JP4100583B2 - Method of joining ferrous material and high-strength brass alloy - Google Patents

Method of joining ferrous material and high-strength brass alloy Download PDF

Info

Publication number
JP4100583B2
JP4100583B2 JP24470197A JP24470197A JP4100583B2 JP 4100583 B2 JP4100583 B2 JP 4100583B2 JP 24470197 A JP24470197 A JP 24470197A JP 24470197 A JP24470197 A JP 24470197A JP 4100583 B2 JP4100583 B2 JP 4100583B2
Authority
JP
Japan
Prior art keywords
strength brass
brass alloy
joining
strength
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24470197A
Other languages
Japanese (ja)
Other versions
JPH1158034A (en
Inventor
邦夫 中島
良一 石金
亘 矢後
賢一 市田
淳 安川
滋行 油谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHUETSU METAL CO., LTD.
Original Assignee
CHUETSU METAL CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHUETSU METAL CO., LTD. filed Critical CHUETSU METAL CO., LTD.
Priority to JP24470197A priority Critical patent/JP4100583B2/en
Publication of JPH1158034A publication Critical patent/JPH1158034A/en
Application granted granted Critical
Publication of JP4100583B2 publication Critical patent/JP4100583B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、鋳込溶着又は固体接合(一部溶融状態での接合を含む)により、本体としての鉄系材料に、摺動部又は耐食部として高力黄銅合金を複合一体化する、鉄系材料と高力黄銅合金を接合する方法に関する。
【0002】
【従来の技術】
このような複合材としては、例えば、ジャーナル軸受、スラスト軸受等の軸受類、ピストンポンプ、ピストンモーター用のシリンダーブロック、斜板、シュー等の摺動部品等、さらには、高速、高荷重下で使用される部品等が挙げられ、高力黄銅合金単体では強度が不充分であるため、強靱な鉄系材料と摺動特性の良い高力黄銅合金を複合される。
【0003】
また、このような複合材は、海水、汚水、淡水、酸、アルカリに触れる部分や、腐食性蒸気や腐食性ガス等の雰囲気で使用される。つまり、鉄系材料の強靱性と高力黄銅合金の優秀な耐食性を合わせ求められる耐食用部品及びこのような耐食性雰囲気下で使用される摺動部品として必要とされる。
【0004】
従来、鉄系材料に対して高力黄銅合金を接合する場合には、次の如き方法が用いられている。
1)肉盛溶接
2)ロー付け、ハンダ付け
3)インサート法
4)接合界面にNi材、リン青銅材等からなるインサート材、あるいはメツキ層を介して固体接合や鋳込溶着をなす方法
5)溶射法
6)粉末焼結法
7)鋳込溶着、固体接合
【0005】
【発明が解決しようとする課題】
上記のような従来の接合方法のうち、肉盛溶接や、ロー付け、ハンダ付け、インサート法では、技術的に困難であるとか、量産に適しない等の問題がある。
【0006】
また、溶射法は、溶射材を加熱し溶射するので、溶射皮膜の接合強度が低く、摺動条件が厳しいと剥離することがある。また、溶射温度が約2000℃の高温であるので、鉛や亜鉛等の沸点の低い成分やアルミニウムや珪素等の酸化しやすい成分を含有する高力黄銅合金材料では、溶射皮膜中のこれらの元素の含有量にバラツキが生じる。また、製造コストが高くなる欠点もある。
【0007】
粉末焼結は、黄銅合金の粉末(PBC−2,LBC−3等)をプレスにより圧縮成形して圧粉体を造り、これを鉄基材料の上に置き、800〜900℃の高温で加熱して接合する方法である。この場合、通常、重錘を加え加圧した状態で加熱し、高力黄銅合金全部を溶融させることもある。いずれにしても、粉末焼結層がポーラスのため摺動条件の厳しい用途ではクラックが生じ剥離しやすく、また、接合強度も低いという難点がある。
【0008】
鋳込溶着や固体接合による鉄系材料と黄銅合金との接合では、インサートを用いずに、鋳込や固体接合又は一部溶融状態での接合を行うことができるので、上記の方法に比較して、強力な接合強度を安価に得られるが、高力黄銅合金であると、接合界面にAl−Feを主成分とする脆弱な金属間化合物層が生じるので(図12参照)、さらに高度な接合強度を得るには、この脆弱な金属間化合物層の発生を防止する必要がある。
【0009】
また、固体接合では、基本的には、接合材である高力黄銅合金を溶融点近くに加熱し、固体のまま鉄と銅の分子間の相互拡散により接合する方法であるが、所望の接合強度を得るためにはインサート材が必要であり、それを溶融させているのが現状である。
【0010】
本発明は、上記のような実情に鑑みて、鋳込溶着法又は固体接合法において、鉄系材料と高力黄銅合金とをインサートを用いることなく直接接触させ、しかも、その間に脆弱な金属間化合物層が発生しないために、加圧をしなくとも、充分な接合強度(剪断強度が13kgf/mm以上)と耐食性が得られる鉄系材料と高力黄銅合金を接合する方法を提供することを目的とした。
【0011】
【課題を解決するための手段】
上記の目的を達成するために、本発明は、機械部品や摺動部品の本体としての鉄系材料に、耐食性、耐摩耗性、耐焼付性の良好な高力黄銅合金を接合させる際、それに用いる高力黄銅合金の化学成分について、Al;3%以下、Zn;15〜50%に加えて、Si;0.1〜3%、Mn;0.1〜5%のうち少なくとも一種が混合され、残部Cuとなし、接合面に酸素が介在しないよう窒素やアルゴン等の不活性ガスや還元性の分解ガス等の雰囲気でシールしたり、加熱温度で作用する硼砂やフラックスで覆ったり、真空やその他の方法を用いたりして酸素を遮断し、鉄系材料と高力黄銅合金の両方又は片方を700〜1300℃に加熱して高力黄銅合金を固体、液体又は半溶融状態で鉄系材料に加圧することなく直接接触させることを特徴とする鉄系材料と高力黄銅合金を接合する方法を提供するものである。
【0012】
また、高力黄銅合金の化学成分について、Al;3%以下、Zn;15〜50%に加えて、Si;0.1〜3%、Mn;0.1〜5%のうち少なくとも一種が混合され、残部Cuをベースとし、これにさらに順次、Pb;0.1〜4%、Ni;0.1〜5%、Fe;0.1〜4%、Co;0.1〜3%、Zr;0.01〜2%、Cr;0.01〜2%、Ti;0.01〜3%、Mo;0.01〜2%、V;0.01〜2%、Sn;0.1〜3%、Nb;0.01〜1%、P;0.005〜0.5%、Sb;0.05〜1%、Bi;0.1〜3%において、少なくとも一種が混合されていたり、すると目的の達成により有効である。
【0013】
【発明の実施の形態】
この発明においては、鋳込溶着又は固体接合において、高力黄銅合金の成分を、Al;3%以下、Zn;15〜50%に加えて、Si;0.1〜3%、Mn;0.1〜5%のうち少なくとも一種を混合することにより、鉄系材料との間に、脆弱な金属間化合物層の発生がなく、加圧工程を設けなくとも両金属が直接強力に接合する。Alが3%よりも多いと、接合部にAl−Feの脆弱な金属間化合物が生成し、接合強度が不足する(図12参照)。
【0014】
Siについては、マトリックスに固溶し、マトリックスの強化と材料の耐食性を向上させる。また、Mn、Fe、Co、Zr、Ni、Cr、Ti、Mo、V、Nb、P、Sbと共存し、金属間化合物を構成し、これにより耐摩耗性、耐焼付性が向上する。そして、Siが3%よりも多いと、耐食性は飽和し、金属間化合物の分布が不均一となる。また、0.1%よりも少ないと、耐食性向上の効果が認められず、金属間化合物の量も不足を来す。
【0015】
Mn(0.1〜5%)については、マトリックスに固溶し、材料の強度を向上させる。主としてSiと結びついて金属間化合物を構成し、耐摩耗性、耐焼付性を向上させる。
【0016】
さらに、Znが15%よりも少ないと、高力黄銅合金としての耐摩耗性や耐食性が得られない。50%よりも多いと、高力黄銅合金中に硬くて脆い相が析出し、靭性が不足する。
【0017】
次に、このような高力黄銅合金に他の元素を混合する場合の元素の選定理由と、添加量限定理由について説明する。
【0018】
(請求項3)
Pb(0.1〜4%)については、耐焼付性、被削性の向上が望める。
(請求項4)
Ni(0.5〜5%)は、マトリックスに固溶し、耐食性と強度を向上させる。また、P、Sb、Nb、Al、Fe、Co、Zr、Si、Cr、Ti、Vと金属間化合物を作り、耐摩耗性、耐焼付性が向上する。
Fe(0.1〜4%)の添加は、結晶の粗大化の防止と材料強度の向上のためで、Al、Ni、Si、Co、P、Nb、Mn、Zr、Cr、Ti、Mo、Sb、Vと金属間化合物を構成し、耐摩耗性、耐焼付性が向上する。
Co(0.1〜3%)は、結晶の微細化が促進され、また、Al、Si、Ni、Fe、Zr、P、Sb、Nb、Vと金属間化合物を構成する。
Zr(0.01〜1%)は、Al、Si、Ni、Fe、Cr、Ti、V、P、Co、Nb、Sbとの間の金属間化合物の結晶を微細化する。
Cr(0.01〜2%)は、P、Co、Si、Fe、Ti、Al、Zr、V、Ni、Mo、Mn、Nb、Sbとの間に金属間化合物を作ると共に、一部固溶して耐食性を向上させる。
Mo(0.01〜2%)は、Al、Cr、Si、Fe、Niと金属間化合物を構成する。
V(0.01〜2%)は、Nb、Ti、Cr、Zr、Co、Fe、Ni、Sbと金属間化合物を構成する。
Nb(0.01〜2%)は、Al、Ni、Si、Mn、Fe、Co、Zr、Cr、Ti、Mo、V、P、Sbと金属間化合物を構成し、結晶の微細化を促進する。
Sn(0.1〜3%)については、マトリックスの強化、耐食性の向上、脱亜鉛腐食の防止が望める。
P(0.005〜0.5%)は、金属間化合物の構成と、脱亜鉛腐食の防止とを果たす。
Sb(0.05〜1%)については、P、Nb、V、Ti、Cr、Zr、Co、Fe、Si、Niとの金属間化合物の構成と、脱亜鉛腐食の防止が望める。
Bi(0.1〜3%)は、鉛害の防止と、被削性の向上に作用する。
【0019】
次に、鉄系材料については、軟鉄、炭素鋼、合金鋼、ステンレス鋼が適宜に使用される。
【0020】
【発明の効果】
以上説明したように、この発明は、鉄系材料と高力黄銅合金とをインサートを用いることなく直接接触させ、しかも、その間に脆弱な金属間化合物層が発生しないために、加圧をしなくとも、充分な接合強度(剪断強度が13kgf/mm以上)が得られる鉄系材料と高力黄銅合金を接合する方法を提供することに成功したものであって、これによれば、従来に比して、高力黄銅合金の結合強度が格段に優れ、且つ、耐摩耗性、耐食性、耐焼付性を有効に発揮し得る製品を製造することができるという効果がある。
【0021】
【実施例】
以下に、鋳込溶着法による場合と、固体接合法による場合とを図面及び表を用いて説明する。いずれも、図4に示すように、φ95×29tの鉄系材料1の円盤面の片面に厚さ2mmの高力黄銅合金3を接合した複合材Pを得た場合である。
【0022】
本体素材としての鉄系材料1の形状については、図1が鋳込溶着用を示し、図2が固体(半溶融)接合用を示す。また、図3は、高力黄銅合金3の材料を示す。いずれの図面においても、寸法はmm単位で示す。
【0023】
また、いずれも、鉄系材料1については、S45C(JISG451)材を使用した。これは、炭素が0.42〜0.48%を成分として含むため、圧延材又は鍛造材として使用され、一般機械部品用の材料である。強度の高い要求があれば、焼入れ、焼戻しの熱処理を行って強靱性を高めて使用でき、比較的多用途材として広く用いられている。そこで、本実施例では、この用途を考慮して材料選択した。
【0024】
高力黄銅合金3の材料寸法については、φ100×5mm厚とした(図3)。本発明による高力黄銅合金3の化学成分については表1の通りであって、鋳込溶着法と固体接合法とにそれぞれ16種(No1〜16)の資料を得た。また、比較例として本発明から外れる高力黄銅合金3の化学成分について、同じく鋳込溶着法と固体接合法とにそれぞれ9種の資料を得た。これを表2に示す(A〜I)。
【表1】

Figure 0004100583
【表2】
Figure 0004100583
【0025】
フラックスには、融点760℃の粉末の硼砂4を使用した。硼砂4は、金属酸化物を良く溶かす性質を有し、金属ロウ付け等の溶剤として知られている。基本的には、硼砂4以外のフラックスであっても、本発明の接合適正温度700℃よりも低い融点を有するフラックスで、700〜1300℃の温度範囲で活性を示せば、硼砂に限定されない。現状では、種々の他のフラックスの使用を試みたが、硼砂が最も良好な結果を得た。
【0026】
次に、鋳込溶着の手順について説明する。
【0027】
図5に示すように、鋳込面5に硼砂4を入れ、それから加熱炉へ入れ、900〜950℃の温度を保持し、1時間加熱して炉から取り出し、別の溶解炉で溶解しておいた高力黄銅合金3の溶湯を注入する(図6)。それから、シャワー水冷により冷却した(図7)。なお、焼入れを行なわない場合には、エアー冷却による。次に、溶融又は半溶融状態でプレスにより押圧する。これには油圧シリンダーを用い、荷重18〜12tonとした。これに関しては、加圧したもの(プレス施工)、しないもの(プレス無し)との2通りの資料を得た。次いで、シャワー水冷したものについて、600℃の温度で1時間焼戻し、放冷してから図4のように機械加工した。
【0028】
次に、固体接合(半溶融接合)について説明する。
【0029】
まず、鉄系材料1の接合面を脱脂洗浄してから、接合面に硼砂4を散布し(図8)、その上に高力黄銅合金3を載せる(図9)。次に、加熱炉へ挿入し、900〜950℃の温度を保持して1時間加熱処理した後、炉から取り出し、固体状態でプレスにて、荷重8〜12tonで加圧する。この場合も、加圧したものと、しないものとの2通りとした。次に、図4に示すように、機械加工を行なった。
【0030】
次に、鋳込溶着及び固体接合についての評価については、剪断強度測定と浸透採傷試験(P.T.)とを行った。その結果を表1の材料において「プレス無し」は表3に、同材 料において「プレス施行」を参考例として表4に、表2の比較例材料(A〜I)における試験結果は表5に示した。
【表3】
Figure 0004100583
【表4】
Figure 0004100583
【表5】
Figure 0004100583
【0031】
剪断強度測定は、複合材から図10の形状の剪断試験片Paを採取し、図11に示すように剪断力を測定し、13kgf/mm以上の値のものを合格とした。
【0032】
浸透採傷試験は、機械加工した複合材について、「JIS Z 2343」に従って、接合界面を浸透採傷検査(P.T.)した。合否の判定基準は、1.6mm未満の指示模様を許容するものとした。
【0033】
表3から本発明の場合であると、剪断強度測定及び浸透採傷試験の両方において、特にプレスをしなくとも、全ての資料で合格したが、比較例の場合(表5)は、P.T.は全て合格したが、剪断強度は全て不合格となった。また、溶射品についても同時に測定したが、両方の測定において不合格であった(表5の末欄参照)。
【図面の簡単な説明】
【図1】 鋳込溶着に用いた鉄系材料の断面図である。
【図2】 固体接合に用いた鉄系材料の断面図である。
【図3】 固体接合に用いた高力黄銅合金材料の断面図である。
【図4】 複合材の断面図である。
【図5】 鋳込溶着の手順を示す断面図である。
【図6】 鋳込溶着の次の手順を示す断面図である。
【図7】 鋳込溶着のさらに次の手順を示す断面図である。
【図8】 固体接合の手順を示す断面図である。
【図9】 固体接合の次の手順を示す断面図である。
【図10】 剪断強度測定に用いる試験片を示す平面図である。
【図11】 同測定状態を示す側面図である。
【図12】 従来例の説明図である。
【符号の説明】
P 鉄系材料と高力黄銅合金を接合した複合材
1 鉄系材料
3 高力黄銅合金
4 フラツクスとしての硼砂[0001]
[Industrial application fields]
The present invention is an iron-based composite that integrates a high-strength brass alloy as a sliding part or corrosion-resistant part into an iron-based material as a main body by casting welding or solid joining (including joining in a partially molten state). The present invention relates to a method for joining a material and a high-strength brass alloy.
[0002]
[Prior art]
Examples of such composite materials include bearings such as journal bearings and thrust bearings, piston pumps, cylinder blocks for piston motors, sliding parts such as swash plates, shoes, and the like, and also under high speed and high load. Examples include parts to be used, and the strength of a high-strength brass alloy alone is insufficient. Therefore, a tough iron-based material and a high-strength brass alloy with good sliding characteristics are combined.
[0003]
Further, such a composite material is used in a portion that comes into contact with seawater, sewage, fresh water, acid, alkali, or an atmosphere such as corrosive vapor or corrosive gas. That is, it is required as a corrosion-resistant component that is required to combine the toughness of an iron-based material and the excellent corrosion resistance of a high-strength brass alloy and a sliding component that is used in such a corrosion-resistant atmosphere.
[0004]
Conventionally, when joining a high-strength brass alloy to an iron-based material, the following method is used.
1) Overlay welding 2) Brazing and soldering 3) Insert method 4) Solid bonding or cast welding via insert material made of Ni material, phosphor bronze material or the like at the joining interface, or 5) Thermal spraying method 6) Powder sintering method 7) Casting welding, solid bonding [0005]
[Problems to be solved by the invention]
Among the conventional joining methods as described above, overlay welding, brazing, soldering, and insert methods have problems such as technical difficulties and unsuitability for mass production.
[0006]
Further, in the thermal spraying method, since the thermal spray material is heated and sprayed, the bonding strength of the thermal spray coating is low, and peeling may occur if the sliding condition is severe. In addition, since the thermal spraying temperature is about 2000 ° C., high-strength brass alloy materials containing components having low boiling points such as lead and zinc and easily oxidizing components such as aluminum and silicon, these elements in the thermal spray coating Variation occurs in the content of. In addition, there is a drawback that the manufacturing cost is increased.
[0007]
For powder sintering, brass alloy powder (PBC-2, LBC-3, etc.) is compression-molded by pressing to form a green compact, which is placed on an iron-based material and heated at a high temperature of 800-900 ° C. And joining them. In this case, generally, the high-strength brass alloy may be melted by heating with a weight added and pressurized. In any case, since the powder sintered layer is porous, cracks are easily generated and peeled off in applications where the sliding conditions are severe, and the bonding strength is low.
[0008]
In the joining of ferrous materials and brass alloys by casting welding or solid joining, casting or solid joining or joining in a partially molten state can be performed without using an insert. Thus, a strong joint strength can be obtained at a low cost. However, when a high-strength brass alloy is used, a brittle intermetallic compound layer mainly composed of Al—Fe is formed at the joint interface (see FIG. 12). In order to obtain bonding strength, it is necessary to prevent the generation of this fragile intermetallic compound layer.
[0009]
Solid bonding is basically a method in which a high-strength brass alloy, which is a bonding material, is heated close to the melting point and bonded by interdiffusion between iron and copper molecules in the solid state. In order to obtain strength, an insert material is required, and the present condition is that it is melted.
[0010]
In view of the above-described circumstances, the present invention provides a direct contact between an iron-based material and a high-strength brass alloy without using an insert in a casting welding method or a solid joining method, and a fragile metal between them. To provide a method for joining a high-strength brass alloy with an iron-based material that can obtain sufficient joining strength (shear strength of 13 kgf / mm 2 or more) and corrosion resistance without applying pressure because no compound layer is generated. Aimed.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention, when joining a high-strength brass alloy having good corrosion resistance, wear resistance, and seizure resistance to a ferrous material as a main body of a machine part or a sliding part, Regarding the chemical components of the high-strength brass alloy to be used, in addition to Al: 3% or less, Zn: 15-50%, at least one of Si: 0.1-3%, Mn: 0.1-5% is mixed. The remainder is Cu, sealed in an atmosphere of inert gas such as nitrogen or argon or reducing decomposition gas so that oxygen does not intervene on the joint surface, covered with borax or flux acting at the heating temperature, vacuum, Other methods are used to block oxygen, and both or one of the iron-based material and the high-strength brass alloy is heated to 700 to 1300 ° C. to heat the high-strength brass alloy in a solid, liquid, or semi-molten state. characterized by contacting directly without pressurizing the Method for joining an iron-based material and high-strength brass alloy is intended to provide.
[0012]
Moreover, about the chemical component of a high strength brass alloy, in addition to Al; 3% or less, Zn; 15 to 50%, at least one of Si; 0.1 to 3% and Mn; 0.1 to 5% is mixed. The remaining Cu is used as a base, and Pb: 0.1-4%, Ni: 0.1-5%, Fe: 0.1-4%, Co: 0.1-3%, Zr 0.01-2%, Cr; 0.01-2%, Ti; 0.01-3%, Mo; 0.01-2%, V; 0.01-2%, Sn; 0.1 3%, Nb; 0.01 to 1%, P; 0.005 to 0.5%, Sb; 0.05 to 1%, Bi; 0.1 to 3%, or at least one kind is mixed, Then, it is more effective to achieve the purpose.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In this invention, in casting welding or solid joining, in addition to Al: 3% or less, Zn: 15-50%, Si: 0.1-3%, Mn; By mixing at least one of 1 to 5%, there is no generation of a brittle intermetallic compound layer with the iron-based material, and both metals are directly and strongly joined without providing a pressing step . When Al is more than 3%, a brittle intermetallic compound of Al—Fe is generated at the joint, and the joint strength is insufficient (see FIG. 12).
[0014]
About Si, it dissolves in a matrix and strengthens the matrix and improves the corrosion resistance of the material. Further, it coexists with Mn, Fe, Co, Zr, Ni, Cr, Ti, Mo, V, Nb, P, and Sb to form an intermetallic compound, thereby improving wear resistance and seizure resistance. And when there is more Si than 3%, corrosion resistance will be saturated and distribution of an intermetallic compound will become non-uniform | heterogenous. On the other hand, if it is less than 0.1%, the effect of improving the corrosion resistance is not recognized, and the amount of intermetallic compound is insufficient.
[0015]
About Mn (0.1-5%), it dissolves in a matrix and improves the strength of the material. It is mainly combined with Si to form an intermetallic compound to improve wear resistance and seizure resistance.
[0016]
Further, if Zn is less than 15%, the wear resistance and corrosion resistance as a high-strength brass alloy cannot be obtained. If it exceeds 50%, a hard and brittle phase precipitates in the high-strength brass alloy, resulting in insufficient toughness.
[0017]
Next, the reason for selecting elements and the reason for limiting the amount of addition when mixing other elements with such a high-strength brass alloy will be described.
[0018]
(Claim 3)
For Pb (0.1 to 4%), improvement in seizure resistance and machinability can be expected.
(Claim 4)
Ni (0.5 to 5%) dissolves in the matrix and improves corrosion resistance and strength. In addition, an intermetallic compound is formed with P, Sb, Nb, Al, Fe, Co, Zr, Si, Cr, Ti, and V, and wear resistance and seizure resistance are improved.
The addition of Fe (0.1 to 4%) is to prevent coarsening of the crystal and improve material strength. Al, Ni, Si, Co, P, Nb, Mn, Zr, Cr, Ti, Mo, Sb, V and an intermetallic compound are formed, and wear resistance and seizure resistance are improved.
Co (0.1 to 3%) promotes the refinement of crystals and constitutes intermetallic compounds with Al, Si, Ni, Fe, Zr, P, Sb, Nb, and V.
Zr (0.01 to 1%) refines crystals of intermetallic compounds between Al, Si, Ni, Fe, Cr, Ti, V, P, Co, Nb, and Sb.
Cr (0.01 to 2%) forms intermetallic compounds with P, Co, Si, Fe, Ti, Al, Zr, V, Ni, Mo, Mn, Nb, and Sb, and is partially solidified. Melt and improve corrosion resistance.
Mo (0.01 to 2%) constitutes an intermetallic compound with Al, Cr, Si, Fe, and Ni.
V (0.01 to 2%) constitutes an intermetallic compound with Nb, Ti, Cr, Zr, Co, Fe, Ni, and Sb.
Nb (0.01-2%) constitutes intermetallic compounds with Al, Ni, Si, Mn, Fe, Co, Zr, Cr, Ti, Mo, V, P, and Sb, and promotes refinement of crystals To do.
For Sn (0.1 to 3%), strengthening of the matrix, improvement of corrosion resistance, and prevention of dezincification corrosion can be expected.
P (0.005-0.5%) fulfills the structure of the intermetallic compound and the prevention of dezincification corrosion.
About Sb (0.05 to 1%), the structure of the intermetallic compound with P, Nb, V, Ti, Cr, Zr, Co, Fe, Si, Ni and prevention of dezincification corrosion can be expected.
Bi (0.1 to 3%) acts to prevent lead damage and improve machinability.
[0019]
Next, as for iron-based materials, soft iron, carbon steel, alloy steel, and stainless steel are appropriately used.
[0020]
【The invention's effect】
As described above, the present invention makes direct contact between an iron-based material and a high-strength brass alloy without using an insert, and a fragile intermetallic compound layer does not occur between them. Both have succeeded in providing a method of joining a ferrous material and a high-strength brass alloy that can obtain a sufficient joining strength (shear strength of 13 kgf / mm 2 or more). In comparison, there is an effect that it is possible to manufacture a product that has an excellent bond strength of a high-strength brass alloy and that can effectively exhibit wear resistance, corrosion resistance, and seizure resistance.
[0021]
【Example】
Below, the case by a casting welding method and the case by a solid joining method are demonstrated using drawing and a table | surface. In either case, as shown in FIG. 4, a composite material P is obtained in which a high-strength brass alloy 3 having a thickness of 2 mm is bonded to one side of the disk surface of the iron-based material 1 of φ95 × 29 t.
[0022]
About the shape of the iron-type material 1 as a main body raw material, FIG. 1 shows casting welding and FIG. 2 shows the object for solid (semi-molten) joining. FIG. 3 shows the material of the high-strength brass alloy 3. In all drawings, the dimensions are shown in mm.
[0023]
Moreover, as for the iron-type material 1, all used S45C (JISG451) material. Since carbon contains 0.42 to 0.48% as a component, it is used as a rolled material or a forged material, and is a material for general machine parts. If there is a demand for high strength, it can be used with increased toughness by heat treatment such as quenching and tempering, and it is widely used as a relatively versatile material. Therefore, in this example, the material was selected in consideration of this application.
[0024]
The material dimensions of the high-strength brass alloy 3 were set to φ100 × 5 mm thickness (FIG. 3). The chemical components of the high-strength brass alloy 3 according to the present invention are as shown in Table 1, and 16 types (Nos. 1 to 16) of materials were obtained for the casting welding method and the solid bonding method, respectively. Further, as comparative examples, nine types of materials were obtained for the chemical component of the high-strength brass alloy 3 that departs from the present invention, for the casting welding method and the solid bonding method. This is shown in Table 2 (A to I).
[Table 1]
Figure 0004100583
[Table 2]
Figure 0004100583
[0025]
As the flux, powdered borax 4 having a melting point of 760 ° C. was used. Borax 4 has a property of dissolving metal oxides well and is known as a solvent for metal brazing. Basically, a flux other than borax 4 is not limited to borax as long as it has a melting point lower than the suitable joining temperature of 700 ° C. of the present invention and exhibits activity in a temperature range of 700 to 1300 ° C. At present, various other fluxes have been tried, but borax has yielded the best results.
[0026]
Next, the procedure of casting welding will be described.
[0027]
As shown in FIG. 5, borax 4 is put into the casting surface 5 and then put into a heating furnace, maintained at a temperature of 900 to 950 ° C., heated for 1 hour, taken out from the furnace, and melted in another melting furnace. A molten high strength brass alloy 3 is poured (FIG. 6). Then, it was cooled by shower water cooling (FIG. 7). When quenching is not performed, air cooling is used. Next, it presses with a press in a molten or semi-molten state. A hydraulic cylinder was used for this, and the load was 18 to 12 tons. In this regard, two types of materials were obtained: a pressurized one (press construction) and a non-pressed one (no press). Next, the shower water-cooled one was tempered at a temperature of 600 ° C. for 1 hour, allowed to cool, and then machined as shown in FIG.
[0028]
Next, solid bonding (semi-melt bonding) will be described.
[0029]
First, after degreasing and cleaning the joint surface of the iron-based material 1, borax 4 is sprayed on the joint surface (FIG. 8), and the high-strength brass alloy 3 is placed thereon (FIG. 9). Next, after inserting into a heating furnace and heat-treating for 1 hour while maintaining a temperature of 900 to 950 ° C., it is taken out from the furnace and pressed with a load of 8 to 12 tons in a solid state. Also in this case, the pressure was applied and the pressure was not applied. Next, as shown in FIG. 4, machining was performed.
[0030]
Next, about the evaluation about casting welding and solid joining, the shear strength measurement and the penetration test (PT) were performed. The results are "No press" Table 3 in the material of Table 1, Table 4 as a reference example the "press Enforcement" In the wood charge, the test results of Comparative Example materials in Table 2 (A to I) Table 5 It was shown to.
[Table 3]
Figure 0004100583
[Table 4]
Figure 0004100583
[Table 5]
Figure 0004100583
[0031]
For the shear strength measurement, a shear test piece Pa having the shape shown in FIG. 10 was taken from the composite material, the shear force was measured as shown in FIG. 11, and a value of 13 kgf / mm 2 or more was accepted.
[0032]
In the penetrant flaw test, the machined composite material was subjected to a penetrant flaw inspection (PT) on the joint interface in accordance with “JIS Z 2343”. The pass / fail criterion was to allow an indication pattern of less than 1.6 mm.
[0033]
From Table 3, in the case of the present invention, in both the shear strength measurement and the penetrant flaw detection test, all materials passed without special pressing, but in the case of the comparative example (Table 5) , P.I. T.A. All passed, but all shear strengths failed. Moreover, although it measured simultaneously about the thermal spray product, it failed in both measurements (refer the last column of Table 5 ).
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an iron-based material used for casting welding.
FIG. 2 is a cross-sectional view of an iron-based material used for solid bonding.
FIG. 3 is a cross-sectional view of a high-strength brass alloy material used for solid bonding.
FIG. 4 is a cross-sectional view of a composite material.
FIG. 5 is a cross-sectional view showing a procedure for casting welding.
FIG. 6 is a cross-sectional view showing the next procedure for casting welding.
FIG. 7 is a cross-sectional view showing a further next procedure of casting welding.
FIG. 8 is a cross-sectional view showing the procedure of solid bonding.
FIG. 9 is a cross-sectional view showing the next procedure of solid bonding.
FIG. 10 is a plan view showing a test piece used for measuring shear strength.
FIG. 11 is a side view showing the same measurement state.
FIG. 12 is an explanatory diagram of a conventional example.
[Explanation of symbols]
P Composite material in which iron-based material and high-strength brass alloy are joined 1 Iron-based material 3 High-strength brass alloy 4 Borax as a flux

Claims (4)

機械部品や摺動部品の本体としての鉄系材料に、耐食性、耐摩耗性、耐焼付性の良好な高力黄銅合金を接合させる際、それに用いる高力黄銅合金の化学成分について、Al;3%以下、Zn;15〜50%に加えて、Si;0.1〜3%、Mn;0.1〜5%のうち少なくとも一種が混合され、残部Cuとなし、接合面に酸素が介在しないよう窒素やアルゴン等の不活性ガスや還元性の分解ガス等の雰囲気でシールしたり、加熱温度で作用する硼砂やフラックスで覆ったり、真空やその他の方法を用いたりして酸素を遮断し、鉄系材料と高力黄銅合金の両方又は片方を700〜1300℃に加熱して高力黄銅合金を固体、液体又は半溶融状態で鉄系材料に加圧することなく直接接触させることを特徴とする鉄系材料と高力黄銅合金を接合する方法。When joining high-strength brass alloys with good corrosion resistance, wear resistance, and seizure resistance to ferrous materials as the main parts of machine parts and sliding parts, the chemical composition of the high-strength brass alloys used therefor is Al: 3 % Or less, Zn: 15 to 50%, Si: 0.1 to 3%, Mn: 0.1 to 5%, at least one of them is mixed, and the remainder is Cu, and oxygen is not present on the bonding surface. Seal in an atmosphere of inert gas such as nitrogen or argon or reducing cracked gas, cover with borax or flux acting at the heating temperature, shut off oxygen by using vacuum or other methods, It is characterized in that both or one of the iron-based material and the high-strength brass alloy is heated to 700 to 1300 ° C. so that the high-strength brass alloy is brought into direct contact with the iron-based material in a solid, liquid, or semi-molten state without being pressed. Joining ferrous materials and high-strength brass alloys Law. 高力黄銅合金の化学成分について、Al;3%以下、Zn;15〜50%、Si;0.1〜3%、Mn;0.1〜5%、残部Cuであることを特徴とする請求項1記載の鉄系材料と高力黄銅合金を接合する方法。  The chemical components of the high-strength brass alloy are Al: 3% or less, Zn: 15-50%, Si: 0.1-3%, Mn: 0.1-5%, and the balance Cu. A method of joining the iron-based material according to Item 1 and a high-strength brass alloy. 高力黄銅合金の化学成分について、Al;3%以下、Zn;15〜50%、Si;0.1〜3%、Mn;0.1〜5%、Pb;0.1〜4%、残部Cuであることを特徴とする請求項1記載の鉄系材料と高力黄銅合金を接合する方法。  Regarding chemical components of high-strength brass alloy, Al: 3% or less, Zn: 15-50%, Si: 0.1-3%, Mn: 0.1-5%, Pb: 0.1-4%, balance The method for joining an iron-based material and a high-strength brass alloy according to claim 1, wherein the material is Cu. 高力黄銅合金の化学成分について、Al;3%以下、Zn;15〜50%に加えて、Si;0.1〜3%、Mn;0.1〜5%のうち少なくとも一種が混合され、さらにPb;0.1〜4%、Ni;0.1〜5%、Fe;0.1〜4%、Co;0.1〜3%、Zr;0.01〜2%、Cr;0.01〜2%、Ti;0.01〜3%、Mo;0.01〜2%、V;0.01〜2%、Sn;0.1〜3%、Nb;0.01〜1%、P;0.005〜0.5%、Sb;0.05〜1%、Bi;0.1〜3%において少なくとも一種が混合され、且つ、残部がCuであることを特徴とする請求項1記載の鉄系材料と高力黄銅合金を接合する方法。  Regarding the chemical components of the high-strength brass alloy, in addition to Al; 3% or less, Zn: 15 to 50%, at least one of Si; 0.1 to 3%, Mn; 0.1 to 5% is mixed, Furthermore, Pb; 0.1 to 4%, Ni; 0.1 to 5%, Fe; 0.1 to 4%, Co; 0.1 to 3%, Zr; 0.01 to 2%, Cr; 01 to 2%, Ti; 0.01 to 3%, Mo; 0.01 to 2%, V; 0.01 to 2%, Sn; 0.1 to 3%, Nb; 0.01 to 1%, 2. P: 0.005 to 0.5%, Sb: 0.05 to 1%, Bi; 0.1 to 3%, at least one of them is mixed, and the balance is Cu. A method of joining the described iron-based material and a high-strength brass alloy.
JP24470197A 1997-08-25 1997-08-25 Method of joining ferrous material and high-strength brass alloy Expired - Lifetime JP4100583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24470197A JP4100583B2 (en) 1997-08-25 1997-08-25 Method of joining ferrous material and high-strength brass alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24470197A JP4100583B2 (en) 1997-08-25 1997-08-25 Method of joining ferrous material and high-strength brass alloy

Publications (2)

Publication Number Publication Date
JPH1158034A JPH1158034A (en) 1999-03-02
JP4100583B2 true JP4100583B2 (en) 2008-06-11

Family

ID=17122651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24470197A Expired - Lifetime JP4100583B2 (en) 1997-08-25 1997-08-25 Method of joining ferrous material and high-strength brass alloy

Country Status (1)

Country Link
JP (1) JP4100583B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018001576T5 (en) 2017-03-24 2019-12-19 Ihi Corporation Wear-resistant copper-zinc alloy and mechanical device that uses it
US20220136086A1 (en) * 2020-10-29 2022-05-05 Otto Fuchs - Kommanditgesellschaft Lead-free CU-Zn alloy

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1158062B1 (en) * 2000-05-17 2002-11-27 Wieland-Werke AG Wrought copper-zinc-aluminium alloy and its use
CN100487148C (en) * 2004-08-10 2009-05-13 三菱伸铜株式会社 Copper-based alloy casting of micro-pulverized crystal grain
CN101273148B (en) * 2005-09-30 2012-08-29 三菱伸铜株式会社 Fusion curingprocess article and copper alloy material for fusion curingprocess and manufacturing method thereof
JP5616032B2 (en) * 2009-05-13 2014-10-29 オイレス工業株式会社 High strength brass casting for sliding member and sliding member
CN101812611A (en) * 2010-04-29 2010-08-25 路达(厦门)工业有限公司 Lead-free corrosion resistant brass alloy and manufacturing method thereof
CN102443716A (en) * 2010-09-30 2012-05-09 路达(厦门)工业有限公司 Low cost brass alloy and its manufacture method
JP5706193B2 (en) * 2011-03-02 2015-04-22 株式会社タカコ Manufacturing method of sliding member
CN103341605A (en) * 2013-07-10 2013-10-09 安徽精诚铜业股份有限公司 Novel method for using borax for casting common brass
US10384301B2 (en) 2013-10-16 2019-08-20 Komatsu Ltd. Sliding component, method for producing sliding component, and device for producing sliding component
JP6503393B2 (en) 2017-03-08 2019-04-17 大同メタル工業株式会社 Sliding material, method of manufacturing the same, sliding member and bearing device
CN107385273B (en) * 2017-07-07 2019-03-01 路达(厦门)工业有限公司 A kind of casting environment-friendly yellow brass alloy and its manufacturing method
CN110951989B (en) * 2019-12-25 2020-11-06 鸣浩高新材料科技(江苏盐城)有限公司 High-strength and high-toughness copper-zinc-aluminum shape memory alloy and preparation method thereof
CN113102731B (en) * 2021-04-21 2022-04-26 合肥工业大学 Use method of pressed borax in copper-steel bimetal casting process
KR102523587B1 (en) * 2021-04-29 2023-04-21 주식회사 대창 High strength lead-free brass and product using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794481A (en) * 1980-12-02 1982-06-11 Kawasaki Steel Corp Production of composite metallic material
JPS59589B2 (en) * 1981-07-10 1984-01-07 株式会社尼崎パイプ製作所 Manufacturing method of clad plate
JP2631460B2 (en) * 1986-06-17 1997-07-16 中越合金鋳工株式会社 Method for producing copper alloy clad material
JPH02151363A (en) * 1988-11-30 1990-06-11 Mitsubishi Motors Corp Production of bracket to be mounted on engine
JP3256041B2 (en) * 1993-08-05 2002-02-12 中越合金鋳工株式会社 Sliding material with wear-resistant sprayed coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018001576T5 (en) 2017-03-24 2019-12-19 Ihi Corporation Wear-resistant copper-zinc alloy and mechanical device that uses it
US20220136086A1 (en) * 2020-10-29 2022-05-05 Otto Fuchs - Kommanditgesellschaft Lead-free CU-Zn alloy

Also Published As

Publication number Publication date
JPH1158034A (en) 1999-03-02

Similar Documents

Publication Publication Date Title
JP4100583B2 (en) Method of joining ferrous material and high-strength brass alloy
US3081534A (en) Aluminum base brazing alloy
US4247036A (en) Process for assembling aluminum-based members and steel members
US6783726B2 (en) Cooling element and method for manufacturing cooling elements
US4385934A (en) Austenitic iron alloys having yttrium
CN109296643A (en) A kind of double-level-metal composite material and preparation method applied to sliding bearing
US6413649B2 (en) Silver-copper-nickel infiltration brazing filler metal and composites made therefrom
JPS60106691A (en) Alloy for brazing
JP3090963B2 (en) Insert material for joining
JPH0543773B2 (en)
JPH07179997A (en) High speed steel type powder alloy
AU2009262357B2 (en) Manufacture of wear resistant composite components
FR2549758A1 (en) PROCESS FOR THE PREPARATION OF COMPOSITE MATERIALS BASED ON ALUMINUM
JPH02151378A (en) Alloy foil for liquid phase diffusion joining which can be joined in oxidation atmosphere
JP3078411B2 (en) Method for manufacturing composite aluminum member
Kota et al. Joining of cast iron and phosphor bronze through liquid–solid interaction: effect of Ni and Cu coating on interfacial microstructures and mechanical properties of bimetallic composites
JP2631460B2 (en) Method for producing copper alloy clad material
JPH101704A (en) Sliding material and its production
Strobl et al. Forging of copper and iron plates by the Damascus technique
KR20060037707A (en) A flux and method and junction of different matal by the flux
Xian et al. An improvement of the oxidation resistance of Ag-Cu eutectic-5 at% Ti brazing alloy for metal/ceramic joints
周方明 et al. Interface microstructure and properties of submerged arc brazing tin-based babbit
JPH0379086B2 (en)
KR970009980B1 (en) Welding flux compound composition
JPS608282B2 (en) How to line high carbon iron-based materials with copper alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080314

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term