JPH1158034A - Joining method of ferrous material and high tension brass alloy and composite material joined by the method - Google Patents

Joining method of ferrous material and high tension brass alloy and composite material joined by the method

Info

Publication number
JPH1158034A
JPH1158034A JP9244701A JP24470197A JPH1158034A JP H1158034 A JPH1158034 A JP H1158034A JP 9244701 A JP9244701 A JP 9244701A JP 24470197 A JP24470197 A JP 24470197A JP H1158034 A JPH1158034 A JP H1158034A
Authority
JP
Japan
Prior art keywords
brass alloy
strength brass
ferrous material
joining
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9244701A
Other languages
Japanese (ja)
Other versions
JP4100583B2 (en
Inventor
Kunio Nakajima
邦夫 中島
Riyouichi Ishikane
良一 石金
Wataru Yago
亘 矢後
Kenichi Ichida
賢一 市田
Atsushi Yasukawa
淳 安川
Shigeyuki Yuya
滋行 油谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuetsu Gokin Chuko Kk
Chuetsu Metal Works Co Ltd
Original Assignee
Chuetsu Gokin Chuko Kk
Chuetsu Metal Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuetsu Gokin Chuko Kk, Chuetsu Metal Works Co Ltd filed Critical Chuetsu Gokin Chuko Kk
Priority to JP24470197A priority Critical patent/JP4100583B2/en
Publication of JPH1158034A publication Critical patent/JPH1158034A/en
Application granted granted Critical
Publication of JP4100583B2 publication Critical patent/JP4100583B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of bringing a ferrous material into direct contact with a high tension brass alloy without using an insert and moreover joining the ferrous material with the high tension brass alloy with sufficient joining strength because of generating no brittle intermetallic compound layer between them and the composite material joined by a casting deposition method or a solid joining method. SOLUTION: In the case of joining the high tension brass alloy 3 having excellent corrosion resistance, wear resistance and seizure resistance with the ferrous material 1 as the main body of machine parts and sliding parts, the high power brass alloy 3 used in it is composed of <=3% Al, 15-50% Zn and the balance Cu as the chemical constituent, oxygen is shut off by sealing with the atmosphere of the inert gas of nitrogen and argon or the like and a reducing cracked gas or the like, or by covering with borax and flux acting with the heating temperature or by using a vacuum and the other method so that oxygen does not intervene between the surfaces to be joined, both or one of the ferrous material 1 and the high tension brass alloy 3 is heated at 700-1300 deg.C and the high tension brass alloy 3 is brought into direct contact with the ferrous material 1 in the state of solid, liquid or half-fusion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、鋳込溶着又は固体接合
(一部溶融状態での接合を含む)により、本体としての
鉄系材料に、摺動部又は耐食部として高力黄銅合金を複
合一体化する、鉄系材料と高力黄銅合金を接合する方法
及びその方法で接合した複合材に関する。
The present invention relates to a high strength brass alloy as a sliding portion or a corrosion resistant portion on an iron-based material as a main body by casting welding or solid joining (including joining in a partially molten state). The present invention relates to a method of joining an iron-based material and a high-strength brass alloy to be integrated and a composite material joined by the method.

【0002】[0002]

【従来の技術】このような複合材としては、例えば、ジ
ャーナル軸受、スラスト軸受等の軸受類、ピストンポン
プ、ピストンモーター用のシリンダーブロック、斜板、
シュー等の摺動部品等、さらには、高速、高荷重下で使
用される部品等が挙げられ、高力黄銅合金単体では強度
が不充分であるため、強靱な鉄系材料と摺動特性の良い
高力黄銅合金を複合される。
2. Description of the Related Art Such composite materials include, for example, bearings such as journal bearings and thrust bearings, cylinder blocks for piston pumps and piston motors, swash plates, and the like.
Sliding parts such as shoes, etc., and parts used under high speed and high load, etc. are listed.Since high strength brass alloy alone has insufficient strength, it is difficult to Combined with good high strength brass alloy.

【0003】また、このような複合材は、海水、汚水、
淡水、酸、アルカリに触れる部分や、腐食性蒸気や腐食
性ガス等の雰囲気で使用される。つまり、鉄系材料の強
靱性と高力黄銅合金の優秀な耐食性を合わせ求められる
耐食用部品及びこのような耐食性雰囲気下で使用される
摺動部品として必要とされる。
[0003] Such composite materials are used in seawater, sewage,
Used in areas exposed to fresh water, acids, and alkalis, and in atmospheres such as corrosive vapors and corrosive gases. In other words, it is required as a corrosion-resistant component that requires the toughness of an iron-based material and the excellent corrosion resistance of a high-strength brass alloy, and as a sliding component used in such a corrosion-resistant atmosphere.

【0004】従来、鉄系材料に対して高力黄銅合金を接
合する場合には、次の如き方法が用いられている。 1)肉盛溶接 2)ロー付け、ハンダ付け 3)インサート法 4)接合界面にNi材、リン青銅材等からなるインサー
ト材、あるいはメツキ層を介して固体接合や鋳込溶着を
なす方法 5)溶射法 6)粉末焼結法 7)鋳込溶着、固体接合
Conventionally, when a high-strength brass alloy is joined to an iron-based material, the following method is used. 1) Overlay welding 2) Brazing and soldering 3) Insert method 4) A method of solid joining or casting welding through an insert material made of Ni material, phosphor bronze material, etc., or a plating layer at the joint interface 5) Thermal spraying 6) Powder sintering 7) Cast welding, solid joining

【0005】[0005]

【発明が解決しようとする課題】上記のような従来の接
合方法のうち、肉盛溶接や、ロー付け、ハンダ付け、イ
ンサート法では、技術的に困難であるとか、量産に適し
ない等の問題がある。
Among the conventional joining methods described above, the overlay welding, brazing, soldering, and insert methods are technically difficult or not suitable for mass production. There is.

【0006】また、溶射法は、溶射材を加熱し溶射する
ので、溶射皮膜の接合強度が低く、摺動条件が厳しいと
剥離することがある。また、溶射温度が約2000℃の
高温であるので、鉛や亜鉛等の沸点の低い成分やアルミ
ニウムや珪素等の酸化しやすい成分を含有する高力黄銅
合金材料では、溶射皮膜中のこれらの元素の含有量にバ
ラツキが生じる。また、製造コストが高くなる欠点もあ
る。
In the thermal spraying method, since the thermal spraying material is heated and thermally sprayed, the thermal spray coating has a low bonding strength and may be peeled off under severe sliding conditions. Further, since the thermal spraying temperature is as high as about 2000 ° C., in a high-strength brass alloy material containing a component having a low boiling point such as lead or zinc or a component which is easily oxidized such as aluminum or silicon, these elements in the thermal spray coating are not included. Varies in the content of. There is also a disadvantage that the manufacturing cost is increased.

【0007】粉末焼結は、黄銅合金の粉末(PBC−
2,LBC−3等)をプレスにより圧縮成形して圧粉体
を造り、これを鉄基材料の上に置き、800〜900℃
の高温で加熱して接合する方法である。この場合、通
常、重錘を加え加圧した状態で加熱し、高力黄銅合金全
部を溶融させることもある。いずれにしても、粉末焼結
層がポーラスのため摺動条件の厳しい用途ではクラック
が生じ剥離しやすく、また、接合強度も低いという難点
がある。
[0007] Powder sintering is performed by using brass alloy powder (PBC-
2, LBC-3, etc.) by compression molding with a press to produce a green compact, which is placed on an iron-based material at 800 to 900 ° C.
This is a method of joining by heating at a high temperature. In this case, usually, a weight is added and heated in a pressurized state to melt the entire high-strength brass alloy in some cases. In any case, since the powder sintered layer is porous, cracks are likely to occur in applications where the sliding conditions are severe, and the bonding strength is low.

【0008】鋳込溶着や固体接合による鉄系材料と黄銅
合金との接合では、インサートを用いずに、鋳込や固体
接合又は一部溶融状態での接合を行うことができるの
で、上記の方法に比較して、強力な接合強度を安価に得
られるが、高力黄銅合金であると、接合界面にAl−F
eを主成分とする脆弱な金属間化合物層が生じるので
(図12参照)、さらに高度な接合強度を得るには、こ
の脆弱な金属間化合物層の発生を防止する必要がある。
In the joining of an iron-based material and a brass alloy by cast welding or solid joining, casting, solid joining or joining in a partially molten state can be performed without using an insert. Strong bonding strength can be obtained at a lower cost than in the case of a high strength brass alloy.
Since a brittle intermetallic compound layer containing e as a main component is generated (see FIG. 12), it is necessary to prevent the generation of the brittle intermetallic compound layer in order to obtain a higher bonding strength.

【0009】また、固体接合では、基本的には、接合材
である高力黄銅合金を溶融点近くに加熱し、固体のまま
鉄と銅の分子間の相互拡散により接合する方法である
が、所望の接合強度を得るためにはインサート材が必要
であり、それを溶融させているのが現状である。
[0009] Solid bonding is basically a method in which a high-strength brass alloy, which is a bonding material, is heated to a temperature close to a melting point and bonded in a solid state by mutual diffusion between iron and copper molecules. In order to obtain a desired bonding strength, an insert material is necessary, and at present, it is melted.

【0010】本発明は、上記のような実情に鑑みて、鋳
込溶着法又は固体接合法において、鉄系材料と高力黄銅
合金とをインサートを用いることなく直接接触させ、し
かも、その間に脆弱な金属間化合物層が発生しないため
に、充分な接合強度が得られる鉄系材料と高力黄銅合金
を接合する方法及びその方法で接合した複合材を提供す
ることを目的とした。
In view of the above-mentioned circumstances, the present invention provides a method in which an iron-based material and a high-strength brass alloy are brought into direct contact with each other without using an insert in a casting welding method or a solid joining method, and furthermore, a brittle material is provided therebetween. It is an object of the present invention to provide a method of joining an iron-based material and a high-strength brass alloy that can provide a sufficient joining strength so that a simple intermetallic compound layer is not generated, and a composite material joined by the method.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、機械部品や摺動部品の本体としての鉄
系材料に、耐食性、耐摩耗性、耐焼付性の良好な高力黄
銅合金を接合させる際、それに用いる高力黄銅合金の化
学成分について、Al;3%以下、Zn;15〜50
%、残部Cuとなし、接合面に酸素が介在しないよう窒
素やアルゴン等の不活性ガスや還元性の分解ガス等の雰
囲気でシールしたり、加熱温度で作用する硼砂やフラッ
クスで覆ったり、真空やその他の方法を用いたりして酸
素を遮断し、鉄系材料と高力黄銅合金の両方又は片方を
700〜1300℃に加熱して高力黄銅合金を固体、液
体又は半溶融状態で鉄系材料に直接接触させることを特
徴とする鉄系材料と高力黄銅合金を接合する方法及びそ
の方法で接合した複合材を提供するものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention relates to a method of manufacturing a steel component as a main body of a mechanical component or a sliding component by using a high corrosion resistance, abrasion resistance and seizure resistance. When joining a high-strength brass alloy, regarding the chemical components of the high-strength brass alloy used for the joining, Al: 3% or less, Zn: 15 to 50
%, The remainder is Cu, sealing is performed in an atmosphere of an inert gas such as nitrogen or argon, or a reducing gas such as a reducing gas so that oxygen is not interposed on the bonding surface, or covered with borax or flux acting at the heating temperature, or vacuum. Or other methods to cut off oxygen and heat the ferrous material and / or high-strength brass alloy to 700-1300 ° C to turn the high-strength brass alloy into a solid, liquid or semi-molten iron-based material. An object of the present invention is to provide a method of joining an iron-based material and a high-strength brass alloy, which are brought into direct contact with a material, and a composite material joined by the method.

【0012】加えて、高力黄銅合金の化学成分につい
て、Al;3%以下、Zn;15〜50%、残部Cuを
ベースとし、これにSi;0.1〜3%を加えたり、さ
らに順次、Mn;0.1〜5%、Pb;0.1〜4%を
加えたり、或いは、Si;0.1〜3%、Mn;0.1
〜5%、Pb;0.1〜4%、Ni;0.1〜5%、F
e;0.1〜4%、Co;0.1〜3%、Zr;0.0
1〜2%、Cr;0.01〜2%、Ti;0.01〜3
%、Mo;0.01〜2%、V;0.01〜2%、S
n;0.1〜3%、Nb;0.01〜1%、P;0.0
05〜0.5%、Sb;0.05〜1%、Bi;0.1
〜3%において、少なくとも一種が混合されていたり、
すると目的の達成により有効である。
In addition, the chemical composition of the high-strength brass alloy is based on the following: Al: 3% or less; Zn: 15 to 50%; balance: Cu; Si; 0.1 to 3%, and further , Mn: 0.1 to 5%, Pb: 0.1 to 4%, or Si: 0.1 to 3%, Mn: 0.1
-5%, Pb; 0.1-4%, Ni; 0.1-5%, F
e; 0.1-4%, Co; 0.1-3%, Zr; 0.0
1-2%, Cr; 0.01-2%, Ti; 0.01-3
%, Mo; 0.01 to 2%, V; 0.01 to 2%, S
n: 0.1 to 3%, Nb: 0.01 to 1%, P: 0.0
0.05 to 0.5%, Sb; 0.05 to 1%, Bi; 0.1
In at least 3%, at least one is mixed,
Then, it is more effective to achieve the purpose.

【0013】さらに加えて、鉄系材料と高力黄銅合金の
密着を良くしたり、接合界面の気泡やフラックス、その
他の介在物の除去を目的として、鉄系材料と高力黄銅合
金の両方又は片方を500〜1300℃の温度範囲でプ
レス又は重錘等により押し付けて冶金的結合を促すと、
目的の達成により有効である。
In addition, for the purpose of improving the adhesion between the iron-based material and the high-strength brass alloy and removing bubbles, flux, and other inclusions at the joint interface, both the iron-based material and the high-strength brass alloy are used. When one is pressed with a press or a weight at a temperature range of 500 to 1300 ° C. to promote metallurgical bonding,
It is more effective to achieve the purpose.

【0014】[0014]

【発明の実施の形態】この発明においては、鋳込溶着又
は固体接合において、高力黄銅合金の成分を、Al;3
%以下、Zn;15〜50%となすことにより、鉄系材
料との間に、脆弱な金属間化合物層の発生がなく、両金
属が直接強力に接合する。Alが3%よりも多いと、接
合部にAl−Feの脆弱な金属間化合物が生成し、接合
強度が不足する。また、Znが15%よりも少ないと、
高力黄銅合金としての耐摩耗性や耐食性が得られない。
50%よりも多いと、高力黄銅合金中に硬くて脆い相が
析出し、靭性が不足する。次に、このような高力黄銅合
金に他の元素を混合する場合の元素の選定理由と、添加
量限定理由について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a component of a high-strength brass alloy is Al;
% Or less; Zn; 15 to 50%, the brittle intermetallic compound layer is not generated between the metal and the iron-based material, and the two metals are directly and strongly bonded. If the Al content is more than 3%, a brittle intermetallic compound of Al-Fe is formed at the joint, and the joining strength becomes insufficient. When Zn is less than 15%,
Abrasion resistance and corrosion resistance as a high-strength brass alloy cannot be obtained.
If it is more than 50%, a hard and brittle phase is precipitated in the high-strength brass alloy, resulting in insufficient toughness. Next, the reason for selecting an element when mixing other elements with such a high-strength brass alloy and the reason for limiting the amount of addition will be described.

【0015】(請求項2)Si(0.1〜3%)につい
ては、マトリックスに固溶し、マトリックスの強化と材
料の耐食性を向上させる。また、Mn、Fe、Co、Z
r、Ni、Cr、Ti、Mo、V、Nb、P、Sbと共
存し、金属間化合物を構成し、これにより耐摩耗性、耐
焼付性が向上する。そして、Siが3%よりも多いと、
耐食性は飽和し、金属間化合物の分布が不均一となる。
また、0.1%よりも少ないと、耐食性向上の効果が認
められず、金属間化合物の量も不足を来す。
(Claim 2) Si (0.1 to 3%) forms a solid solution in the matrix, thereby strengthening the matrix and improving the corrosion resistance of the material. Also, Mn, Fe, Co, Z
It coexists with r, Ni, Cr, Ti, Mo, V, Nb, P, and Sb to form an intermetallic compound, thereby improving wear resistance and seizure resistance. And when Si is more than 3%,
The corrosion resistance is saturated, and the distribution of the intermetallic compound becomes uneven.
On the other hand, if it is less than 0.1%, the effect of improving the corrosion resistance is not recognized, and the amount of the intermetallic compound becomes insufficient.

【0016】(請求項3)Mn(0.1〜5%)につい
ては、マトリックスに固溶し材料の強度を向上させる。
主としてSiと結びついて金属間化合物を構成し、耐摩
耗性、耐焼付性を向上させる。 (請求項4)Pb(0.1〜4%)については、耐焼付
性、被削性の向上が望める。 (請求項5)Ni(0.5〜5%)は、マトリックスに
固溶し、耐食性と強度を向上させる。また、P、Sb、
Nb、Al、Fe、Co、Zr、Si、Cr、Ti、V
と金属間化合物を作り、耐摩耗性、耐焼付性が向上す
る。
(Claim 3) Mn (0.1 to 5%) forms a solid solution in the matrix to improve the strength of the material.
It mainly forms an intermetallic compound in combination with Si to improve wear resistance and seizure resistance. (Claim 4) For Pb (0.1 to 4%), improvement in seizure resistance and machinability can be expected. (Claim 5) Ni (0.5 to 5%) forms a solid solution in the matrix and improves corrosion resistance and strength. Also, P, Sb,
Nb, Al, Fe, Co, Zr, Si, Cr, Ti, V
And an intermetallic compound to improve wear resistance and seizure resistance.

【0017】Fe(0.1〜4%)の添加は、結晶の粗
大化の防止と材料強度の向上のためで、Al、Ni、S
i、Co、P、Nb、Mn、Zr、Cr、Ti、Mo、
Sb、Vと金属間化合物を構成し、耐摩耗性、耐焼付性
が向上する。
The addition of Fe (0.1 to 4%) is for preventing crystal coarsening and improving the material strength.
i, Co, P, Nb, Mn, Zr, Cr, Ti, Mo,
It constitutes an intermetallic compound with Sb and V, and improves wear resistance and seizure resistance.

【0018】Co(0.1〜3%)は、結晶の微細化が
促進され、また、Al、Si、Ni、Fe、Zr、P、
Sb、Nb、Vと金属間化合物を構成する。
Co (0.1 to 3%) promotes crystal refining, and Al, Si, Ni, Fe, Zr, P,
Sb, Nb, and V constitute an intermetallic compound.

【0019】Zr(0.01〜1%)は、Al、Si、
Ni、Fe、Cr、Ti、V、P、Co、Nb、Sbと
の間の金属間化合物の結晶を微細化する。
Zr (0.01-1%) is composed of Al, Si,
The crystal of the intermetallic compound between Ni, Fe, Cr, Ti, V, P, Co, Nb and Sb is refined.

【0020】Cr(0.01〜2%)は、P、Co、S
i、Fe、Ti、Al、Zr、V、Ni、Mo、Mn、
Nb、Sbとの間に金属間化合物を作ると共に、一部固
溶して耐食性を向上させる。
Cr (0.01 to 2%) contains P, Co, S
i, Fe, Ti, Al, Zr, V, Ni, Mo, Mn,
An intermetallic compound is formed between Nb and Sb, and a solid solution is formed to improve corrosion resistance.

【0021】Mo(0.01〜2%)は、Al、Cr、
Si、Fe、Niと金属間化合物を構成する。
Mo (0.01 to 2%) contains Al, Cr,
It forms an intermetallic compound with Si, Fe and Ni.

【0022】V(0.01〜2%)は、Nb、Ti、C
r、Zr、Co、Fe、Ni、Sbと金属間化合物を構
成する。
V (0.01 to 2%) is Nb, Ti, C
r, Zr, Co, Fe, Ni, and Sb constitute an intermetallic compound.

【0023】Nb(0.01〜2%)は、Al、Ni、
Si、Mn、Fe、Co、Zr、Cr、Ti、Mo、
V、P、Sbと金属間化合物を構成し、結晶の微細化を
促進する。
Nb (0.01 to 2%) is composed of Al, Ni,
Si, Mn, Fe, Co, Zr, Cr, Ti, Mo,
It forms an intermetallic compound with V, P, and Sb, and promotes crystal refinement.

【0024】Sn(0.1〜3%)については、マトリ
ックスの強化、耐食性の向上、脱亜鉛腐食の防止が望め
る。
For Sn (0.1-3%), it is expected that the matrix is reinforced, the corrosion resistance is improved, and the dezincification corrosion is prevented.

【0025】P(0.005〜0.5%)は、金属間化
合物の構成と、脱亜鉛腐食の防止とを果たす。
P (0.005 to 0.5%) plays a role of forming an intermetallic compound and preventing dezincification corrosion.

【0026】Sb(0.05〜1%)については、P、
Nb、V、Ti、Cr、Zr、Co、Fe、Si、Ni
との金属間化合物の構成と、脱亜鉛腐食の防止が望め
る。
For Sb (0.05-1%), P,
Nb, V, Ti, Cr, Zr, Co, Fe, Si, Ni
And the prevention of dezincification corrosion can be expected.

【0027】Bi(0.1〜3%)は、鉛害の防止と、
被削性の向上に作用する。
Bi (0.1-3%) can prevent lead damage and
It works to improve machinability.

【0027】次に、鉄系材料については、軟鉄、炭素
鋼、合金鋼、ステンレス鋼が適宜に使用される。
Next, as the iron-based material, soft iron, carbon steel, alloy steel, and stainless steel are appropriately used.

【0028】[0028]

【発明の効果】以上説明したように、この発明は、鉄系
材料と高力黄銅合金とをインサートを用いることなく直
接接触させ、しかも、その間に脆弱な金属間化合物層が
発生しないために、充分な接合強度が得られる鉄系材料
と高力黄銅合金を接合する方法及びその方法で接合した
複合材を提供することに成功したものであって、これに
よれば、従来に比して、高力黄銅合金の結合強度が格段
に優れ、耐摩耗性、耐食性、耐焼付性等を有効に発揮す
る製品を製造することができるという効果がある。
As described above, according to the present invention, an iron-based material and a high-strength brass alloy are brought into direct contact without using an insert, and a brittle intermetallic compound layer is not generated between them. A method for joining an iron-based material and a high-strength brass alloy with sufficient joining strength and a composite material joined by the method were successfully provided. The high strength brass alloy has an effect that the bonding strength is remarkably excellent, and a product that effectively exhibits wear resistance, corrosion resistance, seizure resistance and the like can be manufactured.

【0029】[0029]

【実施例】以下に、鋳込溶着法による場合と、固体接合
法による場合とを図面及び表を用いて説明する。いずれ
も、図4に示すように、φ95×29tの鉄系材料1の
円盤面の片面に厚さ2mmの高力黄銅合金3を接合した
複合材Pを得た場合である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The case of the casting welding method and the case of the solid joining method will be described below with reference to the drawings and tables. In each case, as shown in FIG. 4, a composite material P obtained by joining a high-strength brass alloy 3 having a thickness of 2 mm to one surface of a disk surface of a ferrous material 1 of φ95 × 29t is obtained.

【0030】本体素材としての鉄系材料1の形状につい
ては、図1が鋳込溶着用を示し、図2が固体(半溶融)
接合用を示す。また、図3は、高力黄銅合金3の材料を
示す。いずれの図面においても、寸法はmm単位で示
す。
As for the shape of the iron-based material 1 as the main body material, FIG. 1 shows the casting and welding, and FIG.
Shown for joining. FIG. 3 shows a material of the high-strength brass alloy 3. Dimensions are shown in mm in all figures.

【0031】また、いずれも、鉄系材料1については、
S45C(JISG451)材を使用した。これは、炭
素が0.42〜0.48%を成分として含むため、圧延
材又は鍛造材として使用され、一般機械部品用の材料で
ある。強度の高い要求があれば、焼入れ、焼戻しの熱処
理を行って強靱性を高めて使用でき、比較的多用途材と
して広く用いられている。そこで、本実施例では、この
用途を考慮して材料選択した。
In each case, the iron-based material 1
S45C (JIS G451) material was used. It is used as a rolled material or a forged material because carbon contains 0.42 to 0.48% as a component, and is a material for general machine parts. If there is a demand for high strength, it can be used by increasing the toughness by performing heat treatment such as quenching and tempering, and is widely used as a relatively versatile material. Therefore, in this embodiment, the material was selected in consideration of this use.

【0032】高力黄銅合金3の材料寸法については、φ
100×5mm厚とした(図3)。本発明による高力黄
銅合金3の化学成分については表1の通りであって、鋳
込溶着法と固体接合法とにそれぞれ23種(No1〜2
3)の資料を得た。また、比較例として本発明から外れ
る高力黄銅合金3の化学成分について、同じく鋳込溶着
法と固体接合法とにそれぞれ9種の資料を得た。これを
表2に示す(A〜I)。
Regarding the material dimensions of the high-strength brass alloy 3, φ
The thickness was 100 × 5 mm (FIG. 3). The chemical components of the high-strength brass alloy 3 according to the present invention are as shown in Table 1, and 23 types (Nos. 1 to 2) were used for the casting welding method and the solid joining method, respectively.
The data of 3) was obtained. As comparative examples, nine kinds of data were obtained for the chemical composition of the high-strength brass alloy 3 deviating from the present invention by the cast welding method and the solid joining method. This is shown in Table 2 (A to I).

【表1】 [Table 1]

【表2】 [Table 2]

【0033】フラックスには、融点760℃の粉末の硼
砂4を使用した。硼砂4は、金属酸化物を良く溶かす性
質を有し、金属ロウ付け等の溶剤として知られている。
基本的には、硼砂4以外のフラックスであっても、本発
明の接合適正温度700℃よりも低い融点を有するフラ
ックスで、700〜1300℃の温度範囲で活性を示せ
ば、硼砂に限定されない。現状では、種々の他のフラッ
クスの使用を試みたが、硼砂が最も良好な結果を得た。
As the flux, powdered borax 4 having a melting point of 760 ° C. was used. Borax 4 has the property of dissolving metal oxides well, and is known as a solvent for metal brazing or the like.
Basically, fluxes other than borax 4 are not limited to borax, as long as the flux has a melting point lower than the proper bonding temperature of 700 ° C. of the present invention and exhibits activity in a temperature range of 700 to 1300 ° C. At present, attempts have been made to use various other fluxes, but borax has given the best results.

【0034】次に、鋳込溶着の手順について説明する。Next, the procedure of casting welding will be described.

【0035】図5に示すように、鋳込面5に硼砂4を入
れ、それから加熱炉へ入れ、900〜950℃の温度を
保持し、1時間加熱して炉から取り出し、別の溶解炉で
溶解しておいた高力黄銅合金3の溶湯を注入する(図
6)。それから、シャワー水冷により冷却した(図
7)。なお、焼入れを行なわない場合には、エアー冷却
による。次に、溶融又は半溶融状態でプレスにより押圧
する。これには油圧シリンダーを用い、荷重18〜12
tonとした。これに関しては、加圧したもの(プレス
施工)、しないもの(プレス無し)との2通りの資料を
得た。次いで、シャワー水冷したものについて、600
℃の温度で1時間焼戻し、放冷してから図4のように機
械加工した。
As shown in FIG. 5, borax 4 is put into the casting surface 5, then put into a heating furnace, kept at a temperature of 900 to 950 ° C., heated for 1 hour, taken out of the furnace, and put in another melting furnace. The molten high-strength brass alloy 3 is injected (FIG. 6). Then, it was cooled by shower water cooling (FIG. 7). When quenching is not performed, air cooling is used. Next, it is pressed by a press in a molten or semi-molten state. For this, a hydraulic cylinder was used, with a load of 18 to 12
ton. In this regard, two types of materials were obtained, one under pressure (press work) and one without (no press work). Next, about what was shower water cooled, 600
Tempered at a temperature of 1 ° C. for 1 hour, allowed to cool, and then machined as shown in FIG.

【0036】次に、固体接合(半溶融接合)について説
明する。
Next, the solid joining (semi-melting joining) will be described.

【0037】まず、鉄系材料1の接合面を脱脂洗浄して
から、接合面に硼砂4を散布し(図8)、その上に高力
黄銅合金3を載せる(図9)。次に、加熱炉へ挿入し、
900〜950℃の温度を保持して1時間加熱処理した
後、炉から取り出し、固体状態でプレスにて、荷重8〜
12tonで加圧する。この場合も、加圧したものと、
しないものとの2通りとした。次に、図4に示すよう
に、機械加工を行なった。
First, the joining surface of the iron-based material 1 is degreased and washed, and then borax 4 is sprayed on the joining surface (FIG. 8), and the high-strength brass alloy 3 is placed thereon (FIG. 9). Next, insert into the heating furnace,
After heating for 1 hour while maintaining the temperature of 900 to 950 ° C., it is taken out of the furnace and pressed in a solid state with a load of 8 to
Pressurize at 12 tons. In this case, too,
There were two types: those that did not. Next, as shown in FIG. 4, machining was performed.

【0038】次に、鋳込溶着及び固体接合についての評
価については、剪断強度測定と浸透採傷試験(P.
T.)とを行った。その結果を比較例(A〜I)と共に
表3に示す。
Next, regarding the evaluation of the casting welding and the solid joining, the shear strength measurement and the penetration damage test (P.
T. ). Table 3 shows the results together with Comparative Examples (A to I).

【表3】 [Table 3]

【0039】剪断強度測定は、複合材から図10の形状
の剪断試験片Paを採取し、図11に示すように剪断力
を測定し、13kgf/mm2以上の値のものを合格と
した。
In the measurement of the shear strength, a shear test piece Pa having the shape shown in FIG. 10 was sampled from the composite material, the shear force was measured as shown in FIG. 11, and a test piece having a value of 13 kgf / mm 2 or more was accepted.

【0040】浸透採傷試験は、機械加工した複合材につ
いて、「JIS Z 2343」に従って、接合界面を
浸透採傷検査(P.T.)した。合否の判定基準は、
1.6mm未満の指示模様を許容するものとした。
In the penetrating wound test, the bonded interface was subjected to a penetrating wound inspection (PT) for the machined composite material in accordance with “JIS Z 2343”. Pass / fail criteria are:
Pointing patterns smaller than 1.6 mm were allowed.

【0041】表3から本発明の場合であると、剪断強度
測定及び浸透採傷試験の両方において全ての資料で合格
したが、比較例の場合は、P.T.は全て合格したが、
剪断強度は全て不合格となった。また、溶射品について
も同時に測定したが、両方の測定において不合格であっ
た(表3の末欄参照)。
As can be seen from Table 3, in the case of the present invention, all the materials passed in both the shear strength measurement and the penetrating wound test. T. Have all passed,
All shear strengths failed. Further, the sprayed product was also measured at the same time, but failed in both measurements (see the last column of Table 3).

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋳込溶着に用いた鉄系材料の断面図である。FIG. 1 is a cross-sectional view of an iron-based material used for casting welding.

【図2】固体接合に用いた鉄系材料の断面図である。FIG. 2 is a sectional view of an iron-based material used for solid joining.

【図3】固体接合に用いた高力黄銅合金材料の断面図で
ある。
FIG. 3 is a cross-sectional view of a high-strength brass alloy material used for solid joining.

【図4】複合材の断面図である。FIG. 4 is a cross-sectional view of a composite material.

【図5】鋳込溶着の手順を示す断面図である。FIG. 5 is a cross-sectional view showing a procedure of casting welding.

【図6】鋳込溶着の次の手順を示す断面図である。FIG. 6 is a cross-sectional view showing the next step of the casting welding.

【図7】鋳込溶着のさらに次の手順を示す断面図であ
る。
FIG. 7 is a cross-sectional view showing a further next procedure of the casting welding.

【図8】固体接合の手順を示す断面図である。FIG. 8 is a cross-sectional view showing a procedure of solid joining.

【図9】固体接合の次の手順を示す断面図である。FIG. 9 is a cross-sectional view showing the next procedure of the solid joining.

【図10】剪断強度測定に用いる試験片を示す平面図で
ある。
FIG. 10 is a plan view showing a test piece used for shear strength measurement.

【図11】同測定状態を示す側面図である。FIG. 11 is a side view showing the same measurement state.

【図12】従来例の説明図である。FIG. 12 is an explanatory diagram of a conventional example.

【符号の説明】[Explanation of symbols]

P 鉄系材料と高力黄銅合金を接合した複合材 1 鉄系材料 3 高力黄銅合金 4 フラツクスとしての硼砂 P Composite material in which iron-based material and high-strength brass alloy are joined 1 Iron-based material 3 High-strength brass alloy 4 Borax as flux

フロントページの続き (51)Int.Cl.6 識別記号 FI B22D 19/08 B22D 19/08 E B23K 20/14 B23K 20/14 C22C 9/04 C22C 9/04 18/02 18/02 (72)発明者 市田 賢一 富山県中新川郡立山町西芦原新1番地の1 中越合金鋳工株式会社内 (72)発明者 安川 淳 富山県中新川郡立山町西芦原新1番地の1 中越合金鋳工株式会社内 (72)発明者 油谷 滋行 富山県中新川郡立山町西芦原新1番地の1 中越合金鋳工株式会社内Continued on the front page (51) Int.Cl. 6 Identification symbol FI B22D 19/08 B22D 19/08 E B23K 20/14 B23K 20/14 C22C 9/04 C22C 9/04 18/02 18/02 (72) Invention Person Kenichi Ichida 1-Nishi-Ashihara, Tateyama-machi, Tateyama-cho, Toyama Prefecture Inside Chuetsu Alloy Casting Co., Ltd. Co., Ltd. (72) Inventor Shigeyuki Aburaya 1, No. 1, Nishi-Ashihara, Tateyama-cho, Nakashinkawa-gun, Toyama Pref.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 機械部品や摺動部品の本体としての鉄系
材料に、耐食性、耐摩耗性、耐焼付性の良好な高力黄銅
合金を接合させる際、それに用いる高力黄銅合金の化学
成分について、Al;3%以下、Zn;15〜50%、
残部Cuとなし、接合面に酸素が介在しないよう窒素や
アルゴン等の不活性ガスや還元性の分解ガス等の雰囲気
でシールしたり、加熱温度で作用する硼砂やフラックス
で覆ったり、真空やその他の方法を用いたりして酸素を
遮断し、鉄系材料と高力黄銅合金の両方又は片方を70
0〜1300℃に加熱して高力黄銅合金を固体、液体又
は半溶融状態で鉄系材料に直接接触させることを特徴と
する鉄系材料と高力黄銅合金を接合する方法。
1. A chemical composition of a high-strength brass alloy used for joining a high-strength brass alloy having good corrosion resistance, abrasion resistance, and seizure resistance to an iron-based material as a main body of a mechanical part or a sliding part. About; Al; 3% or less; Zn; 15 to 50%;
There is no residual Cu, and it is sealed in an atmosphere of an inert gas such as nitrogen or argon or a reducing gas such as a reducing gas so that oxygen is not interposed on the joint surface, covered with borax or flux that operates at a heating temperature, vacuum or other The oxygen is blocked by using the method described above, and the ferrous material and / or the high-strength brass alloy
A method for bonding a ferrous material and a high-strength brass alloy, wherein the ferrous material is brought into direct contact with the ferrous material in a solid, liquid or semi-molten state by heating to 0 to 1300 ° C.
【請求項2】 高力黄銅合金の化学成分について、A
l;3%以下、Zn;15〜50%、Si;0.1〜3
%、残部Cuであることを特徴とする請求項1記載の鉄
系材料と高力黄銅合金を接合する方法。
2. The chemical composition of a high-strength brass alloy is as follows:
l: 3% or less, Zn: 15 to 50%, Si: 0.1 to 3
2. The method for joining a ferrous material and a high-strength brass alloy according to claim 1, wherein the balance is Cu.
【請求項3】 高力黄銅合金の化学成分について、A
l;3%以下、Zn;15〜50%、Si;0.1〜3
%、Mn;0.1〜5%、残部Cuであることを特徴と
する請求項1記載の鉄系材料と高力黄銅合金を接合する
方法。
3. The chemical composition of a high-strength brass alloy,
l: 3% or less, Zn: 15 to 50%, Si: 0.1 to 3
%, Mn; 0.1 to 5%, the balance being Cu, the method for joining an iron-based material and a high-strength brass alloy according to claim 1.
【請求項4】 高力黄銅合金の化学成分について、A
l;3%以下、Zn;15〜50%、Si;0.1〜3
%、Mn;0.1〜5%、Pb;0.1〜4%、残部C
uであることを特徴とする請求項1記載の鉄系材料と高
力黄銅合金を接合する方法。
4. The chemical composition of a high-strength brass alloy,
l: 3% or less, Zn: 15 to 50%, Si: 0.1 to 3
%, Mn: 0.1 to 5%, Pb: 0.1 to 4%, balance C
2. The method according to claim 1, wherein the material is u.
【請求項5】 高力黄銅合金の化学成分について、A
l;3%以下、Zn;15〜50%であって、加えて、
Si;0.1〜3%、Mn;0.1〜5%、Pb;0.
1〜4%、Ni;0.1〜5%、Fe;0.1〜4%、
Co;0.1〜3%、Zr;0.01〜2%、Cr;
0.01〜2%、Ti;0.01〜3%、Mo;0.0
1〜2%、V;0.01〜2%、Sn;0.1〜3%、
Nb;0.01〜1%、P;0.005〜0.5%、S
b;0.05〜1%、Bi;0.1〜3%において、少
なくとも一種が混合され、残部がCuであることを特徴
とする請求項1記載の鉄系材料と高力黄銅合金を接合す
る方法。
5. The chemical composition of a high-strength brass alloy,
1; 3% or less; Zn; 15 to 50%;
Si; 0.1 to 3%, Mn; 0.1 to 5%, Pb;
1-4%, Ni; 0.1-5%, Fe; 0.1-4%,
Co; 0.1 to 3%, Zr; 0.01 to 2%, Cr;
0.01 to 2%, Ti; 0.01 to 3%, Mo; 0.0
1-2%, V; 0.01-2%, Sn; 0.1-3%,
Nb: 0.01 to 1%, P: 0.005 to 0.5%, S
2. The ferrous material and the high-strength brass alloy according to claim 1, wherein at least one of b: 0.05 to 1% and Bi: 0.1 to 3% is mixed and the balance is Cu. how to.
【請求項6】 鉄系材料と高力黄銅合金の密着を良くし
たり、接合界面の気泡やフラックス、その他の介在物の
除去を目的として、鉄系材料と高力黄銅合金の両方又は
片方を500〜1300℃の温度範囲でプレス又は重錘
等により押し付けて冶金的結合を促すことを特徴とする
請求項1,2,3,4又は5記載の鉄系材料と高力黄銅
合金を接合する方法。
6. For the purpose of improving the adhesion between the ferrous material and the high-strength brass alloy and removing bubbles, flux, and other inclusions at the joint interface, both or one of the ferrous material and the high-strength brass alloy is used. 6. The ferrous material and the high-strength brass alloy according to claim 1, 2, 3, 4, or 5, wherein the ferrous material is pressed by a press or a weight or the like in a temperature range of 500 to 1300 ° C. to promote metallurgical bonding. Method.
【請求項7】 請求項1,2,3,4,5又は6の接合
する方法により製造された鉄系材料と高力黄銅合金の複
合材。
7. A composite material of an iron-based material and a high-strength brass alloy produced by the joining method according to claim 1, 2, 3, 4, 5, or 6.
JP24470197A 1997-08-25 1997-08-25 Method of joining ferrous material and high-strength brass alloy Expired - Lifetime JP4100583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24470197A JP4100583B2 (en) 1997-08-25 1997-08-25 Method of joining ferrous material and high-strength brass alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24470197A JP4100583B2 (en) 1997-08-25 1997-08-25 Method of joining ferrous material and high-strength brass alloy

Publications (2)

Publication Number Publication Date
JPH1158034A true JPH1158034A (en) 1999-03-02
JP4100583B2 JP4100583B2 (en) 2008-06-11

Family

ID=17122651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24470197A Expired - Lifetime JP4100583B2 (en) 1997-08-25 1997-08-25 Method of joining ferrous material and high-strength brass alloy

Country Status (1)

Country Link
JP (1) JP4100583B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115016A (en) * 2000-05-17 2002-04-19 Wieland Werke Ag Copper - zinc - aluminum forging material and its use
EP1777310A1 (en) * 2004-08-10 2007-04-25 Sanbo Shindo Kogyo Kabushiki Kaishah Cast copper alloy article excellent in machinability, strength, wear resistance and corrosion resistance and method for casting thereof
EP1930453A1 (en) * 2005-09-30 2008-06-11 Sanbo Shindo Kogyo Kabushiki Kaishah Melted-solidified matter, copper alloy material for melting-solidification, and process for producing the same
CN101812611A (en) * 2010-04-29 2010-08-25 路达(厦门)工业有限公司 Lead-free corrosion resistant brass alloy and manufacturing method thereof
JP2010265500A (en) * 2009-05-13 2010-11-25 Oiles Ind Co Ltd High-tensile brass alloy for sliding member and sliding member
CN102443716A (en) * 2010-09-30 2012-05-09 路达(厦门)工业有限公司 Low cost brass alloy and its manufacture method
JP2012179649A (en) * 2011-03-02 2012-09-20 Takako:Kk Method for fabricating slidable member
CN103341605A (en) * 2013-07-10 2013-10-09 安徽精诚铜业股份有限公司 Novel method for using borax for casting common brass
JPWO2015056315A1 (en) * 2013-10-16 2017-03-09 株式会社小松製作所 Sliding part, sliding part manufacturing method and sliding part manufacturing apparatus
CN107385273A (en) * 2017-07-07 2017-11-24 路达(厦门)工业有限公司 A kind of casting environment-friendly yellow brass alloy and its manufacture method
EP3372699A1 (en) 2017-03-08 2018-09-12 Daido Metal Company Ltd. Sliding member
WO2021129802A1 (en) * 2019-12-25 2021-07-01 南京龙浩新材料科技有限公司 High-strength and high-toughness copper-zinc-aluminum shape memory alloy and preparation method therefor
CN113102731A (en) * 2021-04-21 2021-07-13 合肥工业大学 Use method of pressed borax in copper-steel bimetal casting process
KR20220148977A (en) * 2021-04-29 2022-11-08 주식회사 대창 High strength lead-free brass and product using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6803457B2 (en) 2017-03-24 2020-12-23 株式会社Ihi Abrasion resistant copper-zinc alloy and machinery using it
EP3992320A1 (en) * 2020-10-29 2022-05-04 Otto Fuchs - Kommanditgesellschaft - Lead-free cu-zn alloy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794481A (en) * 1980-12-02 1982-06-11 Kawasaki Steel Corp Production of composite metallic material
JPS59589B2 (en) * 1981-07-10 1984-01-07 株式会社尼崎パイプ製作所 Manufacturing method of clad plate
JPS62296979A (en) * 1986-06-17 1987-12-24 Chuetsu Gokin Chuko Kk Manufacture of copper alloy clad material
JPH02151363A (en) * 1988-11-30 1990-06-11 Mitsubishi Motors Corp Production of bracket to be mounted on engine
JPH0748665A (en) * 1993-08-05 1995-02-21 Chuetsu Gokin Chuko Kk Sliding material with flame sprayed film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794481A (en) * 1980-12-02 1982-06-11 Kawasaki Steel Corp Production of composite metallic material
JPS59589B2 (en) * 1981-07-10 1984-01-07 株式会社尼崎パイプ製作所 Manufacturing method of clad plate
JPS62296979A (en) * 1986-06-17 1987-12-24 Chuetsu Gokin Chuko Kk Manufacture of copper alloy clad material
JPH02151363A (en) * 1988-11-30 1990-06-11 Mitsubishi Motors Corp Production of bracket to be mounted on engine
JPH0748665A (en) * 1993-08-05 1995-02-21 Chuetsu Gokin Chuko Kk Sliding material with flame sprayed film

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115016A (en) * 2000-05-17 2002-04-19 Wieland Werke Ag Copper - zinc - aluminum forging material and its use
EP1777310A1 (en) * 2004-08-10 2007-04-25 Sanbo Shindo Kogyo Kabushiki Kaishah Cast copper alloy article excellent in machinability, strength, wear resistance and corrosion resistance and method for casting thereof
EP1777310A4 (en) * 2004-08-10 2008-11-12 Mitsubishi Shindo Kk Cast copper alloy article excellent in machinability, strength, wear resistance and corrosion resistance and method for casting thereof
US20090014097A1 (en) * 2004-08-10 2009-01-15 Sanbo Shindo Kogyo Kabushiki Kaisha Copper alloy casting having excellent machinability, strength, wear resistance and corrosion resistance and method of casting the same
US10017841B2 (en) 2004-08-10 2018-07-10 Mitsubishi Shindoh Co., Ltd. Copper alloy casting and method of casting the same
US9328401B2 (en) * 2004-08-10 2016-05-03 Mitsubishi Shindoh Co., Ltd. Copper alloy casting having excellent machinability, strength, wear resistance and corrosion resistance and method of casting the same
US9303300B2 (en) 2005-09-30 2016-04-05 Mitsubishi Shindoh Co., Ltd. Melt-solidified substance, copper alloy for melt-solidification and method of manufacturing the same
EP1930453A1 (en) * 2005-09-30 2008-06-11 Sanbo Shindo Kogyo Kabushiki Kaishah Melted-solidified matter, copper alloy material for melting-solidification, and process for producing the same
EP1930453A4 (en) * 2005-09-30 2008-11-12 Mitsubishi Shindo Kk Melted-solidified matter, copper alloy material for melting-solidification, and process for producing the same
JP2010265500A (en) * 2009-05-13 2010-11-25 Oiles Ind Co Ltd High-tensile brass alloy for sliding member and sliding member
CN101812611A (en) * 2010-04-29 2010-08-25 路达(厦门)工业有限公司 Lead-free corrosion resistant brass alloy and manufacturing method thereof
CN102443716A (en) * 2010-09-30 2012-05-09 路达(厦门)工业有限公司 Low cost brass alloy and its manufacture method
EP2682217A4 (en) * 2011-03-02 2015-06-03 Takako Ind Inc Method for fabricating slidable member
JP2012179649A (en) * 2011-03-02 2012-09-20 Takako:Kk Method for fabricating slidable member
CN103341605A (en) * 2013-07-10 2013-10-09 安徽精诚铜业股份有限公司 Novel method for using borax for casting common brass
JPWO2015056315A1 (en) * 2013-10-16 2017-03-09 株式会社小松製作所 Sliding part, sliding part manufacturing method and sliding part manufacturing apparatus
US10384301B2 (en) 2013-10-16 2019-08-20 Komatsu Ltd. Sliding component, method for producing sliding component, and device for producing sliding component
EP3372699A1 (en) 2017-03-08 2018-09-12 Daido Metal Company Ltd. Sliding member
US10288118B2 (en) 2017-03-08 2019-05-14 Daido Metal Company Ltd. Sliding member
CN107385273A (en) * 2017-07-07 2017-11-24 路达(厦门)工业有限公司 A kind of casting environment-friendly yellow brass alloy and its manufacture method
WO2021129802A1 (en) * 2019-12-25 2021-07-01 南京龙浩新材料科技有限公司 High-strength and high-toughness copper-zinc-aluminum shape memory alloy and preparation method therefor
CN113102731A (en) * 2021-04-21 2021-07-13 合肥工业大学 Use method of pressed borax in copper-steel bimetal casting process
CN113102731B (en) * 2021-04-21 2022-04-26 合肥工业大学 Use method of pressed borax in copper-steel bimetal casting process
KR20220148977A (en) * 2021-04-29 2022-11-08 주식회사 대창 High strength lead-free brass and product using the same

Also Published As

Publication number Publication date
JP4100583B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
JPH1158034A (en) Joining method of ferrous material and high tension brass alloy and composite material joined by the method
EP3372699A1 (en) Sliding member
Li et al. Interface structure and mechanical properties of the TiAl/42CrMo steel joint vacuum brazed with Ag–Cu/Ti/Ag–Cu filler metal
Beura et al. Interdiffusion and microstructure evolution during brazing of austenitic martensitic stainless steel and aluminum-bronze with Ag-Cu-Zn based brazing filler material
CN101695713A (en) Wc composite guide roller and manufacturing method thereof
US7749614B2 (en) Method of brazing a Ti-Al alloy
JP4072132B2 (en) Sliding bearing manufacturing method
EP0587307B1 (en) Aluminium alloys
US6783726B2 (en) Cooling element and method for manufacturing cooling elements
JP2014214827A (en) Aluminum alloy slide bearing and manufacturing method
CN112553498A (en) Copper-nodular cast iron bimetal hydraulic wear-resistant part and preparation method thereof
JPS6221465A (en) Double layer padding method to aluminum base metal
JPH05202706A (en) Engine valve and manufacture thereof
US6413649B2 (en) Silver-copper-nickel infiltration brazing filler metal and composites made therefrom
CN109296643A (en) A kind of double-level-metal composite material and preparation method applied to sliding bearing
JP3090963B2 (en) Insert material for joining
JP2592778B2 (en) Copper alloy lining method
JPH0387327A (en) Copper base wear resistant alloy
JPS6310097A (en) Co base alloy for build-up welding
AU2009262357B2 (en) Manufacture of wear resistant composite components
CN114393342B (en) Multi-transition metal carbide hybrid reinforced copper-based surfacing layer and preparation method thereof
JP2631460B2 (en) Method for producing copper alloy clad material
JP2002256371A (en) Copper alloy for sliding parts
周方明 et al. Interface microstructure and properties of submerged arc brazing tin-based babbit
Koo et al. Induction brazing of γ-TiAl to alloy steel AISI 4140 using filler metal of eutectic Ag-Cu alloy coated with Ti film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080314

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term