JP3585615B2 - Epoxy resin composition for semiconductor encapsulation - Google Patents

Epoxy resin composition for semiconductor encapsulation Download PDF

Info

Publication number
JP3585615B2
JP3585615B2 JP33472895A JP33472895A JP3585615B2 JP 3585615 B2 JP3585615 B2 JP 3585615B2 JP 33472895 A JP33472895 A JP 33472895A JP 33472895 A JP33472895 A JP 33472895A JP 3585615 B2 JP3585615 B2 JP 3585615B2
Authority
JP
Japan
Prior art keywords
epoxy resin
group
formula
resin composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33472895A
Other languages
Japanese (ja)
Other versions
JPH09176283A (en
Inventor
丈士 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP33472895A priority Critical patent/JP3585615B2/en
Publication of JPH09176283A publication Critical patent/JPH09176283A/en
Application granted granted Critical
Publication of JP3585615B2 publication Critical patent/JP3585615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂組成物の常温保存特性、成形性に優れた挿入実装及び表面実装対応の半導体封止用エポキシ樹脂組成物に関するものである。
【0002】
【従来の技術】
ダイオード、トランジスタ、IC等の本体を機械的、化学的作用から保護するために、エポキシ樹脂系半導体封止樹脂は開発、生産されてきた。この樹脂組成物に要求される項目は、素子の種類、パッケージの構造、使用される環境によって変化しつつある。特にICでは、耐熱性、耐湿性に優れたオルソクレゾールノボラック型エポキシ樹脂、フェノールノボラック樹脂、溶融シリカ、結晶シリカ等の無機充填材を配合したエポキシ樹脂組成物が用いられている。
ところが近年、ICの高集積化に伴いチップがだんだん大型化し、かつパッケージは従来の挿入型のDIPタイプから表面実装化された小型、薄型のQFP、SOP、SOJ、TSOP、TQFP、PLCCに変わってきている。大型のチップを小型で薄いパッケージに封入することになり、熱応力によりクラックが発生し、これらのクラックによる耐湿性の低下等の問題が大きくクローズアップされてきている。特に、半田付け工程において急激に200℃以上の高温にさらされることにより、パッケージの割れや樹脂とリードフレーム、樹脂とチップの剥離により耐湿性が劣化してしまうといった問題がでてきている。
【0003】
この耐半田クラック性を改良する方法として、無機充填材を多く含む樹脂組成物が開発されており、多量の無機充填材を配合する方法としては、無機充填材の粒度分布や形状の選択、エポキシ樹脂や硬化剤樹脂の低粘度化などがある。しかし、樹脂の低粘度化のために樹脂の分子量を小さくすると、分子が動きやすくなって反応の初期段階では架橋反応が速やかに進み、従って樹脂混練時に架橋反応が一部進んで所定の流動性が発現されず、また同じ理由で常温でも反応が起こりやすく、樹脂組成物の常温保管性が低下するという欠点がある。さらに、分子量の低い樹脂は、初期の反応性は高いが反応の最終段階においては逆に架橋密度が充分に上がらず、封止樹脂組成物が充分に硬化しないという問題点がある。
従来用いられている硬化促進剤は、2−メチルイミダゾール、1,8−ジアザビシクロ[5.4.0]ウンデセン−7、トリフェニルホスフィン等あるが、これらの硬化促進剤は前述のように比較的低温でも硬化促進効果を示すため、これらを使用したエポキシ樹脂組成物は常温における保存性が悪く、そのために常温で保管すると成形時の流動性の低下から、充填不良が発生したり、ICチップの金ワイヤーが断線し、導通不良が発生するなどの問題点が生じる。このためエポキシ樹脂組成物は初期の流動性を維持するため、冷蔵保管及び冷蔵輸送する必要があり、保管、輸送には多大なコストがかかっているのが現状である。
【0004】
【発明が解決しようとする課題】
本発明は、これらの問題を解決するために種々の検討の結果なされたものであり、エポキシ樹脂として式(1)で示されるエポキシ樹脂を用いることにより、リードフレーム及び半導体チップとの接着性向上、成形物の低吸水化により、基板実装時における半導体パッケージの耐半田ストレスを著しく向上させ、なおかつ式(2)の硬化促進剤を用いることによって、流動性に優れ成形時の硬化性を大幅に改善すると同時に、樹脂組成物の常温保存特性も改善できる無機充填材をエポキシ樹脂組成物中に70〜92重量%含む、半導体封止用エポキシ樹脂組成物を提供するものである。
【0005】
【課題を解決するための手段】
本発明は、下記式(1)で示される軟化点50〜90℃のエポキシ樹脂、軟化点55〜130℃のフェノール樹脂硬化剤、下記式(2)で示される硬化促進剤、及び無機充填材を必須成分とし、かつ全組成物中に該無機充填材を70〜92重量%含むことを特徴とする半導体封止用エポキシ樹脂組成物であり、
【化3】

Figure 0003585615
(ただし、式(1)中のRは、水素、ハロゲン、アルキル基の中から選択される同一もしくは異なる原子または基)
【化4】
Figure 0003585615
(ただし、式(2)中、R、R、R及びRは、芳香環もしくは複素環を有する1価の有機基又は1価の脂肪族基であり、それらは互いに同一であっても異なっていてもよい。また、Y、Y、Y及びYは芳香環もしくは複素環を有する1価の有機基または1価の脂肪族基であって、それらのうち少なくとも1個は、分子外に放出し得るプロトンを少なくとも1個有するプロトン供与体がプロトンを1個放出してなる基であり、それらは互いに同一であっても異なっていてもよい。)
好ましくは、式(2)で示される硬化促進剤のプロトン供与体が、1分子内に少なくとも1個のカルボキシル基を有する芳香族カルボン酸である半導体封止用エポキシ樹脂組成物である。
軟化点はJIS K 2207に準じ、ボーリング法で昇温速度3±0.5℃で測定する。エポキシ樹脂の軟化点が50℃未満だと取扱いが難しくて使用しづらく、90℃を越えると無機充填材量を必要量配合することができない。同様にフェノール樹脂も軟化点が55℃未満だと取扱いが難しく使用しづらく、130℃を越えると無機充填材量を必要量配合することができない。
【0006】
【発明の実施の形態】
以下、各項目に関し詳細に説明する。
本発明で用いられる式(1)のエポキシ樹脂は、ジシクロペンタジエンとフェノール類とを付加反応により重合させたフェノール樹脂をグリシジルエーテル化することによって得られるエポキシ樹脂で、従来のオルソクレゾールノボラックエポキシ樹脂に比較し、ガラス転移温度を越えた高温時の弾性率が低く、リードフレーム等の金属類との接着性に優れる。従って、表面実装の半田付け時における熱ストレスを低減させることができ、耐半田クラック性に優れるエポキシ樹脂組成物を得ることができる。耐半田クラック性の効果を引き出すためには、式(1)で示されるエポキシ樹脂を総エポキシ樹脂量に対して30重量%以上、好ましくは50重量%以上使用することが望ましい。30重量%未満だと高温時の低弾性化及び高接着性が得られず耐半田クラック性が不十分である。また全組成物中の無機充填材量を70〜92重量%とするためには、軟化点の低いエポキシ樹脂を使用することが好ましい。更に式(1)中のRは水素原子が好ましい。
【0007】
式(1)で示されるエポキシ樹脂以外に他のエポキシ樹脂と併用する場合、使用するエポキシ樹脂は、エポキシ基を有するモノマー、オリゴマー、ポリマー全般を指し、例えば、ビフェニル型エポキシ化合物、ビスフェノール型エポキシ化合物、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ化合物、アルキル変性トリフェノールメタン型エポキシ化合物及びトリアジン核含有エポキシ樹脂等が挙げられる。
【0008】
本発明に用いられるフェノール樹脂硬化剤は、上記のエポキシ樹脂と硬化反応を行い架橋構造を形成することができる少なくとも2個以上のフェノール性水酸基を有するモノマー、オリゴマー、ポリマー全般を指し、特に限定するものではないが、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、パラキシリレン変性フェノール樹脂、メタキシリレン・パラキシリレン変性フェノール樹脂等のフェノールアラルキル樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等が挙げられ、これらは単独でも混合して使用しても差し支えない。軟化点、水酸基当量等も特に規定するものではないが、樹脂中の塩素含有量は極力低い方が長期信頼性の点から好ましい。
全組成物中の無機充填材量を70〜92重量%とするためには、エポキシ樹脂と同様、軟化点の低い硬化剤を使用することが望ましい。
【0009】
本発明に用いられる硬化促進剤は、下記式(2)で示されるホスホニウムボレートからなる。
【化5】
Figure 0003585615
ただし、式(2)において、ホスホニウム基のR、R、R及びRは、芳香環もしくは複素環を有する1価の有機基又は1価の脂肪族基であり、それらは互いに同一であっても異なっていてもよい。
【0010】
このようなホスホニウム基としては、例えば、テトラフェニルホスホニウム基、テトラトリルホスホニウム基、テトラエチルフェニルホスホニウム基、テトラメトキシフェニルホスホニウム基、テトラナフチルホスホニウム基、テトラベンジルホスホニウム基、エチルトリフェニルホスホニウム基、n−ブチルトリフェニルホスホニウム基、2−ヒドロキシエチルトリフェニルホスホニウム基、トリメチルフェニルホスホニウム基、メチルジエチルフェニルホスホニウム基、メチルジアリルフェニルホスホニウム基、テトラ−n−ブチルホスホニウム基等を挙げることができる。式(2)において、R、R、R及びRは、芳香環を有する1価の有機基であることが特に好ましく、また、式(2)で示されるホスホニウムボレートの融点は特に限定されるものではないが、均一分散の点からは250℃以下であることが好ましい。特に、テトラフェニルホスホニウム基を有するホスホニウムボレートは、熱硬化性樹脂との相溶性が良好であり、好適に使用することができる。
【0011】
式(2)において、ボレート基のY、Y、Y及びYは、芳香環もしくは複素環を有する1価の有機基または1価の脂肪族基であって、それらのうち少なくとも1個は、分子外に放出し得るプロトンを少なくとも1個有するプロトン供与体がプロトンを1個放出してなる基であり、Y、Y、Y及びYは互いに同一であっても異なっていてもよい。このようなボレート基を与えるプロトン供与体としては、例えば、酢酸、トリフルオロ酸、ステアリン酸、安息香酸、1−ナフトエ酸、2−ナフトエ酸、フタル酸、トリメット酸、ピロメリット酸、2,6−ナフタレンジカルボン酸、ポリアクリル酸等のカルボン酸やその無水物の部分開環体、フェノール、1−ナフトール、2−ナフトール、ポリフェノール、イソシアヌル酸、ベンゾトリアゾール、さらにこれらのうち芳香環を有する化合物の芳香環に置換基を有する化合物等を挙げることができるが、好ましくは、安息香酸、1−ナフトエ酸、2−ナフトエ酸、フタル酸、トリメット酸、ピロメリット酸、2,6−ナフタレンジカルボン酸が良好であり、好適に使用できる。
【0012】
本発明の式(2)で示されるホスホニウムボレートからなる硬化促進剤は、熱硬化性樹脂に配合された場合、常温においては触媒活性を示さないので熱硬化性樹脂の硬化反応が進むことがなく、成形時の高温において触媒活性が発現し、しかもいったん発現すると従来の硬化促進剤よりも強い触媒活性を示して熱硬化性樹脂を高度に硬化させる。
本発明の硬化促進剤は、全エポキシ樹脂組成物に対し0.10〜1重量%であり、通常適度の高温下、例えば70〜150℃で混合することができる。硬化促進剤が0.10重量%未満であると加熱成形時において充分な硬化性が得られない恐れがあり、1重量%を越えると、硬化が速すぎて成形時に流動性の低下により充填不良などを生ずる恐れがある。
本発明の硬化促進剤は、単独で使用することができ、あるいは他の硬化促進剤と混合して用いることができる。他の硬化促進剤と混合して使用する場合、本発明の硬化促進剤は、他の硬化促進剤との合計量の40重量%以上であることが好ましい。本発明の硬化促進剤が40重量%未満であると、本発明の目的を充分に達成できない恐れがある。本発明の硬化促進剤と混合して使用できる他の硬化促進剤は、例えば、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、1,8−ジアザビシクロ[5.4.0]ウンデセン−7等を挙げることができる。
【0013】
本発明で用いられる無機充填材としては、溶融破砕シリカ粉末、溶融球状シリカ粉末、結晶シリカ粉末、2次凝集シリカ粉末、アルミナ等が挙げられ、特に封止樹脂組成物の流動性の向上という観点から、溶融球状シリカ粉末が望ましい。球状シリカ粉末の形状は、流動性改善のために、粒子自体の形状は限りなく真球状であることが望ましく、更に粒度分布がブロードで有ることが望ましい。
又、無機充填材の配合量としては、耐半田クラック性と成形性及び流動性のバランスから全組成物中に70〜92重量%が望ましい。無機充填材量が70重量%未満であると、低吸水率化、低熱膨張化が得られず耐半田クラック性が不十分である。また、無機充填材量が92重量%を越えると高粘度化により半導体パッケージ内部の金線変形、ダイパッド変形を引き起こす等の不具合を生じる。
【0014】
本発明の組成物は、エポキシ樹脂、フェノール樹脂硬化剤、硬化促進剤及び無機充填材を必須成分とするがこれ以外に、必要に応じて、カーボンブラック等の着色剤、ブロム化エポキシ樹脂、三酸化アンチモン等の難燃剤、γ−グリシドキシプロピルトリメトキシシラン等のカップリング剤、シリコーンオイル、ゴム等の低応力成分、カルナバワックス等の離型剤を添加することができる。
本発明のエポキシ樹脂組成物は、エポキシ樹脂、フェノール樹脂硬化剤、硬化促進剤、無機充填材、その他添加剤をミキサー等にて充分に均一混合し、熱ロールまたはニーダー等の混練機にて溶融混練し、冷却後粉砕し成形材料を得ることができる。
【0015】
【実施例】
以下本発明を実施例にて具体的に説明する。
《実施例1》
下記組成物
・式(3)で示されるエポキシ樹脂 10.2重量部
(軟化点65℃、エポキシ当量250)
【化6】
Figure 0003585615
(n=0が1に対し、n=1が0.4、n=2が0.25からなる混合物)
・フエノールノボラック樹脂硬化剤 2.8重量部
(軟化点60℃、水酸基当量105)
・パラキシレン変性フェノール樹脂 2.8重量部
(軟化点95℃、水酸基当量175)
【0016】
・式(4)の硬化促進剤 0.6重量部
【化7】
Figure 0003585615
・溶融破砕シリカ 45.0重量部
・溶融球状シリカ 35.0重量部
・カーボンブラック 0.3重量部
・カルナバワックス 0.3重量部
・γ−グリシドキシプロピルトリメトキシシラン 0.5重量部
・臭素化フェノールノボラック型エポキシ樹脂 0.5重量部
・三酸化アンチモン 2.0重量部
をミキサーにて常温混合し、100℃で二軸ロールにて混練し、冷却後粉砕し成形材料とした。得られた成形材料のスパイラルフロー、ゲルタイム、常温保管特性、成形性を検討した。
【0017】
《評価方法》
・スパイラルフロー:
EMMI−1−66に準じたスパイラルフロー測定用の金型を用い、金型温度175℃、注入圧力70kg/cm 、硬化時間2分で測定。
・ゲルタイム:
175℃に加熱した熱板上で封止樹脂組成物を溶融後、へらで練りながら硬化するまでの時間を測定。
・ショア硬度:
ショアD硬度計を用い、金型温度175℃、硬化時間2分で測定。
・常温保管性:
樹脂組成物を25℃にて保管した後、スパイラルフローを測定。初期フロー長さを100%としたときのフロー残存率が90%になるまでの日数で示す。
【0018】
《実施例2〜3》
表1の処方に従って配合し、実施例1と同様にして成形材料を得、同様に評価した。これらの評価結果を表1に示す。
《比較例1〜3》
表1の処方に従って配合し、実施例1と同様にして成形材料を得、同様に評価した。実施例1以外で使用するその他の原料は、エポキシ樹脂はオルソクレゾールノボラック型エポキシ樹脂(軟化点60℃、エポキシ当量200)、硬化促進剤はトリフェニルホスフィン及びテトラフェニルホスフォニウム・テトラフェニルボレートである。これらの評価結果を表1に示す。
【0019】
Figure 0003585615
【0020】
Figure 0003585615
【0021】
【発明の効果】
本発明による樹脂組成物は、常温保存性及び流動性に優れ、成形時の硬化特性を大幅に改善でき、かつ耐半田クラック性に優れ、生産性を大きく向上させることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an epoxy resin composition for semiconductor encapsulation, which is compatible with insertion mounting and surface mounting, and has excellent room temperature storage characteristics and moldability of the resin composition.
[0002]
[Prior art]
Epoxy resin-based semiconductor encapsulation resins have been developed and manufactured to protect the body of diodes, transistors, ICs, and the like from mechanical and chemical effects. Items required for this resin composition are changing depending on the type of element, the structure of the package, and the environment in which it is used. In particular, for ICs, an epoxy resin composition containing an inorganic filler such as an ortho-cresol novolak type epoxy resin, a phenol novolak resin, fused silica, and crystalline silica having excellent heat resistance and moisture resistance is used.
However, in recent years, chips have become larger and larger as ICs become more highly integrated, and packages have changed from conventional insertion type DIP types to small and thin QFPs, SOPs, SOJs, TSOPs, TQFPs, and PLCCs, which are surface-mounted. ing. A large chip is enclosed in a small and thin package, cracks are generated by thermal stress, and problems such as a decrease in moisture resistance due to the cracks have been greatly highlighted. In particular, a sudden exposure to a high temperature of 200 ° C. or more in the soldering process causes a problem that the moisture resistance is deteriorated due to cracking of the package and separation of the resin and the lead frame and between the resin and the chip.
[0003]
As a method of improving the solder crack resistance, a resin composition containing a large amount of an inorganic filler has been developed.As a method of compounding a large amount of the inorganic filler, a particle size distribution and shape selection of the inorganic filler, epoxy There is a reduction in the viscosity of the resin and the hardener resin. However, when the molecular weight of the resin is reduced to reduce the viscosity of the resin, the molecules tend to move, and the cross-linking reaction proceeds rapidly in the initial stage of the reaction. And the reaction is likely to occur at room temperature for the same reason, and the room temperature storage stability of the resin composition is reduced. Furthermore, a resin having a low molecular weight has a high initial reactivity, but at the final stage of the reaction, conversely, the crosslinking density is not sufficiently increased, and the sealing resin composition is not sufficiently cured.
Conventionally used curing accelerators include 2-methylimidazole, 1,8-diazabicyclo [5.4.0] undecene-7, triphenylphosphine and the like. Epoxy resin compositions using these have poor storage stability at room temperature because they show a curing acceleration effect even at low temperatures. Therefore, when they are stored at room temperature, poor fluidity during molding may cause poor filling or IC chips. Problems such as breakage of the gold wire and occurrence of conduction failure occur. For this reason, in order to maintain the initial fluidity of the epoxy resin composition, refrigerated storage and refrigerated transport must be performed, and storage and transport are currently costly.
[0004]
[Problems to be solved by the invention]
The present invention has been made as a result of various studies in order to solve these problems. By using the epoxy resin represented by the formula (1) as the epoxy resin, the adhesiveness between the lead frame and the semiconductor chip can be improved. In addition, by reducing the water absorption of the molded product, the soldering stress of the semiconductor package at the time of mounting on the substrate is remarkably improved, and by using the curing accelerator of the formula (2), the fluidity is excellent and the curability at the time of molding is greatly improved. It is an object of the present invention to provide an epoxy resin composition for semiconductor encapsulation, wherein the epoxy resin composition contains 70 to 92% by weight of an inorganic filler capable of improving the room-temperature storage characteristics of the resin composition at the same time as the improvement.
[0005]
[Means for Solving the Problems]
The present invention relates to an epoxy resin having a softening point of 50 to 90 ° C represented by the following formula (1), a phenol resin curing agent having a softening point of 55 to 130 ° C, a curing accelerator represented by the following formula (2), and an inorganic filler And an epoxy resin composition for encapsulating a semiconductor, comprising 70 to 92% by weight of the inorganic filler in the entire composition.
Embedded image
Figure 0003585615
(However, R in the formula (1) is the same or different atom or group selected from hydrogen, halogen, and alkyl group)
Embedded image
Figure 0003585615
(However, in the formula (2), R 1 , R 2 , R 3 and R 4 are a monovalent organic group or a monovalent aliphatic group having an aromatic ring or a heterocyclic ring, and they are the same as each other. Y 1 , Y 2 , Y 3 and Y 4 are a monovalent organic group or a monovalent aliphatic group having an aromatic ring or a heterocyclic ring, and at least one of them. Is a group in which a proton donor having at least one proton that can be released outside the molecule releases one proton, and they may be the same or different from each other.)
Preferably, the epoxy resin composition for semiconductor encapsulation wherein the proton donor of the curing accelerator represented by the formula (2) is an aromatic carboxylic acid having at least one carboxyl group in one molecule.
The softening point is measured at a rate of temperature rise of 3 ± 0.5 ° C. by a boring method according to JIS K 2207. If the softening point of the epoxy resin is less than 50 ° C., it is difficult to handle and it is difficult to use, and if it exceeds 90 ° C., the required amount of the inorganic filler cannot be blended. Similarly, if the softening point of the phenolic resin is less than 55 ° C., it is difficult to handle, and if it exceeds 130 ° C., the required amount of the inorganic filler cannot be blended.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, each item will be described in detail.
The epoxy resin of the formula (1) used in the present invention is an epoxy resin obtained by glycidyl etherification of a phenol resin obtained by polymerizing dicyclopentadiene and phenol by an addition reaction, and is a conventional orthocresol novolak epoxy resin. As compared with the above, the elastic modulus at a high temperature exceeding the glass transition temperature is low, and the adhesiveness to metals such as a lead frame is excellent. Therefore, it is possible to reduce the thermal stress at the time of surface mounting soldering, and to obtain an epoxy resin composition having excellent solder crack resistance. In order to bring out the effect of solder crack resistance, it is desirable to use the epoxy resin represented by the formula (1) in an amount of 30% by weight or more, preferably 50% by weight or more based on the total epoxy resin amount. If it is less than 30% by weight, low elasticity and high adhesion at high temperatures cannot be obtained, and solder crack resistance is insufficient. In order to make the amount of the inorganic filler in the entire composition 70 to 92% by weight, it is preferable to use an epoxy resin having a low softening point. Further, R in the formula (1) is preferably a hydrogen atom.
[0007]
When used in combination with another epoxy resin other than the epoxy resin represented by the formula (1), the epoxy resin used generally refers to monomers, oligomers, and polymers having an epoxy group, such as a biphenyl type epoxy compound and a bisphenol type epoxy compound. Phenol novolak type epoxy resin, cresol novolak type epoxy resin, triphenolmethane type epoxy compound, alkyl-modified triphenolmethane type epoxy compound, and epoxy resin containing triazine nucleus.
[0008]
The phenolic resin curing agent used in the present invention refers to all monomers, oligomers and polymers having at least two or more phenolic hydroxyl groups capable of forming a crosslinked structure by performing a curing reaction with the epoxy resin, and is particularly limited. Although not a thing, for example, phenol novolak resin, cresol novolak resin, phenol aralkyl resin such as para-xylylene-modified phenol resin, meta-xylylene / para-xylylene-modified phenol resin, terpene-modified phenol resin, dicyclopentadiene-modified phenol resin, etc. However, they can be mixed and used. The softening point, hydroxyl group equivalent and the like are not particularly specified, but the chlorine content in the resin is preferably as low as possible from the viewpoint of long-term reliability.
In order to make the amount of the inorganic filler in the entire composition 70 to 92% by weight, it is desirable to use a curing agent having a low softening point, like the epoxy resin.
[0009]
The curing accelerator used in the present invention comprises a phosphonium borate represented by the following formula (2).
Embedded image
Figure 0003585615
However, in the formula (2), R 1 , R 2 , R 3 and R 4 of the phosphonium group are a monovalent organic group or a monovalent aliphatic group having an aromatic ring or a heterocyclic ring, and they are the same as each other. Or different.
[0010]
Examples of such a phosphonium group include, for example, a tetraphenylphosphonium group, a tetratolylphosphonium group, a tetraethylphenylphosphonium group, a tetramethoxyphenylphosphonium group, a tetranaphthylphosphonium group, a tetrabenzylphosphonium group, an ethyltriphenylphosphonium group, and n-butyl. Examples include a triphenylphosphonium group, a 2-hydroxyethyltriphenylphosphonium group, a trimethylphenylphosphonium group, a methyldiethylphenylphosphonium group, a methyldiallylphenylphosphonium group, and a tetra-n-butylphosphonium group. In the formula (2), R 1 , R 2 , R 3 and R 4 are particularly preferably a monovalent organic group having an aromatic ring, and the melting point of the phosphonium borate represented by the formula (2) is particularly preferable. Although not limited, the temperature is preferably 250 ° C. or lower from the viewpoint of uniform dispersion. In particular, a phosphonium borate having a tetraphenylphosphonium group has good compatibility with a thermosetting resin and can be suitably used.
[0011]
In the formula (2), Y 1 , Y 2 , Y 3 and Y 4 of the borate group are a monovalent organic group or a monovalent aliphatic group having an aromatic ring or a heterocyclic ring, and at least one of them. Is a group in which a proton donor having at least one proton capable of being released outside the molecule releases one proton, and Y 1 , Y 2 , Y 3 and Y 4 are different even if they are the same as each other May be. Examples of such a proton donor that provides a borate group include acetic acid, trifluoroacid, stearic acid, benzoic acid, 1-naphthoic acid, 2-naphthoic acid, phthalic acid, trimetic acid, pyromellitic acid, and 2,6. -Naphthalenedicarboxylic acid, partially ring-opened forms of carboxylic acids such as polyacrylic acid and anhydrides thereof, phenol, 1-naphthol, 2-naphthol, polyphenol, isocyanuric acid, benzotriazole, and compounds having an aromatic ring among these. Examples of the compound having a substituent on an aromatic ring include, for example, benzoic acid, 1-naphthoic acid, 2-naphthoic acid, phthalic acid, trimetic acid, pyromellitic acid, and 2,6-naphthalenedicarboxylic acid. Good and suitable for use.
[0012]
When the curing accelerator comprising the phosphonium borate represented by the formula (2) of the present invention is incorporated into a thermosetting resin, it does not exhibit catalytic activity at room temperature, so that the curing reaction of the thermosetting resin does not proceed. The catalyst activity is exhibited at a high temperature during molding, and once exhibited, the catalyst exhibits a stronger catalytic activity than conventional curing accelerators, and highly cures the thermosetting resin.
The curing accelerator of the present invention is 0.10 to 1% by weight based on the entire epoxy resin composition, and can be usually mixed at a moderately high temperature, for example, at 70 to 150 ° C. If the amount of the curing accelerator is less than 0.10% by weight, sufficient curability may not be obtained during heat molding. If the amount exceeds 1% by weight, curing is too fast and the fluidity decreases during molding, resulting in poor filling. Etc. may occur.
The curing accelerator of the present invention can be used alone, or can be used as a mixture with another curing accelerator. When used in combination with another curing accelerator, the curing accelerator of the present invention preferably accounts for 40% by weight or more of the total amount with the other curing accelerator. If the amount of the curing accelerator of the present invention is less than 40% by weight, the object of the present invention may not be sufficiently achieved. Other curing accelerators that can be used in combination with the curing accelerator of the present invention include, for example, triphenylphosphine, tetraphenylphosphonium tetraphenylborate, 1,8-diazabicyclo [5.4.0] undecene-7, and the like. be able to.
[0013]
Examples of the inorganic filler used in the present invention include a melt-crushed silica powder, a fused spherical silica powder, a crystalline silica powder, a secondary aggregated silica powder, alumina and the like, particularly from the viewpoint of improving the fluidity of the sealing resin composition. Therefore, a fused spherical silica powder is desirable. Regarding the shape of the spherical silica powder, in order to improve the fluidity, it is desirable that the shape of the particles themselves be infinitely spherical and that the particle size distribution be broad.
The amount of the inorganic filler is preferably 70 to 92% by weight in the whole composition in view of the balance between solder crack resistance, moldability and fluidity. When the amount of the inorganic filler is less than 70% by weight, low water absorption and low thermal expansion cannot be obtained, and solder crack resistance is insufficient. On the other hand, if the amount of the inorganic filler exceeds 92% by weight, problems such as causing gold wire deformation and die pad deformation inside the semiconductor package due to high viscosity are caused.
[0014]
The composition of the present invention contains an epoxy resin, a phenol resin curing agent, a curing accelerator, and an inorganic filler as essential components. In addition to this, if necessary, a coloring agent such as carbon black, a brominated epoxy resin, Flame retardants such as antimony oxide, coupling agents such as γ-glycidoxypropyltrimethoxysilane, low-stress components such as silicone oil and rubber, and release agents such as carnauba wax can be added.
The epoxy resin composition of the present invention is obtained by sufficiently uniformly mixing an epoxy resin, a phenolic resin curing agent, a curing accelerator, an inorganic filler, and other additives with a mixer or the like, and melting the mixture with a kneader such as a hot roll or a kneader. After kneading, cooling and pulverizing, a molding material can be obtained.
[0015]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples.
<< Example 1 >>
10.2 parts by weight of an epoxy resin represented by the following composition and formula (3) (softening point: 65 ° C., epoxy equivalent: 250)
Embedded image
Figure 0003585615
(A mixture of 0.4 for n = 1 and 0.25 for n = 2 for 1 for n = 0)
・ Phenol novolak resin curing agent 2.8 parts by weight (softening point 60 ° C., hydroxyl equivalent 105)
2.8 parts by weight of para-xylene-modified phenol resin (softening point: 95 ° C., hydroxyl equivalent: 175)
[0016]
・ 0.6 parts by weight of a curing accelerator of the formula (4)
Figure 0003585615
45.0 parts by weight of fused silica, 35.0 parts by weight of fused spherical silica, 0.3 parts by weight of carbon black, 0.3 parts by weight of carnauba wax, 0.5 parts by weight of γ-glycidoxypropyltrimethoxysilane. 0.5 part by weight of a brominated phenol novolak type epoxy resin and 2.0 parts by weight of antimony trioxide were mixed at room temperature with a mixer, kneaded at 100 ° C. with a biaxial roll, cooled and pulverized to obtain a molding material. The spiral flow, gel time, room temperature storage characteristics, and moldability of the obtained molding material were examined.
[0017]
"Evaluation method"
・ Spiral flow:
Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 70 kg / cm 2 , and a curing time of 2 minutes.
・ Gel time:
After the sealing resin composition was melted on a hot plate heated to 175 ° C., the time required for curing while kneading with a spatula was measured.
・ Shore hardness:
Measured using a Shore D hardness meter at a mold temperature of 175 ° C and a curing time of 2 minutes.
-Room temperature storage:
After storing the resin composition at 25 ° C., the spiral flow was measured. The number of days until the residual flow rate becomes 90% when the initial flow length is set to 100% is shown.
[0018]
<< Examples 2-3 >>
It was blended according to the formulation in Table 1, and a molding material was obtained in the same manner as in Example 1 and evaluated in the same manner. Table 1 shows the evaluation results.
<< Comparative Examples 1-3 >>
It was blended according to the formulation in Table 1, and a molding material was obtained in the same manner as in Example 1 and evaluated in the same manner. Other raw materials used in addition to Example 1 were ortho-cresol novolak type epoxy resin (softening point: 60 ° C., epoxy equivalent: 200) as epoxy resin, and triphenylphosphine and tetraphenylphosphonium tetraphenylborate as curing accelerators. is there. Table 1 shows the evaluation results.
[0019]
Figure 0003585615
[0020]
Figure 0003585615
[0021]
【The invention's effect】
ADVANTAGE OF THE INVENTION The resin composition by this invention is excellent in room temperature preservability and fluidity, can largely improve the hardening characteristic at the time of shaping | molding, is excellent in solder crack resistance, and can greatly improve productivity.

Claims (2)

下記式(1)で示される軟化点50〜90℃のエポキシ樹脂、軟化点55〜130℃のフェノール樹脂硬化剤、下記式(2)で示される硬化促進剤、及び無機充填材を必須成分とし、かつ全組成物中に該無機充填材を70〜92重量%含むことを特徴とする半導体封止用エポキシ樹脂組成物。
Figure 0003585615
(ただし、式(1)中のRは、水素、ハロゲン、アルキル基の中から選択される同一もしくは異なる原子または基)
Figure 0003585615
(ただし、式(2)中、R、R、R及びRは、芳香環もしくは複素環を有する1価の有機基又は1価の脂肪族基であり、それらは互いに同一であっても異なっていてもよい。また、Y、Y、Y及びYは芳香環もしくは複素環を有する1価の有機基または1価の脂肪族基であって、それらのうち少なくとも1個は、分子外に放出し得るプロトンを少なくとも1個有するプロトン供与体がプロトンを1個放出してなる基であり、それらは互いに同一であっても異なっていてもよい。)
An epoxy resin having a softening point of 50 to 90 ° C. represented by the following formula (1), a phenol resin curing agent having a softening point of 55 to 130 ° C., a curing accelerator represented by the following formula (2), and an inorganic filler are essential components. And an epoxy resin composition for semiconductor encapsulation, comprising 70 to 92% by weight of the inorganic filler in the whole composition.
Figure 0003585615
(However, R in the formula (1) is the same or different atom or group selected from hydrogen, halogen, and alkyl group)
Figure 0003585615
(However, in the formula (2), R 1 , R 2 , R 3 and R 4 are a monovalent organic group or a monovalent aliphatic group having an aromatic ring or a heterocyclic ring, and they are the same as each other. Y 1 , Y 2 , Y 3 and Y 4 are a monovalent organic group or a monovalent aliphatic group having an aromatic ring or a heterocyclic ring, and at least one of them. Is a group in which a proton donor having at least one proton that can be released outside the molecule releases one proton, and they may be the same or different from each other.)
式(2)で示される硬化促進剤のプロトン供与体が、1分子内に少なくとも1個のカルボキシル基を有する芳香族カルボン酸である請求項1記載の半導体封止用エポキシ樹脂組成物。The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the proton donor of the curing accelerator represented by the formula (2) is an aromatic carboxylic acid having at least one carboxyl group in one molecule.
JP33472895A 1995-12-22 1995-12-22 Epoxy resin composition for semiconductor encapsulation Expired - Fee Related JP3585615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33472895A JP3585615B2 (en) 1995-12-22 1995-12-22 Epoxy resin composition for semiconductor encapsulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33472895A JP3585615B2 (en) 1995-12-22 1995-12-22 Epoxy resin composition for semiconductor encapsulation

Publications (2)

Publication Number Publication Date
JPH09176283A JPH09176283A (en) 1997-07-08
JP3585615B2 true JP3585615B2 (en) 2004-11-04

Family

ID=18280560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33472895A Expired - Fee Related JP3585615B2 (en) 1995-12-22 1995-12-22 Epoxy resin composition for semiconductor encapsulation

Country Status (1)

Country Link
JP (1) JP3585615B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6306792B1 (en) 1997-12-03 2001-10-23 Sumitomo Bakelite Company Limited Evaluating moisture resistance reliability of phosphonium borate catalyst
DE19959722A1 (en) * 1999-12-10 2001-06-13 Merck Patent Gmbh Alkyl spiroborate salts for use in electrochemical cells
JP4491897B2 (en) * 2000-03-07 2010-06-30 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
JP4702764B2 (en) * 2003-09-04 2011-06-15 日本化薬株式会社 Epoxy resin composition and cured product thereof

Also Published As

Publication number Publication date
JPH09176283A (en) 1997-07-08

Similar Documents

Publication Publication Date Title
KR100547069B1 (en) Epoxy Resin Composition for Sealing Semiconductor and Semiconductor Device
JP4054927B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JPH08157561A (en) Semiconductor-sealing epoxy resin composition and semiconductor device
JP3585615B2 (en) Epoxy resin composition for semiconductor encapsulation
JP3714399B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
US6168872B1 (en) Semiconductor encapsulating epoxy resin composition and semiconductor device
JP2003327666A (en) Epoxy resin composition and semiconductor sealed device
JP3582771B2 (en) Epoxy resin composition and semiconductor device
KR100587453B1 (en) Epoxy Resin Compositions for Sealing Semiconductor and Semiconductor Devices
JPH1045872A (en) Epoxy resin composition
JPH08269167A (en) Epoxy resin composition for semiconductor sealing use
JP2939166B2 (en) Latent catalyst and thermosetting resin composition containing the catalyst
JP2003155326A (en) Resin composition and electronic part apparatus
JP2751786B2 (en) Curing agent for epoxy resin, epoxy resin composition, and semiconductor device
JP2862777B2 (en) Epoxy resin composition
JP2000273154A (en) Epoxy resin composition and semiconductor device
JP2000309678A (en) Epoxy resin composition and semiconductor device
JP2009298961A (en) Epoxy resin composition for sealing and method for manufacturing the same
JP2004256729A (en) Epoxy resin composition and sealed semiconductor device
JP2017128657A (en) Sealing epoxy resin composition, and semiconductor device and method for manufacturing the same
JPH10176099A (en) Epoxy resin composition and resin-sealed type semiconductor device by using the same
JP3478380B2 (en) Epoxy resin composition and semiconductor device
JPH1045873A (en) Epoxy resin composition for sealing of semiconductor
JP2000212397A (en) Epoxy resin composition and semiconductor apparatus
JP2004256648A (en) Epoxy resin composition and sealed semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees