JP4569981B2 - Hard coating tool - Google Patents

Hard coating tool Download PDF

Info

Publication number
JP4569981B2
JP4569981B2 JP28866499A JP28866499A JP4569981B2 JP 4569981 B2 JP4569981 B2 JP 4569981B2 JP 28866499 A JP28866499 A JP 28866499A JP 28866499 A JP28866499 A JP 28866499A JP 4569981 B2 JP4569981 B2 JP 4569981B2
Authority
JP
Japan
Prior art keywords
layer
film
cutting
tool
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28866499A
Other languages
Japanese (ja)
Other versions
JP2001105205A (en
Inventor
和幸 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP28866499A priority Critical patent/JP4569981B2/en
Publication of JP2001105205A publication Critical patent/JP2001105205A/en
Application granted granted Critical
Publication of JP4569981B2 publication Critical patent/JP4569981B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、金属材料等の切削加工に使用される硬質皮膜被覆工具に関するものである。
【0002】
【従来の技術】
従来はTiN、TiCN等を被覆した切削工具が汎用的かつ一般的であった。TiNは比較的耐酸化性に優れるため、切削時の発熱によって生じる工具のすくい面摩耗に対して、優れた耐摩耗性を示すだけでなく、基体との密着性も良好であることが特長である。また、TiCNは、TiNに比べ高硬度かつ被加工物から排出される切り粉との接触抵抗が低いため工具表面の発熱が抑制される。このことから、被削材との機械的な擦り摩耗によって工具逃げ面に生じるフランク摩耗が抑制することができる。しかしながら、金属加工の高能率化を目的とした切削速度の高速化傾向に対し、上記硬質皮膜では、十分な耐酸化性、耐摩耗性を示さなくなった。この様な背景から、皮膜の耐酸化性、耐摩耗性をより向上させる研究がなされ、その結果、特開平8−170167号に代表されるTiAlN皮膜およびTiAlSiCN皮膜が開発され切削工具に適用されている。
【0003】
【発明が解決しようとする課題】
TiAlN皮膜は、その皮膜中に含有するTiとAlの成分比率またはSiやCの皮膜中の含有量により異なるものの、概略2300〜2800のビッカース硬さを有すだけではなく、耐酸化性が、前記TiN、TiCNに比べ著しく優れるため、刃先が高温に達する切削条件下においては、切削工具の性能をめざましく向上させる。また、TiAlSiCN皮膜は、TiAlN皮膜よりもさらに耐酸化性を向上させようとSiを添加させたものである。しかしながら、近年では切削速度が更に高速化する傾向に加え、従来使用されていた湿式での切削加工が環境問題上重要視されるなかで、乾式での切削加工が注目され、切削工具の使用環境はますます苛酷なものとなってきている。
【0004】
本発明者等の研究によれば、大気中におけるTiAlN皮膜の酸化開始温度は、TiNの450℃に対し、Alの添加量に依存して750〜900℃に向上する。しかしながら、前述の乾式高速切削加工においては、使用する工具の刃先温度が900℃以上の高温に達するため、前記TiAlN皮膜では、十分な工具寿命が得られないのが現状である。
【0005】
本発明はこうした事情に鑑みなされたものであって、従来のTiAlN皮膜、もしくはTiAlSiCN皮膜の耐摩耗性ならびに密着性を犠牲にすること無く更に耐酸化性を改善し、切削加工の乾式化、高速化に対応する硬質皮膜被覆工具を提供することが目的である。
【0006】
【課題を解決するための手段】
本発明者等は、硬質皮膜の耐酸化性、耐摩耗性、母材との密着性に及ぼす、様々な元素との影響および皮膜の最適な層構造について鋭意研究を重ねた結果、金属成分が、Tiを含まず、SiとAlで構成される窒化物、炭窒化物、酸窒化物、酸炭窒化物のいずれかである酸化保護膜であるa層と、金属成分がAlとTiで構成される窒化物、炭窒化物、酸窒化物、酸炭窒化物のいずれかである耐摩耗性皮膜であるb層とを、物理蒸着法で、それぞれ2層以上交互に積層被覆し、該a層は、該SiとAlの合金製ターゲットを用い、且つ、最表層に被覆したことで、乾式の高速切削加工において、切削工具の性能が極めて良好となることを発見し本発明に到達した。
【000
【発明の実施の形態】
はじめに請求項1記載のa層に関して、その構成要件について詳しく述べる。
一般にTiAlN皮膜は、大気中で酸化テストを行う(特開平11−131216号公報)と、皮膜表面近傍のAlが最表面に向かって外向拡散し、Al層を形成する。この現象によりその後の皮膜内への酸素の進入が抑制される。本発明者らの研究によれば、このことが耐酸化性向上の理由と考えられるが、この時、最表層に形成されるAl層直下には、Alを含有しない非常にポーラスなTi酸化物が形成する。静的な酸化テストにおいては、最表面に形成されたAl層が、酸化の進行である酸素の内向拡散に対し、酸化保護膜として機能するものの、動的な切削においては、最表面のアルミナ層は、その直下のポーラスなTi酸化物層より容易に剥離してしまい、酸化の進行に対し十分な効果を発揮しない。また、TiAlSiCN膜についても従来のTiAlN膜にSiを添加させることで耐酸化性を若干良好にさせるが、前述同様、酸化物に対する生成自由エネルギーの差から表面の酸化保護膜のAl層直下にポーラスなTiの酸化物を形成してしまい、結果、切削中の皮膜剥離をもたらす。
【0008】
しかしながら、SiとAlの合金製ターゲットから構成される請求項1記載の窒化物等は、皮膜自体の耐酸化性が、従来のTiとAlの窒化物よりも優れることを見出した。本発明者等は、各種元素の酸化物に対する自由生成エネルギーの観点から鋭意研究を重ねた結果、本発明硬質皮膜の酸化機構は、まず最表層にAl層を形成し、Al層直下には非常に緻密なSiO層が形成される機構をもつことを発見した。本発明者等の研究によれば、Al層直下の緻密なSiO層の形成により、動的な切削における上記記載のTiとAlの窒化物等のときに見られた剥離現象がなくなり、最表層のAl層が酸化の進行、いわば酸素の内向拡散に対し十分に効果を発揮することを確認した。このように、従来の皮膜に対し著しく耐酸化性が向上し切削加工中の皮膜剥離現象がなくなるSiとAlの合金製ターゲットから構成される窒化物等は皮膜中のSi含有量が金属成分のみの原子%で8%越え85%以下に調整することが重要である。Si量を設定した理由については、その量が15原子%以下では、皮膜の結晶形態がウルツ鉱型となり、優れた耐酸化性は得られても、皮膜自身が軟質化するため十分に満足のいく耐摩耗性を発揮することができない。また、85原子%を越えると、非常に高硬度な皮膜が得られる反面、皮膜の残留圧縮応力が大きくなり密着性を阻害し皮膜剥離の因子となるからである。
【0009
上記a層は、静的および動的条件下において優れた耐酸化性を有すものの、皮膜自身がもつ残留圧縮応力が大きいため母材との密着性においては十分でない。そのため、基体表面直上には、密着性、耐摩耗性、耐酸化性等をバランス良く適度に有す皮膜、TiAl系窒化物等である請求項中に記載のb層を被覆することが好ましい。TiAl系窒化物等の皮膜であるb層におけるAlの役割は、皮膜の耐摩耗性および耐酸化性を向上させることである。そのため、密着性、耐摩耗性、耐酸化性をバランス良く得るためには、好ましくはb層のAl含有量を、皮膜の金属成分のみの原子%で、30%越え75%以下に調整することが重要である。b層における好ましいAlの含有量を設定した理由については、その量が30原子%を越えたときに耐酸化性が著しく向上し始めるためである。また、75原子%以下に調整する理由は、耐酸化性が向上しても、皮膜硬度が著しく低下し耐摩耗性が劣化してしまうためである。
【0010
以上のように本発明においては、基体との密着性、皮膜自体の耐摩耗性および耐酸化性をバランス良く有すb層を基体表面直上に被覆し、その上に著しく耐酸化性に優れるa層を被覆することが極めて重要であり、その結果、乾式の高速切削に対応する切削工具を得ることが可能となる。
また、基体表面直上にb層を被覆した後、a層ならびにb層をそれぞれ交互に積層した多層皮膜によっても同様の効果が得られる。また、各層は必要に応じて窒化物、炭窒化物、酸窒化物、酸炭窒化物のいずれかに調整でき、それらを被覆した工具についても同様の効果が得られる。
【0011】
本発明の物理蒸着法は、被覆基体への熱影響、工具の疲労強度、皮膜の密着性等を考慮した場合、比較的低温で被覆でき、被覆した皮膜に圧縮応力が残留するアーク放電方式イオンプレーティングもしくはスパッタリングが望ましい。以下、本発明を実施例に基づいて説明する。
【0012】
【実施例】
(実施例1)
小型アークイオンプレーティング装置を用い、金属成分の蒸発源である各種合金製ターゲット、ならびに反応ガスであるNガス、CHガス、Ar/O混合ガスから目的の皮膜が得られるものを選択し、被覆基体温度400℃、反応ガス圧力3.0Paの条件下にて、被覆基体である超硬合金製エンドミルおよび超硬合金製インサートに−150Vの電位を印加させ、全皮膜の厚みが4μmとなるように被覆を行った。
得られた硬質皮膜被覆エンドミルおよびインサートを用い、次に示す乾式の高速切削条件にて、刃先の欠けないしは摩耗等により工具が切削不能となるまで加工を行い、その時の切削長を工具寿命とした。表1に本発例および比較例に関する硬質皮膜の詳細およびその切削結果を示す。
【0013
(エンドミル切削条件)
工具 :超硬合金製6枚刃エンドミル
外径 8mm
切削方法 :側面切削(ダウンカット)
被削材 :SKD11(HRC60)
切り込み :Ad12mm×Rd04mm
切削速度 :150m/min
1刃送り量:003mm/刃
切削油 :なし(エアーブロー)
【0014
(インサート切削条件)
工具 :正面フライス
インサート形状:SEE42TN特殊形状
切削方法 :センターカット方式
被削材形状:巾100mm×長さ250mm
被削材 :SKD61(HRC45)
切り込み :20mm
切削速度 :160m/min
1刃送り量:015mm/刃
切削油 :なし
【0015】
【表1】

Figure 0004569981
【0016】
表1より、本発明例1〜15は、従来例と比べて、工具寿命が著しく向上しており、乾式高速切削加工に十分対応できることがわかる。特に、SiおよびAlで構成されるうちのSiの含有量を皮膜の金属成分のみで8原子%越え、85%以内の皮膜は優れた工具性能を示した。これは、請求項記載の皮膜構成についてバランス良く被覆するために鋭意研究を重ねた結果である。更に、例えば本発明例の様な層でも、本発明例10の様な積層(80層)においても、優れた切削性能を示す。また0.04ミクロンの薄いa層を積層させた本発明例10では、a層が切削中の酸化の進行を止めるバリヤー層となり、b層のみの単層膜、例えば従来例23に比較して約3倍の寿命を示した。また、本発明皮膜の成膜に使用した導入ガスについても同時に検討を行った結果、著しく優れた耐酸化性を保つためには、請求項記載の元素に対しての窒化物、酸化物、酸窒化物として被覆されることが望ましいが、工具の発熱ならびに被削材との摩擦を考慮した場合、成膜時に上記記載膜を製造する上で必要となる窒素、酸素を含むガスの他に本発明例4等のように炭素を含むガスを導入し請求項記載の元素の炭窒化物、炭酸窒化物を被覆しても十分に優れた工具性能を発揮する。更には、従来例16、TiAlSiCN膜の様にTiとSiを含有する皮膜では、切削中の酸化により酸化保護膜のAl層直下にポーラスなTiの酸化物を形成し切削中の皮膜剥離が生じたため本発明例に比較しエンドミルでは1/4程度の切削長さで寿命となった。
【0017
【発明の効果】
以上の如く、本発明の硬質皮膜被覆工具は、従来の被覆工具に比べ優れた耐酸化性、耐摩耗性を有すことから、乾式高速切削加工において著しく長い工具寿命が得られ、切削加工における生産性の向上に極めて有効である。[0001]
[Technical field to which the invention belongs]
The present invention relates to a hard film-coated tool used for cutting a metal material or the like.
[0002]
[Prior art]
Conventionally, a cutting tool coated with TiN, TiCN or the like has been widely used. TiN is relatively excellent in oxidation resistance, so it not only exhibits excellent wear resistance against tool rake face wear caused by heat generated during cutting, but also has good adhesion to the substrate. is there. Further, TiCN has higher hardness than TiN and has low contact resistance with the chips discharged from the workpiece, so that heat generation on the tool surface is suppressed. From this, it is possible to suppress flank wear that occurs on the tool flank due to mechanical rubbing wear with the work material. However, the hard coating does not exhibit sufficient oxidation resistance and wear resistance against the tendency to increase the cutting speed for the purpose of improving the efficiency of metal working. From such a background, studies have been made to further improve the oxidation resistance and wear resistance of the coating. As a result, TiAlN coating and TiAlSiCN coating typified by JP-A-8-170167 have been developed and applied to cutting tools. Yes.
[0003]
[Problems to be solved by the invention]
Although the TiAlN film differs depending on the component ratio of Ti and Al contained in the film or the content in the film of Si or C, it not only has a Vickers hardness of approximately 2300-2800, but also has oxidation resistance, Since it is remarkably superior to TiN and TiCN, the cutting tool performance is remarkably improved under cutting conditions where the cutting edge reaches a high temperature. Further, the TiAlSiCN film is obtained by adding Si so as to further improve the oxidation resistance as compared with the TiAlN film. However, in recent years, in addition to the tendency to further increase the cutting speed, wet cutting, which has been used in the past, is regarded as an important environmental issue, and dry cutting is attracting attention, and the usage environment of cutting tools Has become increasingly harsh.
[0004]
According to the study by the present inventors, the oxidation start temperature of the TiAlN film in the atmosphere is improved to 750 to 900 ° C. depending on the amount of Al added to 450 ° C. of TiN. However, in the above-described dry high-speed cutting, the cutting edge temperature of the tool to be used reaches a high temperature of 900 ° C. or higher, so that the sufficient tool life cannot be obtained with the TiAlN coating.
[0005]
The present invention has been made in view of such circumstances, and further improves the oxidation resistance without sacrificing the wear resistance and adhesion of the conventional TiAlN coating or TiAlSiCN coating, making the cutting process dry and high-speed. An object of the present invention is to provide a hard film-coated tool corresponding to the conversion.
[0006]
[Means for Solving the Problems]
The present inventors have conducted extensive research on the influence of various elements on the oxidation resistance, wear resistance, and adhesion to the base material of the hard film and the optimum layer structure of the film. A layer which is an oxidation protective film which is any of nitride, carbonitride, oxynitride and oxycarbonitride which does not contain Ti and is composed of Si and Al, and a metal component is composed of Al and Ti The layer b, which is a wear-resistant film that is any one of nitride, carbonitride, oxynitride, and oxycarbonitride, is laminated and coated alternately by two or more layers by physical vapor deposition, It was found that the performance of the cutting tool was extremely good in dry high-speed cutting by using the Si-Al alloy target and covering the outermost layer with the layer, and reached the present invention.
[000 7 ]
DETAILED DESCRIPTION OF THE INVENTION
First, the constituent requirements of the a layer according to claim 1 will be described in detail.
In general, when a TiAlN film is subjected to an oxidation test in the atmosphere (Japanese Patent Laid-Open No. 11-131216), Al in the vicinity of the film surface diffuses outward toward the outermost surface to form an Al 2 O 3 layer. This phenomenon suppresses the subsequent entry of oxygen into the film. According to the study by the present inventors, this is considered to be the reason for improving the oxidation resistance, but at this time, the Al 2 O 3 layer formed in the outermost layer is very porous not containing Al. Ti oxide is formed. In the static oxidation test, the Al 2 O 3 layer formed on the outermost surface functions as an oxidation protective film against inward diffusion of oxygen, which is the progress of oxidation, but in dynamic cutting, the outermost surface This alumina layer peels off more easily than the porous Ti oxide layer immediately below, and does not exhibit a sufficient effect on the progress of oxidation. Further, the TiAlSiCN film also has a slightly improved oxidation resistance by adding Si to the conventional TiAlN film. However, as described above, the Al 2 O 3 layer of the surface oxidation protective film is formed due to the difference in free energy of formation relative to the oxide. Porous Ti oxide is formed immediately below, resulting in film peeling during cutting.
[0008]
However, it has been found that the nitride according to claim 1 composed of an alloy target of Si and Al is superior in oxidation resistance of the coating itself to the conventional Ti and Al nitride. The present inventors, as a result of extensive research in view of the free energy of formation for oxides of various elements, the oxidation mechanism of the present invention the hard coating, the the Al 2 O 3 layer was formed first in the outermost layer, Al 2 O It has been discovered that a very dense SiO layer is formed immediately below the three layers. According to the study by the present inventors, the formation of a dense SiO layer immediately below the Al 2 O 3 layer eliminates the peeling phenomenon seen in the above-described Ti and Al nitrides in dynamic cutting. It was confirmed that the outermost Al 2 O 3 layer exhibited a sufficient effect on the progress of oxidation, in other words, inward diffusion of oxygen. In this way, nitrides composed of an alloy target of Si and Al that have significantly improved oxidation resistance compared to conventional films and eliminate the film peeling phenomenon during cutting work, the Si content in the film is only the metal component It is important to adjust the atomic% to 8% to 85% or less. Regarding the reason for setting the Si amount, if the amount is 15 atomic% or less, the crystal form of the film becomes a wurtzite type, and even though excellent oxidation resistance can be obtained, the film itself becomes soft, so that it is sufficiently satisfactory. It is not possible to demonstrate the high wear resistance. On the other hand, if it exceeds 85 atomic%, a very high hardness film can be obtained, but the residual compressive stress of the film becomes large and the adhesion is hindered, resulting in a film peeling factor.
[00 09 ]
Although the layer a has excellent oxidation resistance under static and dynamic conditions, the layer itself has a large residual compressive stress, so that the adhesion with the base material is not sufficient. For this reason, it is preferable to coat the b layer according to the claims, which is a film, TiAl-based nitride, or the like having an appropriate balance of adhesion, wear resistance, oxidation resistance, etc., just above the substrate surface. The role of Al in the b layer which is a film such as a TiAl-based nitride is to improve the wear resistance and oxidation resistance of the film. Therefore, in order to obtain a good balance of adhesion, wear resistance, and oxidation resistance, the Al content of the b layer is preferably adjusted to more than 30% and 75% or less in terms of atomic% of only the metal component of the film. is important. The reason why the preferable Al content in the b layer is set is that the oxidation resistance starts to be remarkably improved when the amount exceeds 30 atomic%. Moreover, the reason for adjusting to 75 atomic% or less is that even if the oxidation resistance is improved, the film hardness is remarkably lowered and the wear resistance is deteriorated.
[00 10 ]
As described above, in the present invention, the b layer having a good balance between adhesion to the substrate, wear resistance and oxidation resistance of the coating itself is coated directly on the substrate surface, and on the surface thereof, remarkably excellent oxidation resistance is obtained. It is very important to coat the layer, and as a result, it is possible to obtain a cutting tool corresponding to dry high-speed cutting.
A similar effect can be obtained by a multilayer coating in which the a layer and the b layer are alternately laminated after the b layer is coated directly on the substrate surface. Moreover, each layer can be adjusted to any of nitride, carbonitride, oxynitride, and oxycarbonitride as necessary, and the same effect can be obtained for a tool covering these layers.
[0011]
The physical vapor deposition method of the present invention is capable of coating at a relatively low temperature in consideration of the thermal effect on the coated substrate, tool fatigue strength, film adhesion, etc. Plating or sputtering is desirable. Hereinafter, the present invention will be described based on examples.
[0012]
【Example】
Example 1
Using a small arc ion plating device, select from various alloy targets that are the evaporation source of metal components, and those that can obtain the desired film from the reaction gas N 2 gas, CH 4 gas, Ar / O 2 mixed gas Then, under the conditions of the coated substrate temperature of 400 ° C. and the reaction gas pressure of 3.0 Pa, a potential of −150 V was applied to the cemented carbide end mill and cemented carbide insert, which were the coated substrate, and the total coating thickness was 4 μm. It coat | covered so that it might become.
Using the obtained hard coating coated end mill and insert, under the following dry high-speed cutting conditions, processing was performed until the tool could not be cut due to chipping or abrasion of the blade edge, and the cutting length at that time was defined as the tool life . Table 1 shows the details of the hard coating and the cutting results for the present example and the comparative example.
[00 13 ]
(End mill cutting conditions)
Tool: Cemented carbide 6-flute end mill Outer diameter : 8mm
Cutting method: Side cut (down cut)
Work material: SKD11 (HRC60)
Cut: Ad12mm × Rd0 . 4mm
Cutting speed: 150 m / min
1-blade feed amount: 0 . 03mm / blade Cutting oil: None (Air blow)
[00 14 ]
(Insert cutting conditions)
Tool: Face mill Insert shape: SEE42TN special shape Cutting method: Center cut method Work material shape: Width 100mm x Length 250mm
Work material: SKD61 (HRC45)
Incision: 2 . 0mm
Cutting speed: 160 m / min
1-blade feed amount: 0 . 15 mm / blade Cutting oil: None [0015]
[Table 1]
Figure 0004569981
[0016]
From Table 1, it can be seen that Examples 1 to 15 of the present invention have significantly improved tool life as compared with the conventional examples, and can sufficiently cope with dry high-speed cutting. In particular, the content of Si out of Si and Al exceeded 8 atomic% with only the metal component of the film, and the film within 85% showed excellent tool performance. This is the result of extensive research to cover the coating composition described in the claims in a well-balanced manner. Further, for example, even in a four- layer structure as in Invention Example 1 and a laminate (80 layers) as in Invention Example 10, excellent cutting performance is exhibited. Further, in Example 10 of the present invention in which a thin a layer of 0.04 microns was laminated, the a layer became a barrier layer that stopped the progress of oxidation during cutting, and compared with a single layer film of only b layer, for example, Conventional Example 23 The lifetime was about 3 times. In addition, as a result of simultaneously examining the introduced gas used to form the film of the present invention, in order to maintain remarkably excellent oxidation resistance, nitrides, oxides, and acids for the elements described in the claims are used. It is desirable to be coated as a nitride, but considering the heat generation of the tool and the friction with the work material, in addition to the gas containing nitrogen and oxygen necessary for producing the above described film at the time of film formation, Even when carbon-containing gas is introduced as in Invention Example 4 and coated with the carbonitrides and carbonitrides of the elements described in the claims, sufficiently excellent tool performance is exhibited. Further, in the case of a film containing Ti and Si like the conventional example 16 TiAlSiCN film, a porous Ti oxide is formed immediately under the Al 2 O 3 layer of the oxidation protective film by oxidation during cutting, and the film being cut. Since peeling occurred, the end mill had a life with a cutting length of about 1/4 compared to the example of the present invention.
[00 17 ]
【The invention's effect】
As described above, since the hard coating coated tool of the present invention has superior oxidation resistance and wear resistance compared to conventional coated tools, a significantly long tool life can be obtained in dry high-speed cutting processing. It is extremely effective in improving productivity.

Claims (1)

金属成分が、Tiを含まず、SiとAlで構成される窒化物、炭窒化物、酸窒化物、酸炭窒化物のいずれかである酸化保護膜であるa層と、金属成分がAlとTiで構成される窒化物、炭窒化物、酸窒化物、酸炭窒化物のいずれかである耐摩耗性皮膜であるb層とを、物理蒸着法で、それぞれ2層以上交互に積層被覆し、該a層は、該SiとAlの合金製ターゲットを用い、且つ、最表層に被覆したことを特徴とする硬質皮膜被覆工具。A layer which is an oxidation protective film in which the metal component does not contain Ti and is composed of any one of nitride, carbonitride, oxynitride and oxycarbonitride composed of Si and Al, and the metal component is Al and Two or more layers are alternately laminated and coated by a physical vapor deposition method with a b layer which is a wear-resistant film which is one of nitride, carbonitride, oxynitride and oxycarbonitride composed of Ti. The hard coating tool characterized in that the a layer uses the Si-Al alloy target and is coated on the outermost layer.
JP28866499A 1999-10-08 1999-10-08 Hard coating tool Expired - Fee Related JP4569981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28866499A JP4569981B2 (en) 1999-10-08 1999-10-08 Hard coating tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28866499A JP4569981B2 (en) 1999-10-08 1999-10-08 Hard coating tool

Publications (2)

Publication Number Publication Date
JP2001105205A JP2001105205A (en) 2001-04-17
JP4569981B2 true JP4569981B2 (en) 2010-10-27

Family

ID=17733092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28866499A Expired - Fee Related JP4569981B2 (en) 1999-10-08 1999-10-08 Hard coating tool

Country Status (1)

Country Link
JP (1) JP4569981B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4340441B2 (en) * 2003-01-15 2009-10-07 住友電工ハードメタル株式会社 Wear resistant parts
JP5180221B2 (en) * 2007-09-20 2013-04-10 オーエスジー株式会社 Hard laminate coating, hard laminate coating tool, and method for forming coating
DE102016108734B4 (en) * 2016-05-11 2023-09-07 Kennametal Inc. Coated body and method of making the body
CN106591784B (en) * 2016-11-12 2019-07-09 常州大学 A kind of method that ion plating prepares TiAlSiCN coating
RU2720003C1 (en) * 2019-09-16 2020-04-23 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Method of producing multilayer coating for cutting tools

Also Published As

Publication number Publication date
JP2001105205A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
JP3248897B2 (en) Hard coating tool
JP3347687B2 (en) Hard coating tool
JP3598074B2 (en) Hard coating tool
JP3452726B2 (en) Multi-layer coated hard tool
JP3382781B2 (en) Multi-layer coated hard tool
JP3248898B2 (en) Hard coating tool
JP3719731B2 (en) Coated cutting tool / Coated wear-resistant tool
JP4569981B2 (en) Hard coating tool
JP3454428B2 (en) Wear-resistant film-coated tools
JP2002096205A (en) Hard film covering tool
JP2002337005A (en) Abrasive-resistant coating coated tool
JP2000218407A (en) Hard coating covering tool
JP3586216B2 (en) Hard coating tool
JP3589396B2 (en) Hard coating tool
JP4214344B2 (en) Hard coating tool
JP2001121314A (en) Hard film-coated tool
JP3779948B2 (en) Hard coating tool
JP2002254208A (en) Tool having excellent oxidation resistance and wear resistance
JP3679077B2 (en) Hard coating tool
JP3679076B2 (en) Hard coating tool
JP3779951B2 (en) Hard coating tool
JP3679078B2 (en) Hard coating tool
JP3699004B2 (en) Wear-resistant coated tool
JP3779950B2 (en) Hard coating tool
JP2000017423A (en) Tool coated with high toughness hard laminated coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091029

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4569981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees