、接合界面におけるせん断強さを測定することとした。図3に示す(イ)としてジャーナル軸受、(ロ)としてスラスト軸受のせん断試験片として、(イ)の場合は直径部を製品寸法に合わせて、全長15mm、フランジ部厚5mm、(ロ)の場合は全長を製品寸法に合わせて、裏金母材部直径25mm、軸受材部直径15mmとした試験片を複数個採取した。   As a method for quantitatively evaluating the soundness at the joint interface, the shear strength at the joint interface was measured. As shown in FIG. 3, (b) as a journal bearing, (b) as a thrust test piece of a thrust bearing, and (b) in the case of (b), the diameter portion is adjusted to the product dimensions, the total length is 15 mm, the flange thickness is 5 mm, In this case, a plurality of test pieces having a back metal base material diameter of 25 mm and a bearing material diameter of 15 mm were collected in accordance with the product length.

そして、図4に示す(イ)の場合は受け治具と押し治具で構成され、回転軸方向に押し抜きするように荷重を負荷する機構を、(ロ)の場合は軸受材部と裏金母材部を界面に対して平行にずらす機構をもった試験治具を用いて、アムスラー型万能試験機で荷重を負荷しながら、最大負荷荷重(kgf)を接合面積(mm)で除してせん断強さ(kgf/mm)を求め、表3に示した。同図において、(イ)はジャーナル軸受であり、(ロ)はスラスト軸受である。 In the case of (a) shown in FIG. 4, the mechanism is configured by a receiving jig and a pushing jig, and a load is applied so as to be pushed out in the direction of the rotation axis. Using a test jig with a mechanism that shifts the base metal part parallel to the interface, the maximum load load (kgf) is divided by the joint area (mm 2 ) while loading the load with an Amsler universal testing machine. The shear strength (kgf / mm 2 ) was determined and shown in Table 3. In the figure, (a) is a journal bearing and (b) is a thrust bearing.

また、試験後の試験片を観察して破断位置の特定を行い、せん断試験片を採取した位置の近傍から採取した組織観察片において観察したミクロ組織観察から界面に生成した金属間化合物の厚さ計測、およびEDX(エネルギー分散型エックス線分光)分析による化合物の組成決定も行い、併せて表3に示す。

Figure 2008291316
In addition, the thickness of the intermetallic compound generated at the interface from the microstructure observation observed in the microstructure observation piece collected from the vicinity of the position where the shear specimen was taken was observed by observing the specimen after the test. The composition of the compound was also determined by measurement and EDX (energy dispersive X-ray spectroscopy) analysis.
Figure 2008291316

No.1〜No.3で示したジャーナル軸受の場合、めっきなし、Ni−PめっきおよびCuめっきではせん断強さは5kgf/mm以下の低い不安定な接合強度であり、いずれも接合界面に形成された金属間化合物内で破壊していた。 No. 1-No. In the case of the journal bearing shown by No. 3, the non-plating, Ni-P plating and Cu plating have a low and unstable bonding strength of 5 kgf / mm 2 or less, both of which are intermetallic compounds formed at the bonding interface It was destroyed within.

そしてNo.4に示したNiめっきの場合、せん断強さは5〜6kgf/mmと安定した接合強度で、一部A40を含んだ界面で破壊していた。 And No. In the case of the Ni plating shown in FIG. 4, the shear strength was a stable joint strength of 5 to 6 kgf / mm 2, and it was broken at the interface partially including A40.

さらに、裏金母材全体をSUS304とした場合にはさらにせん断強さは6〜7kgf/mmに増加し、やはり一部A40を含んだ界面で破壊した。 Furthermore, when the entire back metal base material was SUS304, the shear strength further increased to 6 to 7 kgf / mm 2, and it was also broken at the interface including a part of A40.

また、スラスト軸受に対応するNo.6からNo.8の場合には、めっきなしとCuめっきの場合には5kgf/mm以下の低い接合強度であったが、Niめっきの場合にはせん断強さが5〜6kgf/mmで安定した接合強度を示し、一部A40を含んだ界面で破壊していた。 In addition, No. corresponding to the thrust bearing. 6 to No. In the case of No. 8 and in the case of Cu plating, the bonding strength was as low as 5 kgf / mm 2 or less, but in the case of Ni plating, the bonding strength was stable with a shear strength of 5 to 6 kgf / mm 2. It was broken at the interface partly including A40.

つまり、ジャーナル軸受およびスラスト軸受とも、No.4,No.5およびNo.8のように、裏金母材をステンレス鋼とするか、もしくは接合界面にNiを介在させることによって、UT検査に合格し、相当の接合強度をもつ接合界面をもったすべり軸受を製造できることが確認できた。   That is, both journal bearings and thrust bearings are No. 4, no. 5 and no. As shown in Fig. 8, it is confirmed that the back metal base material is stainless steel, or Ni is interposed in the joint interface, so that it can pass the UT inspection and manufacture a plain bearing with a joint interface having a considerable joint strength. did it.

本発明が適用できるジャーナル軸受およびスラスト軸受の代表的な形態および断面形状を示す。The typical form and cross-sectional shape of the journal bearing and thrust bearing which can apply this invention are shown. ジャーナル軸受およびスラスト軸受の容器形態を断面によって示す。The container form of a journal bearing and a thrust bearing is shown by a cross section. 実施例で用いたせん断試験片の形状を示す。The shape of the shear test piece used in the Example is shown. 実施例で用いたせん断試験のための試験治具を示す。The test jig | tool for the shear test used in the Example is shown.

符号の説明Explanation of symbols

1 Al−Sn合金軸受材
2 裏金母材
3 HIP処理のための収納容器のふた
4 HIP処理のための収納容器の内管
DESCRIPTION OF SYMBOLS 1 Al-Sn alloy bearing material 2 Back metal base material 3 Cap of storage container for HIP processing 4 Inner tube of storage container for HIP processing

Claims (5)

CuまたはAlの合金母材に固溶しない軟質材を第2相として含む軸受材とし、鋼材を裏金母材とした軸受を、HIP法による拡散接合法を適用するすべり軸受の製造法。   A manufacturing method of a slide bearing in which a soft material that does not dissolve in an alloy base material of Cu or Al is used as a bearing material containing a second phase and a steel base material is used as a back metal base material and a diffusion bonding method using the HIP method is applied. 裏金母材をオーステナイト系ステンレス鋼とした請求項1に記載のすべり軸受の製造法。   The manufacturing method of the sliding bearing of Claim 1 which made the back metal base material the austenitic stainless steel. 軸受材と裏金母材の間にNiまたはNiを主体とする介在層を設けた請求項1に記載のすべり軸受の製造法。   The manufacturing method of the sliding bearing of Claim 1 which provided the intervening layer which has Ni or Ni as a main component between a bearing material and a back metal base material. 軸受材がAl−Sn系合金である請求項1に記載のすべり軸受の製造法。   The method for manufacturing a sliding bearing according to claim 1, wherein the bearing material is an Al—Sn alloy. 裏金母材をHIP法による処理のための軸受材の収納容器とする請求項1に記載のすべり軸受の製造法。   2. The method of manufacturing a plain bearing according to claim 1, wherein the backing metal base material is a bearing material storage container for processing by the HIP method.
JP2007138066A 2007-05-24 2007-05-24 Method for manufacturing slide bearing Pending JP2008291316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007138066A JP2008291316A (en) 2007-05-24 2007-05-24 Method for manufacturing slide bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007138066A JP2008291316A (en) 2007-05-24 2007-05-24 Method for manufacturing slide bearing

Publications (1)

Publication Number Publication Date
JP2008291316A true JP2008291316A (en) 2008-12-04

Family

ID=40166351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007138066A Pending JP2008291316A (en) 2007-05-24 2007-05-24 Method for manufacturing slide bearing

Country Status (1)

Country Link
JP (1) JP2008291316A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104943190A (en) * 2014-03-31 2015-09-30 Jx日矿日石能源株式会社 Transfer roller and manufacturing method thereof
US20150283647A1 (en) * 2012-10-18 2015-10-08 Asahi Co., Ltd. Method of manufacturing composite metal material, method of manufacturing mold, method of manufacturing metal product, and composite metal material
CN105209214A (en) * 2013-04-10 2015-12-30 斯凯孚公司 Method of joining two materials by diffusion welding
US10737354B2 (en) 2013-04-09 2020-08-11 Aktiebolaget Skf Bearing component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220336A (en) * 1975-08-08 1977-02-16 Daido Metal Co Ltd Multilayer sliding material and its production method
JP2004017121A (en) * 2002-06-18 2004-01-22 Kuroki Kogyosho:Kk Production method for composite material containing low-melting substance and composed of nonferrous metal alloy and steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220336A (en) * 1975-08-08 1977-02-16 Daido Metal Co Ltd Multilayer sliding material and its production method
JP2004017121A (en) * 2002-06-18 2004-01-22 Kuroki Kogyosho:Kk Production method for composite material containing low-melting substance and composed of nonferrous metal alloy and steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150283647A1 (en) * 2012-10-18 2015-10-08 Asahi Co., Ltd. Method of manufacturing composite metal material, method of manufacturing mold, method of manufacturing metal product, and composite metal material
US9604307B2 (en) * 2012-10-18 2017-03-28 Asahi Co., Ltd. Method of manufacturing composite metal material, method of manufacturing mold, method of manufacturing metal product, and composite metal material
US10737354B2 (en) 2013-04-09 2020-08-11 Aktiebolaget Skf Bearing component
CN105209214A (en) * 2013-04-10 2015-12-30 斯凯孚公司 Method of joining two materials by diffusion welding
CN104943190A (en) * 2014-03-31 2015-09-30 Jx日矿日石能源株式会社 Transfer roller and manufacturing method thereof
JP2015193457A (en) * 2014-03-31 2015-11-05 Jx日鉱日石エネルギー株式会社 Carrier roll and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP5021536B2 (en) Plain bearing
JPH04297536A (en) Wear resistant copper-base alloy excellent in self-lubricity
Cheepu et al. Development of a friction welded bimetallic joints between titanium and 304 austenitic stainless steel
Ghosh et al. On the direct diffusion bonding of titanium alloy to stainless steel
Venkateswaran et al. Brazing of stainless steels using Cu-Ag-Mn-Zn braze filler: Studies on wettability, mechanical properties, and microstructural aspects
JPH03177598A (en) Plain bearing
JP2008291316A (en) Method for manufacturing slide bearing
Wang et al. Interface structure and mechanical properties of Ti (C, N)-based cermet and 17-4PH stainless steel joint brazed with nickel-base filler metal BNi-2
Ur Rahman et al. An overview: Laser-based additive manufacturing for high temperature tribology
DellaCorte et al. Microstructural and material quality effects on rolling contact fatigue of highly elastic intermetallic NiTi Ball bearings
JPH1158034A (en) Joining method of ferrous material and high tension brass alloy and composite material joined by the method
GB2243418A (en) Bearings
JP5231312B2 (en) Plain bearing
WO2022137810A1 (en) Sliding member, bearing, sliding member manufacturing method, and bearing manufacturing method
Coors et al. Investigations on tailored forming of AISI 52100 as rolling bearing raceway
Kundu et al. Effect of bonding temperature on phase transformation of diffusion-bonded joints of duplex stainless steel and Ti-6Al-4V using nickel and copper as composite intermediate metals
JP2011027241A (en) Sliding bearing
Rao et al. Hot Isostatic Pressing Technology for Defence and Space Applications.
Mazar Atabaki Characterization of transient liquid-phase bonded joints in a copper-beryllium alloy with silver-base interlayer
JP2019141910A (en) Titanium material for hot rolling
JP2010012483A (en) Member for conveying high-temperature material
Venkateswaran et al. Brazing of martensitic stainless steel to copper using electroplated copper and silver coatings
Mehtedi et al. Bonding of similar AA3105 aluminum alloy by Accumulative Roll Bonding process
JP2010106351A (en) Treatment method for article including container by hip process
JP4446073B2 (en) Joining method of titanium aluminum intermetallic compound and copper alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110909

A02 Decision of refusal

Effective date: 20120113

Free format text: JAPANESE INTERMEDIATE CODE: A02