JP2010106351A - Treatment method for article including container by hip process - Google Patents

Treatment method for article including container by hip process Download PDF

Info

Publication number
JP2010106351A
JP2010106351A JP2008282386A JP2008282386A JP2010106351A JP 2010106351 A JP2010106351 A JP 2010106351A JP 2008282386 A JP2008282386 A JP 2008282386A JP 2008282386 A JP2008282386 A JP 2008282386A JP 2010106351 A JP2010106351 A JP 2010106351A
Authority
JP
Japan
Prior art keywords
container
interface
hip
contents
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008282386A
Other languages
Japanese (ja)
Inventor
Yasushi Umemoto
靖 梅本
Takanori Kuroki
隆憲 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuroki Kogyosho Co Ltd
Original Assignee
Kuroki Kogyosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuroki Kogyosho Co Ltd filed Critical Kuroki Kogyosho Co Ltd
Priority to JP2008282386A priority Critical patent/JP2010106351A/en
Publication of JP2010106351A publication Critical patent/JP2010106351A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment method which reduces a container portion that must be removed after the treatment, and also solves problems occurring due to thermal stress in a cooling stage and residual stress in service, when diffusion-bonding an interface between contents themselves and an interface between the content and the container. <P>SOLUTION: The content contained in the container 1 is a powder 1A of A40, which becomes a bearing material that is a component of a main bearing, and stainless-steel SUS304 that becomes a back metal 1B. The stainless-steel SUS304 which is the content 1B has such a structure as to also serve as an outer tube 2 that is a part of the container. A metallic foil made from stainless steel SUS304 with the thickness of 50 &mu;m is inserted as a release material 6 in an interface between the content 1A and an inner tube 3 in a doubly wound form so as not to form any gap as much as possible so that the powdery content 1A does not enter a gap between the metallic foils and a gap between the metallic foil and the inner tube 3, and is fixed to the inner tube 3 by spot welding. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、容器と容器で包含される内容物で構成される処理物のHIP法による処理方法に関する。   The present invention relates to a processing method by a HIP method of a processing object composed of a container and contents contained in the container.

HIP法は、複雑な界面を有するバルク体同士の界面における拡散接合、粉末同士の高密度焼結、鋳造材の内部欠陥除去など広い用途範囲に機能を発揮できる、高精度の接合とニアネットシェイプ成形品の製造には有効な手段である。   The HIP method is a high-precision joint and near-net shape that can perform functions in a wide range of applications, such as diffusion bonding at the interface between bulk bodies having complex interfaces, high-density sintering between powders, and removal of internal defects in cast materials. This is an effective means for manufacturing molded articles.

ところが、HIP法は、圧力媒体である雰囲気ガスによる加圧によるものであるため、バルク体同士の界面における拡散接合、粉末同士の高密度焼結のように、内容物が加圧された雰囲気ガスが侵入するような界面を有している場合には、ガスの侵入を防ぐために、容器によって内容物の全体または一部を含包し、かつ容器は製品対象外であるため、処理後においては容器を製品から除去する必要がある。   However, since the HIP method is based on pressurization with an atmospheric gas that is a pressure medium, the atmospheric gas in which the contents are pressurized, such as diffusion bonding at the interface between bulk bodies and high-density sintering between powders. In order to prevent gas intrusion, the container contains all or part of the contents, and the container is outside the scope of the product. The container needs to be removed from the product.

HIP法において容器によって内容物を含包することをキャニングと呼び、容器で含包しないHIP法をキャンレスHIP法とも呼び、上記の鋳造材の内部欠陥除去などはキャンレスによって行われることが多い。   In the HIP method, inclusion of contents in a container is called canning, and the HIP method not containing in a container is also called a canless HIP method, and the above-described internal defect removal of cast material is often performed by canless.

このキャニングは、技術的にも経済的にも負担となり、キャニング方案によっては処理物の品質および特性のみならず製造工程数、製造コストや納期にも強く影響を与えることになる。   This canning is technically and economically burdensome, and depending on the canning method, not only the quality and characteristics of the processed product but also the number of manufacturing steps, manufacturing cost, and delivery time are strongly affected.

つまり、キャニングに用いられる容器の構造および材質によっては、容器内部に含包された内容物に必要な温度および圧力を与えることができないばかりではなく、HIP処理中の冷却段階での過剰な熱応力の作用によって接合界面の剥離などの原因ともなり、残留応力による使用中における界面劣化などの不具合が発生したり、所定の品質および特性を得られないことがある。   In other words, depending on the structure and material of the container used for canning, not only the necessary temperature and pressure cannot be applied to the contents contained in the container, but also excessive thermal stress in the cooling stage during HIP processing. This may cause peeling of the bonding interface, which may cause problems such as interface deterioration during use due to residual stress, and may fail to obtain predetermined quality and characteristics.

また、特に容器が製品対象外となり、処理後に除去する必要がある場合には、容器の製作、充填、脱気、封入および除去などの工程は製造工程数と製造コストの増加につながり、HIP法が経済的には不利な製造方法となってしまうことにもなる。   In particular, when the container is not covered by the product and needs to be removed after processing, the process of manufacturing, filling, degassing, enclosing and removing the container leads to an increase in the number of manufacturing steps and manufacturing cost. However, this is an economically disadvantageous manufacturing method.

さらには、HIP処理の冷却段階において、熱応力によって製品界面の剥離や母材内での割れの発生などの不具合を起こしやすいという製品品質上の重大な問題原因ともなる。   Furthermore, in the cooling stage of the HIP process, it becomes a cause of a serious problem in product quality that the thermal stress tends to cause defects such as separation of the product interface and occurrence of cracks in the base material.

このHIP法の欠点を解消するために、例えば、特許文献1には真空しゃ断器の接点の製造法として、処理材を金属容器の一部を残した複合材として形成することが、また、特許文献2には、ヒートシンク複合部材の製造法として、金属単体からなる容器内に複合合金粉末を装入して容器と複合合金粉末を拡散接合により一体化することが開示されているが、これらの場合の容器は、内容物と共通する組成で、界面接合が比較的容易な銅成分に限られる。   In order to eliminate the disadvantages of the HIP method, for example, in Patent Document 1, as a method of manufacturing a contact of a vacuum circuit breaker, it is also possible to form a treatment material as a composite material that leaves a part of a metal container. Document 2 discloses a method of manufacturing a heat sink composite member, in which a composite alloy powder is charged into a container made of a single metal and the container and the composite alloy powder are integrated by diffusion bonding. The container in this case is limited to a copper component having a composition common to the contents and relatively easy to interface.

ところが、HIP法により容器内の特性の異なる内容物同士を接合界面で拡散接合する場合は、接合すべき容器内の内容物のみならず、容器も含めて、これらの材料特性が処理物の品質に強く影響を与える。例えば、熱膨張係数やヤング率は材料の高低温における弾性的特性を示す代表的な指標であるが、これらの材料特性が異なることによる熱応力の発生は界面特性に強く影響を与える。つまり、HIP法により複数の内容物が界面接合された処理物は、冷却時に熱応力が接合界面に作用するため、内容物母材内における母材強度や接合界面における界面接合強度を劣化させることがあり、室温となった後も熱応力の一部は残留応力として接合界面に作用し続け、この残留応力が、処理物の製品としての品質と特性に極めて大きい影響を与える。つまり熱応力や残留応力が接合界面や材料内に作用すると、接合強度を弱めて界面剥離を起こし、さらには、残留応力として材料内の有害欠陥に作用すると耐疲労強度を低下させることもある。   However, when the contents having different characteristics in the container are diffusion-bonded at the bonding interface by the HIP method, not only the contents in the container to be joined but also the container, these material characteristics are the quality of the processed material. Strongly affects. For example, the thermal expansion coefficient and Young's modulus are typical indicators of the elastic properties of materials at high and low temperatures, but the generation of thermal stress due to the difference in these material properties strongly affects the interface properties. In other words, in a processed product in which a plurality of contents are interface-bonded by the HIP method, thermal stress acts on the bonding interface during cooling, so the strength of the base material in the content matrix and the interface bonding strength at the bonding interface is deteriorated. Even after the temperature reaches room temperature, a part of the thermal stress continues to act on the joint interface as a residual stress, and this residual stress has a great influence on the quality and characteristics of the processed product. In other words, when thermal stress or residual stress acts on the joint interface or in the material, the joint strength is weakened to cause interfacial peeling, and when it acts on harmful defects in the material as residual stress, the fatigue strength may be lowered.

この接合界面への残留応力の作用を除くための手段として、特許文献3には、HIP法による多軸複合シリンダーの製造法として、シリンダー構成金属材料より熱膨張係数の大きな金属材料からなる単一中子に、イオンプレーティングやセラミックスめっきのような離型材の被着を介して挿入し、中子の外周面とシリンダーの内径面との空間に内径面ガード用金属粉末を一体に被着することが記載されている。   As a means for removing the effect of residual stress on the joint interface, Patent Document 3 discloses a method for manufacturing a multi-axis composite cylinder by the HIP method, which is a single material made of a metal material having a larger thermal expansion coefficient than that of the cylinder-constituting metal material. Inserted into the core through deposition of release material such as ion plating or ceramic plating, and the inner surface guard metal powder is integrally deposited in the space between the outer peripheral surface of the core and the inner diameter surface of the cylinder. It is described.

この離型材の形成には、イオンプレーティングやセラミックスめっきという特殊な表面処理によらねばならないという問題がある。また、セラミックスなど耐熱性粉体のスプレー塗布膜は容器内部を汚染したりして、最悪の場合処理物の接合界面に侵入して良好な界面接合を阻害することがあるため、剥離材として望ましくない。
特開平08−124462 特開平11−323409 特開平05−338009
The formation of the release material has a problem that it must be performed by a special surface treatment such as ion plating or ceramic plating. In addition, spray coating films of heat-resistant powders such as ceramics are desirable as a release material because they can contaminate the inside of the container and in the worst case enter the bonded interface of the treated material and hinder good interface bonding. Absent.
JP 08-124462 JP 11-323409 A JP 05-338809

本発明における解決課題は、内容物を容器によって含包した処理物をHIP法によって処理する場合において、内容物同士および内容物と容器との間の界面を拡散接合するに際して、処理後に除去しなければならない容器部分を減らすとともに、冷却段階における熱応力および使用時の残留応力による不具合を解消することにある。   The problem to be solved by the present invention is that, when a processed product containing the contents in a container is processed by the HIP method, the diffusion between the contents and the interface between the contents and the container must be removed after the processing. The purpose is to reduce the portion of the container that must be used, and to solve problems caused by thermal stress in the cooling stage and residual stress during use.

本発明は、容器でバルク体または粉粒体の内容物を含包して、材料特性の異なる異種材料同士をHIPによって拡散接合して一体化接合するに際して、HIP処理の冷却段階においては内容物同士の材料特性の差異が材料母材内や界面特性に強く影響を与えることが多々ある。例えば、熱膨張係数やヤング率は内容物の高低温における弾性的特性を示す代表的な指標であるが、これらの材料特性が異なることによる熱応力および残留応力の発生は、特に複数の内容物で構成された処理物の場合においては界面特性に強く影響を与える。   The present invention includes the contents of bulk or granular materials in a container, and when dissimilar materials with different material properties are diffusion-bonded and integrally joined by HIP, the contents are in the cooling stage of HIP processing. Differences in material properties between the materials often have a strong influence on the material matrix and interface properties. For example, the coefficient of thermal expansion and Young's modulus are typical indicators of the elastic properties of the contents at high and low temperatures, but the occurrence of thermal stress and residual stress due to the difference in these material characteristics is particularly due to multiple contents. In the case of the processed material constituted by, it strongly affects the interface characteristics.

つまり、HIP法により複数の内容物が界面接合された処理物は、冷却時に熱応力が作用するため、内容物の母材内における母材強度や接合界面における界面接合強度を劣化させることがあり、室温になった後にも残留応力として接合界面に作用し続け、母材および界面の疲労強度を低下させることにもなる。   In other words, a processed product in which a plurality of contents are interface-bonded by the HIP method is subject to thermal stress during cooling, which may deteriorate the strength of the base material in the base material of the content or the interface joint strength at the joint interface. Even after the temperature reaches room temperature, it continues to act on the bonding interface as residual stress, and the fatigue strength of the base material and the interface is also reduced.

ところで、Δαを熱膨張係数差、ΔEをヤング率差、そして、ΔTを室温との温度差で、Kは定数とすると、一般に、異なる2つの材料で構成される材料間の熱応力σTは、下記の(1)式で表される。   By the way, when Δα is a difference in thermal expansion coefficient, ΔE is a Young's modulus difference, ΔT is a temperature difference from room temperature, and K is a constant, generally, the thermal stress σT between two different materials is It is represented by the following formula (1).

σT=K×Δα×ΔE×ΔT (1)
したがって、熱応力および残留応力を緩和または低減する方法としては、HIP法における製造条件としては先ず保持温度を低下させることであり、これが(1)式のΔTを低減させることが必要になる。
σT = K × Δα × ΔE × ΔT (1)
Therefore, as a method for relaxing or reducing the thermal stress and the residual stress, the manufacturing condition in the HIP method is to first lower the holding temperature, which requires that ΔT in the equation (1) be reduced.

ただし、HIP法における拡散接合は保持温度における拡散現象での界面反応と直接に関係するため、界面反応は熱応力や残留応力が発生および作用する温度域よりも高温における現象であり、拡散接合が熱応力や残留応力のみで決定できない側面もある。   However, since the diffusion bonding in the HIP method is directly related to the interface reaction in the diffusion phenomenon at the holding temperature, the interface reaction is a phenomenon at a temperature higher than the temperature range in which thermal stress and residual stress are generated and act. There are some aspects that cannot be determined only by thermal stress or residual stress.

しかしながら、例えば、内容物が異なる複数の材料で構成される場合には、材料間の熱膨張係数差(Δα)とヤング率差(ΔE)をできるだけ小さく設定できれば、(1)式から明らかに、熱応力は緩和できる。そして、結局は、温度および拘束状態が定常状態となった場合の残留応力も低減できる。   However, for example, when the contents are composed of a plurality of different materials, if the difference in thermal expansion coefficient (Δα) and the Young's modulus difference (ΔE) between the materials can be set as small as possible, clearly from the equation (1), Thermal stress can be relaxed. Eventually, the residual stress when the temperature and the restrained state become a steady state can also be reduced.

つまり、アルミ軸受を対象とする場合、軸受材をヤング率が低くかつ熱膨張係数が大きいアルミ合金とすれば、裏金となる鋼としてヤング率が高くかつ熱膨張係数が低い炭素鋼に代えて、炭素鋼よりヤング率が低く、かつ炭素鋼より熱膨張係数が大きいステンレス鋼を選定すれば、ΔαとΔEの両方を小さくできるため、保持温度の変更よりも比較的容易に熱応力を緩和できることになる。   In other words, when aluminum bearings are targeted, if the bearing material is an aluminum alloy with a low Young's modulus and a large thermal expansion coefficient, instead of carbon steel with a high Young's modulus and a low thermal expansion coefficient as the back metal, If stainless steel with a Young's modulus lower than that of carbon steel and a coefficient of thermal expansion greater than that of carbon steel is selected, both Δα and ΔE can be reduced, so that thermal stress can be relaxed relatively easily compared to changing the holding temperature. Become.

まず、内容物が複数の場合に手段が単純で効果が明白であるのが、容器と内容物を共通化して、容器と内容物との界面面積を減らすことである。   First, when there are a plurality of contents, the means is simple and the effect is obvious. By sharing the container and the contents, the interface area between the container and the contents is reduced.

つまり、アルミ軸受を対象とする場合、裏金となる鋼としてヤング率が高くかつ熱膨張係数が低い炭素鋼に代えて、炭素鋼よりヤング率が低く、かつ炭素鋼より熱膨張係数が大きいステンレス鋼を選定し、さらに容器の一部に裏金となるステンレス鋼を共通化して採用する容器方案を採用すれば、容器としてヤング率と熱膨張係数が炭素鋼と同等の軟鋼を採用する場合よりも、容器と内容物の界面面積を確実に減らせるため、処理物全体における熱応力および残留応力を低減できることになる。   In other words, when aluminum bearings are the target, instead of carbon steel with a high Young's modulus and a low thermal expansion coefficient as the back metal, stainless steel with a lower Young's modulus than carbon steel and a larger thermal expansion coefficient than carbon steel And adopting a container method that adopts stainless steel as a backing metal in part of the container, and adopting a mild steel equivalent to carbon steel as Young's modulus and thermal expansion coefficient as a container, Since the interface area between the container and the contents can be surely reduced, the thermal stress and residual stress in the entire processed product can be reduced.

また、上記の容器と内容物の共通化は、処理物における部品点数の低減、HIP処理後に除去する容器としての材料ロスの低減に繋がるため、材料コスト、工程数低減、および納期短縮など多方面での効果が明白であり、容器方案や製品仕様の許容範囲で大いに活用されるべきである。   In addition, the common use of the container and contents described above leads to a reduction in the number of parts in the processed product and a reduction in material loss as a container removed after the HIP process. The effect of this is obvious and should be used to the full extent within the tolerances of the container design and product specifications.

さらには、容器と内容物との、および複数の内容物間の熱膨張係数差(Δα)とヤング率差(ΔE)を小さくするために、処理物における材料構成を変更して、上記(1)式の材料間の熱応力(σT)を小さくすること以外にも、従来の容器方案を大幅に変更することなく、さらにはより汎用性が高く、安価な炭素鋼および軟鋼を従来通り容器として用いながら、容器と内容物を剥離させることによって熱応力および残留応力の低減を行うことも可能である。   Furthermore, in order to reduce the thermal expansion coefficient difference (Δα) and the Young's modulus difference (ΔE) between the container and the contents, and between the contents, the material composition in the processed material is changed to the above (1 ) In addition to reducing the thermal stress (σT) between materials, the conventional container method is not changed significantly, and more versatile and inexpensive carbon steel and mild steel are used as conventional containers. While being used, it is also possible to reduce thermal stress and residual stress by peeling the contents from the container.

つまり、熱応力および残留応力を低減する目的で容器界面を剥離するために、処理物内の容器界面の容器側表面に剥離処理を施すか、または容器界面に剥離材として金属箔を配置することも有効な方法である。   In other words, in order to peel the container interface for the purpose of reducing thermal stress and residual stress, the container side surface of the container interface in the processed material is subjected to a peeling treatment, or a metal foil is disposed as a peeling material on the container interface. Is also an effective method.

ところで熱応力や残留応力の作用は単体などの連続体内、または一体化された複数構成材間で作用するものであり、不連続体もしくは剥離界面を通じては作用しないことは明白である。したがって、処理物の一部にでも剥離した界面が存在すればその界面での応力伝達は不十分になるはずである。   By the way, it is obvious that the action of thermal stress and residual stress acts on a continuous body such as a single body or between a plurality of integrated components, and does not act on a discontinuous body or a peeling interface. Therefore, if there is a peeled interface even in a part of the processed material, stress transmission at the interface should be insufficient.

したがって、製品に含まれる接合界面には適用できないが、製品の対象外として除去される容器界面であれば、積極的に界面を剥離させることによって熱応力や残留応力を低減させることが可能となる。   Therefore, although it cannot be applied to the bonding interface included in the product, it is possible to reduce thermal stress and residual stress by positively peeling the interface if it is a container interface that is removed as an object of the product. .

具体的には、容器界面におけるなじみ性や反応性を阻害するために、剥離処理として容器側表面に非金属膜を被覆し、かつ粗面化することであり、酸化物、窒化物、炭化物などの非金属薄膜を被覆し、さらに表面粗さを大きくすれば目的を達することができる。それらの中でも最も簡便なのは、該当する容器側表面について大気中で加熱して酸化膜を設け、さらに容器表面においてショットブラスト処理を行って表面粗さが粗くなるようにする処理があり、両者を複合化することはさらに効果的である。   Specifically, in order to inhibit the conformability and reactivity at the container interface, the surface on the container side is coated with a non-metallic film and roughened as a peeling treatment, and oxides, nitrides, carbides, etc. The purpose can be achieved by coating the non-metallic thin film and increasing the surface roughness. The simplest of these is a process in which the relevant container side surface is heated in the atmosphere to provide an oxide film, and the surface of the container is subjected to shot blasting to roughen the surface roughness. Is more effective.

非金属膜については膜厚には特定されないが、表面粗さの程度の膜厚を被覆すれば機能は発揮する。ただし、HIP処理中に容器が変形して容器表面の剥離処理を施した表面に亀裂が発生することは許容されるが、容易に非金属膜が全面剥離しない程度の接合強度が剥離処理には必要である。   The thickness of the non-metal film is not specified, but the function is exhibited if the film is coated with a film thickness that is about the surface roughness. However, the container is deformed during the HIP process and cracks are allowed to occur on the surface subjected to the peeling process on the container surface. is necessary.

また、粗面化に際しての表面粗さには、格別の要件はないが、容器表面が曲面の場合でも処理面全体において表面粗さがほぼ均一であることが、HIP処理中に容器表面が変形しても表面粗さの凸部において容器表面の非金属膜が破壊して新生面が現出しないことが必要となる。   In addition, there is no special requirement for the surface roughness at the time of roughening, but even when the container surface is curved, the surface of the container is deformed during the HIP process. Even so, it is necessary that the non-metallic film on the surface of the container is broken and the new surface does not appear at the convex portion having the surface roughness.

そして、金属箔は可撓性があるため容器界面に密着させることが容易で、所定寸法への切断も容易で、剥離と関与しない接合界面への侵入の可能性がなく、耐熱性金属箔であれば複数枚重ねることで、HIP処理後における取り出し時には容器と内容物の剥離を促進する効果が得られるためより望ましい。ここで言う耐熱性金属箔とは高融点金属であるクロム(Cr)、モリブデン(Mo)、タングステン(W)単体もしくは、これらを単独または複数を含有する鉄(Fe)合金であれば機能的に満足する。特に、汎用性からすると、Fe−Cr系鉄合金であるステンレス鋼が好適であり、ニッケル(Ni)が含まれていても機能的にはほぼ同等であり、容器界面でのなじみを阻害することによる剥離性を付与することのほかにも、鉄と比べても熱膨張係数が低くなるため熱応力緩和の点からも複合効果が期待できる。つまり、Cr、Mo,Wは融点が高いためなじみ性が低いという性質のほかに、共通して熱膨張係数が低いという特性もある。   And since the metal foil is flexible, it can be easily adhered to the container interface, it can be easily cut to a predetermined size, and there is no possibility of intrusion into the joint interface that is not involved in peeling. If there are, it is more preferable to stack a plurality of sheets because an effect of promoting peeling of the container and contents can be obtained at the time of taking out after the HIP process. The heat resistant metal foil referred to here is functionally provided that it is a high melting point metal such as chromium (Cr), molybdenum (Mo), tungsten (W) alone or an iron (Fe) alloy containing these alone or in plural. Satisfied. In particular, from the viewpoint of versatility, stainless steel, which is an Fe—Cr-based iron alloy, is suitable, and even if nickel (Ni) is contained, it is functionally equivalent and inhibits familiarity at the container interface. In addition to imparting releasability due to, a thermal expansion coefficient is lower than that of iron, so a composite effect can be expected from the viewpoint of thermal stress relaxation. That is, Cr, Mo, and W have a characteristic that the thermal expansion coefficient is low in common in addition to the property that the conformability is low because the melting point is high.

従来にくらべて、本発明のHIP法は、工程数が少なく、コストおよび納期的にもさらに有利で、安定した品質で、かつ信頼性の高い製品が得られる。   Compared with the prior art, the HIP method of the present invention has a smaller number of steps, is more advantageous in terms of cost and delivery time, and can provide a product with stable quality and high reliability.

以下、本発明の実施の形態の一つを、アルミ軸受として軸受材がアルミ合金A40(Al−40重量%Sn−1重量%Cu)と鋼を構成材としたジャーナル軸受タイプの舶用主軸受に適用した実施例で示す。   Hereinafter, one of the embodiments of the present invention is a journal bearing type marine main bearing in which an aluminum bearing is used as a bearing material and an aluminum alloy A40 (Al-40 wt% Sn-1 wt% Cu) and steel are used as components. This is shown in the applied example.

HIP法においては処理容器中に処理品を真空封入して処理するものであるが、本発明においては、軟鋼、炭素鋼またはステンレス鋼を処理容器の材質として選定して、本発明によるHIP処理を施した。   In the HIP method, the processed product is vacuum-sealed in a processing vessel. In the present invention, mild steel, carbon steel or stainless steel is selected as the material of the processing vessel, and the HIP processing according to the present invention is performed. gave.

図1は、実施例として主軸受製作のための処理物1における構造および寸法を示した簡略図面であり、容器内に含包される内容物は、主軸受の構成材である軸受材となるA40の粉末1A、および裏金1Bとなるステンレス鋼SUS304である。アルミ合金A40の粉末は球状をしたガスアトマイズ粉であり、粒度分布は#100メッシュ未満である。因みに、図1では、内容物1Bであるステンレス鋼SUS304は容器の一部である外管2を兼ねる構造で、外径φ480mm×内径φ448mm×高さ約400mmの寸法である。そして、外管以外に容器を構成する内管3はステンレス鋼SUS304(板厚4mm)で、ふた4は炭素鋼S25Cである。HIP処理前に、真空雰囲気に保たれた電子ビーム溶接装置内で、内容物を含包した容器を構成する外管2、内管3、およびふた4は溶接部5で溶接組立されて、内容物は容器内に真空封入されることになる。   FIG. 1 is a simplified drawing showing the structure and dimensions of a processed product 1 for manufacturing a main bearing as an example, and the contents contained in the container become a bearing material which is a constituent material of the main bearing. Stainless steel SUS304 used as A40 powder 1A and back metal 1B. The powder of the aluminum alloy A40 is a spherical gas atomized powder, and the particle size distribution is less than # 100 mesh. Incidentally, in FIG. 1, the stainless steel SUS304 that is the contents 1B has a structure that also serves as the outer tube 2 that is a part of the container, and has a size of outer diameter φ480 mm × inner diameter φ448 mm × height about 400 mm. The inner tube 3 constituting the container other than the outer tube is stainless steel SUS304 (plate thickness 4 mm), and the lid 4 is carbon steel S25C. Before the HIP treatment, the outer tube 2, the inner tube 3 and the lid 4 constituting the container containing the contents are welded and assembled at the welded portion 5 in the electron beam welding apparatus maintained in a vacuum atmosphere. The object is vacuum-sealed in the container.

また、容器界面には剥離材6としてステンレス鋼SUS304製で厚さ50μmの金属箔が2重巻きされて、粉末である内容物1Aが金属箔の間隙や金属箔と内管3との隙間に侵入しないようにできるだけ隙間なく挿入され、内管3に点溶接で固定されている。金属箔の2重巻きはより確実に剥離効果が達成できるためである。   Further, a metal foil made of stainless steel SUS304 and having a thickness of 50 μm is wound twice as a release material 6 at the container interface, and the content 1A as a powder is placed in the gap between the metal foil and the gap between the metal foil and the inner tube 3. It is inserted with as little gap as possible so as not to enter, and is fixed to the inner tube 3 by spot welding. This is because the double winding of the metal foil can achieve the peeling effect more reliably.

そして、処理物1はHIP装置に配置されて適当な条件でHIP処理されるが、HIP処理条件としては保持温度500℃×保持圧力98MPa×保持時間90分を採用した。また、加圧および冷却パターンには特別な配慮は必要がなく、装置としても一般的な機能を有するHIP装置であれば十分に適用できる。   The processed product 1 is placed in a HIP apparatus and subjected to HIP processing under appropriate conditions. As the HIP processing conditions, a holding temperature of 500 ° C. × a holding pressure of 98 MPa × a holding time of 90 minutes is adopted. In addition, no special consideration is required for the pressurization and cooling patterns, and any HIP device having a general function as a device can be sufficiently applied.

HIP処理後に製品対象外となる、内管2、ふた4、溶接部5、剥離材6、および内容物1Bが兼ねる外管1Bの一部を切削除去すれば、容器内に含包されて一体化された内容物は製品として容易に取り出すことができる。   If a part of the outer tube 1B, which is also the inner tube 2, the lid 4, the welded part 5, the release material 6, and the contents 1B, which is excluded from the product after the HIP process, is removed by cutting, it is included in the container and integrated. The converted contents can be easily taken out as a product.

HIP処置直後において処理物について非破壊試験として超音波探傷試験を行い、接合界面および容器界面の状況を検査したところ、内容物1Aと内容物1Bからなる接合界面は全面接合して、剥離材を挿入した内容物1Aと内管3からなる容器界面は容器界面の95%以上が剥離していた。   Immediately after the HIP treatment, an ultrasonic flaw detection test was performed on the treated material as a nondestructive test, and the state of the bonding interface and the container interface was inspected. As a result, the bonding interface consisting of the contents 1A and the contents 1B was bonded to the entire surface. 95% or more of the container interface was peeled off from the container interface composed of the inserted contents 1A and the inner tube 3.

またA40粉末からなる内容物1Aのバルク内も十分に焼結し、ステンレス鋼からなる内容物1Bと一体化していた。破壊試験用として各種試験片を採取して、金属組織観察、断面硬さ測定、および剥離試験を実施した。光学顕微鏡による倍率100倍での金属組織観察の結果、接合界面には何ら界面欠陥はなく、A40粉末も焼結し一体化していた。また断面硬さ測定の結果、A40粉末の焼結部におけるビッカース硬さはHv(1)=37〜42という、客先仕様であるHv=45以下を満足する値が得られた。そして接合界面における接合強度として、接合界面に対して直角に押し抜く方式の試験方法である剥離試験で、引張強さに相当する剥離強さを製品内となる5ヶ所で調べたところ、剥離強さは7.7〜8.8kgf/mmという、十分な値が得られた。 Further, the inside of the bulk of the content 1A made of A40 powder was sufficiently sintered and integrated with the content 1B made of stainless steel. Various specimens were collected for destructive testing and subjected to metallographic observation, cross-sectional hardness measurement, and peel test. As a result of observing the metal structure with an optical microscope at a magnification of 100, there was no interface defect at the bonding interface, and the A40 powder was also sintered and integrated. As a result of measuring the cross-sectional hardness, the Vickers hardness in the sintered part of the A40 powder was a value satisfying Hv = 45 or less, which is the customer specification, Hv (1) = 37 to 42. Then, as the bond strength at the bond interface, the peel strength corresponding to the tensile strength was examined at five points in the product by a peel test, which is a test method of a method of pushing at right angles to the bond interface. A sufficient value of 7.7 to 8.8 kgf / mm 2 was obtained.

図1における内管3が軟鋼STKM13Aで、剥離材が1重巻きであることを除けば、実施例1と同じ場合である。   1 is the same as Example 1 except that the inner tube 3 is mild steel STKM13A and the release material is single wound.

HIP処置直後において処理物について非破壊試験として超音波探傷試験を行い、接合界面および容器界面の状況を検査したところ、内容物1Aと内容物1Bからなる接合界面は全面接合したが、剥離材を挿入した内容物1Aと内管3からなる容器界面は容器界面の60%以上が剥離していた。   Immediately after the HIP treatment, an ultrasonic flaw detection test was performed as a non-destructive test on the processed material, and the state of the bonding interface and the container interface was inspected. As a result, the bonding interface consisting of the contents 1A and the contents 1B was entirely bonded. 60% or more of the container interface was peeled off from the container interface composed of the inserted contents 1A and the inner tube 3.

光学顕微鏡による倍率100倍での金属組織観察の結果、接合界面には何ら界面欠陥はなく、アルミ合金A40粉末も焼結し一体化していた。また断面硬さ測定の結果、A40粉末の焼結部におけるビッカース硬さはHv(1)=35〜40という、客先仕様であるHv=45以下を満足する値が得られた。そして接合界面における接合強度として、接合界面に対して直角に押し抜く方式の試験方法である剥離試験で、引張強さに相当する剥離強さを製品内となる5ヶ所で調べたところ、剥離強さは5.3〜8.8kgf/mmという若干バラツキを示したが、十分な値が得られた。 As a result of observing the metal structure at a magnification of 100 using an optical microscope, there was no interface defect at the bonding interface, and the aluminum alloy A40 powder was also sintered and integrated. As a result of measuring the cross-sectional hardness, the Vickers hardness in the sintered part of the A40 powder was Hv (1) = 35-40, which satisfies the customer specification Hv = 45 or less. Then, as the bond strength at the bond interface, the peel strength corresponding to the tensile strength was examined at five points in the product by a peel test, which is a test method of a method of pushing at right angles to the bond interface. The thickness showed a slight variation of 5.3 to 8.8 kgf / mm 2 , but a sufficient value was obtained.

図2における内管3が軟鋼STKM13Aで、容器界面における容器側表面への剥離処理が大気中での加熱およびショットブラスト処理であることを除けば、実施例1と同じ場合である。   2 is the same as in Example 1 except that the inner tube 3 is mild steel STKM13A and the peeling process to the container side surface at the container interface is heating in air and shot blasting.

HIP処置直後において処理物について非破壊試験として超音波探傷試験を行い、接合界面および容器界面の状況を検査したところ、内容物1Aと内容物1Bからなる接合界面は全面接合したが、剥離材を挿入した内容物1Aと内管3からなる容器界面は容器界面の40%以下が剥離していた。   Immediately after the HIP treatment, an ultrasonic flaw detection test was performed as a non-destructive test on the processed material, and the state of the bonding interface and the container interface was inspected. As a result, the bonding interface consisting of the contents 1A and the contents 1B was entirely bonded. 40% or less of the container interface was peeled off from the container interface consisting of the inserted contents 1A and the inner tube 3.

光学顕微鏡による倍率100倍での金属組織観察の結果、接合界面には何ら界面欠陥はなく、A40粉末も焼結し一体化していた。また断面硬さ測定の結果、A40粉末の焼結部におけるビッカース硬さはHv(1)=39〜43という、客先仕様であるHv=45以下を満足する値が得られた。そして接合界面における接合強度として、接合界面に対して直角に押し抜く方式の試験方法である剥離試験で、引張強さに相当する剥離強さを製品内となる2ヶ所で調べたところ、剥離強さはどちらも5.2kgf/mmという値が得られた。 As a result of observing the metal structure with an optical microscope at a magnification of 100, there was no interface defect at the bonding interface, and the A40 powder was also sintered and integrated. Further, as a result of measuring the cross-sectional hardness, the Vickers hardness in the sintered part of the A40 powder was Hv (1) = 39 to 43, which satisfies the customer specification of Hv = 45 or less. Then, as the bonding strength at the bonding interface, the peeling strength corresponding to the tensile strength was examined at two points in the product by the peeling test, which is a test method of pushing out at a right angle to the bonding interface. In both cases, a value of 5.2 kgf / mm 2 was obtained.

本発明をジャーナル軸受形式の処理物に適用した第1と第2の実施例における形態とその断面形状を示す。The form and the cross-sectional shape in the 1st and 2nd Example which applied this invention to the processed material of the journal bearing type | mold are shown. 本発明をジャーナル軸受形式の処理物に適用した第3の実施例における形態とその断面形状を示す。The form and the cross-sectional shape in the 3rd Example which applied this invention to the processed material of the journal bearing type | mold are shown.

符号の説明Explanation of symbols

1 容器界面を有し、内容物を含包した処理物
1A、1B 容器内部に含包された、製品を構成する構成材となる内容物
2 外管
3 内管
4 ふた
5 溶接部
6 剥離材
1 Processed products 1A and 1B having a container interface and containing contents The contents 2 constituting the product contained in the container 2 Outer tube 3 Inner tube 4 Lid 5 Welded part 6 Release material

Claims (6)

容器によって包含される内容物をHIP法によって拡散接合して一体化する場合において、構成する材料間の熱応力および残留応力を低減させるHIP法による処理法であって、内容物のみならず容器も含めて、異なる材料で形成される界面の一方の材料が、他方の材料とのヤング率差および熱膨張係数差を小さくするHIP法による処理法。   In the case where the contents contained by the container are integrated by diffusion bonding by the HIP method, this is a processing method by the HIP method that reduces the thermal stress and residual stress between the constituent materials. In addition, a treatment method using an HIP method in which one material at an interface formed of different materials reduces the difference in Young's modulus and the thermal expansion coefficient from the other material. 容器で含包される内容物が複数の場合、内容物と容器を共通化することによって、容器と内容物との間の界面面積を低減させる請求項1に記載のHIP法による処理法。   The processing method by HIP method of Claim 1 which reduces the interface area between a container and a content by making a content and a container common, when the content included with a container is plurality. 内容物を含包する容器の少なくとも一部が鉄を主成分とする材料であり、容器によって包含される内容物の一部がアルミニウムまたはアルミニウム合金である請求項1に記載のHIP法による処理法。   The processing method by the HIP method according to claim 1, wherein at least a part of the container containing the contents is a material mainly composed of iron, and a part of the contents contained by the container is aluminum or an aluminum alloy. . 材料間の熱応力および残留応力を低減させる手段が、容器側表面に施される剥離処理、もしくは剥離材としての界面への金属箔の配置である請求項1に記載のHIP法による処理法。   The processing method by the HIP method according to claim 1, wherein the means for reducing the thermal stress and residual stress between the materials is a peeling treatment applied to the container side surface, or an arrangement of a metal foil at the interface as a peeling material. 剥離処理が、容器側表面に酸化物、窒化物、炭化物などの非金属薄膜を被覆した後の粗面化である請求項4に記載のHIP法による処理方法。   The processing method according to the HIP method according to claim 4, wherein the peeling treatment is roughening after the surface on the container side is coated with a non-metallic thin film such as oxide, nitride, or carbide. 金属箔は、クロム(Cr)、モリブデン(Mo)、タングステン(W)単体、もしくは、これらを単独または複数を含有する鉄(Fe)合金である請求項4に記載のHIP法による処理方法。   The processing method by the HIP method according to claim 4, wherein the metal foil is chromium (Cr), molybdenum (Mo), tungsten (W) alone, or an iron (Fe) alloy containing one or more of these.
JP2008282386A 2008-10-31 2008-10-31 Treatment method for article including container by hip process Pending JP2010106351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008282386A JP2010106351A (en) 2008-10-31 2008-10-31 Treatment method for article including container by hip process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008282386A JP2010106351A (en) 2008-10-31 2008-10-31 Treatment method for article including container by hip process

Publications (1)

Publication Number Publication Date
JP2010106351A true JP2010106351A (en) 2010-05-13

Family

ID=42296084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008282386A Pending JP2010106351A (en) 2008-10-31 2008-10-31 Treatment method for article including container by hip process

Country Status (1)

Country Link
JP (1) JP2010106351A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103567448A (en) * 2013-10-10 2014-02-12 铜陵国方水暖科技有限责任公司 Powder metallurgy wind power pivoting support and preparation method thereof
CN109773195A (en) * 2017-11-11 2019-05-21 巴州润霖节能科技有限公司 A kind of metal tube hot melt combination process

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276798A (en) * 1985-05-30 1986-12-06 Hitachi Metals Ltd Manufacture of hot hydrostatic pressure press
JPS6326301A (en) * 1986-07-18 1988-02-03 Kubota Ltd Production of laminated composite cylindrical body
JPH0243303A (en) * 1988-08-03 1990-02-13 Hitachi Metals Ltd Production of composite member
JPH0559406A (en) * 1991-08-29 1993-03-09 Kobe Steel Ltd Production of annular compound material
JPH11300459A (en) * 1998-04-17 1999-11-02 Toshiba Mach Co Ltd Sleeve for die casting machine
JP2002069563A (en) * 2000-08-31 2002-03-08 Kubota Corp Composite material for sliding member having excellent corrosion resistance and wear resistance and sliding member
JP2004244684A (en) * 2003-02-14 2004-09-02 Hitachi Metals Ltd Method for manufacturing composite rolling mill roll made of cemented carbide, and the roll

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276798A (en) * 1985-05-30 1986-12-06 Hitachi Metals Ltd Manufacture of hot hydrostatic pressure press
JPS6326301A (en) * 1986-07-18 1988-02-03 Kubota Ltd Production of laminated composite cylindrical body
JPH0243303A (en) * 1988-08-03 1990-02-13 Hitachi Metals Ltd Production of composite member
JPH0559406A (en) * 1991-08-29 1993-03-09 Kobe Steel Ltd Production of annular compound material
JPH11300459A (en) * 1998-04-17 1999-11-02 Toshiba Mach Co Ltd Sleeve for die casting machine
JP2002069563A (en) * 2000-08-31 2002-03-08 Kubota Corp Composite material for sliding member having excellent corrosion resistance and wear resistance and sliding member
JP2004244684A (en) * 2003-02-14 2004-09-02 Hitachi Metals Ltd Method for manufacturing composite rolling mill roll made of cemented carbide, and the roll

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103567448A (en) * 2013-10-10 2014-02-12 铜陵国方水暖科技有限责任公司 Powder metallurgy wind power pivoting support and preparation method thereof
CN109773195A (en) * 2017-11-11 2019-05-21 巴州润霖节能科技有限公司 A kind of metal tube hot melt combination process
CN109773195B (en) * 2017-11-11 2021-03-12 巴州润霖节能科技有限公司 Hot-melting compounding process for metal pipe

Similar Documents

Publication Publication Date Title
Mei et al. Interfacial characterization and mechanical properties of 316L stainless steel/inconel 718 manufactured by selective laser melting
Pereira et al. Mechanical and microstructural characterization of MCrAlY coatings produced by laser cladding: The influence of the Ni, Co and Al content
Atasoy et al. Diffusion bonding of commercially pure titanium to low carbon steel using a silver interlayer
Haynes et al. Characterization of alumina scales formed during isothermal and cyclic oxidation of plasma-sprayed TBC systems at 1150 C
US20150004337A1 (en) Method for coating a substrate surface and coated product
Xu et al. Fabrication of porous CoCrFeMnNi high entropy alloy using binder jetting additive manufacturing
TWI357444B (en) Zirconium-cladded steel plates, and elements of ch
JP5101601B2 (en) Valve device
JP2011125885A (en) High-temperature material conveying member
Bahamirian et al. Thermal durability of YSZ/nanostructured Gd2Zr2O7 TBC undergoing thermal cycling
Salman et al. The performance of thermally sprayed titanium based composite coatings in molten aluminium
Kundu et al. Interfacial reaction and microstructure study of DSS/Cu/Ti64 diffusion-welded couple
JP2010106351A (en) Treatment method for article including container by hip process
US20110033717A1 (en) Method for bonding ceramic materials
Rao et al. Hot Isostatic Pressing Technology for Defence and Space Applications.
Babalola et al. The fabrication and characterization of spark plasma sintered nickel based binary alloy at different heating rate
Dourandish et al. Pressureless sintering of 3Y‐TZP/stainless‐steel composite layers
JP4412563B2 (en) High temperature material conveying member
JP2000266055A (en) Corrosion- and abrasion-resistant sliding member and manufacturing of the same
JP6447859B2 (en) Thermal spray coating member and method for producing thermal spray coating
US20110052441A1 (en) Method and device for hot isostatic pressing of alloyed materials
Sulley et al. HIPed hard facings for nuclear applications: Materials, key potential defects and mitigating quality control measures
JP2004077408A (en) Valve for light-water reactor
JP2019060002A (en) Protective tube structure of incinerator thermo couple and method for manufacturing the same
Xu et al. Corrosive-wear and Electrochemical Performance of Laser Thermal Sprayed Co 30 Cr 8 W 1.6 C 3 Ni 1.4 Si Coating on Ti6Al4V Alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110928

A977 Report on retrieval

Effective date: 20130213

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20130222

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130628