JP2002069563A - Composite material for sliding member having excellent corrosion resistance and wear resistance and sliding member - Google Patents

Composite material for sliding member having excellent corrosion resistance and wear resistance and sliding member

Info

Publication number
JP2002069563A
JP2002069563A JP2000263219A JP2000263219A JP2002069563A JP 2002069563 A JP2002069563 A JP 2002069563A JP 2000263219 A JP2000263219 A JP 2000263219A JP 2000263219 A JP2000263219 A JP 2000263219A JP 2002069563 A JP2002069563 A JP 2002069563A
Authority
JP
Japan
Prior art keywords
composite material
sliding member
sliding
matrix
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000263219A
Other languages
Japanese (ja)
Other versions
JP4179740B2 (en
Inventor
Hiroaki Okano
宏昭 岡野
Atsushi Funakoshi
淳 船越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2000263219A priority Critical patent/JP4179740B2/en
Publication of JP2002069563A publication Critical patent/JP2002069563A/en
Application granted granted Critical
Publication of JP4179740B2 publication Critical patent/JP4179740B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite material/sliding member formed with a sliding face having excellent wear resistance (ceramics sliding wear resistance and slurry wear resistance) and corrosion resistance (salt water resistance, acid corrosion resistance or the like) and, e.g. useful as the sliding member of the rotary shaft of a drainage pump. SOLUTION: This composite material is composed of a matrix formed with a metal having a pitting potential of >=400 mV and hard grains occupying 40 to 80 wt.% and has a pitting potential of <=400 mV. The matrix is composed of an Ni based alloy, a Ti based alloy or the like, and the hard grains are, e.g. composed of the carbides, borides, silicides or oxides of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W. Particularly, the carbides of Ti, Zr, Hf, V, Nb, Ta or the like are suitable. The sliding member is produced as a laminated body in which, e.g. a hollow cylindrical body is used as a base member, and a surface layer (a hot isostatic press sintered layer, a build-up welded layer or the like) composed of the composite material is formed on the side used as the sliding face.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種機器・装置の
摺動部材、特に耐摩耗性と共に、塩水や酸等に対する耐
食性を要求される摺動部材の摺動面形成用材料として有
用な複合材料および複合材料からなる摺動面を有する摺
動部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite material useful as a material for forming a sliding surface of a sliding member of various equipment and devices, particularly a sliding member which is required to have corrosion resistance to salt water, acid, etc. in addition to abrasion resistance. The present invention relates to a sliding member having a sliding surface made of a material and a composite material.

【0002】[0002]

【従来の技術】高耐摩耗性を要求される摺動部材の摺動
面形成材料として、Co系超硬合金(WC−12Co
等)が広く使用されている。例えば排水ポンプでは、羽
根軸の摺動面をCo系超硬合金で形成し、これにセラミ
ックスを相手材(軸受材)として軸受部を構成すること
も提案されている(特公昭63-67048号公報)。Co系超
硬合金は卓抜した耐摩耗性を有していはいるが、耐塩水
性に乏しい。このため、例えば排水ポンプの軸部材とし
て、海水にさらされる使用環境に供される場合、摺動面
の健全性を損なわれ易く耐久性に問題がある。
2. Description of the Related Art Co-based cemented carbide (WC-12Co) is used as a material for forming a sliding surface of a sliding member requiring high wear resistance.
Etc.) are widely used. For example, in a drain pump, it has been proposed that the sliding surface of a blade shaft is formed of a Co-based cemented carbide and a bearing is formed by using ceramic as a mating material (bearing material) (Japanese Patent Publication No. 63-67048). Gazette). Co-based cemented carbide has outstanding wear resistance, but poor salt water resistance. For this reason, for example, when used as a shaft member of a drain pump in a use environment exposed to seawater, the soundness of the sliding surface is easily impaired, and there is a problem in durability.

【0003】耐塩水性の用途に供される構造材料として
は、オーステナイト系ステンレス鋼(例えば、JIS G43
03 SUS304,SUS316L)や、Ni基合金である「ハステ
イロイC合金」(14-17%Cr,15-17%Mo,3-5%W,4-7%Fe,Ni
残)、「インコネル625合金」(20-23%Cr,8-10%Mo,
3.15-4.15%(Nb+Ta),5%≧Fe,Ni残)等が知られている。
しかし、これらの材料はいずれも耐摩耗性に乏しく、特
に珪砂などが混入した海水に曝される摺動部材として使
用される場合、懸濁粒子の衝突・接触による摩耗減肉
(土砂摩耗浸食)を生じやすく、摺動部材としての安定
性に欠ける。
[0003] Structural materials used for saltwater-resistant applications include austenitic stainless steel (for example, JIS G43).
03 SUS304, SUS316L) and Ni-based alloy “Hastelloy C alloy” (14-17% Cr, 15-17% Mo, 3-5% W, 4-7% Fe, Ni
"Inconel 625 alloy" (20-23% Cr, 8-10% Mo,
3.15-4.15% (Nb + Ta), 5% ≧ Fe, Ni remaining) are known.
However, all of these materials have poor abrasion resistance, and particularly when used as sliding members exposed to seawater mixed with silica sand, etc., reduce the abrasion due to collision and contact of suspended particles (sand and sand erosion). And the stability as a sliding member is lacking.

【0004】[0004]

【発明が解決しようとする課題】本発明は、摺動部材に
関する上記問題を解消することを目的とし、例えば珪砂
等の硬質粒子を含む海水と接触する排水ポンプの羽根軸
とその軸受とからなる手動部をはじめ、各種機器・装置
の摺動部構成部材について、苛酷な摩耗および腐食作用
に対する改良された抵抗性を具備した摺動面を形成する
ための複合材料、およびその複合材料からなる表面層を
有する摺動部材を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems relating to a sliding member, and comprises a blade shaft of a drainage pump which comes into contact with seawater containing hard particles such as silica sand, and a bearing thereof. A composite material for forming a sliding surface with improved resistance to severe wear and corrosive action, and a surface made of the composite material, for a sliding portion component of various devices and devices, including a manual portion. A sliding member having a layer is provided.

【0005】[0005]

【課題を解決するための手段】本発明の摺動部材用複合
材料は、孔食電位400mV以上の金属で形成されたマ
トリックスと、40〜80重量%を占める硬質粒子とか
らなる複合体であって、400mV以上の孔食電位を有
する。本発明の摺動部材は、摺動面となる領域に形成さ
れた上記複合材料からなる表面層を有している。
The composite material for a sliding member according to the present invention is a composite comprising a matrix formed of a metal having a pitting potential of 400 mV or more and hard particles occupying 40 to 80% by weight. And has a pitting potential of 400 mV or more. The sliding member of the present invention has a surface layer made of the above-described composite material formed in a region serving as a sliding surface.

【0006】本発明に規定される孔食電位は、JIS G05
77(1981)「ステンレス鋼の孔食電位測定方法」の規定
に則って測定されるものである。測定条件は、人工海水
(3.5%塩化ナトリウム溶液),液温25℃,電位掃引速
度20mV/min,Ar脱気であり、電流密度100μA/cm
での電位(Vc'100)を孔食電位とする。
The pitting potential defined in the present invention is JIS G05
77 (1981), which is measured in accordance with the provisions of "Method of measuring pitting potential of stainless steel". Measurement conditions were artificial seawater (3.5% sodium chloride solution), liquid temperature of 25 ° C., potential sweep rate of 20 mV / min, Ar degassing, and current density of 100 μA / cm 2.
The potential (Vc'100) at is defined as the pitting potential.

【0007】本発明の複合材料について、孔食電位を4
00mV以上と規定したのは、耐塩水用途の代表例な従
来材である、オーステナイト系ステンレス鋼[JIS G43
03SUS316L](その孔食電位は約370mVであ
る)を上廻る高電位(400mV)の効果として、摺動
部材の実機使用における改良された耐塩水性を確保する
ためである。本発明は、硬質粒子を分散相(強化材)と
して含有する複合体であることの効果として、珪砂等を
含むスラリーと接触する使用環境に対する優れた摩耗抵
抗性(耐土砂摩耗浸食性)を備えている。
The pitting potential of the composite material of the present invention is 4
The austenitic stainless steel [JIS G43], which is defined as a typical material for salt water resistant use, is defined as 00 mV or more.
03SUS316L] (its pitting potential is about 370 mV) as an effect of a high potential (400 mV) to secure improved salt water resistance in actual use of the sliding member. Advantageous Effects of the Invention The present invention provides an excellent effect of being a composite containing hard particles as a dispersed phase (reinforcing material), such as excellent abrasion resistance (earth and sand abrasion erosion resistance) to a use environment in contact with a slurry containing silica sand or the like. ing.

【0008】[0008]

【発明の実施の形態】本発明の複合材料は、耐塩水性を
確保するための必要条件として、マトリックスを、孔食
電位400mV以上の金属材種で形成している。マトリ
ックスの材種はこの条件を満たすものであれば特に限定
されないが、具体的には、Ni基合金、Ti基合金から
適宜選択される。その好ましい例として、下記の化学組
成を有する合金が挙げられる。合金組成を示す%は重量
基準である。
BEST MODE FOR CARRYING OUT THE INVENTION In the composite material of the present invention, a matrix is formed of a metal material having a pitting potential of 400 mV or more as a necessary condition for securing salt water resistance. The material type of the matrix is not particularly limited as long as it satisfies this condition, but specifically, is appropriately selected from a Ni-based alloy and a Ti-based alloy. Preferred examples thereof include alloys having the following chemical compositions. % Indicating the alloy composition is based on weight.

【0009】[Ni基合金] Ni基合金1 Cr:14〜17%、Mo:15〜17%、W:3〜5
%、Fe:4〜7%、残部実質的にNi。 Ni基合金2 Cr:20〜23%、Mo:8〜10%、Nb+Ta:
3.15〜4.15%、Fe:5%以下、残部実質的に
Ni。 Ni基合金3 Cr:20〜50%、Mo,Wの1種又は2種:10〜
30%(2種の場合は合計量)、残部実質的にNi。 [Ti基合金] Al:2〜10%、V:1〜10%、残部実質的にT
i。
[Ni-based alloy] Ni-based alloy 1 Cr: 14 to 17%, Mo: 15 to 17%, W: 3 to 5
%, Fe: 4 to 7%, balance substantially Ni. Ni-based alloy 2 Cr: 20 to 23%, Mo: 8 to 10%, Nb + Ta:
3.15 to 4.15%, Fe: 5% or less, balance substantially Ni. Ni-based alloy 3 Cr: 20-50%, one or two of Mo and W: 10
30% (the total amount in the case of two kinds), the balance being substantially Ni. [Ti-based alloy] Al: 2 to 10%, V: 1 to 10%, balance substantially T
i.

【0010】本発明複合材料の分散相(強化材)である
硬質粒子は、炭化物,硼化物,窒化物,珪化物,酸化物
等の各種セラミックス粒子が適用される。特に、炭化
物,硼化物,窒化物は、高硬度を有すると共に、摺動性
に優れている点で好適である。そのようなセラミックス
の例として、炭化物では、WC,WC,TiC,Nb
C,VC,MoC,Cr,TaC,ZrC等、
硼化物では、MoB,TiB,CrB,VB,Nb
,TaB,WB等が挙げられ、また窒化物では、
TiN,CrN等が挙げられる。
Various ceramic particles such as carbide, boride, nitride, silicide and oxide are used as the hard particles as the dispersed phase (reinforcing material) of the composite material of the present invention. In particular, carbides, borides, and nitrides are suitable because they have high hardness and excellent slidability. Examples of such ceramics include WC, W 2 C, TiC, and Nb in carbides.
C, VC, Mo 2 C, Cr 3 C 2 , TaC, ZrC, etc.
In the boride, MoB, TiB 2, CrB, VB 2, Nb
B 2 , TaB 2 , WB and the like.
TiN, CrN and the like can be mentioned.

【0011】複合材料(金属マトリックスと硬質粒子と
の複合体)の孔食電位は、一般にマトリックスを形成す
る金属の孔食電位よりも低く、硬質粒子の配合量の増加
と共に孔食電位は低下する傾向にある。従って硬質粒子
の配合量は、複合材料の孔食電位(400mV以上)が
確保される範囲内に制限される。なお、Ti系,Zr
系,Hf系の各硬質粒子は、複合材料の孔食電位の低下
が少なく比較的多量の配合が許容され、またV系,Nb
系,又はTa系の各硬質粒子は、その配合に伴って複合
材料の孔食電位が高められるという特異な傾向を示す。
従って、本発明の複合材料の分散相粒子として特に好適
である。
The pitting potential of a composite material (composite of a metal matrix and hard particles) is generally lower than the pitting potential of the metal forming the matrix, and the pitting potential decreases with an increase in the blending amount of the hard particles. There is a tendency. Therefore, the compounding amount of the hard particles is limited to a range in which the pitting potential (400 mV or more) of the composite material is secured. In addition, Ti-based, Zr
And Hf-based hard particles have a small decrease in the pitting potential of the composite material and allow a relatively large amount of compounding.
The hard particles of the Ti-based or Ta-based show a peculiar tendency that the pitting potential of the composite material is increased with the compounding thereof.
Therefore, it is particularly suitable as the dispersed phase particles of the composite material of the present invention.

【0012】硬質粒子の含有量について、下限量を40
重量%と規定しているのは、分散強化作用による耐摩耗
性の改善効果を明瞭ならしめるためである。増量と共に
耐摩耗性は増強されるが、過度に増量すると脆化および
孔食電位の不足をきたす。このため、80重量%を上限
としている。なお、V,Nb,Ta系の硬質粒子を使用
する場合は、複合材料の孔食電位を高める効果が得られ
るが、その配合量が80重量%を超えると、複合材料の
延靭性の低下が大きくなるので、これらの硬質粒子を使
用する場合も、80重量%を上限としている。
Regarding the content of hard particles, the lower limit is 40.
The reason for specifying the weight% is to clarify the effect of improving the wear resistance by the dispersion strengthening action. The wear resistance is enhanced with increasing the amount, but if the amount is excessively increased, embrittlement and insufficient pitting potential occur. Therefore, the upper limit is 80% by weight. When V, Nb, Ta-based hard particles are used, the effect of increasing the pitting potential of the composite material is obtained. However, when the compounding amount exceeds 80% by weight, the ductility of the composite material is reduced. Therefore, when these hard particles are used, the upper limit is 80% by weight.

【0013】本発明の複合材料からなる表面層を有する
摺動部材は、熱間静水圧加圧プレス処理(HIP処理)
等による加圧成形体(焼結体)として、または図1に示
すように、適宜形状の金属部材(図は中空円筒体の例で
ある)(2)を基部材とし、その摺動面となる側(図で
は外側周面)に複合材料からなる表面層(1)を有する
積層体として作製される。摺動面となる表面層(1)
は、後記のようにHIP処理による焼結体層,または溶
接肉盛層等として形成される。
The sliding member having the surface layer made of the composite material of the present invention is subjected to hot isostatic pressing (HIP).
As shown in FIG. 1 or as a press-formed body (sintered body) or a suitably shaped metal member (the figure is an example of a hollow cylindrical body) (2) as a base member, It is produced as a laminate having a surface layer (1) made of a composite material on the side (outer peripheral surface in the figure). Surface layer to be the sliding surface (1)
Is formed as a sintered body layer by a HIP process or a weld overlay as described later.

【0014】積層構造の摺動部材を製作する場合、基部
材(2)には、表面層(複合材料層である)(1)のマ
トリックスと同種材料を適用するのが望ましい。異種材
料の積層構造では、腐食環境において材料間に局部電池
が形成されやすく、局部電池による腐食損傷が助長され
る。この現象は材料間の孔食電位の差が大きいほど顕著
である。この腐食現象を抑制防止するために、基部材と
表面層(複合材料層)とに同種材料を適用すれば、孔食
電位差は小さくなり耐食性の面で有利である。
In the case of manufacturing a sliding member having a laminated structure, it is preferable that the same material as the matrix of the surface layer (a composite material layer) (1) is applied to the base member (2). In a laminated structure of different materials, a local battery is easily formed between materials in a corrosive environment, and corrosion damage by the local battery is promoted. This phenomenon is more remarkable as the difference in pitting potential between the materials is larger. If the same type of material is applied to the base member and the surface layer (composite material layer) in order to suppress and prevent this corrosion phenomenon, the pitting potential difference is reduced, which is advantageous in terms of corrosion resistance.

【0015】また、表面層(1)のマトリックスと基部
材(2)とに、同種材料を適用することは、積層界面の
残留応力等に起因する損傷を防止するのに有効である。
すなわち、基部材として耐食用構造材料であるオーステ
ナイト系ステンレス鋼等を使用した場合は、表面層(複
合材料層)との熱膨張係数の差が大きく、製品摺動部材
に大きな残留応力が残り、破損を誘起するおそれがある
のに対し、基部材をマトリックスと同種材料とする場合
は、熱膨張係数の差が小さくなり、耐破損性が高められ
る。
Applying the same type of material to the matrix of the surface layer (1) and the base member (2) is effective in preventing damage due to residual stress or the like at the lamination interface.
That is, when a corrosion-resistant structural material such as austenitic stainless steel is used as the base member, the difference in thermal expansion coefficient between the surface layer (composite material layer) and the surface layer is large, and a large residual stress remains in the product sliding member. While damage may be induced, when the base member is made of the same material as the matrix, the difference in thermal expansion coefficient is reduced, and the breakage resistance is enhanced.

【0016】なお、マトリックスと基部材の構成材料に
ついて、「同種材料」とは、例えば前述のNi基合金又
はTi基合金(マトリックス形成金属)でいえば、マト
リックスに「Ni基合金1」を適用する場合、基材層と
して、そこに記載された「Ni基合金1」の組成範囲に
属するものを使用すればよく、「Ti基合金」をマトリ
ックスとする場合は、そこに記載された「Ti基合金」
の組成範囲に属するものを使用するということである。
[0016] Regarding the constituent materials of the matrix and the base member, the "same material" refers to, for example, the above-mentioned Ni-based alloy or Ti-based alloy (matrix forming metal), and applies "Ni-based alloy 1" to the matrix. In this case, a material belonging to the composition range of the “Ni-based alloy 1” described therein may be used as the base material layer, and when the “Ti-based alloy” is used as the matrix, the “Ti-based alloy” described therein may be used. Base alloy ''
Means that those belonging to the composition range described above are used.

【0017】次に、HIP処理又は肉盛溶接による摺動
部材の作製について説明する。HIP処理は、マトリッ
クスとなる金属粉末と強化材である硬質粒子との均一な
粉末混合物をカプセルに充填(脱気密封)し、加圧・加
熱下に適当時間保持することにより行なわれる。好まし
くは、処理温度は約900〜1300℃、加圧力は約7
0〜150MPaの範囲で適宜設定される。処理時間は
約1〜10Hrである。処理後、カプセルを機械加工で
除去して摺動部材を得る。摺動部材を、積層構造体(図
1)として作製する場合は、粉末混合物(表面層形成材
料)と基部材とをカプセル内に積層充填してHIP処理
すればよい。形成される表面層(焼結体)と基部材との
界面はHIP処理で生じる拡散接合の効果として強固に
結合一体化される。
Next, the production of the sliding member by HIP processing or overlay welding will be described. The HIP treatment is performed by filling a capsule with a uniform powder mixture of a metal powder serving as a matrix and hard particles serving as a reinforcing material (degassing and sealing), and holding the mixture under pressure and heat for an appropriate time. Preferably, the treatment temperature is about 900-1300 ° C., and the pressure is about 7
It is set appropriately within the range of 0 to 150 MPa. The processing time is about 1 to 10 hours. After the treatment, the capsule is removed by machining to obtain a sliding member. When the sliding member is manufactured as a laminated structure (FIG. 1), the powder mixture (surface layer forming material) and the base member may be laminated and filled in a capsule and HIP processing may be performed. The interface between the formed surface layer (sintered body) and the base member is strongly bonded and integrated as an effect of diffusion bonding generated by the HIP process.

【0018】表面層として溶接肉盛層を有する摺動部材
を製作する場合は、粉体プラズマ溶接肉盛法等を適用
し、粉末混合物(マトリックスとなる金属粉末と強化材
である硬質粒子との混合物)を基部材の表面に供給しな
がら、プラズマアーク熱で金属粉末を溶融し、硬質粒子
を含む溶融プールを生成し、凝固することにより表面層
を形成する。
In the case of manufacturing a sliding member having a weld overlay as a surface layer, a powder plasma welding overlay method or the like is applied, and a powder mixture (metal powder serving as a matrix and hard particles serving as a reinforcing material) is formed. While supplying the mixture to the surface of the base member, the metal powder is melted by plasma arc heat, a molten pool containing hard particles is generated and solidified to form a surface layer.

【0019】なお、肉盛溶接施工ではプラズマアーク熱
で基部材の表層を溶融する。このことは、基部材と表面
層との強固な冶金的結合を形成するのに必要ではある
が、基部材の材種が、表面層(複合材料層)のマトリッ
クスと異なるもの(例えばオーステナイト系ステンレス
鋼等)である場合は、表面層のマトリックスを希釈し、
表面層の性能(耐塩水性等)を損なう要因となる。前述
のようにマトリックスと基部材とに同種材料を適用した
場合は、このような不具合を抑制防止する効果をも得る
ことができる。
In the overlay welding, the surface layer of the base member is melted by plasma arc heat. This is necessary in order to form a strong metallurgical bond between the base member and the surface layer, but the material of the base member is different from the matrix of the surface layer (composite material layer) (for example, austenitic stainless steel). Steel, etc.), dilute the surface layer matrix,
This is a factor that impairs the performance of the surface layer (such as salt water resistance). When the same type of material is applied to the matrix and the base member as described above, an effect of suppressing and preventing such a problem can also be obtained.

【0020】図2、図3は積層構造を有する摺動部材の
例を示している。図2は、軸体(5)の所定個所(軸受
6と向い合う部位)に、前記図3の中空円筒状摺動部材
(以下「複層スリーブ」)(3)を嵌着して駆動側摺動
部材を構成した例である。複層スリーブ(3)の表面層
(複合材料層である)(1)が固定側摺動部材(軸受)
(6)に対する摺動面となる。図3は、軸体(5)の所
定部位(軸受6と向い合う部位)に、軸表面を一周する
凹陥溝(g)を設け、凹陥溝(g)に複合材料からなる
表面層(1)を形成して回転側摺動部材を構成した例で
ある。凹陥溝(g)内の表面層(1)は、焼結体層また
は肉盛溶接層として形成することができる。表面層
(1)の層厚は例えば1〜5mmである。
FIGS. 2 and 3 show examples of sliding members having a laminated structure. FIG. 2 shows a state in which the hollow cylindrical sliding member (hereinafter, referred to as “multilayer sleeve”) (3) of FIG. 3 is fitted to a predetermined portion (a portion facing the bearing 6) of the shaft body (5), This is an example in which a sliding member is configured. The surface layer (which is a composite material layer) of the multilayer sleeve (3) (1) is a stationary sliding member (bearing)
It becomes a sliding surface for (6). FIG. 3 shows that a concave portion (g) surrounding the shaft surface is provided at a predetermined portion (a portion facing the bearing 6) of the shaft body (5), and the concave layer (g) has a surface layer (1) made of a composite material. This is an example in which a rotation side sliding member is formed by forming a rotation member. The surface layer (1) in the concave groove (g) can be formed as a sintered body layer or a build-up welding layer. The layer thickness of the surface layer (1) is, for example, 1 to 5 mm.

【0021】凹陥溝(g)の表面層(1)を、HIP処
理で形成する場合に必要な凹陥溝(g)内の粉末混合物
(マトリックス金属粉末と硬質粒子の混合物)の充填
は、軸体(5)の周面を被包する適宜形状のカプセルを
用いて行なえばよい。HIP後、カプセルを除去(機械
加工)し、表面層(焼結体としての複合材料層)を有す
る摺動部材を得る。肉盛溶接で凹陥溝(g)内の表面層
(1)を形成する場合は、軸体(5)を回転装置に水平
設置し、凹陥溝(g)内に粉末混合物を供給しつつプラ
ズマアーク熱で溶融するビード形成操作を軸体の回転下
に円周方向に沿って行なえばよい。溶接施工後、ビード
表面に仕上げ機械加工を施して表面層(複合材料肉盛
層)を有する摺動部材を得る。
The filling of the powder mixture (mixture of matrix metal powder and hard particles) in the concave groove (g) required when the surface layer (1) of the concave groove (g) is formed by HIP processing is performed by a shaft body. What is necessary is just to use the capsule of suitable shape which encloses the peripheral surface of (5). After HIP, the capsule is removed (machined) to obtain a sliding member having a surface layer (composite material layer as a sintered body). When the surface layer (1) in the concave groove (g) is formed by overlay welding, the shaft (5) is installed horizontally on a rotating device, and the plasma arc is supplied while the powder mixture is supplied into the concave groove (g). The bead forming operation for melting by heat may be performed along the circumferential direction while rotating the shaft. After welding, the bead surface is subjected to finish machining to obtain a sliding member having a surface layer (composite material overlay).

【0022】上記説明では、軸体(5)を回転体として
説明したが、軸体(5)が軸心方向の進退往復運動を行
なう摺動部材である場合は、往復動のストロークに相応
する軸方向長さの領域に亘って、複合材料からなる表面
層(1)が形成される。本発明の複合材料は、回転軸等
の駆動側摺動部材のほか、軸を支承する固定側摺動部材
の表面層を形成する。固定側摺動部材の摺動面となる表
面層も、前述のHIP処理、肉盛溶接等を適用して形成
される。
In the above description, the shaft body (5) is described as a rotating body. However, when the shaft body (5) is a sliding member that reciprocates in the axial direction, it corresponds to the reciprocating stroke. A surface layer (1) made of a composite material is formed over the region of the axial length. The composite material of the present invention forms a surface layer of a driving-side sliding member such as a rotating shaft and a stationary-side sliding member that supports the shaft. The surface layer serving as the sliding surface of the fixed-side sliding member is also formed by applying the above-described HIP processing, overlay welding, or the like.

【0023】[0023]

【実施例】[供試材の作製]金属粉末(マトリックス形
成原料)と硬質粒子との粉末混合物を焼結原料とし、H
IP処理を施して供試材を得る。供試材の構成および諸
物性を表1および2に示す。
EXAMPLES [Preparation of Test Material] A powder mixture of a metal powder (a matrix forming raw material) and hard particles was used as a sintering raw material.
A test material is obtained by performing IP processing. Tables 1 and 2 show the constitution and various physical properties of the test material.

【0024】(1)マトリックス金属の材種(組成重量
%)と物性(孔食電位,硬度) Ni基合金 Cr:15.5,Mo:16.0,W:3.56,Fe:6.3,N
i:Bal 孔食電位:739mV 硬度(HRC):15
(1) Material type (composition weight%) and physical properties (pitting potential, hardness) of matrix metal Ni-based alloy Cr: 15.5, Mo: 16.0, W: 3.56, Fe: 6.3, N
i: Bal Pitting corrosion potential: 739 mV Hardness (HRC): 15

【0025】Ni基合金 Cr:20.9,Mo:9.1,Nb:3.4,Ta:0.3 ,Fe:2.7,Ni:Bal 孔食電位:745mV 硬度(HRC):17Ni-base alloy Cr: 20.9, Mo: 9.1, Nb: 3.4, Ta: 0.3, Fe: 2.7, Ni: Bal Pitting potential: 745 mV Hardness (HRC): 17

【0026】Ni基合金 Cr:36.2,Mo:15.4,Ni:Bal 孔食電位:695mV 硬度(HRC):42Ni-base alloy Cr: 36.2, Mo: 15.4, Ni: Bal Pitting corrosion potential: 695 mV Hardness (HRC): 42

【0027】Ti基合金 Al:6.1,V:4.2,Ti:Bal。 孔食電位:1200mV 硬度(HRC):13Ti-based alloy Al: 6.1, V: 4.2, Ti: Bal. Pitting potential: 1200 mV Hardness (HRC): 13

【0028】(2)硬質粒子の材種および粒径(カッコ内
平均粒径) TiC:75〜150μm ZrC:2〜4μm(3.1μm) HfC:1〜2μm(1.5μm) VC:75〜150μm NbC:75〜150μm TaC:75〜1570μm CR:2〜4μm(3.2μm) MoC:2〜4μm(2.9μm) WC:100〜200μm
(2) Grade and particle size of hard particles (average particle size in parentheses) TiC: 75 to 150 μm ZrC: 2 to 4 μm (3.1 μm) HfC: 1-2 μm (1.5 μm) VC: 75 to 150 μm NbC: 75 to 150 μm TaC: 75 to 1570 μm CR 3 C 2 : 2 to 4 μm (3.2 μm) Mo 2 C: 2 to 4 μm (2.9 μm) W 2 C: 100 to 200 μm

【0029】TiB:1〜2μm(1.5μm) TiN:1.2〜1.8μm(1.4μm) TiSi:6〜12μm(7.2μm)TiB 2 : 1-2 μm (1.5 μm) TiN: 1.2-1.8 μm (1.4 μm) TiSi 2 : 6-12 μm (7.2 μm)

【0030】(3)熱間静水圧加圧(HIP)処理 金属粉末と硬質粒子とをボールミルで均一に混合し、カ
プセル(軟鋼製容器)に充填(脱気密封)してHIP処
理(1100℃×10MPa×2Hr)を施す。HIP
後、カプセルを除去(機械加工)して供試材(焼結体)
を取出す。
(3) Hot Isostatic Pressing (HIP) Treatment The metal powder and the hard particles are uniformly mixed by a ball mill, filled in a capsule (mild steel container) (degassed and sealed), and HIPed (1100 ° C.) × 10 MPa × 2 Hr). HIP
After that, the capsule is removed (machined) and the test material (sintered body)
Take out.

【0031】[供試材の物性] (1)孔食電位(Vc'100)の測定(JIS G0577による) 試験液:人工海水(3.5%NaCl溶液),液温25℃,掃引速度20
mV/min,Ar脱気。 試験片:φ14.8×2t
[Physical properties of test materials] (1) Measurement of pitting potential (Vc'100) (according to JIS G0577) Test solution: artificial seawater (3.5% NaCl solution), liquid temperature 25 ° C, sweep rate 20
mV / min, Ar degassing. Test piece: φ14.8 × 2t

【0032】(2)摩耗試験a 大越式迅速摩耗試験機による耐摩耗性の評価。 平面試験片を相手材(回転円盤)に押付け、試験片表面
に生じた摩耗痕の深さ、幅等から摩耗量(mm/N)を
算出する。 相手材 :窒化珪素セラミックス 試験距離:400m 周速度 :3.38m/秒 荷重 :61N
(2) Abrasion test a Evaluation of abrasion resistance using an Ohgoshi quick wear tester. The flat test piece is pressed against a counterpart material (rotary disk), and the wear amount (mm 2 / N) is calculated from the depth and width of the wear mark formed on the test piece surface. Counterpart material: silicon nitride ceramics Test distance: 400 m Peripheral speed: 3.38 m / sec Load: 61 N

【0033】(3)摩耗試験b(スラリー摩耗試験) 土砂摩耗浸食に対する抵抗性の評価。円筒形状の試験材
を、シャフト(回転駆動装置に連結されている)に同軸
に取付け、相手材(軸受)を配置してスラリー中で回転
運動を行わせる。所定時間経過後、試験材の外径および
相手材(軸受)の内径の変化量を測定し、変化量の合計
値を摩耗量として算出する。 相手材(軸受):窒化珪素セラミックス 摺動径 :φ30mm 周速度 :5.7m/秒 スラリー懸濁粒子:8号珪砂 スラリー濃度:5000ppm 試験時間 :100Hr
(3) Wear test b (slurry wear test) Evaluation of resistance to earth and sand wear erosion. A cylindrical test material is coaxially mounted on a shaft (connected to a rotary drive), and a mating material (bearing) is arranged to rotate in the slurry. After a lapse of a predetermined time, the change amounts of the outer diameter of the test material and the inner diameter of the mating material (bearing) are measured, and the total value of the change amounts is calculated as the wear amount. Mating material (bearing): Silicon nitride ceramics Sliding diameter: φ30 mm Peripheral speed: 5.7 m / sec Slurry suspended particles: No. 8 silica sand Slurry concentration: 5000 ppm Test time: 100 hr

【0034】(4)曲げ強度の測定 試験法:3点曲げ試験(JIS B1601) 試験片:3×4×40,mm スパン距離:30mm 試験温度:室温(4) Measurement of bending strength Test method: three-point bending test (JIS B1601) Test piece: 3 × 4 × 40, mm Span distance: 30 mm Test temperature: room temperature

【0035】[0035]

【表1】 [Table 1]

【0036】表中、比較例No.101〜104は、硬質粒子を
含有しない金属単相材(金属材種は発明例のマトリック
ス金属と同じ)の例、No.105,No.106はマトリックス金
属と硬質粒子とからなる複合材であるが、硬質粒子の含
有量が不足または過剰の例である。
In the table, Comparative Examples Nos. 101 to 104 are examples of a metal single-phase material containing no hard particles (the metal material type is the same as the matrix metal of the invention), and No. 105 and No. 106 are matrix metals. And hard particles, which are examples of insufficient or excessive hard particle content.

【0037】比較例No.101〜104は、高い孔食電位およ
び曲げ強度を有してはいるが、耐摩耗性に劣る。他方、
発明例は、高孔食電位および十分な曲げ強度を備えてい
ると共に、卓抜した耐摩耗性(セラミックスに対する摺
動摩耗抵抗およびスラリーに対する土砂摩耗抵抗性)を
有している。その孔食電位は、耐摩耗用途の代表材であ
るWC-12Co超硬合金(その孔食電位は200mVに満たな
い)はむろん、代表的耐食材料であるオーステナイト系
ステンレス鋼316Lの孔食電位(約370mV)を大きく上
廻っている比較例No.105,No.106は発明例に類似した複
合材料であるが、前者は硬質粒子の不足により耐摩耗性
の改善効果が乏しく、後者は硬質粒子の過剰含有のため
に脆く、曲げ強度が著しく不足し構造材料としての適性
に欠ける。
Comparative Examples Nos. 101 to 104 have high pitting potential and bending strength, but are inferior in wear resistance. On the other hand,
The invention examples have high pitting corrosion potential and sufficient bending strength, and also have outstanding wear resistance (sliding wear resistance to ceramics and earth and sand wear resistance to slurries). The pitting potential of WC-12Co cemented carbide (a pitting potential of less than 200 mV), which is a representative material for wear resistance, as well as the pitting potential of austenitic stainless steel 316L (a typical material) Comparative Examples No. 105 and No. 106, which greatly exceed about 370 mV), are composite materials similar to the invention examples, but the former has a poor effect of improving abrasion resistance due to lack of hard particles, and the latter has hard particles. Is excessively contained, it is brittle, has a remarkably insufficient bending strength, and lacks suitability as a structural material.

【0038】[0038]

【発明の効果】本発明の摺動部材用複合材料は、苛酷な
摺動摩耗,土砂摩耗浸食(スラリー摩耗)等に対する卓
抜した抵抗性を有すると共に、従来の代表的な耐塩水性
材料であるオーステナイト系ステンレス鋼を凌ぐ高耐塩
水性、耐酸腐食性を備えている。従って、例えば珪砂等
の土砂粒を含む海水等に曝される摺動部材、例えば排水
用ポンプの羽根軸の軸受部を構成する摺動部材をはじ
め、高耐摩耗性と高耐食性を要求される各種産業機器・
装置の摺動部に好適であり、その耐久性の向上、メンテ
ナンスの軽減等の効果をもたらすものである。
The composite material for sliding members of the present invention has outstanding resistance to severe sliding wear, earth and sand abrasion erosion (slurry abrasion), and the like. Has higher salt water resistance and acid corrosion resistance than stainless steel. Accordingly, high wear resistance and high corrosion resistance are required, for example, a sliding member exposed to seawater containing earth and sand particles such as silica sand, for example, a sliding member constituting a bearing portion of a blade shaft of a drainage pump. Various industrial equipment
It is suitable for the sliding portion of the device, and brings effects such as improvement of durability and reduction of maintenance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の摺動部材の実施例を示す正面断面図で
ある。
FIG. 1 is a front sectional view showing an embodiment of a sliding member of the present invention.

【図2】本発明の摺動部材の実施例を示す部分切欠き正
面図である。
FIG. 2 is a partially cutaway front view showing an embodiment of the sliding member of the present invention.

【図3】本発明の摺動部材の実施例を示す部分切欠き正
面図である。
FIG. 3 is a partially cutaway front view showing an embodiment of the sliding member of the present invention.

【符号の説明】[Explanation of symbols]

1:表面層 2:基部材 3:摺動部材 5:軸体 6:軸受 1: Surface layer 2: Base member 3: Sliding member 5: Shaft 6: Bearing

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 マトリックスと40〜80重量%を占め
る硬質粒子とからなる複合体であって、マトリックスは
孔食電位400mV以上の金属で形成され、複合体の孔
食電位は400mV以上である耐食性・耐摩耗性に優れ
た摺動部材用複合材料。
1. A composite comprising a matrix and hard particles occupying 40 to 80% by weight, wherein the matrix is formed of a metal having a pitting potential of 400 mV or more, and the pitting potential of the composite is 400 mV or more. -Composite material for sliding members with excellent wear resistance.
【請求項2】 硬質粒子がTi,Zr,Hf,V,N
b,Ta,Cr,Mo,またはWの炭化物、硼化物、窒
化物、珪化物又は酸化物から選ばれる1種又は2種以上
の粒子である請求項1に記載の摺動部材用複合材料。
2. Hard particles are Ti, Zr, Hf, V, N
The composite material for a sliding member according to claim 1, wherein the composite material is one or two or more kinds of particles selected from carbide, boride, nitride, silicide, and oxide of b, Ta, Cr, Mo, or W.
【請求項3】 マトリックスがNi基合金からなる請求
項1又は請求項2に記載の摺動部材用複合材料。
3. The composite material for a sliding member according to claim 1, wherein the matrix is made of a Ni-based alloy.
【請求項4】 マトリックスがTi基合金からなる請求
項1又は請求項2に記載の摺動部材用複合材料。
4. The composite material for a sliding member according to claim 1, wherein the matrix is made of a Ti-based alloy.
【請求項5】 マトリックスとなる金属粉末と硬質粒子
との粉末混合物を熱間静水圧加圧処理することにより形
成される焼結体である請求項1ないし請求項4のいずれ
か1項に記載の摺動部材用複合材料。
5. The sintered body according to claim 1, wherein the sintered body is formed by subjecting a powder mixture of a metal powder and a hard particle serving as a matrix to hot isostatic pressing. Composite material for sliding members.
【請求項6】 摺動面となる領域に、請求項1ないし請
求項5のいずれか1項に記載の複合材料からなる表面層
を有する耐食性・耐摩耗性に優れた摺動部材。
6. A sliding member excellent in corrosion resistance and abrasion resistance having a surface layer made of the composite material according to claim 1 in a region to be a sliding surface.
【請求項7】 基部材と該基部材の摺動面となる側に積
層形成された複合材料からなる表面層を有する請求項6
に記載の摺動部材。
7. A base member and a surface layer made of a composite material laminated on a side to be a sliding surface of the base member.
3. The sliding member according to claim 1.
【請求項8】 基部材と表面層を形成する複合材料のマ
トリックスとが同種材料からなる請求項7に記載の摺動
部材。
8. The sliding member according to claim 7, wherein the base member and the matrix of the composite material forming the surface layer are made of the same material.
【請求項9】中空円筒形状を有する基部材の摺動面とな
る側に、複合材料からなる表面層が積層形成されている
複層スリーブである請求項7又は請求項8に記載の摺動
部材。
9. The sliding member according to claim 7, wherein the sliding member is a multi-layer sleeve in which a surface layer made of a composite material is laminated on a side of a base member having a hollow cylindrical shape to be a sliding surface. Element.
【請求項10】回転もしくは往復運動する軸体又は軸体
を支承する部材に装着される請求項6ないし請求項9の
いずれか1項に記載の摺動部材。
10. The sliding member according to claim 6, which is mounted on a shaft that rotates or reciprocates or a member that supports the shaft.
JP2000263219A 2000-08-31 2000-08-31 Sliding member for blade shaft of drainage pump with excellent corrosion resistance and wear resistance Expired - Lifetime JP4179740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000263219A JP4179740B2 (en) 2000-08-31 2000-08-31 Sliding member for blade shaft of drainage pump with excellent corrosion resistance and wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000263219A JP4179740B2 (en) 2000-08-31 2000-08-31 Sliding member for blade shaft of drainage pump with excellent corrosion resistance and wear resistance

Publications (2)

Publication Number Publication Date
JP2002069563A true JP2002069563A (en) 2002-03-08
JP4179740B2 JP4179740B2 (en) 2008-11-12

Family

ID=18750797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000263219A Expired - Lifetime JP4179740B2 (en) 2000-08-31 2000-08-31 Sliding member for blade shaft of drainage pump with excellent corrosion resistance and wear resistance

Country Status (1)

Country Link
JP (1) JP4179740B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106351A (en) * 2008-10-31 2010-05-13 Kuroki Kogyosho:Kk Treatment method for article including container by hip process
WO2014168542A1 (en) * 2013-04-09 2014-10-16 Aktiebolaget Skf Process for obtaining a mechanical component
WO2014168544A1 (en) * 2013-04-09 2014-10-16 Aktiebolaget Skf Bearing component part, bearing component and process for manufacturing a bearing component
JP2016217467A (en) * 2015-05-21 2016-12-22 大陽ステンレススプリング株式会社 Wiper arm bearing
JP2019218606A (en) * 2018-06-20 2019-12-26 大阪富士工業株式会社 Self-lubricating composite
US10737354B2 (en) 2013-04-09 2020-08-11 Aktiebolaget Skf Bearing component

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106351A (en) * 2008-10-31 2010-05-13 Kuroki Kogyosho:Kk Treatment method for article including container by hip process
WO2014168542A1 (en) * 2013-04-09 2014-10-16 Aktiebolaget Skf Process for obtaining a mechanical component
WO2014168544A1 (en) * 2013-04-09 2014-10-16 Aktiebolaget Skf Bearing component part, bearing component and process for manufacturing a bearing component
CN105263664A (en) * 2013-04-09 2016-01-20 斯凯孚公司 Process for obtaining a mechanical component
CN105283682A (en) * 2013-04-09 2016-01-27 斯凯孚公司 Bearing component part, bearing component and process for manufacturing a bearing component
US9555501B2 (en) 2013-04-09 2017-01-31 Aktiebolaget Skf Process for obtaining a mechanical component
US9850950B2 (en) 2013-04-09 2017-12-26 Aktiebolaget Skf Bearing component part, bearing component and process for manufacturing a bearing component
CN105263664B (en) * 2013-04-09 2018-02-16 斯凯孚公司 The technique for obtaining mechanical part
US10737354B2 (en) 2013-04-09 2020-08-11 Aktiebolaget Skf Bearing component
JP2016217467A (en) * 2015-05-21 2016-12-22 大陽ステンレススプリング株式会社 Wiper arm bearing
JP2019218606A (en) * 2018-06-20 2019-12-26 大阪富士工業株式会社 Self-lubricating composite
JP7297279B2 (en) 2018-06-20 2023-06-26 大阪富士工業株式会社 Overlay layer, machine component having overlay layer, and method for forming overlay layer

Also Published As

Publication number Publication date
JP4179740B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
JP6124877B2 (en) FeNi binder with versatility
JP5174775B2 (en) Friction stirring tool
Aramian et al. A review on the microstructure and properties of TiC and Ti (C, N) based cermets
JP4179740B2 (en) Sliding member for blade shaft of drainage pump with excellent corrosion resistance and wear resistance
JPH1158034A (en) Joining method of ferrous material and high tension brass alloy and composite material joined by the method
JP4264219B2 (en) Rubber kneader rotor
JP4538794B2 (en) Cemented carbide roll for rolling
JP3690617B2 (en) Cemented carbide composite roll
US20070081916A1 (en) Production of the metallic parts with the alloyed layer containing dispersed compound particles, and the wear-proof parts
JP3852902B2 (en) Sliding member with excellent wear resistance
JP4018308B2 (en) Composite material for sliding member and sliding member
JP2004243380A (en) Composite roll for rolling made of cemented carbide
JP6242616B2 (en) Resistance welding electrode
JP3944612B2 (en) Roll for assembly type rolling
JP2005262321A (en) Composite roll made of cemented carbide
JP2562445B2 (en) Abrasion resistant composite roll
JP6193651B2 (en) Resistance welding electrode
JP3690618B2 (en) Cemented carbide composite roll
JP2645764B2 (en) Slide bearing device
JP5595475B2 (en) Friction stirring tool
JP2002045957A (en) Member for molten metal excellent in erosion resistance to molten metal and its producing method
JP3077349B2 (en) Ti alloy sleeve for seawater pump bearing and method of manufacturing the same
JP2648307B2 (en) Composite cermet roll
JPH0418956B2 (en)
JP4320699B2 (en) Composite roll for rolling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080717

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080826

R150 Certificate of patent or registration of utility model

Ref document number: 4179740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140905

Year of fee payment: 6

EXPY Cancellation because of completion of term