JP2004106102A - Hard film coated tool - Google Patents

Hard film coated tool Download PDF

Info

Publication number
JP2004106102A
JP2004106102A JP2002270940A JP2002270940A JP2004106102A JP 2004106102 A JP2004106102 A JP 2004106102A JP 2002270940 A JP2002270940 A JP 2002270940A JP 2002270940 A JP2002270940 A JP 2002270940A JP 2004106102 A JP2004106102 A JP 2004106102A
Authority
JP
Japan
Prior art keywords
layer
cutting
film
hard
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002270940A
Other languages
Japanese (ja)
Other versions
JP3679076B2 (en
Inventor
Kazuyuki Kubota
久保田 和幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2002270940A priority Critical patent/JP3679076B2/en
Publication of JP2004106102A publication Critical patent/JP2004106102A/en
Application granted granted Critical
Publication of JP3679076B2 publication Critical patent/JP3679076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hard film coated tool wherein welding resistance under a high temperature state and diffusion of workpiece elements in a hard film are improved without sacrificing the abrasion resistance and adhesion performance of the hard film having conventional superior oxidation resistance, and drying, speeding up, and high-speed feeding of a cutting work are obtained. <P>SOLUTION: A single or more (a) layers comprising either of nitride, carbonitride, oxynitride, or oxycarbonitride, whose metal components are composed of Ti and B, and a single or more (b) layers comprising either of nitride, carbonitride, oxynitride, or oxycarbonitride, whose metal components are composed of Al and Ti, are alternately coated respectively. A lattice constant A of a surface in an X-ray diffraction of the (a) layer 200 is within the range of 0.4200≤A≤0.4270nm, peaks of c-BN and h-BN are detected in Raman spectroscopy of the (a) layer and, when the peak strength of the c-BN and the peak strength of the h-BN at that time are set to Q1 and Q2 respectively, the peak strength raio is Q1/Q2≥1.0. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、金属材料等の切削加工に使用される硬質皮膜被覆工具に関するものである。
【0002】
【従来の技術】
従来はTiN、Ti(CN)等を被覆した切削工具が汎用的かつ一般的であった。TiNは比較的耐酸化性に優れるため、切削時の発熱によって生じる工具のすくい面摩耗に対して、優れた耐摩耗性を示すだけでなく、基体との密着性も良好であることが特長である。また、Ti(CN)は、TiNに比べ高硬度かつ被加工物から排出される切り粉との接触抵抗が低いため工具表面の発熱が抑制される。このことから、被削材との機械的な擦り摩耗によって工具逃げ面に生じるフランク摩耗を抑制することができる。しかしながら、金属加工の高能率化を目的とした切削速度の高速化傾向に対し、上記硬質皮膜では、十分な耐酸化性、耐摩耗性を示さなくなった。この様な背景から、皮膜の耐酸化性、耐摩耗性をより向上させる研究がなされ、その結果、特許第3248897号公報には(TiSi)N皮膜をa層とし、(TiAl)N皮膜をb層として、a層とb層とを1層以上交互に被覆することによって得られた皮膜が耐酸化性、耐摩耗性を有するという技術が開示されている。一方、特開2001−293601号公報では、耐摩耗性皮膜中に、BN、TiB、TiB等の超微粒化合物を含む皮膜についての開示があり、この超微粒化合物が非晶質構造を有し、皮膜の硬度を向上させる働きがあると記載されている。これにより耐摩耗性、高滑り性、高焼き付き性、被削材の加工精度向上が図れるとのことであるが、超微粒化合物の特性や存在状態についての詳細な記述はなされていない。
【0003】
(TiAl)N皮膜は、その皮膜中に含有するTiとAlの成分比率又はSiやCの皮膜中の含有量により異なるが、概略2300〜2800のビッカース硬さを有する。また、耐酸化性が前記TiN、Ti(CN)に比べ著しく優れるため、刃先が高温に達する切削条件下においては、切削工具の性能をめざましく向上させる。また、(TiAlSi)(CN)皮膜は、(TiAl)N皮膜よりも耐酸化性を向上させようとSiを含有させたものである。更に、同じ効果を目論み、(TiAl)系に第3元素としてZrやHf、Bの含有が試みられている。近年では、こうした硬質皮膜被覆切削工具が使用される環境は益々過酷になり、例えば、切削速度の高速化傾向、また従来使用されていた湿式での切削加工が環境問題上重要視されるなかで、乾式での切削加工が注目されている。また、金型用鋼材の多種含有元素の影響による鋼材の難削化、高能率加工を重視した高送り加工の傾向にあり、硬質皮膜被覆切削工具の使用環境は益々過酷なものとなってきている。
【0004】
本発明者の研究によれば、大気中における(TiAl)N皮膜の酸化開始温度は、TiNの450℃に対し、Alの含有量に依存して750〜900℃に向上する。しかしながら、前述の乾式高速切削加工においては、使用する工具の刃先温度が900℃以上の高温に達する。このような過酷の条件下で行われている切削加工では、硬質皮膜の耐酸化性が重要であることは言うまでもないが、それよりも先に硬質皮膜被覆切削工具の刃先部と被加工物が化学反応を起こすことで発生する、溶着現象を防ぐことが不可欠である。近年の金型用鋼材には金型の性能を著しく向上させるために様々な元素の含有が行われるようになり、切削工具への溶着現象は益々発生しやすくり、硬質皮膜の酸化による摩耗よりも先に硬質皮膜中への被加工物元素の拡散が発生しやすい状況になってきている。このため、従来のTiとAlの窒化物などは、大気中における酸化抵抗は著しく優れるものの、高温状態での切削においては、前記化学反応の1種である溶着や被加工物の拡散を防ぐことが困難であり、十分な工具寿命が得られないのが現状である。
【0005】
【発明が解決しようとする課題】
本発明はこうした事情に鑑みなされたものであって、従来の耐酸化性の優れる(TiAl)N皮膜など、耐酸化性の優れる硬質皮膜の耐摩耗性並びに密着性を犠牲にすること無く、更に高温状態での耐溶着性並びに硬質皮膜中への被加工物元素の拡散を改善し、切削加工の乾式化、高速化、高送り化に対応する硬質皮膜被覆工具を提供することが目的である。
【0006】
【課題を解決するための手段】
本発明者は、硬質皮膜の耐溶着性、耐摩耗性、母材との密着性に及ぼす、様々な元素との影響および皮膜の最適な層構造について鋭意研究を重ねた結果、金属成分が、TiとBで構成される窒化物、炭窒化物、酸窒化物、酸炭窒化物のいずれかであるa層と、金属成分がAlとTiで構成される窒化物、炭窒化物、酸窒化物、酸炭窒化物のいずれかであるb層とが、それぞれ一層以上交互に被覆され、該a層のX線回折における(200)面の格子定数Aが、0.4200≦A≦0.4270nmの範囲にあり、かつ該a層のラマン分光分析において、c−BN並びにh−BNのピークが検出され、そのときのc−BNのピーク強度をQ1、またh−BNのピーク強度をQ2としたときに、ピーク強度比Q1/Q2≧1.0であることを特徴とする硬質皮膜被覆工具とすることで、乾式の高速切削加工、高送り加工において、切削工具の性能が極めて良好となることをつきとめ本発明に到達した。ここでの高送り加工とは、切削条件中の1刃当たりの送り量が0.3mm/刃を越えるような切削と定義する。また、本発明は、該a層がTiとBの合金ターゲットを用いて被覆され、皮膜の組成が、該a層に含まれるBの含有量Mを金属成分のみの原子%で示すと、0.1≦M≦40であり、該a層の膜厚Dが、D≧0.1μmであることが好ましい。
【0007】
【発明の実施の形態】
a層の構成について詳細を述べる。一般に(TiAl)N皮膜は、大気中で酸化テストを行うと、皮膜表面近傍のAlが最表面に向かって外向拡散し、Al層を形成する。この現象により、その後の皮膜内への酸素の進入が抑制される。本発明者の研究によれば、このことが耐酸化性向上の理由と考えられるが、この時、最表層に形成されるAl層直下には、Alを含有しない非常にポーラスなTi酸化物が形成する。静的な酸化テストにおいては、酸化の進行である酸素の内向拡散に対し、最表面に形成されたAl層が、酸化保護膜として機能するものの、動的な切削においては、最表面のAl層は、その直下のポーラスなTi酸化物層より容易に剥離してしまい、酸化の進行に対し十分な効果を発揮しない。また、この最表面に形成されたAl層が動的な切削に対し、剥離しなければ、Alの化学的安定性から被加工物との溶着現象を防ぐことができるのだが、現状この化学的に安定なAlの剥離を防ぐことは困難である。つまり、高温下で発生する溶着現象は最表層に形成されるAlが剥離してしまうために発生することが明らかとなった。また、(TiAlSi)(CN)膜や(TiAlZrB)N、(TiAlB)N、(TiAlSiB)Nについても、従来の(TiAl)N膜にSi、Zr、Bなどを含有させることで硬質皮膜そのものの高硬度化や耐酸化性を若干良好にさせるが、前述同様、酸化物に対する生成自由エネルギーの差から表面の酸化保護膜のAl層が直ちに形成され、更にその直下にポーラスなTiの酸化物を形成してしまい、その結果切削中の皮膜剥離をもたらす。よって、動的な切削における溶着現象を防ぐには至らないのである。
【0008】
しかしながら、溶着現象の原因となるAlを除く、TiとBで構成される窒化物、炭窒化物、酸窒化物、酸炭窒化物等は、皮膜自体の耐酸化性は、従来のTiとAlの窒化物と同程度であり、高温下における溶着現象に対しては、TiとAlの窒化物などよりも優れている。本発明者は、各種元素の溶着発生現象への抵抗性、つまり鋼に含まれる元素と、硬質皮膜中に含まれる元素との濡れ性という観点から鋭意研究を重ねた結果、本発明硬質皮膜は高温下における被加工物の溶着を防ぐのに効果があることをつきとめた。本発明者は、硬質皮膜中に含有させるBについて、切削工具に適用した際に生じる現象を詳細に調査した結果、Bの有効性は、硬質皮膜の高硬度化や耐酸化性向上ではなく、切削時におけるFeとの親和性が低いことや被加工物の膜中への拡散現象がほとんど発生しないことである。図1に本発明のa層を用いた硬質皮膜被覆切削工具の切削加工後の切刃近傍を、基体方向に元素分析を行った結果を示す。また、図2に従来の(TiAl)Nを同様に分析した結果を示す。図1、2の比較により、図1には皮膜内部に被加工物であるFe元素は見られないが、図2の従来膜である(TiAl)Nでは膜の最表層にAlの酸化物が形成されており、被加工物であるFeが膜中に拡散していることがわかる。図2に示した傾向は従来の(TiAlSi)(CN)や(TiAlZrB)N、(TiAlB)Nなどにも見られることを確認した。つまり、本発明のa層を使用することで、被加工物との高温下における化学反応が発生しにくい特性を持っているのである。また、同時に、耐酸化性も従来のTiとAlの窒化物とほぼ同程度であることを見出したのである。本発明者等は更に、鋭意研究を重ね、(TiAlB)Nといった耐酸化性の優れる従来の(TiAl)NにBを含有させる実験を試み、その硬質皮膜の耐溶着性に着目し、評価を行った結果、前述Alを含有させている従来の皮膜は、そのなかに含まれるAlはTiやBよりも高温下におけるFeとの親和性が高いため、最表層に酸素の内部拡散を防ぐAl層を形成させる前に、被加工物中の含有物と化学反応が発生していることを得た。切削工具にこのようなAlを含有させている硬質皮膜を適用した場合、この溶着現象により、工具すくい面に異常なクレーター摩耗の進行促進、更に境界部には溶着物が多量に貯め込まれ、チッピングをもたらすのである。このような実験結果からも硬質皮膜被覆工具の最表面には耐酸化性を十分にもった皮膜を被覆するよりも、従来使用してきたTiとAlの窒化物などの特異的な酸化機構を発生させるまでに硬質皮膜被覆工具表面に溶着を防ぐための、いわば自己潤滑皮膜が必要になるのである。つまり、本発明の硬質皮膜を切削工具最表層に被覆させることで、被加工物との溶着を防ぎ、その結果異常摩耗を防ぐことで、従来使用してきたTiとAlの窒化物などを被覆した硬質皮膜被覆工具の寿命よりも著しく伸びることを確認した。
【0009】
a層は、静的及び動的条件下において優れた耐溶着性を有すものの、皮膜自身がもつ残留圧縮応力が大きいため基体との密着性においては十分でない。そのため、基体表面直上には、密着性、耐摩耗性、耐酸化性等をバランス良く適度に付与するため、AlとTiで構成される窒化物、炭窒化物、酸窒化物、酸炭窒化物等のb層を被覆することが好ましい。また、基体表面直上には、上記記載の硬質皮膜の他に元素周期表に記載される4a、5a、6a族の金属を1種以上含んだ合金膜をもちいてもよい。(TiAl)系窒化物等の皮膜であるb層におけるAlの役割は、皮膜の耐摩耗性及び耐酸化性を向上させることである。そのため、密着性、耐摩耗性、耐酸化性をバランス良く得るためには、好ましくはb層のAl含有量Fを、皮膜の金属成分のみの原子%で、30≦F≦75に調整することが好ましい。b層における好ましいAlの含有量Fを設定した理由については、Fが30原子%以上のときに耐酸化性が著しく向上し始めるためである。また、75原子%以下に調整する理由は、耐酸化性が向上しても、皮膜硬度が著しく低下し耐摩耗性が劣化してしまうためである。
【0010】
以上のように本発明においては、基体との密着性、皮膜自体の耐摩耗性および耐酸化性をバランス良く有するb層を基体表面直上に被覆し、その上に著しく耐溶着性や被加工物元素拡散性に優れるa層を被覆することが極めて重要であり、その結果、乾式の高速切削並びに高送り切削に対応する切削工具を得ることが可能となる。また、a層の結晶格子の大きさを限定した理由について述べる。本発明の硬質皮膜を硬質皮膜被覆切削工具として成り立たせるためには硬質皮膜物性中の結晶格子の大きさ、つまり格子定数は重要である。高い密着性を保つためには、第1として、物理蒸着法特有に発生する残留圧縮応力を低減させなければならない。本発明に至るまでの鋭意研究の結果、本発明の硬質皮膜の格子定数と残留圧縮応力の相関性を導き出すに至った。第2として、硬質皮膜同士の密着性を確保するために本発明に使用される異種硬質皮膜をヘテロエピタキシャルの関係に保たなければならない。この両者の条件を満足させるために、本発明者は、a層のX線回折における(200)面の格子定数Aが0.4200≦A≦0.4270の範囲になるよう制御することで成し得たのである。つまり硬質皮膜の特長を最大限に導き出すためには、Aの数値が0.4270を越えてしまうと硬質皮膜の残留圧縮応力が顕著に増大し、切削加工中の剥離が発生し満足な切削性能が得られないのである。また、基体表面直上にb層を被覆した後、a層並びにb層をそれぞれ交互に積層した多層皮膜によっても同様の効果が得られた。a層はラマン分光分析において、c−BNとh−BNのピークを検出することができ、そのときのc−BNのピーク強度をQ1、h−BNのピーク強度をQ2としたときに、ピーク強度比がQ1/Q2≧1.0の関係でなければならない。これは、硬質皮膜の潤滑性を維持したまま硬度を向上させるためである。本発明の硬質皮膜におけるa層内部には、図3に示すようにc−BNとh−BNのピークが検出される。c−BNとh−BNの硬度を比較すると、c−BNの方が高い硬度を示す。従って、硬質皮膜中にc−BNが多く含まれるようにコーティング条件を制御することによって皮膜硬度が高くなり、耐摩耗性を向上させることができるのである。また、各層は必要に応じて窒化物、炭窒化物、酸窒化物、酸炭窒化物のいずれかに調整でき、それらを被覆した工具についても同様の切削性能が得られる。
【0011】
金属成分がTiとBで構成される窒化物、炭窒化物、酸窒化物、酸炭窒化物ある硬質皮膜のBの含有量Mについて限定した理由を述べる。Tiに対してBの含有量が0.1原子%未満の場合、本発明の目的とする溶着や元素拡散を防ぐ効果が得られない。従って、目標とする近年の過酷な切削加工に対応できないため、著しく効果の出はじめる0.1原子%以上としたのである。また、TiとBで構成される本発明の硬質皮膜は、TiNなどで良く見られるような柱状晶を呈するが、Bの含有量が40原子%を越えると柱状晶から微細粒状結晶構造に変化することが認められた。このようにBの含有量が多い硬質皮膜は、内部の欠陥が多く、密度も低くなることが認められた。また、皮膜密着性を阻害する内部応力が非常に大きくなり容易に剥離現象が発生することを確認した。更には、硬質皮膜の結晶が微細であるために切削加工中に発生する粒界破壊の頻度が高く、それに起因する異常摩耗が認められた。本発明者等は、以上の様な知見を得るに至り、本発明の硬質皮膜中のB含有量Mを、原子%で、0.1≦M≦40に限定したのである。本発明の硬質皮膜を作成するにあたっては、物理蒸着法が好ましい。従って成膜のもととなるターゲットが必要になる。そのターゲットはTiとBからなる2種を用いても良いが、組成のばらつきや、放電の安定性を考慮するとTiとBの合金ターゲットがより好ましい。
【0012】
硬質皮膜中に含有させるB含有量によって、TiとBで構成される硬質皮膜中の金属元素の存在形態に特徴があることを確認した。従来の硬質皮膜であるTiとAlの窒化物などは、その組成によって異なるが、実用化されている皮膜を取り上げると、一般にTiNと同じ結晶格子形態であるNaCl型B1構造をとることがわかっており、TiN格子中のTiがAlに置き換わっている形態をとり、いわば、Alが固溶された状態にある。しかしながら、本発明のTiとBで構成される硬質皮膜は、Bの含有量に左右されるものの、その含有量が0.1原子%以上になると、前記TiとAlの窒化物などとは異なった形態を示す。Bの含有量が0.1原子%以上になるとBはTiN格子中のTiに置き換わる形態の他に、Bの化合物が単独で存在するような形態になる。つまり、Bの含有量が0.1原子%以上になると、例えば、本発明の硬質皮膜であるTiとBの窒化物の場合、硬質皮膜中にはTiNの結晶とBNの結晶が混在する形態をとるのである。Bの含有量が0.1原子%未満ではBがTiN結晶格子の中に完全に取り込まれ、固溶体の形態を呈する。この結晶形態の変化が切削性能に多大な影響を及ぼす。本発明の組成範囲にある窒化物の場合、TiN類似の結晶のほかにBNの結晶が存在する。このBNは自己潤滑が優れるという事やFeとの濡れ性が低いという事が知られており、このBN結晶の存在が、主として化学反応が起因のクレーター摩耗を著しく抑制させる効果があるものと考えられる。また、BNは酸化に対する自由生成エネルギーの面からも酸化に対する抵抗力があるため、高温下における硬質皮膜の特性が劣化しない。これらの驚くべき事実は、本発明者が鋭意研究を重ねることで得られた結果である。しかしながら、Bの含有量が40原子%を越えると、上記BNの結晶は存在するが、内部応力が非常に大きくなるために、良好な密着性を維持することが困難となる。つまり、切削加工の様に硬質皮膜に外部からの衝撃を与えると硬質皮膜が自身の内部応力に耐えられず、容易に剥離が発生してしまい、硬質皮膜被覆工具としての役割を果たさなくなることが認められた。従って、本発明者等の目標である切削工具を提供するためには、硬質皮膜中に含有されるBの量は40原子%を越えてはいけないことになり、かつ、硬質皮膜中にBNの結晶を存在させるような、新しい技術を創生しなければならないのである。
【0013】
本発明の硬質皮膜について、その膜厚Dを規定した理由について述べる。本硬質皮膜の特性が近年の過酷な切削加工に対応するためには、D≧0.1μmを被覆しなければならない。つまり、それよりも薄い場合は、硬質皮膜の特性が発揮されないのである。また、本発明に記載の硬質皮膜を工具すくい面に厚く被覆し、すくい面摩耗が著しく発生するような切削加工に適用した場合、従来の硬質皮膜である(TiAl)Nや(TiAlSi)(CN)、(TiAlZrB)N、(TiAlB)Nでは、すでに説明したようにクレーター摩耗が容易に発生し、高能率加工を満足させるにいたらない。本発明者は、適用する金属成分がTiとBで構成される硬質皮膜の効果を十分に発揮させるための最適膜厚を詳細に調査した結果、その膜厚DがD≧0.1μmであることを明らかにした。この調査に基づき、被覆される工具すくい面の膜厚DがD≧0.1μmであることがより好ましい。
【0014】
本発明の硬質皮膜被覆工具は、その被覆方法については、特に限定されるものではないが、被覆基体への熱影響、工具の疲労強度、皮膜の密着性等を考慮した場合、比較的低温で被覆でき、被覆した皮膜に圧縮応力が残留するアーク放電方式イオンプレーティング、もしくはスパッタリング等の被覆基体側にバイアス電圧を印加する物理蒸着法であることが望ましい。以下、本発明を実施例に基づいて説明する。
【0015】
【実施例】
小型アークイオンプレーティング装置を用い、金属成分の蒸発源である各種合金製ターゲット、並びに反応ガスであるNガス、CHガス、ArとO混合ガスから目的の皮膜が得られるものを選択し、被覆基体温度400℃にて、被覆基体である外径8mmφの超硬合金製インサートに−150Vの電位を印加させて被覆を行った。
【0016】
得られた硬質皮膜被覆インサートを用い、次に示す乾式の高能率切削条件にて、刃先の欠けないしは摩耗等により工具が切削不能となるまで加工を行い、その時の切削長を工具寿命とした。表1に本発明例、比較例及び従来例に関する硬質皮膜の詳細及びその切削結果を示す。
【0017】
【表1】

Figure 2004106102
【0018】
インサート切削条件は、切削工具は正面フライス(インサート形状:SEE42TN特殊形)を使用し、切削方法はセンターカット方式、被削材形状は巾100mm、長さ250mm、被削材はS50C(HRC30)、切り込みは2.0mm、切削速度は150m/min、1刃送り量は0.30mm/刃、切削油は無しである。
【0019】
表1に示したように、本発明の硬質皮膜は、その格子定数の大きさとラマン分光分析におけるh−BNとc−BNのピーク強度比が切削性能に大きく影響を及ぼすことは明らかである。つまり、本発明例1〜20に示す様に、a層のX線回折における(200)面の格子定数Aが、0.4200≦A≦0.4270nmの範囲を満たし、更にラマン分光分析によるc−BN、h−BNが検出され、そのときのc−BNのピーク強度Q1並びにh−BNのピーク強度Q2の比、Q1/Q2≧1.0の時は、材料の特性を如何なく発揮し、大幅な切削寿命の向上をもたらし、十分満足できる結果が得られている。しかし例えば、比較例21、22、25は、a層のX線回折における(200)面の格子定数Aが、0.4200≦A≦0.4270nmの範囲を満足していないのに加え、ラマン分光分析においてh−BNのピーク強度が強いため、ピーク強度比も満足されていないことから、従来例28から34と比較しても効果が認められなかった。更に、比較例23、24、26、27は、a層のX線回折における(200)面の格子定数Aが、0.4200≦A≦0.4270nmの範囲を満足しない状態で、しかもラマン分光分析におけるc−BNのピーク強度が強くなると硬質皮膜の内部応力が著しく増大し、早期剥離発生後、欠損に至ってしまった。表1に示したように、本発明の硬質皮膜は、BNの結晶の存在と、その化学構造の制御によって、耐溶着性はもとより、耐熱性も優れるため、著しい工具性能向上をもたらすことは明らかである。しかし例えば、比較例21、24は硬質皮膜中に添加されるB量が微量のため、TiN結晶格子の中に取り込まれ、固溶体の形態をとっており、その結果、膜としてはTiとBで構成される硬質皮膜であるが、本発明の目的である工具性能の改善には遠く至らないのである。また、比較例22、23、25、26、27では、TiとBで構成される硬質皮膜中にBNの結晶が存在することが認められても、添加されるB添加量がTiに対して50原子%を越えてしまっている。このような場合、切削加工においては、硬質皮膜が自身の内部応力に負けて、容易に剥離が発生する。特に、比較例26は、硬質皮膜全体の内部応力が最も高くなり、約−6GPaにも到達してしまうことが認められ、切削試験では、インサートの切削初期に工具逃げ面、すくい面に大きな剥離が発生し、切削続行が不可能となった。従って、本発明の硬質皮膜は、膜中のBN結晶を存在させることも非常に重要な技術であるが、単に存在させるのではなく、添加するBの量も含め、硬質皮膜被覆工具の設計を行わない限り、著しく優れた性能を発揮する工具の提供は不可能であることは明らかである。一方、従来例28の(TiSi)N皮膜と(TiAl)N皮膜との2層膜とした試料、また従来例29から34の(TiAl)系の窒化物層に第3元素としてZr、B、Siを添加した試料に対し、本発明例は、いずれの場合も工具寿命で優っていることが確認された。本発明皮膜の成膜実施にあたっては、使用する導入ガスの検討も同時に行った。その結果、著しく優れた耐溶着性を保つためには、金属成分がTiとBで構成される窒化物、炭窒化物、酸窒化物、酸炭窒化物いずれかで、Bの含有量Mが金属成分のみの原子%で、0.1≦M≦40.0であることが望ましいが、工具の発熱並びに被加工物との摩擦を考慮した場合、成膜時に上記記載の皮膜を製膜する上で必要となる窒素、酸素を含むガスの他に、炭素を含むガスを導入し、炭窒化物、酸炭窒化物を被覆することにより更に優れた工具性能を発揮する。本発明硬質皮膜の適用は、実施例で示したインサートだけでなく、旋削用途など他の高能率切削加工にも十分対応できうるものである。
【0020】
【発明の効果】
本発明の硬質皮膜被覆工具は、TiとBで構成される窒化物、炭窒化物、酸窒化物、酸炭窒化物のいずれかである層にラマン分光分析においてc−BNとh−BNのピークが検出される皮膜が被覆され、この皮膜が優れた耐溶着、耐拡散性、耐酸化性、耐摩耗性を達成することにより、乾式高能率切削加工において著しく長い工具寿命が得られ、切削加工における生産性の向上に極めて有効である。
【図面の簡単な説明】
【図1】図1は、本発明例の皮膜を被覆した工具の切削後の刃先近傍における元素分析結果を示す。
【図2】図2は、従来例の皮膜を被覆した工具の切削後の刃先近傍における元素分析結果を示す。
【図3】図3は、本発明例の皮膜のラマン分光解析結果で、c―BNとh―BNとの回折ピークを示す。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hard film-coated tool used for cutting a metal material or the like.
[0002]
[Prior art]
Conventionally, cutting tools coated with TiN, Ti (CN), and the like have been widely used. Since TiN has relatively excellent oxidation resistance, it not only exhibits excellent wear resistance against rake surface wear of tools caused by heat generated during cutting, but also has good adhesion to the substrate. is there. Further, since Ti (CN) has higher hardness than TiN and lower contact resistance with cutting powder discharged from the workpiece, heat generation on the tool surface is suppressed. From this, it is possible to suppress the flank wear generated on the tool flank due to mechanical rubbing wear with the work material. However, in response to the tendency to increase the cutting speed for the purpose of increasing the efficiency of metal working, the hard coating does not exhibit sufficient oxidation resistance and wear resistance. From such a background, studies have been made to further improve the oxidation resistance and wear resistance of the film. As a result, Japanese Patent No. 3248897 discloses that the (TiSi) N film is an a layer and the (TiAl) N film is a b layer. There is disclosed a technique in which a film obtained by alternately coating one or more layers a and b as layers has oxidation resistance and abrasion resistance. On the other hand, in JP 2001-293601, in abrasion-resistant films, BN, there is disclosure about film containing ultrafine compounds such TiB 2, TiB, the ultrafine compound has an amorphous structure It is described as having a function of improving the hardness of the film. According to the report, wear resistance, high slipping property, high seizure property, and improvement in processing accuracy of a work material can be achieved. However, no detailed description is given of the characteristics and the state of existence of the ultrafine compound.
[0003]
The (TiAl) N film has a Vickers hardness of approximately 2300 to 2800, although it varies depending on the component ratio of Ti and Al contained in the film or the content of Si or C in the film. Further, since the oxidation resistance is remarkably superior to those of TiN and Ti (CN), the performance of the cutting tool is remarkably improved under cutting conditions in which the cutting edge reaches a high temperature. The (TiAlSi) (CN) film contains Si so as to improve the oxidation resistance more than the (TiAl) N film. Further, in consideration of the same effect, attempts have been made to include Zr, Hf, and B as a third element in the (TiAl) system. In recent years, the environment in which such hard film-coated cutting tools are used has become increasingly harsh. For example, as cutting speeds tend to increase and wet cutting, which has been used conventionally, is regarded as an important environmental issue. Attention has been paid to dry cutting. In addition, there is a tendency for steel materials to be difficult to cut due to the effects of various types of elements contained in mold steel and high feed machining with an emphasis on high efficiency machining, and the use environment of hard film coated cutting tools is becoming increasingly severe. I have.
[0004]
According to the study of the present inventor, the oxidation start temperature of the (TiAl) N film in the air increases from 750 ° C. to 750 ° C. to 900 ° C. depending on the Al content, compared to 450 ° C. of TiN. However, in the dry high-speed cutting described above, the temperature of the cutting edge of the tool used reaches a high temperature of 900 ° C. or higher. It is needless to say that the oxidation resistance of the hard coating is important in the cutting work performed under such severe conditions, but the cutting edge of the hard coating coating cutting tool and the workpiece are earlier than that. It is essential to prevent the welding phenomenon that occurs due to the occurrence of a chemical reaction. In recent years, steel materials for molds contain various elements in order to significantly improve the performance of molds, and the phenomenon of welding to cutting tools is more likely to occur. In this case, the state in which the element of the workpiece is easily diffused into the hard coating has come into being. For this reason, conventional nitrides of Ti and Al have remarkably excellent oxidation resistance in the air, but when cutting in a high temperature state, it is necessary to prevent welding and diffusion of a workpiece, which are one of the chemical reactions. At present, it is difficult to obtain a sufficient tool life.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and furthermore, without sacrificing the wear resistance and adhesion of a hard coating having excellent oxidation resistance, such as a conventional (TiAl) N film having excellent oxidation resistance, and It is an object of the present invention to provide a hard film coated tool which improves welding resistance in a high temperature state and diffusion of a work element into a hard film, and is suitable for dry cutting, high speed, and high feed cutting. .
[0006]
[Means for Solving the Problems]
The present inventor has conducted extensive studies on the effects of various elements and the optimal layer structure of the coating on the welding resistance of the hard coating, the wear resistance, and the adhesion to the base material. A layer which is any one of nitride, carbonitride, oxynitride and oxycarbonitride composed of Ti and B, and nitride, carbonitride and oxynitride whose metal components are composed of Al and Ti Layer or a layer of oxycarbonitride is alternately coated one or more times, and the lattice constant A of the (200) plane in X-ray diffraction of the layer a is 0.4200 ≦ A ≦ 0. The c-BN and h-BN peaks were detected in the range of 4270 nm and Raman spectroscopy of the a layer, and the c-BN peak intensity at that time was Q1, and the h-BN peak intensity was Q2. Where the peak intensity ratio Q1 / Q2 ≧ 1.0 It is to be hard-coated tool of high-speed cutting of dry, at high feed machining, we have reached the present invention found that the performance of the cutting tool becomes extremely good. Here, high feed machining is defined as cutting in which the feed amount per blade in the cutting conditions exceeds 0.3 mm / tooth. Further, according to the present invention, when the a layer is coated using an alloy target of Ti and B, and the composition of the film indicates the content M of B contained in the a layer by atomic% of only the metal component, 1 ≦ M ≦ 40, and the thickness D of the a layer is preferably D ≧ 0.1 μm.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The configuration of the a layer will be described in detail. Generally, when an oxidation test is performed on the (TiAl) N film in the air, Al near the surface of the film diffuses outward toward the outermost surface to form an Al 2 O 3 layer. This phenomenon suppresses the subsequent entry of oxygen into the film. According to the study of the present inventor, this is considered to be the reason for the improvement in oxidation resistance. At this time, immediately below the Al 2 O 3 layer formed on the outermost layer, very porous Ti containing no Al is contained. An oxide forms. In the static oxidation test, the Al 2 O 3 layer formed on the outermost surface functions as an oxidation protection film against the inward diffusion of oxygen, which is the progress of oxidation. The Al 2 O 3 layer is easily separated from the porous Ti oxide layer immediately below the Al 2 O 3 layer, and does not exert a sufficient effect on the progress of oxidation. In addition, if the Al 2 O 3 layer formed on the outermost surface does not peel off during dynamic cutting, it is possible to prevent the phenomenon of welding with the workpiece due to the chemical stability of Al 2 O 3 . However, at present, it is difficult to prevent the separation of this chemically stable Al 2 O 3 . That is, it has been clarified that the welding phenomenon occurring at a high temperature occurs because Al 2 O 3 formed on the outermost layer is peeled off. Also, regarding the (TiAlSi) (CN) film, (TiAlZrB) N, (TiAlB) N, and (TiAlSiB) N, the conventional (TiAl) N film contains Si, Zr, B, etc., so that the hard coating itself can be formed. Although the hardness and the oxidation resistance are slightly improved, the Al 2 O 3 layer of the oxide protective film on the surface is immediately formed due to the difference in the free energy of formation with respect to the oxide, and the porous Ti It forms oxides, which results in coating delamination during cutting. Therefore, the welding phenomenon in dynamic cutting cannot be prevented.
[0008]
However, nitrides, carbonitrides, oxynitrides, oxycarbonitrides, etc., composed of Ti and B, excluding Al, which causes the welding phenomenon, have the oxidation resistance of the film itself of the conventional Ti and Al And is superior to the nitride of Ti and Al, etc., against the welding phenomenon at high temperatures. The present inventors have conducted intensive studies from the viewpoint of the resistance of various elements to the occurrence of welding, that is, the elements contained in steel and the wettability of the elements contained in the hard coating. It has been found that it is effective in preventing welding of a workpiece under high temperature. The present inventor has conducted a detailed investigation on the phenomena occurring when applied to a cutting tool with respect to B contained in a hard coating. As a result, the effectiveness of B is not increased hardness or improved oxidation resistance of the hard coating, That is, the affinity with Fe during cutting is low, and the phenomenon of diffusion of the workpiece into the film hardly occurs. FIG. 1 shows the results of elemental analysis of the vicinity of the cutting edge after cutting of the hard film-coated cutting tool using the a layer according to the present invention in the direction of the substrate. FIG. 2 shows the result of a similar analysis of conventional (TiAl) N. According to the comparison between FIG. 1 and FIG. 2, the Fe element which is the workpiece is not seen in the inside of the film in FIG. 1, but the oxide of Al is present on the outermost layer of the film in (TiAl) N which is the conventional film in FIG. It can be seen that Fe, which is formed, is diffused in the film. It has been confirmed that the tendency shown in FIG. 2 is also observed in conventional (TiAlSi) (CN), (TiAlZrB) N, (TiAlB) N and the like. That is, by using the layer a of the present invention, it has a characteristic that a chemical reaction with a workpiece under high temperature is unlikely to occur. At the same time, they also found that the oxidation resistance was almost the same as that of the conventional nitride of Ti and Al. The present inventors have further conducted diligent research, tried an experiment in which B is contained in conventional (TiAl) N such as (TiAlB) N, which has excellent oxidation resistance, focused on the welding resistance of the hard coating, and evaluated the hard coating. As a result, the conventional film containing Al described above has a higher affinity for Fe at high temperatures than Ti and B, and therefore, Al which prevents internal diffusion of oxygen in the outermost layer. Before forming the 2 O 3 layer, it was found that a chemical reaction had occurred with the contents in the workpiece. When such a hard coating containing Al is applied to a cutting tool, this welding phenomenon promotes the abnormal progress of crater wear on the tool rake face, and a large amount of deposited material is stored at the boundary, It causes chipping. Based on these experimental results, a unique oxidation mechanism such as the conventionally used nitrides of Ti and Al occurs rather than coating the outermost surface of the hard coating tool with a coating with sufficient oxidation resistance. In other words, a self-lubricating film is required to prevent welding on the surface of the tool coated with the hard film before the coating is performed. In other words, by coating the hard coating of the present invention on the outermost layer of the cutting tool, it prevented welding with the workpiece, and as a result, prevented abnormal wear, thereby coating the conventionally used nitrides of Ti and Al. It was confirmed that the life of the tool coated with the hard coating was significantly extended.
[0009]
The layer a has excellent adhesion resistance under static and dynamic conditions, but has insufficient adhesion to a substrate because the film itself has a large residual compressive stress. Therefore, a nitride, a carbonitride, an oxynitride, an oxycarbonitride composed of Al and Ti is provided directly above the surface of the substrate in order to impart a good balance of adhesion, wear resistance, oxidation resistance, etc. It is preferable to cover the layer b such as Further, an alloy film containing one or more metals of the 4a, 5a, and 6a groups described in the periodic table may be used directly on the surface of the base in addition to the hard coating described above. The role of Al in the b layer, which is a coating of (TiAl) -based nitride or the like, is to improve the wear resistance and oxidation resistance of the coating. Therefore, in order to obtain a good balance of adhesion, abrasion resistance, and oxidation resistance, preferably, the Al content F of the b layer is adjusted to 30 ≦ F ≦ 75 by atomic% of only the metal component of the film. Is preferred. The reason why the preferable Al content F in the b layer is set is that when F is 30 atomic% or more, the oxidation resistance starts to significantly improve. The reason for adjusting the content to 75 atomic% or less is that even if the oxidation resistance is improved, the hardness of the film is significantly reduced and the wear resistance is deteriorated.
[0010]
As described above, in the present invention, the b layer having a good balance between the adhesion to the substrate and the abrasion resistance and oxidation resistance of the film itself is coated directly on the surface of the substrate, and remarkably welding resistance and workpiece It is extremely important to coat the layer a having excellent element diffusivity, and as a result, it becomes possible to obtain a cutting tool that supports dry high-speed cutting and high-feed cutting. The reason for limiting the size of the crystal lattice of the a-layer will be described. In order to make the hard coating of the present invention a cutting tool coated with a hard coating, the size of the crystal lattice in the physical properties of the hard coating, that is, the lattice constant is important. First, in order to maintain high adhesiveness, it is necessary to reduce the residual compressive stress that is peculiar to the physical vapor deposition method. As a result of intensive studies leading to the present invention, a correlation between the lattice constant of the hard coating of the present invention and the residual compressive stress has been derived. Secondly, in order to ensure the adhesion between the hard films, the different types of hard films used in the present invention must be maintained in a heteroepitaxial relationship. In order to satisfy both conditions, the inventor of the present invention controlled the lattice constant A of the (200) plane in the X-ray diffraction of the a layer so as to be in the range of 0.4200 ≦ A ≦ 0.4270. I could do it. In other words, in order to maximize the characteristics of the hard coating, if the value of A exceeds 0.4270, the residual compressive stress of the hard coating will increase significantly, and peeling will occur during cutting, and satisfactory cutting performance will occur. Cannot be obtained. The same effect was obtained by a multilayer coating in which a layer b and a layer b were alternately laminated after coating the layer b directly on the surface of the base. The a layer can detect c-BN and h-BN peaks in Raman spectroscopic analysis. When the c-BN peak intensity at that time is Q1 and the h-BN peak intensity is Q2, the peak is The intensity ratio must satisfy the relationship Q1 / Q2 ≧ 1.0. This is to improve the hardness while maintaining the lubricity of the hard film. As shown in FIG. 3, peaks of c-BN and h-BN are detected inside the layer a in the hard coating of the present invention. When comparing the hardness of c-BN and h-BN, c-BN shows higher hardness. Therefore, by controlling the coating conditions so that a large amount of c-BN is contained in the hard coating, the coating hardness increases and the wear resistance can be improved. In addition, each layer can be adjusted to any of nitride, carbonitride, oxynitride, and oxycarbonitride as needed, and the same cutting performance can be obtained for a tool coated therewith.
[0011]
The reason for limiting the B content M of the hard coating in which the metal component is composed of a nitride, a carbonitride, an oxynitride, and an oxycarbonitride composed of Ti and B will be described. When the content of B is less than 0.1 atomic% with respect to Ti, the effect of preventing welding and element diffusion, which is the object of the present invention, cannot be obtained. Therefore, since it is not possible to cope with the target severe cutting work in recent years, the content is set to 0.1 atomic% or more, at which a remarkable effect starts to be obtained. In addition, the hard coating of the present invention composed of Ti and B exhibits columnar crystals as often seen in TiN and the like, but when the B content exceeds 40 atomic%, the structure changes from the columnar crystals to a fine granular crystal structure. Was allowed to do so. As described above, it was recognized that the hard coating having a large B content had many internal defects and a low density. In addition, it was confirmed that the internal stress that hindered the film adhesion was extremely large and the peeling phenomenon easily occurred. Furthermore, since the crystal of the hard film was fine, the frequency of grain boundary destruction occurring during cutting was high, and abnormal wear caused by the fracture was recognized. The present inventors have obtained the above knowledge, and have limited the B content M in the hard coating of the present invention to 0.1 ≦ M ≦ 40 in atomic%. In preparing the hard coating of the present invention, a physical vapor deposition method is preferable. Therefore, a target for forming a film is required. As the target, two kinds consisting of Ti and B may be used, but an alloy target of Ti and B is more preferable in consideration of variation in composition and stability of discharge.
[0012]
It was confirmed that the presence of the metal element in the hard film composed of Ti and B was characterized by the B content contained in the hard film. Conventional hard coatings such as nitrides of Ti and Al differ depending on their compositions. However, taking up practical coatings, it is known that they generally have a NaCl-type B1 structure that has the same crystal lattice form as TiN. In this case, Al in the TiN lattice is replaced with Al, so to speak, Al is in a solid solution state. However, although the hard coating composed of Ti and B according to the present invention depends on the content of B, when the content is 0.1 atomic% or more, it differs from the nitride of Ti and Al. Shows the form. When the content of B is 0.1 atomic% or more, B has a form in which the compound of B exists alone in addition to a form in which Ti is replaced by Ti in the TiN lattice. That is, when the content of B is 0.1 atomic% or more, for example, in the case of the nitride of Ti and B, which is the hard coating of the present invention, the hard coating contains a mixture of TiN crystals and BN crystals. Because If the content of B is less than 0.1 atomic%, B is completely taken into the TiN crystal lattice and exhibits a form of a solid solution. This change in crystal morphology has a great effect on cutting performance. In the case of nitrides within the composition range of the present invention, BN crystals exist in addition to TiN-like crystals. It is known that this BN has excellent self-lubrication and low wettability with Fe. It is considered that the presence of this BN crystal has an effect of significantly suppressing crater wear mainly caused by a chemical reaction. Can be Further, BN has resistance to oxidation in terms of free generation energy for oxidation, so that the characteristics of the hard film at high temperatures are not deteriorated. These surprising facts are the results obtained by the inventor's intensive studies. However, when the content of B exceeds 40 atomic%, the above-mentioned BN crystals are present, but the internal stress becomes very large, so that it becomes difficult to maintain good adhesion. In other words, when an external impact is applied to the hard coating as in the case of cutting, the hard coating cannot withstand its own internal stress, easily peels off, and does not serve as a hard coating tool. Admitted. Therefore, in order to provide a cutting tool which is the target of the present inventors, the amount of B contained in the hard coating must not exceed 40 atomic%, and the amount of BN contained in the hard coating is New technologies must be created to make the crystals exist.
[0013]
The reason for defining the thickness D of the hard coating of the present invention will be described. In order for the characteristics of this hard coating to correspond to severe cutting work in recent years, it is necessary to cover D ≧ 0.1 μm. In other words, when the thickness is smaller than that, the characteristics of the hard coating are not exhibited. When the hard coating according to the present invention is thickly coated on a tool rake face and applied to a cutting process in which rake face wear is remarkably generated, conventional hard coatings such as (TiAl) N and (TiAlSi) (CN) are used. ), (TiAlZrB) N, and (TiAlB) N, as described above, crater wear easily occurs, and high efficiency processing is not satisfied. The present inventor has investigated in detail the optimum film thickness for sufficiently exerting the effect of the hard film composed of Ti and B as the metal component to be applied, and as a result, the film thickness D is D ≧ 0.1 μm. It revealed that. Based on this investigation, it is more preferable that the thickness D of the tool rake face to be coated is D ≧ 0.1 μm.
[0014]
The hard film-coated tool of the present invention is not particularly limited in its coating method.However, in consideration of the thermal effect on the coated substrate, the fatigue strength of the tool, the adhesion of the film, etc., the tool is formed at a relatively low temperature. It is desirable to use a physical vapor deposition method in which a bias voltage is applied to the coated substrate side, such as arc discharge ion plating, which can be coated and compressive stress remains in the coated film, or sputtering. Hereinafter, the present invention will be described based on examples.
[0015]
【Example】
Using a small arc ion plating device selection, various alloy target having an evaporation source of the metal component, and N 2 gas as the reaction gas, CH 4 gas, those coating object from Ar and O 2 mixed gas is obtained Then, at a coating substrate temperature of 400 ° C., coating was performed by applying a potential of −150 V to a cemented carbide insert having an outer diameter of 8 mmφ as the coating substrate.
[0016]
Using the obtained hard coating-coated insert, processing was performed under the following dry high-efficiency cutting conditions until the tool could not be cut due to chipping or wear of the cutting edge, and the cutting length at that time was defined as the tool life. Table 1 shows the details of the hard coatings of the present invention, comparative examples, and conventional examples and the cutting results.
[0017]
[Table 1]
Figure 2004106102
[0018]
For insert cutting conditions, a cutting tool uses a face mill (insert shape: SEE42TN special type), cutting method is center cut method, work material shape is width 100mm, length 250mm, work material is S50C (HRC30), The depth of cut is 2.0 mm, the cutting speed is 150 m / min, the feed amount of one blade is 0.30 mm / blade, and there is no cutting oil.
[0019]
As shown in Table 1, it is clear that the hard coating of the present invention has a large influence on the cutting performance by the size of the lattice constant and the peak intensity ratio between h-BN and c-BN in Raman spectroscopy. That is, as shown in Examples 1 to 20 of the present invention, the lattice constant A of the (200) plane in the X-ray diffraction of the a layer satisfies the range of 0.4200 ≦ A ≦ 0.4270 nm, and furthermore, c is determined by Raman spectroscopy. -BN and h-BN are detected, and the ratio of the peak intensity Q1 of c-BN and the peak intensity Q2 of h-BN at that time, and when Q1 / Q2 ≧ 1.0, the characteristics of the material are exhibited. , Greatly improving the cutting life, and obtaining satisfactory results. However, for example, in Comparative Examples 21, 22, and 25, the lattice constant A of the (200) plane in the X-ray diffraction of the a layer does not satisfy the range of 0.4200 ≦ A ≦ 0.4270 nm, and the Raman Since the peak intensity of h-BN was strong in the spectroscopic analysis and the peak intensity ratio was not satisfied, no effect was observed even in comparison with Conventional Examples 28 to 34. Further, Comparative Examples 23, 24, 26, and 27 show that the lattice constant A of the (200) plane in the X-ray diffraction of the a layer does not satisfy the range of 0.4200 ≦ A ≦ 0.4270 nm, and the Raman spectroscopy is used. When the peak intensity of c-BN in the analysis was increased, the internal stress of the hard coating was significantly increased, leading to loss after early peeling. As shown in Table 1, it is apparent that the hard coating of the present invention has excellent heat resistance as well as welding resistance due to the presence of BN crystals and the control of its chemical structure, so that the tool performance is remarkably improved. It is. However, for example, in Comparative Examples 21 and 24, since the amount of B added to the hard coating was very small, it was taken into the TiN crystal lattice and was in the form of a solid solution. Although it is a constituted hard coating, the improvement of the tool performance, which is the object of the present invention, is not far. Further, in Comparative Examples 22, 23, 25, 26, and 27, even though it was recognized that BN crystals were present in the hard coating composed of Ti and B, the amount of B added was It has exceeded 50 atomic%. In such a case, in the cutting process, the hard coating loses its own internal stress and peels off easily. In particular, in Comparative Example 26, it was recognized that the internal stress of the entire hard coating became the highest and reached about −6 GPa. Occurred, making it impossible to continue cutting. Therefore, in the hard coating of the present invention, the existence of BN crystals in the coating is also a very important technique. Obviously, without this, it is impossible to provide a tool that performs significantly better. On the other hand, a sample formed as a two-layer film of the (TiSi) N film and the (TiAl) N film of Conventional Example 28, and Zr, B, as the third element in the (TiAl) -based nitride layers of Conventional Examples 29 to 34. In each case, it was confirmed that the tool life was superior to the sample to which Si was added in each case. In forming the film of the present invention, the introduced gas to be used was also examined. As a result, in order to maintain extremely excellent welding resistance, the metal component is any of nitride, carbonitride, oxynitride, or oxycarbonitride composed of Ti and B, and the content M of B is increased. It is preferable that 0.1 ≦ M ≦ 40.0 in atomic% of the metal component alone, but in consideration of heat generation of the tool and friction with the workpiece, the above-described film is formed at the time of film formation. In addition to the gas containing nitrogen and oxygen required above, a gas containing carbon is introduced to coat carbonitrides and oxycarbonitrides, thereby exhibiting more excellent tool performance. The application of the hard coating of the present invention can sufficiently cope with not only the inserts shown in the examples but also other high-efficiency cutting processes such as turning applications.
[0020]
【The invention's effect】
The hard-coated tool of the present invention is characterized in that a layer composed of any of nitride, carbonitride, oxynitride, and oxycarbonitride composed of Ti and B has c-BN and h-BN in Raman spectroscopic analysis. The coating whose peak is detected is coated, and this coating achieves excellent welding resistance, diffusion resistance, oxidation resistance, and abrasion resistance, resulting in extremely long tool life in dry high efficiency cutting. This is extremely effective in improving productivity in processing.
[Brief description of the drawings]
FIG. 1 shows the results of elemental analysis of a tool coated with a coating of the present invention near a cutting edge after cutting.
FIG. 2 shows the results of elemental analysis near the cutting edge after cutting of a conventional tool coated with a coating.
FIG. 3 shows diffraction peaks of c-BN and h-BN as a result of Raman spectroscopic analysis of the film of the present invention.

Claims (3)

金属成分が、TiとBで構成される窒化物、炭窒化物、酸窒化物、酸炭窒化物のいずれかであるa層と、金属成分がAlとTiで構成される窒化物、炭窒化物、酸窒化物、酸炭窒化物のいずれかであるb層とが、それぞれ一層以上交互に被覆され、該a層のX線回折における(200)面の格子定数Aが、0.4200≦A≦0.4270nmの範囲にあり、かつ該a層のラマン分光分析において、c−BN並びにh−BNのピークが検出され、そのときのc−BNのピーク強度をQ1、h−BNのピーク強度をQ2としたときに、ピーク強度比Q1/Q2≧1.0であることを特徴とする硬質皮膜被覆工具。An a layer in which the metal component is any of nitride, carbonitride, oxynitride, and oxycarbonitride composed of Ti and B; B layer, which is any one of a material, an oxynitride, and an oxycarbonitride, is alternately coated one or more times, and the lattice constant A of the (200) plane in the X-ray diffraction of the a layer is 0.4200 ≦ A ≦ 0.4270 nm, and the c-BN and h-BN peaks are detected in the Raman spectroscopic analysis of the a layer, and the c-BN peak intensity at this time is Q1, the h-BN peak is A hard-coated tool, characterized in that when the strength is Q2, the peak strength ratio Q1 / Q2 ≧ 1.0. 請求項1記載の硬質皮膜被覆工具において、該a層はTiとBの合金ターゲットを用いて被覆され、該a層の組成は、Bの含有量Mを金属成分のみの原子%で示すと、0.1≦M≦40であることを特徴とする硬質皮膜被覆工具。2. The tool according to claim 1, wherein the a layer is coated using an alloy target of Ti and B, and the composition of the a layer is such that the content M of B is represented by atomic% of only the metal component. A hard-coated tool, wherein 0.1 ≦ M ≦ 40. 請求項1又は請求項2記載の硬質皮膜被覆工具において、該a層の膜厚Dが、D≧0.1μmであることを特徴とする硬質皮膜被覆工具。The hard-coated tool according to claim 1 or 2, wherein the thickness D of the a-layer is D ≧ 0.1 μm.
JP2002270940A 2002-09-18 2002-09-18 Hard coating tool Expired - Fee Related JP3679076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002270940A JP3679076B2 (en) 2002-09-18 2002-09-18 Hard coating tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002270940A JP3679076B2 (en) 2002-09-18 2002-09-18 Hard coating tool

Publications (2)

Publication Number Publication Date
JP2004106102A true JP2004106102A (en) 2004-04-08
JP3679076B2 JP3679076B2 (en) 2005-08-03

Family

ID=32268396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002270940A Expired - Fee Related JP3679076B2 (en) 2002-09-18 2002-09-18 Hard coating tool

Country Status (1)

Country Link
JP (1) JP3679076B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120100A (en) * 2008-11-18 2010-06-03 Hitachi Tool Engineering Ltd Hard coating film coated tool for turning
JP2010284788A (en) * 2009-06-15 2010-12-24 Hitachi Tool Engineering Ltd Hard film coated tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120100A (en) * 2008-11-18 2010-06-03 Hitachi Tool Engineering Ltd Hard coating film coated tool for turning
JP2010284788A (en) * 2009-06-15 2010-12-24 Hitachi Tool Engineering Ltd Hard film coated tool

Also Published As

Publication number Publication date
JP3679076B2 (en) 2005-08-03

Similar Documents

Publication Publication Date Title
JP3248897B2 (en) Hard coating tool
JP5866650B2 (en) Surface coated cutting tool
JP2008073800A (en) Hard film and hard film coated tool
IL178030A (en) Surface-coated cutting tool
JP3248898B2 (en) Hard coating tool
JP2007237391A (en) Coated cermet cutting tool
JP4268558B2 (en) Coated cutting tool
EP4041931A1 (en) A coated cutting tool
JP3454428B2 (en) Wear-resistant film-coated tools
JP3779948B2 (en) Hard coating tool
JP3679076B2 (en) Hard coating tool
JP2004136430A (en) Coated tool
JP3779951B2 (en) Hard coating tool
JP3679077B2 (en) Hard coating tool
JP4569981B2 (en) Hard coating tool
JP3419140B2 (en) Surface coated cutting tool
JP3779949B2 (en) Hard coating tool
JP3712241B2 (en) Coated cutting tool / Coated wear resistant tool
JP3679078B2 (en) Hard coating tool
JP3779950B2 (en) Hard coating tool
JP3614417B2 (en) Hard coating tool
JP3589396B2 (en) Hard coating tool
JP2002254208A (en) Tool having excellent oxidation resistance and wear resistance
JP4456905B2 (en) Surface coated cutting tool
JP2004106096A (en) Hard film coated tool

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041028

A521 Written amendment

Effective date: 20041209

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050511

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090520

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090520

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100520

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100520

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100520

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110520

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20120520

LAPS Cancellation because of no payment of annual fees