JP3792094B2 - Molding - Google Patents

Molding Download PDF

Info

Publication number
JP3792094B2
JP3792094B2 JP2000038940A JP2000038940A JP3792094B2 JP 3792094 B2 JP3792094 B2 JP 3792094B2 JP 2000038940 A JP2000038940 A JP 2000038940A JP 2000038940 A JP2000038940 A JP 2000038940A JP 3792094 B2 JP3792094 B2 JP 3792094B2
Authority
JP
Japan
Prior art keywords
molding
epoxy resin
resin composition
formula
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000038940A
Other languages
Japanese (ja)
Other versions
JP2001226457A (en
Inventor
賢治 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Chemical Corp
Original Assignee
Kyocera Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Chemical Corp filed Critical Kyocera Chemical Corp
Priority to JP2000038940A priority Critical patent/JP3792094B2/en
Publication of JP2001226457A publication Critical patent/JP2001226457A/en
Application granted granted Critical
Publication of JP3792094B2 publication Critical patent/JP3792094B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Epoxy Resins (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、成形性に優れたエポキシ樹脂組成物およびその成形品に関する。
【0002】
【従来の技術】
機械・装置を構成する金属部品は、近年、軽量化、加工性の点から樹脂による成形部品に移行しつつあり、その場合、量産性の点で優位な射出成形での成形品が主流となっている。しかしながら、超精密部品を対象とした場合、現実問題として、樹脂による成形部品は耐熱性、寸法精度、成形安定性、強度等の点で金属部品のレベルまで到達することは難しく、従来、ユーザーを十分満足させるものは少なかった。また、市場に出ているエポキシ樹脂成形材料は、移送成形に適したものが多く、射出成形に適応した成形材料となると限られており、特に超精密部品を対象とした射出成形用のエポキシ樹脂成形材料は市場に殆ど見当らない。
【0003】
【発明が解決しようとする課題】
熱可塑性樹脂による成形は、その成形方法の特徴から成形安定性や寸法精度の点で熱硬化性樹脂よりも優位になることがある。一方、成形部品における長期の耐熱レベルや熱時の機械的強度(具体的にはクリープ特性)等では熱硬化性樹脂の方が優位にたつことが多い。
【0004】
これらのことから、射出成形においては、熱可塑性樹脂と同等の成形安定性、寸法精度を保持しながらも、エポキシ樹脂(熱硬化性樹脂)成形材料の熱時の特徴(長期の耐熱レベルや熱時の機械的強度、具体的にはクリープ特性)等を最大限に生かした成形材料の開発が望まれていた。また、これらの要求を満たすような射出成形用材料はその成形方法に限定されず、幅広い成形条件での成形が可能であり、また成形材料の保存安定性にも優れるという効果も期待できる。
【0005】
【課題を解決するための手段】
本発明者は、上記の目的を達成しようと鋭意研究を重ねた結果、特定のエポキシ樹脂に対し硬化促進剤として特定のウレア樹脂を用いることにより、常温では殆ど反応が進まず、射出成形機のシリンダー内の温度で初めて溶融しはじめ、金型内に注入されてその成形温度になると著しく反応が進むという、射出成形に非常に適した樹脂組成物が得られた。この樹脂組成物を用いた成形品は、その特徴ある硬化挙動から、成形安定性、寸法精度等の優れた特性が得られる。さらにこの樹脂組成物は、保存安定性等の点でも既存のエポキシ樹脂組成物には見られないような優れた特性を有することを見いだし、本発明を完成したものである。
【0006】
即ち、本発明は、
(A)次の一般式で示される多官能型エポキシ樹脂、
【化5】

Figure 0003792094
(但し、式中、R1 〜R4 は水素原子またはアルキル基、nは1以上の整数をそれぞれ表す)
(B)フェノール樹脂および
(C)次の構造式で示されるウレア系硬化促進剤
【化6】
Figure 0003792094
を必須成分とすることを特徴とするエポキシ樹脂組成物である。また、このエポキシ樹脂組成物を成形硬化させることによって得られる成形品である。
【0007】
以下、本発明を詳細に説明する。
【0008】
本発明に用いる(A)エポキシ樹脂としては、前記化5で示されたものが使用されるが、この(A)エポキシ樹脂には、o−クレゾールノボラック型エポキシ樹脂、ビフェニル系エポキシ樹脂、ジシクロペンタジエン系樹脂、その他の一般に公知とされているエポキシ樹脂を併用することができる。
【0009】
本発明に用いる(B)フェノール樹脂としては、前記(A)のエポキシ樹脂のエポキシ基と反応し得るフェノール性水酸基を分子中に2個以上有するものであれば特に制限されない。具体的な化合物として、例えば、
【化7】
Figure 0003792094
(但し、式中、nは1以上の整数を表す)
【化8】
Figure 0003792094
(但し、式中、nは1以上の整数を表す)
【化9】
Figure 0003792094
(但し、式中、nは1以上の整数を表す)
【化10】
Figure 0003792094
(但し、式中、nは1以上の整数を表す)
等が挙げられ、これらは単独または2種以上混合して使用することができる。
【0010】
本発明に用いる(C)ウレア系硬化促進剤としては、化6を挙げたが、メチル基の位置は2つのウレア官能基に対してメタ位にあることが好ましい。また、(C)ウレア系硬化促進剤はそれ単独で使用することが最も望ましいが、他の公知の硬化促進剤、例えばリン系硬化促進剤、イミダゾール系硬化促進剤、DBU系硬化促進剤などと併用混合して使用することができる。
【0011】
また、本発明のエポキシ樹脂組成物には、必要に応じて、シリカ粉末、タルク、ガラス繊維をはじめとする無機質充填剤を使用することができるが、精密部品用等といった小さな対象に対しては、粉体で最大粒径100μm以下のもの、繊維物質であれば細大繊維長300μm以下のものを用いることが望ましい。
【0012】
本発明のエポキシ樹脂組成物は、前述した特定のエポキシ樹脂、フェノール樹脂、特定のウレア系硬化促進剤を必須成分とするが、本発明の目的に反しない限度において、また必要に応じて、上記の各種充填剤および天然ワックス類や合成ワックス類等の離型剤、三酸化アンチモン、ブロモ化エポキシ樹脂等の難燃剤、カーボンブラック等の着色剤、ゴム系やシリコーン系ポリマーの低応力付与剤、アミン変性およびエポキシ変性シリコーンオイル等のカップリング剤等を適宜添加配合することができる。
【0013】
本発明のエポキシ樹脂組成物を成形材料として調製する場合の一般的な方法は、前述したエポキシ樹脂、フェノール樹脂、特定のウレア系硬化促進剤および各種充填剤、その他の成分を配合し、ミキサー等によって十分均一に混合し、さらに熱ロールまたはニーダ等により加熱溶融混合処理を行い、ついで冷却固化させ適当な大きさに粉砕して樹脂組成物(成形材料)とすることができる。こうして得られた樹脂組成物の成形方法としては射出成形をターゲットとしているが、移送成形や圧縮成形等による成形も可能である。
【0014】
こうして得られた成形品は、エポキシ樹脂成形材料としての機械的強度や寸法精度、耐熱性等の特性の他に、その特徴ある硬化挙動から、成形安定性、寸法安定性等の優れた特性が得られる。
【0015】
【作用】
本発明のエポキシ樹脂組成物およびその成形品は、前述したエポキシ樹脂組成物に、硬化促進剤として特定のウレア樹脂を用いることによって、常温では殆ど反応が進まず、射出成形機のシリンダー内の温度で初めて溶融しはじめ、金型内に注入され金型内の高い成形温度(例えば180℃)になると著しく反応が進むという、射出成形に非常に適した樹脂組成物が得られたものである。またこの樹脂組成物を用いた成形品は、その特徴ある硬化挙動から、成形安定性、寸法安定性、寸法精度の優れた特性が得られる。また、この樹脂組成物は保存安定性などの点でも既存のエポキシ樹脂にはみられないような優れた特性を有するものである。
【0016】
【実施例】
次に本発明を実施例によって具体的に説明する。本発明はこれらの実施例によって限定されるものではない。また以下の実施例および比較例において「%」とは「重量%」を意味する。
【0017】
実施例1
最大粒径100μm以下の溶融シリカ粉末および結晶シリカ粉末をあわせて83.5%、化5に示したエポキシ樹脂7.0%、前記の化10のフェノールノボラック樹脂4.0%、前記の化6のウレア系硬化促進剤0.3%、テトラブロモビスフェノールA型エポキシ樹脂1.4%、カルナバワックス類0.2%、カーボンブラック0.3%、三酸化アンチモン2.0%、およびカップリング剤、低応力添加剤等のシリコーンオイル1.3%を常温で混合し、さらに90〜110℃で溶融混練した後、冷却および粉砕して成形材料を製造した。
【0018】
実施例2
最大粒径100μm以下の溶融シリカ粉末86.5%、化5に示したエポキシ樹脂5.5%、前記化7のフェノールノボラック樹脂3.3%、前記の化6のウレア系硬化促進剤0.2%、テトラブロモビスフェノールA型エポキシ樹脂1.0%、カルナバワックス類0.2%、カーボンブラック0.3%、三酸化アンチモン1.8%、およびカップリング剤、低応力添加剤等のシリコーンオイル1.2%を常温で混合し、さらに90〜110℃で溶融混練した後、冷却および粉砕して成形材料を製造した。
【0019】
比較例1
最大粒径100μm以下の溶融シリカ粉末83.5%、化5に示したエポキシ樹脂7.0%、前記の化10のフェノールノボラック樹脂4.0%、イミダゾール硬化促進剤0.3%、テトラブロモビスフェノールA型エポキシ樹脂1.4%、カルナバワックス類0.2%、カーボンブラック0.3%、三酸化アンチモン2.0%、およびカップリング剤、低応力添加剤等のシリコーンオイル1.3%を常温で混合し、さらに90〜110℃で溶融混練した後、冷却および粉砕して成形材料を製造した。
【0020】
比較例2
最大粒径100μm以下の溶融シリカ粉末83.5%、ビフェニル型エポキシ樹脂7.0%、前記の化10のフェノールノボラック樹脂4.0%、トリフェニルフォスフィン系硬化促進剤0.3%、テトラブロモビスフェノールA型エポキシ樹脂1.4%、カルナバワックス類0.2%、カーボンブラック0.3%、三酸化アンチモン2.0%、およびカップリング剤、低応力添加剤等のシリコーンオイル1.3%を常温で混合し、さらに90〜110℃で溶融混練した後、冷却および粉砕して成形材料を製造した。
【0021】
こうして製造した成形材料を用い、その175℃における流動性および硬化挙動、機械的強度について諸試験を行ったので、結果を表1に示す。
【0022】
【表1】
Figure 0003792094
*1:EMMI−I−66に準じて175℃におけるスパイラルフローを測定した。
【0023】
*2:175℃に保たれた熱板上で一定量の成形材料を直径4〜5cmの円状に広げ、一定速度で練り合わせたとき、試料が増粘し、最終的に粘りのなくなった時間を計測した。
【0024】
*3:ラボプラストミルにおいて材料を混練し、混練トルクの変化により硬化時間を測定した。測定温度は100℃、140℃、180℃の3段階とした。
【0025】
*4:JIS−K−6911に準じて測定した。
【0026】
*5:熱分析装置を用い、昇温速度10℃/分で測定した。
【0027】
【発明の効果】
以上の説明および表1から明らかなように、本発明のエポキシ樹脂組成物および成形品によれば、成形温度での硬化性を維持したまま、その温度以下で、溶融粘度の低い状態を維持することができ、その結果、放熱性を維持したまま成形性を向上させる成形材料およびそれを用いて熱硬化性樹脂成形品を得ることができるのである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition excellent in moldability and a molded product thereof.
[0002]
[Prior art]
In recent years, metal parts making up machines and devices are shifting to molded parts made of resin from the viewpoints of weight reduction and workability, and in that case, molded products by injection molding that are superior in terms of mass production have become mainstream. ing. However, when targeting ultra-precision parts, as a practical matter, it is difficult for plastic molded parts to reach the level of metal parts in terms of heat resistance, dimensional accuracy, molding stability, strength, etc. Few things were enough to satisfy. In addition, many epoxy resin molding materials on the market are suitable for transfer molding, and are limited to molding materials suitable for injection molding. Epoxy resins for injection molding especially for ultra-precision parts There are few molding materials on the market.
[0003]
[Problems to be solved by the invention]
Molding with a thermoplastic resin may be superior to a thermosetting resin in terms of molding stability and dimensional accuracy due to the characteristics of the molding method. On the other hand, thermosetting resins are often superior in terms of long-term heat resistance levels and hot mechanical strength (specifically, creep characteristics) in molded parts.
[0004]
Therefore, in injection molding, while maintaining the molding stability and dimensional accuracy equivalent to those of thermoplastic resins, the hot characteristics of epoxy resin (thermosetting resin) molding materials (long-term heat resistance level and heat) It has been desired to develop a molding material that makes the most of the mechanical strength (specifically, creep characteristics) at the time. In addition, an injection molding material that satisfies these requirements is not limited to the molding method, and can be molded under a wide range of molding conditions, and an effect of excellent storage stability of the molding material can be expected.
[0005]
[Means for Solving the Problems]
As a result of earnest research to achieve the above object, the present inventor used a specific urea resin as a curing accelerator with respect to a specific epoxy resin, so that the reaction hardly proceeded at room temperature. A resin composition very suitable for injection molding was obtained, which began to melt for the first time at the temperature in the cylinder, and then reacted significantly when injected into the mold and reached the molding temperature. A molded article using this resin composition can obtain excellent characteristics such as molding stability and dimensional accuracy from its characteristic curing behavior. Furthermore, this resin composition has been found to have excellent properties not found in existing epoxy resin compositions in terms of storage stability and the like, and the present invention has been completed.
[0006]
That is, the present invention
(A) a polyfunctional epoxy resin represented by the following general formula:
[Chemical formula 5]
Figure 0003792094
(In the formula, R 1 to R 4 are each a hydrogen atom or an alkyl group, and n is an integer of 1 or more.)
(B) Phenol resin and (C) Urea curing accelerator represented by the following structural formula
Figure 0003792094
Is an epoxy resin composition characterized in that it is an essential component. Moreover, it is a molded article obtained by molding and curing this epoxy resin composition.
[0007]
Hereinafter, the present invention will be described in detail.
[0008]
As the (A) epoxy resin used in the present invention, the one shown in the chemical formula 5 is used. As the (A) epoxy resin, o-cresol novolac type epoxy resin, biphenyl type epoxy resin, dicyclo A pentadiene resin and other generally known epoxy resins can be used in combination.
[0009]
The (B) phenol resin used in the present invention is not particularly limited as long as it has two or more phenolic hydroxyl groups in the molecule that can react with the epoxy group of the epoxy resin (A). As a specific compound, for example,
[Chemical 7]
Figure 0003792094
(In the formula, n represents an integer of 1 or more)
[Chemical 8]
Figure 0003792094
(In the formula, n represents an integer of 1 or more)
[Chemical 9]
Figure 0003792094
(In the formula, n represents an integer of 1 or more)
Embedded image
Figure 0003792094
(In the formula, n represents an integer of 1 or more)
These may be used alone or in combination of two or more.
[0010]
As the (C) urea-based curing accelerator used in the present invention, Chemical Formula 6 is mentioned, but the methyl group is preferably located in the meta position with respect to two urea functional groups. The (C) urea curing accelerator is most preferably used alone, but other known curing accelerators such as phosphorus curing accelerators, imidazole curing accelerators, DBU curing accelerators, etc. Can be used in combination.
[0011]
In addition, the epoxy resin composition of the present invention can use inorganic fillers such as silica powder, talc, and glass fiber as necessary, but for small objects such as for precision parts. It is desirable to use a powder having a maximum particle size of 100 μm or less, or a fiber material having a fine fiber length of 300 μm or less.
[0012]
The epoxy resin composition of the present invention contains the above-described specific epoxy resin, phenol resin, and specific urea curing accelerator as essential components, but as long as it is not contrary to the object of the present invention, and if necessary, Various fillers and mold release agents such as natural waxes and synthetic waxes, flame retardants such as antimony trioxide and brominated epoxy resins, colorants such as carbon black, low stress imparting agents for rubber and silicone polymers, Coupling agents such as amine-modified and epoxy-modified silicone oils can be appropriately added and blended.
[0013]
When preparing the epoxy resin composition of the present invention as a molding material, the above-mentioned epoxy resin, phenol resin, specific urea-based curing accelerator and various fillers, other ingredients are blended, a mixer, etc. The mixture can be sufficiently uniformly mixed, and further heated and mixed with a hot roll or a kneader, then cooled and solidified, and pulverized to an appropriate size to obtain a resin composition (molding material). As a molding method of the resin composition thus obtained, injection molding is a target, but molding by transfer molding or compression molding is also possible.
[0014]
The molded product thus obtained has excellent properties such as molding stability and dimensional stability due to its characteristic curing behavior in addition to the properties such as mechanical strength, dimensional accuracy and heat resistance as an epoxy resin molding material. can get.
[0015]
[Action]
The epoxy resin composition of the present invention and the molded product thereof use the specific urea resin as a curing accelerator in the above-described epoxy resin composition, so that the reaction hardly proceeds at room temperature, and the temperature in the cylinder of the injection molding machine. Thus, a resin composition that is very suitable for injection molding is obtained, which begins to melt for the first time and is poured into a mold and reaches a high molding temperature (for example, 180 ° C.), and the reaction proceeds remarkably. Moreover, the molded article using this resin composition can obtain the characteristics excellent in molding stability, dimensional stability, and dimensional accuracy from its characteristic curing behavior. In addition, this resin composition has excellent characteristics that are not found in existing epoxy resins in terms of storage stability.
[0016]
【Example】
Next, the present invention will be specifically described with reference to examples. The present invention is not limited by these examples. In the following examples and comparative examples, “%” means “% by weight”.
[0017]
Example 1
83.5% of the combined fused silica powder and crystalline silica powder having a maximum particle size of 100 μm or less, 7.0% of the epoxy resin shown in Chemical Formula 5, 4.0% of the phenol novolak resin of Chemical Formula 10 and Chemical Formula 6 Urea-based curing accelerator 0.3%, tetrabromobisphenol A type epoxy resin 1.4%, carnauba wax 0.2%, carbon black 0.3%, antimony trioxide 2.0%, and coupling agent Then, 1.3% of a silicone oil such as a low-stress additive was mixed at room temperature, melt-kneaded at 90 to 110 ° C., and then cooled and ground to produce a molding material.
[0018]
Example 2
86.5% of fused silica powder having a maximum particle size of 100 μm or less, 5.5% of epoxy resin shown in Chemical formula 5, 3.3% of phenol novolak resin of Chemical formula 7, and urea curing accelerator of Chemical formula 6 2%, tetrabromobisphenol A type epoxy resin 1.0%, carnauba wax 0.2%, carbon black 0.3%, antimony trioxide 1.8%, and silicone such as coupling agent and low stress additive Oil 1.2% was mixed at room temperature, melt-kneaded at 90 to 110 ° C., then cooled and pulverized to produce a molding material.
[0019]
Comparative Example 1
83.5% of fused silica powder having a maximum particle size of 100 μm or less, 7.0% of epoxy resin shown in Chemical formula 4, 4.0% of phenol novolak resin of Chemical formula 10 above, 0.3% of imidazole curing accelerator, tetrabromo Bisphenol A type epoxy resin 1.4%, carnauba waxes 0.2%, carbon black 0.3%, antimony trioxide 2.0%, and silicone oil 1.3% for coupling agents, low stress additives, etc. Were mixed at room temperature, melt-kneaded at 90 to 110 ° C., cooled and pulverized to produce a molding material.
[0020]
Comparative Example 2
83.5% fused silica powder having a maximum particle size of 100 μm or less, 7.0% biphenyl type epoxy resin, 4.0% phenol novolak resin of the above chemical formula 10, 0.3% triphenylphosphine-based curing accelerator, tetra Bromobisphenol A type epoxy resin 1.4%, carnauba waxes 0.2%, carbon black 0.3%, antimony trioxide 2.0%, and silicone oil 1.3 such as coupling agent and low stress additive % Was mixed at room temperature, melt-kneaded at 90 to 110 ° C., then cooled and pulverized to produce a molding material.
[0021]
Various tests were conducted on the fluidity, curing behavior, and mechanical strength at 175 ° C. using the molding material thus produced, and the results are shown in Table 1.
[0022]
[Table 1]
Figure 0003792094
* 1: Spiral flow at 175 ° C. was measured according to EMMI-I-66.
[0023]
* 2: When a certain amount of molding material is spread in a circle of 4-5 cm in diameter on a hot plate maintained at 175 ° C. and kneaded at a constant speed, the time when the sample thickened and finally disappeared Was measured.
[0024]
* 3: The materials were kneaded in a lab plast mill, and the curing time was measured by changing the kneading torque. The measurement temperature was set at three stages of 100 ° C., 140 ° C., and 180 ° C.
[0025]
* 4: Measured according to JIS-K-6911.
[0026]
* 5: Measured using a thermal analyzer at a heating rate of 10 ° C./min.
[0027]
【The invention's effect】
As is apparent from the above description and Table 1, according to the epoxy resin composition and molded article of the present invention, the melt viscosity is maintained at a temperature lower than that temperature while maintaining the curability at the molding temperature. As a result, it is possible to obtain a molding material that improves moldability while maintaining heat dissipation and a thermosetting resin molded article using the molding material.

Claims (1)

(A)次の一般式で示される多官能型エポキシ樹脂、
Figure 0003792094
(但し、式中、R1 〜R4 は水素原子またはアルキル基、nは1以上の整数をそれぞれ表す)
(B)フェノール樹脂および
(C)次の構造式示されるウレア系硬化促進剤
Figure 0003792094
を必須成分とするエポキシ樹脂組成物を成形硬化させて得られることを特徴とする成形品。
(A) a polyfunctional epoxy resin represented by the following general formula:
Figure 0003792094
(In the formula, R 1 to R 4 are each a hydrogen atom or an alkyl group, and n is an integer of 1 or more.)
(B) a phenolic resin and (C) a urea-based curing accelerator represented by the following structural formula
Figure 0003792094
A molded article obtained by molding and curing an epoxy resin composition containing as an essential component.
JP2000038940A 2000-02-17 2000-02-17 Molding Expired - Lifetime JP3792094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000038940A JP3792094B2 (en) 2000-02-17 2000-02-17 Molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000038940A JP3792094B2 (en) 2000-02-17 2000-02-17 Molding

Publications (2)

Publication Number Publication Date
JP2001226457A JP2001226457A (en) 2001-08-21
JP3792094B2 true JP3792094B2 (en) 2006-06-28

Family

ID=18562590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000038940A Expired - Lifetime JP3792094B2 (en) 2000-02-17 2000-02-17 Molding

Country Status (1)

Country Link
JP (1) JP3792094B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107548435B (en) 2014-12-29 2021-03-19 道格拉斯·大卫·邦耶斯 Internal combustion engine, combustion system and related method and control method and system

Also Published As

Publication number Publication date
JP2001226457A (en) 2001-08-21

Similar Documents

Publication Publication Date Title
JPH01146958A (en) Thermoplastic resin composition
JPH0610246B2 (en) Heat resistant epoxy resin mold composition
JP3792094B2 (en) Molding
JPH0315655B2 (en)
JP2002302531A (en) Epoxy resin composition and molded product
JP2004107435A (en) Epoxy resin composition and molded article
JP2018104609A (en) One-pack thermosetting resin composition and cured article thereof
JP2004107434A (en) Epoxy resin composition and molded article
JPS61101523A (en) Sealing resin composition
JP3145687B2 (en) Epoxy resin composition and semiconductor encapsulation device
JP3305462B2 (en) Phenolic resin composition and molded article thereof
JP2003327788A (en) Epoxy resin composition and its molded product
JPH07113035A (en) Phenolic resin molding material
JPH09188801A (en) Phenol resin composition and molded article thereof
JPH04183710A (en) Epoxy resin composition for sealing semiconductor
JPH03115424A (en) Epoxy resin composition, its production and resin-sealed semiconductor device
JPH07292217A (en) Phenol resin composition
JP2005054041A (en) Thermosetting polyimide resin molding material
JPH11323080A (en) Production of phenolic resin composition
JP2005047971A (en) Phenolic resin molding material
JPS6270441A (en) Production of heat-resistant resin molding material
JPH0657098A (en) Phenol resin molding material for low-pressure molding
KR20030021540A (en) Heat latent catalyst, Method to manufacture the said catalyst, and Resin synthesized by using the said catalyst
JPH10176098A (en) Phenol resin molding material
JPH06322239A (en) Phenol resin molding material and its molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3792094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term