JP2004107435A - Epoxy resin composition and molded article - Google Patents

Epoxy resin composition and molded article Download PDF

Info

Publication number
JP2004107435A
JP2004107435A JP2002269968A JP2002269968A JP2004107435A JP 2004107435 A JP2004107435 A JP 2004107435A JP 2002269968 A JP2002269968 A JP 2002269968A JP 2002269968 A JP2002269968 A JP 2002269968A JP 2004107435 A JP2004107435 A JP 2004107435A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
parts
specific gravity
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002269968A
Other languages
Japanese (ja)
Inventor
Haruomi Hosokawa
細川 晴臣
Hirofumi Suda
須田 裕文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Chemical Corp
Original Assignee
Kyocera Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Chemical Corp filed Critical Kyocera Chemical Corp
Priority to JP2002269968A priority Critical patent/JP2004107435A/en
Publication of JP2004107435A publication Critical patent/JP2004107435A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermosetting resin composition which has a high specific gravity and excellent productivity, and to provide a high specific gravity molded article using the composition. <P>SOLUTION: This epoxy resin composition giving cured products each having a specific gravity of ≥2.5 and a glass region thermal expansion coefficient of ≤1.5 contains (A) a specific polyfunctional epoxy resin, (B) a phenolic resin, (C) a specific urea-based curing accelerator, and (D) a metal powder filler, such as zirconium oxide powder or cerium oxide powder, having a true specific gravity of ≥3.0 in an amount of 30 to 95 wt. % based on the total resin composition, as essential components. A molded article molded from the epoxy resin composition. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の属する技術分野】
本発明は、成形性に優れたエポキシ樹脂組成物および成形品に関する。
【従来の技術】
樹脂成形品のインクジエットプリンターのヘッド部分や高速回転部品などにおいて、部品自体の重量が金属製部品より軽いために、その動作時に慣性や遠心力等により動作がスムーズに行われず、部品性能性上極めて重要な問題となっている。
【発明が解決しようとする課題】
部品の高比重化のため、金属のインゴットを研磨加工する方法等があるが、複雑な加工は難しく工数がかかり、大量生産が不可能であったり、価格が高い等の問題がある。また、金属製部品をインサート成形するなどの方法もあるが、同様に複雑な加工は出来ず、工数がかかる等の問題があった。さらに熱可塑性樹脂製の成形品を作成した場合は、複雑な製品を大量に生産できるが、耐熱性や耐溶剤性に乏しく、樹脂によらず金属粉や金属炭化物を充填剤として用いて高比重化を図った場合、容易に高比重樹脂を製造することができるが絶縁性を要求される部品への展開ができなかった。
本発明は、上記の欠点を解消するために、高比重化するとともに生産性に優れた熱硬化型樹脂組成物と、それを使用して高比重成形品を得ることを目的としたものである。
【課題を解決するための手段】
本発明者らは、上記の目的を達成しようと鋭意研究を重ねた結果、特定のエポキシ樹脂および硬化促進剤として特定のウレア樹脂を用いることにより、高比重の充填剤を多量に充填でき、硬化物比重が高く、成形性・寸法安定性の優れた樹脂組成物が得られ、上記目的が達成されることを見いだし、本発明を完成したものである。
即ち、本発明は、
(A)次の構造式で示される多官能型エポキシ樹脂、
【化3】

Figure 2004107435
(但し、式中、R1 〜R4 は水素原子またはアルキル基を、nは1以上の整数をそれぞれ表す)
(B)フェノール樹脂、
(C)次の構造式で示されるウレア系硬化促進剤および
【化4】
Figure 2004107435
(D)真比重が3.0以上の金属酸化物充填剤
を必須成分とし、前記(D)の金属酸化物充填剤を全体の樹脂組成物に対して30〜95重量%の割合で含有してなり、硬化物のガラス領域での熱膨張係数が1.5以下、かつ、硬化物比重が2.5以上であることを特徴とするエポキシ樹脂組成物である。また、このエポキシ樹脂組成物により成形されてなることを特徴とする成形品である。
以下、本発明を詳細に説明する。
本発明に用いる(A)エポキシ樹脂としては、前記化3で示されたものが使用されるが、本発明の目的に反しない限度においてo−クレゾールノボラック型エポキシ樹脂、ビフェニル系エポキシ樹脂、ジシクロペンタジエン系エポキシ樹脂その他の一般に公知されているエポキシ樹脂を併用することができる。
本発明に用いる(B)フェノール樹脂としては、前記(A)のエポキシ樹脂のエポキシ基と反応し得るフェノール性水酸基を分子中に2個以上有するものであれば特に制限はされない。具体的な化合物としては、例えば
【化5】
Figure 2004107435
(但し、式中、nは0以上の整数を表す)
【化6】
Figure 2004107435
(但し、式中、nは0以上の整数を表す)
【化7】
Figure 2004107435
(但し、式中、nは0以上の整数を表す)
【化8】
Figure 2004107435
(但し、式中、nは0以上の整数を表す)
等が挙げられ、これらの樹脂は、単独もしくは2種以上混合して用いることができる。
フェノール樹脂の配合割合は、前述したエポキシ樹脂のエポキシ基(a)とフェノール樹脂のフェノール性水酸基(b)との当量比[(a)/(b)]が0.5〜5の範囲内であることが望ましい。当量比が0.5未満もしくは5を超えると、硬化特性、成形作業性および硬化物の電気特性、耐湿性、耐熱性が悪くなり、いずれの場合も好ましくない。従って上記の範囲内に限定するのが良い。
本発明に用いる(C)ウレア系硬化促進剤としては、前記の式化4を挙げたが、これは単独で使用することが最も望ましいが、混合して使用することもできる。即ち、公知のリン系硬化促進剤、イミダゾール系硬化促進剤、DBU系硬化促進剤と併用して使用することができる。
本発明に用いる(D)真比重が3.0以上の金属酸化物充填剤としては、酸化ジルコニウム、酸化セリウム、酸化チタン、酸化クロム、酸化亜鉛、酸化アルミニウム、酸化マグネシウム等が挙げられ、これらは単独又は2種以上混合して使用することができる。また(D)の金属酸化物は109 Ω・cm以上の固有体積抵抗率をもつものであることが望ましい。これらの金属酸化物充填剤は、最大粒子径が500μm以下の金属酸化物が望ましく、500μmを超える粒子径の金属酸化物が入ると精密成形品の成形性に劣り、実用に適さない。また、その配合割合は、樹脂組成物全体に対して30〜95重量%の割合で含有することが望ましい。その配合割合が30重量%未満では硬化物比重が小さく、本発明の目的に適しない。また、95重量%を超えるとカサバリが大きくなるため成形性に劣り実用に適さない。
本発明に併用する(E)酸化ケイ素としては、結晶シリカ、溶融シリカ、クリストバライト等、結晶構造によらず用いることができるが、高充填を目的とした場合、球状溶融シリカ粉末が好ましい。また、その配合割合は、上記理由からも(D)金属酸化物充填剤と(E)酸化ケイ素を合計して樹脂組成物全体に対して70〜96重量%の割合で含有することが好ましい。その配合割合が70重量%未満では硬化物の熱膨張係数が大きくなり、本発明の目的に適しない。また、96重量%を超えるとカサバリが大きくなるため成形性に劣り実用に適さない。
本発明のエポキシ樹脂組成物は、前述した特定のエポキシ樹脂、フェノール樹脂、特定のウレア系硬化促進剤および金属酸化物充填剤を必須成分とするが、本発明の目的に反しない限度において、また必要に応じて、例えば天然ワックス類、合成ワックス類等の離型剤、三酸化アンチモン、ブロモ化エポキシ樹脂等の難燃剤、カーボンブラック等の着色剤、ゴム系やシリコーン系の低応力付与剤、アミン変性およびエポキシ変性シリコーンオイル等のカップリング剤等を適宜、添加配合することができる。
本発明のエポキシ樹脂組成物を成形材料として調製する場合の一般的な方法としては、前述したエポキシ樹脂、フェノール樹脂、硬化促進剤、金属酸化物充填剤、その他成分を配合し、ミキサー等によって十分均一に混合した後、さらに熱ロールによる溶融混合処理又はニーダ等による混合処理を行い、次いで冷却固化させ、適当な大きさに粉砕して成形材料とすることができる。こうして得られた成形材料の硬化物のガラス領域での熱膨張係数は1.5以下であり、また硬化物比重が2.5以上である成形品として得られ、その用途は特に限定されるものではない。
本発明の成形品は、上記のようにして得られた成形材料を用いて、成形することにより容易に製造することができる。成形の最も一般的な方法としては、射出成形、トランスファー成形法があるが、圧縮成形等による成形も可能である。成形後加熱して樹脂を硬化させる際、150℃以上にすることが望ましい。
【作用】
本発明のエポキシ樹脂組成物および成形品は、エポキシ樹脂の成形用組成物成分として、特定のエポキシ樹脂と特定の活性の弱いウレア系硬化促進剤を用いることによって、硬化反応の反応速度を制御し、成形温度での反応性を維持したままその温度以下で、エポキシ樹脂組成物全体の溶融粘度の低い状態を維持することができ、これにより高比重の充填剤を多量に充填することが可能となり、硬化物比重が高く、成形性・寸法安定性の優れた樹脂組成物が得られるものである。
【発明の実施の形態】
次に本発明を実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。また、以下の実施例および比較例において「部」とは「重量部」を意味する。
実施例1
化3に示したエポキシ樹脂のEPPN−502H(日本化薬社製、商品名)5.1部、前記化5に示したフェノール樹脂のMEH−1085(明和化成社製、商品名)1.2部、前記化8に示したフェノール樹脂のMEH−7500(明和化成社製、商品名)1.8部、前記化4に示したウレア系硬化促進剤0.13部、テトラブロモビスフェノールA型エポキシ樹脂のAER−8028(旭チバ社製、商品名)1.0部、最大粒子径が50μmで平均粒子径が8μmの酸化ジルコニウム粉末46部、最大粒子径が75μmで平均粒子径が25μmの溶融シリカ粉末42部およびカルナバワックス0.4部、カーボンブラック0.25部、三酸化アンチモン2.0部、およびエポキシシランカップリング剤0.2部、低応力添加剤のシリコーンオイル0.05部を常温で混合し、さらに90〜110℃で溶融混練した後、これを冷却粉砕して成形材料を製造した。
実施例2
化3に示したエポキシ樹脂のEPPN−502H(日本化薬社製、商品名)5.9部、前記化5に示したフェノール樹脂のMEH−1085(明和化成社製、商品名)1.4部、前記化8に示したフェノール樹脂のMEH−7500(明和化成社製、商品名)2.1部、前記化4に示したウレア系硬化促進剤0.15部、テトラブロモビスフェノールA型エポキシ樹脂のAER−8028(旭チバ社製、商品名)1.2部、最大粒子径が50μmで平均粒子径が1μmの酸化セリウム粉末31部、最大粒子径が75μmで平均粒子径が25μmの溶融シリカ粉末55部およびカルナバワックス0.5部、カーボンブラック0.25部、三酸化アンチモン2.0部、およびエポキシシランカップリング剤0.3部、低応力添加剤のシリコーンオイル0.2部を常温で混合し、さらに90〜110℃で溶融混練した後、これを冷却粉砕して成形材料を製造した。
実施例3
化3に示したエポキシ樹脂のEPPN−502H(日本化薬社製、商品名)4.3部、前記化5に示したフェノール樹脂のMEH−1085(明和化成社製、商品名)1.0部、前記化8に示したフェノール樹脂のMEH−7500(明和化成社製、商品名)1.5部、前記化4に示したウレア系硬化促進剤0.30部、テトラブロモビスフェノールA型エポキシ樹脂のAER−8028(旭チバ社製、商品名)0.9部、最大粒子径が150μmで平均粒子径が20μmの球状アルミナ粉末88部およびカルナバワックス0.4部、カーボンブラック0.3部、三酸化アンチモン2.4部、およびエポキシシランカップリング剤0.3部、低応力添加剤のシリコーンオイル0.6部を常温で混合し、さらに90〜110℃で溶融混練した後、これを冷却粉砕して成形材料を製造した。
却粉砕して成形材料を製造した。
比較例1
最大粒子径が75μm以下で平均粒子径が25μmの溶融シリカ粉末81.0部、化3に示したエポキシ樹脂のEPPN−502H(日本化薬社製、商品名)8.85部、前記化5に示したフェノール樹脂のMEH−1085(明和化成社製、商品名)2.97部、リン系硬化促進剤(トリフェニルホスフィン)0.120部、テトラブロモビスフェノールA型エポキシ樹脂のAER−8028(旭チバ社製、商品名)1.80部、カルナバワックス0.120部、カーボンブラック0.210部、三酸化アンチモン1.10部、およびカップリング剤0.3部、低応力添加剤のシリコーンオイル3.53部を常温で混合し、さらに90〜110℃で溶融混練した後、これを冷却粉砕して成形材料を製造した。
比較例2
化3に示したエポキシ樹脂のEPPN−502H(日本化薬社製、商品名)7.0部、前記化5に示したフェノール樹脂のMEH−1085(明和化成社製、商品名)1.7部、前記化8に示したフェノール樹脂のMEH−7500(明和化成社製、商品名)2.5部、前記化4に示したウレア系硬化促進剤0.20部、テトラブロモビスフェノールA型エポキシ樹脂のAER−8028(旭チバ社製、商品名)1.4部、最大粒子径が75μm以下で平均粒子径が25μmの溶融シリカ粉末83部、カルナバワックス0.5部、カーボンブラック0.3部および三酸化アンチモン2.4部、およびエポキシシランカップリング剤0.3部、低応力添加剤のシリコーンオイル0.7部を常温で混合し、さらに90〜110℃で溶融混練した後、これを冷却粉砕して成形材料を製造した。
比較例3
最大粒子径が200μm以下で平均粒子径が25μmのニッケル粉末83.0部、化3に示したエポキシ樹脂のEPPN−502H(日本化薬社製、商品名)8.8部、前記化5に示したフェノール樹脂のMEH−1085(明和化成社製、商品名)2.9部、前記化8に示したフェノール樹脂のMEH−7500(明和化成社製、商品名)1.7部、前記化4に示したウレア系硬化促進剤0.2部、テトラブロモビスフェノールA型エポキシ樹脂のAER−8028(旭チバ社製、商品名)1.3部、カルナバワックス0.3部、カーボンブラック0.2部、三酸化アンチモン1.1部、およびエポキシシランカップリング剤0.3部、低応力添加剤のシリコーンオイル0.2部を常温で混合し、さらに90〜110℃で溶融混練した後、これを冷却粉砕して成形材料を製造した。
前記実施例1〜3および比較例1〜3で得た成形材料を用い、その140℃および175℃における硬化性、硬化物の熱膨張係数、および比重について諸試験を行ったので、結果を表1に示す。また成形温度である175℃以下で、粘度の低い溶融状態を維持する時間を比較するために実施例1と比較例1について140℃における粘度の時間依存性を図1に示す。
【表1】
Figure 2004107435
*1:一定温度に保たれた熱板上で一定量の成形材料を直径4〜5cmの円状に広げ、一定速度で練り合わせたとき、試料が増粘し、最終的に粘りのなくなった時間を計測した。
*2:TMA法によりガラス領域における熱膨張係数を測定した。
【発明の効果】
以上の説明および表1、図1から明らかなように、本発明のエポキシ樹脂組成物および成形品によれば、成形温度での硬化特性を維持したまま、その温度以下で、溶融粘度の低い状態を維持することができ、これにより高比重の充填剤を多量に充填でき、硬化物比重が高く、成形性・寸法安定性に優れた樹脂組成物が得られるものである。
【図面の簡単な説明】
【図1】実施例1と比較例1の、140℃における低粘度溶融状態維持時間の比較を示すグラフである。TECHNICAL FIELD OF THE INVENTION
The present invention relates to an epoxy resin composition having excellent moldability and a molded article.
[Prior art]
Because the weight of the component itself is lighter than that of metal parts in the head of ink-jet printers and high-speed rotating parts made of resin molded products, the operation is not performed smoothly due to inertia and centrifugal force at the time of operation, resulting in poor performance of parts. It is a very important issue.
[Problems to be solved by the invention]
To increase the specific gravity of parts, there is a method of polishing a metal ingot. However, complicated processing is difficult, it takes a lot of man-hours, mass production is impossible, and the price is high. In addition, there is a method such as insert molding of a metal part. However, similarly, complicated processing cannot be performed, and there is a problem that a man-hour is required. In addition, when a molded article made of thermoplastic resin is made, complex products can be mass-produced, but have poor heat resistance and solvent resistance, and use metal powder or metal carbide as a filler regardless of resin to achieve high specific gravity. In this case, a resin having a high specific gravity can be easily produced, but it cannot be applied to parts requiring insulation.
An object of the present invention is to provide a thermosetting resin composition having a high specific gravity and excellent productivity in order to solve the above-mentioned drawbacks, and to obtain a high specific gravity molded article using the same. .
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, by using a specific epoxy resin and a specific urea resin as a curing accelerator, it is possible to fill a large amount of a filler with a high specific gravity and cure. It has been found that a resin composition having a high specific gravity and excellent in moldability and dimensional stability can be obtained, and the above object has been achieved, thereby completing the present invention.
That is, the present invention
(A) a polyfunctional epoxy resin represented by the following structural formula,
Embedded image
Figure 2004107435
(Wherein, R 1 to R 4 represent a hydrogen atom or an alkyl group, and n represents an integer of 1 or more, respectively)
(B) a phenolic resin,
(C) a urea-based curing accelerator represented by the following structural formula:
Figure 2004107435
(D) A metal oxide filler having a true specific gravity of 3.0 or more is an essential component, and the metal oxide filler of (D) is contained in a proportion of 30 to 95% by weight based on the whole resin composition. An epoxy resin composition characterized in that the cured product has a coefficient of thermal expansion in the glass region of 1.5 or less and a specific gravity of the cured product of 2.5 or more. Further, it is a molded article characterized by being molded with the epoxy resin composition.
Hereinafter, the present invention will be described in detail.
As the epoxy resin (A) used in the present invention, those represented by the above-mentioned formula (3) can be used, but o-cresol novolak type epoxy resin, biphenyl-based epoxy resin, dicyclo-epoxy resin and the like can be used without departing from the object of the present invention. A pentadiene-based epoxy resin and other generally known epoxy resins can be used in combination.
The phenolic resin (B) used in the present invention is not particularly limited as long as it has two or more phenolic hydroxyl groups in the molecule that can react with the epoxy group of the epoxy resin (A). Specific compounds include, for example,
Figure 2004107435
(Where n represents an integer of 0 or more)
Embedded image
Figure 2004107435
(Where n represents an integer of 0 or more)
Embedded image
Figure 2004107435
(Where n represents an integer of 0 or more)
Embedded image
Figure 2004107435
(Where n represents an integer of 0 or more)
These resins can be used alone or in combination of two or more.
The mixing ratio of the phenol resin is such that the equivalent ratio [(a) / (b)] between the epoxy group (a) of the epoxy resin and the phenolic hydroxyl group (b) of the phenol resin is in the range of 0.5 to 5. Desirably. If the equivalent ratio is less than 0.5 or more than 5, the curing properties, molding workability, and the electrical properties, moisture resistance and heat resistance of the cured product will be poor, and any case is not preferred. Therefore, it is better to limit to the above range.
As the urea-based curing accelerator (C) used in the present invention, the above-mentioned formula 4 is mentioned, but it is most preferable to use it alone, but it is also possible to use a mixture. That is, it can be used in combination with a known phosphorus-based curing accelerator, imidazole-based curing accelerator, and DBU-based curing accelerator.
Examples of (D) a metal oxide filler having a true specific gravity of 3.0 or more used in the present invention include zirconium oxide, cerium oxide, titanium oxide, chromium oxide, zinc oxide, aluminum oxide, and magnesium oxide. They can be used alone or in combination of two or more. Further, it is desirable that the metal oxide of (D) has an intrinsic volume resistivity of 10 9 Ω · cm or more. These metal oxide fillers are desirably metal oxides having a maximum particle size of 500 μm or less. If a metal oxide having a particle size exceeding 500 μm is contained, the moldability of a precision molded product is inferior and is not suitable for practical use. Further, the compounding ratio is desirably 30 to 95% by weight based on the whole resin composition. If the compounding ratio is less than 30% by weight, the specific gravity of the cured product is small, which is not suitable for the purpose of the present invention. On the other hand, if the content exceeds 95% by weight, the burrs become large, so that the moldability is inferior and not suitable for practical use.
As the silicon oxide (E) used in combination with the present invention, crystalline silica, fused silica, cristobalite and the like can be used irrespective of the crystal structure, but for the purpose of high filling, spherical fused silica powder is preferred. In addition, the mixing ratio is preferably 70 to 96% by weight of the total of the resin composition in total of (D) the metal oxide filler and (E) silicon oxide for the above reason. If the compounding ratio is less than 70% by weight, the thermal expansion coefficient of the cured product becomes large, which is not suitable for the purpose of the present invention. On the other hand, when the content exceeds 96% by weight, the burrs become large, so that the moldability is inferior and is not practical.
The epoxy resin composition of the present invention contains the above-mentioned specific epoxy resin, phenolic resin, a specific urea-based curing accelerator and a metal oxide filler as essential components, but to the extent not contrary to the object of the present invention, If necessary, for example, release agents such as natural waxes and synthetic waxes, antimony trioxide, flame retardants such as brominated epoxy resins, coloring agents such as carbon black, rubber-based and silicone-based low stress imparting agents, Coupling agents such as amine-modified and epoxy-modified silicone oils and the like can be appropriately added and blended.
As a general method for preparing the epoxy resin composition of the present invention as a molding material, the epoxy resin, phenolic resin, curing accelerator, metal oxide filler, and other components described above are blended and sufficiently mixed with a mixer or the like. After uniform mixing, the mixture is further subjected to a melt-mixing process using a hot roll or a mixing process using a kneader or the like, and then cooled and solidified, and pulverized to an appropriate size to obtain a molding material. The cured product of the molding material thus obtained has a coefficient of thermal expansion in the glass region of 1.5 or less and a cured product having a specific gravity of 2.5 or more. is not.
The molded article of the present invention can be easily manufactured by molding using the molding material obtained as described above. The most common methods of molding include injection molding and transfer molding, but molding by compression molding or the like is also possible. When the resin is cured by heating after molding, the temperature is desirably 150 ° C. or higher.
[Action]
The epoxy resin composition and the molded article of the present invention control the reaction rate of the curing reaction by using a specific epoxy resin and a specific urea-based curing accelerator having a low activity as a component of the epoxy resin molding composition. At the molding temperature, while maintaining the reactivity at the molding temperature or lower, it is possible to maintain a low melt viscosity state of the entire epoxy resin composition, which makes it possible to fill a large amount of a high specific gravity filler. And a resin composition having a high specific gravity of a cured product and excellent moldability and dimensional stability.
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples. In the following Examples and Comparative Examples, “parts” means “parts by weight”.
Example 1
5.1 parts of an epoxy resin EPPN-502H (trade name, manufactured by Nippon Kayaku Co., Ltd.) represented by Chemical Formula 3, and a phenol resin MEH-1085 (trade name, manufactured by Meiwa Kasei Co., Ltd.) represented by Chemical Formula 5 1.2 Parts, 1.8 parts of MEH-7500 (trade name, manufactured by Meiwa Kasei Co., Ltd.) of the phenolic resin shown in Chemical Formula 8, 0.13 parts of the urea-based curing accelerator shown in Chemical Formula 4, and tetrabromobisphenol A type epoxy 1.0 part of resin AER-8028 (trade name, manufactured by Asahi Chiba Co., Ltd.), 46 parts of zirconium oxide powder having a maximum particle diameter of 50 μm and an average particle diameter of 8 μm, melting of a maximum particle diameter of 75 μm and an average particle diameter of 25 μm 42 parts of silica powder and 0.4 parts of carnauba wax, 0.25 parts of carbon black, 2.0 parts of antimony trioxide, 0.2 parts of an epoxy silane coupling agent, silicone of low stress additive Mixed yl 0.05 parts at room temperature, further 90-110 was melt-kneaded at ° C., to produce a molding material which is cooled milled.
Example 2
5.9 parts of EPPN-502H (trade name, manufactured by Nippon Kayaku Co., Ltd.) of the epoxy resin shown in Chemical Formula 3, and 1.4 of MEH-1085 (trade name, manufactured by Meiwa Kasei Co., Ltd.) of the phenol resin shown in Chemical Formula 5 Parts, 2.1 parts of MEH-7500 (trade name, manufactured by Meiwa Kasei Co., Ltd.) of a phenolic resin shown in Chemical Formula 8, 0.15 parts of a urea-based curing accelerator shown in Chemical Formula 4, tetrabromobisphenol A type epoxy 1.2 parts of resin AER-8028 (trade name, manufactured by Asahi Chiba Co., Ltd.), 31 parts of cerium oxide powder having a maximum particle diameter of 50 μm and an average particle diameter of 1 μm, and a melt having a maximum particle diameter of 75 μm and an average particle diameter of 25 μm 55 parts of silica powder, 0.5 parts of carnauba wax, 0.25 parts of carbon black, 2.0 parts of antimony trioxide, 0.3 parts of an epoxysilane coupling agent, silicone oil as a low stress additive Were mixed 0.2 parts of room temperature, further 90-110 was melt-kneaded at ° C., to produce a molding material which is cooled milled.
Example 3
4.3 parts of EPPN-502H (trade name, manufactured by Nippon Kayaku Co., Ltd.) of the epoxy resin shown in Chemical Formula 3, and 1.0 parts of MEH-1085 (trade name, manufactured by Meiwa Kasei Co., Ltd.) of the phenol resin shown in Chemical Formula 5 Parts, 1.5 parts of MEH-7500 (trade name, manufactured by Meiwa Kasei Co., Ltd.) of a phenolic resin shown in Chemical Formula 8, 0.30 parts of a urea-based curing accelerator shown in Chemical Formula 4, tetrabromobisphenol A type epoxy 0.9 parts of resin AER-8028 (trade name, manufactured by Asahi Ciba), 88 parts of spherical alumina powder having a maximum particle diameter of 150 μm and an average particle diameter of 20 μm, 0.4 parts of carnauba wax, and 0.3 parts of carbon black , 2.4 parts of antimony trioxide, 0.3 part of an epoxy silane coupling agent, and 0.6 part of a low stress additive silicone oil were mixed at room temperature, and further melt-kneaded at 90 to 110 ° C. This was cooled and pulverized to produce a molding material.
It was then ground to produce a molding material.
Comparative Example 1
81.0 parts of fused silica powder having a maximum particle diameter of 75 μm or less and an average particle diameter of 25 μm, 8.85 parts of the epoxy resin EPPN-502H (trade name, manufactured by Nippon Kayaku Co., Ltd.) 2.97 parts of phenolic resin MEH-1085 (trade name, manufactured by Meiwa Kasei Co., Ltd.), 0.120 parts of a phosphorus-based curing accelerator (triphenylphosphine), and AER-8028 (tetrabromobisphenol A type epoxy resin) 1.80 parts, Carnauba wax 0.120 parts, carbon black 0.210 parts, antimony trioxide 1.10 parts, coupling agent 0.3 parts, silicone low stress additive 3.53 parts of oil was mixed at room temperature, and further melt-kneaded at 90 to 110 ° C, and then cooled and pulverized to produce a molding material.
Comparative Example 2
7.0 parts of an epoxy resin EPPN-502H (trade name, manufactured by Nippon Kayaku Co., Ltd.) represented by Chemical Formula 3, and 1.7 parts of a phenol resin MEH-1085 (trade name, manufactured by Meiwa Kasei Co., Ltd.) represented by Chemical Formula 5 Parts, 2.5 parts of MEH-7500 (trade name, manufactured by Meiwa Kasei Co., Ltd.) of a phenolic resin shown in Chemical Formula 8, 0.20 parts of a urea-based curing accelerator shown in Chemical Formula 4, and tetrabromobisphenol A type epoxy 1.4 parts of AER-8028 resin (trade name, manufactured by Asahi Ciba), 83 parts of fused silica powder having a maximum particle diameter of 75 μm or less and an average particle diameter of 25 μm, 0.5 part of carnauba wax, 0.3 parts of carbon black And 2.4 parts of antimony trioxide, 0.3 part of an epoxysilane coupling agent, and 0.7 part of a silicone oil as a low-stress additive are mixed at room temperature and further melt-kneaded at 90 to 110 ° C. This was cooled and pulverized to produce a molding material.
Comparative Example 3
83.0 parts of nickel powder having a maximum particle diameter of 200 μm or less and an average particle diameter of 25 μm, 8.8 parts of the epoxy resin EPPN-502H (trade name, manufactured by Nippon Kayaku Co., Ltd.) shown in Chemical formula 3, and 2.9 parts of the indicated phenolic resin MEH-1085 (trade name, manufactured by Meiwa Kasei Co., Ltd.), 1.7 parts of the phenolic resin MEH-7500 (trade name, manufactured by Meiwa Kasei Co., Ltd.) described in Chemical Formula 8, 0.2 parts of the urea-based curing accelerator shown in FIG. 4, 1.3 parts of AER-8028 (trade name, manufactured by Asahi Ciba) of tetrabromobisphenol A type epoxy resin, 0.3 parts of carnauba wax, and 0.3 parts of carbon black. 2 parts, 1.1 parts of antimony trioxide, 0.3 parts of an epoxy silane coupling agent, and 0.2 parts of a low-stress additive silicone oil are mixed at room temperature, and further melt-kneaded at 90 to 110 ° C., This This was cooled and pulverized to produce a molding material.
Using the molding materials obtained in Examples 1 to 3 and Comparative Examples 1 to 3, various tests were conducted on the curability at 140 ° C. and 175 ° C., the coefficient of thermal expansion of the cured product, and the specific gravity. 1 is shown. FIG. 1 shows the time dependence of the viscosity at 140 ° C. for Example 1 and Comparative Example 1 in order to compare the time for maintaining a low-viscosity molten state at a molding temperature of 175 ° C. or lower.
[Table 1]
Figure 2004107435
* 1: When a certain amount of molding material is spread in a circle of 4 to 5 cm in diameter on a hot plate kept at a certain temperature and kneaded at a certain speed, the sample thickens and finally loses stickiness. Was measured.
* 2: The coefficient of thermal expansion in the glass region was measured by the TMA method.
【The invention's effect】
As is clear from the above description and Table 1 and FIG. 1, according to the epoxy resin composition and the molded product of the present invention, while maintaining the curing characteristics at the molding temperature, a state in which the melt viscosity is low below that temperature is maintained. This makes it possible to fill a large amount of a filler with a high specific gravity, thereby obtaining a resin composition having a high specific gravity of a cured product and excellent in moldability and dimensional stability.
[Brief description of the drawings]
FIG. 1 is a graph showing a comparison of a low-viscosity molten state maintaining time at 140 ° C. between Example 1 and Comparative Example 1.

Claims (7)

(A)次の構造式で示される多官能型エポキシ樹脂、
Figure 2004107435
(但し、式中、R1 〜R4 は水素原子またはアルキル基を、nは1以上の整数をそれぞれ表す)
(B)フェノール樹脂、
(C)次の構造式で示されるウレア系硬化促進剤および
Figure 2004107435
(D)真比重が3.0以上の金属酸化物充填剤
を必須成分とし、前記(D)の金属酸化物充填剤を全体の樹脂組成物に対して30〜95重量%の割合で含有してなり、硬化物のガラス領域での熱膨張係数が1.5以下、かつ、硬化物比重が2.5以上であることを特徴とするエポキシ樹脂組成物。
(A) a polyfunctional epoxy resin represented by the following structural formula,
Figure 2004107435
(Wherein, R 1 to R 4 represent a hydrogen atom or an alkyl group, and n represents an integer of 1 or more, respectively)
(B) a phenolic resin,
(C) a urea-based curing accelerator represented by the following structural formula;
Figure 2004107435
(D) A metal oxide filler having a true specific gravity of 3.0 or more is an essential component, and the metal oxide filler of (D) is contained in a proportion of 30 to 95% by weight based on the whole resin composition. An epoxy resin composition, characterized in that the cured product has a thermal expansion coefficient of 1.5 or less in a glass region and a cured product specific gravity of 2.5 or more.
(D)真比重が3.0以上の金属酸化物充填剤が109 Ω・cm以上の固有体積抵抗率をもつ請求項1記載のエポキシ樹脂組成物。The epoxy resin composition according to claim 1, wherein (D) the metal oxide filler having a true specific gravity of 3.0 or more has an intrinsic volume resistivity of 10 9 Ω · cm or more. (D)真比重が3.0以上の金属酸化物充填剤が酸化ジルコニウムである請求項1記載のエポキシ樹脂組成物。The epoxy resin composition according to claim 1, wherein (D) the metal oxide filler having a true specific gravity of 3.0 or more is zirconium oxide. (D)真比重が3.0以上の金属酸化物充填剤が酸化セリウムである請求項1記載のエポキシ樹脂組成物。The epoxy resin composition according to claim 1, wherein the (D) metal oxide filler having a true specific gravity of 3.0 or more is cerium oxide. (D)真比重が3.0以上の金属酸化物充填剤が酸化アルミニウムである請求項1記載のエポキシ樹脂組成物。The epoxy resin composition according to claim 1, wherein (D) the metal oxide filler having a true specific gravity of 3.0 or more is aluminum oxide. 充填剤として(E)酸化ケイ素を併用してなる請求項1〜5記載のエポキシ樹脂組成物。The epoxy resin composition according to any one of claims 1 to 5, wherein (E) silicon oxide is used in combination as a filler. 請求項1〜6いずれか1項記載のエポキシ樹脂組成物により成形されてなることを特徴とする成形品。A molded article formed by molding the epoxy resin composition according to claim 1.
JP2002269968A 2002-09-17 2002-09-17 Epoxy resin composition and molded article Pending JP2004107435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002269968A JP2004107435A (en) 2002-09-17 2002-09-17 Epoxy resin composition and molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002269968A JP2004107435A (en) 2002-09-17 2002-09-17 Epoxy resin composition and molded article

Publications (1)

Publication Number Publication Date
JP2004107435A true JP2004107435A (en) 2004-04-08

Family

ID=32267738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002269968A Pending JP2004107435A (en) 2002-09-17 2002-09-17 Epoxy resin composition and molded article

Country Status (1)

Country Link
JP (1) JP2004107435A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001638A (en) * 2007-06-20 2009-01-08 Kyocera Chemical Corp Molding resin composition, molded article and semiconductor package
WO2021015446A1 (en) * 2019-07-23 2021-01-28 주식회사 케이씨씨 Epoxy resin composition
CN113563695A (en) * 2021-07-29 2021-10-29 内蒙古工业大学 Epoxy resin modification curing process and thermosetting epoxy resin compound

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001638A (en) * 2007-06-20 2009-01-08 Kyocera Chemical Corp Molding resin composition, molded article and semiconductor package
WO2021015446A1 (en) * 2019-07-23 2021-01-28 주식회사 케이씨씨 Epoxy resin composition
KR20210011749A (en) * 2019-07-23 2021-02-02 주식회사 케이씨씨 Epoxy resin composition
KR102228914B1 (en) 2019-07-23 2021-03-17 주식회사 케이씨씨 Epoxy resin composition
JP2022544008A (en) * 2019-07-23 2022-10-17 ケーシーシー コーポレーション epoxy resin composition
JP7268241B2 (en) 2019-07-23 2023-05-02 ケーシーシー コーポレーション epoxy resin composition
CN113563695A (en) * 2021-07-29 2021-10-29 内蒙古工业大学 Epoxy resin modification curing process and thermosetting epoxy resin compound
CN113563695B (en) * 2021-07-29 2024-01-02 内蒙古工业大学 Epoxy resin modified curing process and thermosetting epoxy resin compound

Similar Documents

Publication Publication Date Title
TWI714587B (en) Thermal conductive composition
JP2009073933A (en) Epoxy resin composition having thermal degradation resistance
JPH0329259B2 (en)
JPS6355532B2 (en)
JP2018104683A (en) Composition for sealing molding material and electronic component device
JPS6284147A (en) Epoxy resin composition
JPH059270A (en) Resin composition and its manufacture
JPS58219218A (en) Thermosetting epoxy resin composition
JP2004107435A (en) Epoxy resin composition and molded article
JPS61101522A (en) Sealing resin composition
JPS61254619A (en) Epoxy resin composition for encapsulation of semiconductor
JP2004107434A (en) Epoxy resin composition and molded article
JP2576713B2 (en) Epoxy resin composition and semiconductor device
JP3056667B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2000273155A (en) Semiconductor sealing epoxy resin molding material and semiconductor device using the same
JP3145687B2 (en) Epoxy resin composition and semiconductor encapsulation device
JP3585615B2 (en) Epoxy resin composition for semiconductor encapsulation
JP3792094B2 (en) Molding
JP2003327788A (en) Epoxy resin composition and its molded product
JPS61101523A (en) Sealing resin composition
JPH0647613B2 (en) Epoxy resin molding material for electronic parts encapsulation
JP3145686B2 (en) Epoxy resin composition and semiconductor encapsulation device
JPS61101524A (en) Sealing resin composition
JPH01272624A (en) Epoxy resin molding material for sealing electronic part
JP2857441B2 (en) Sealing resin composition and semiconductor sealing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20041007

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050315