JP2010120100A - Hard coating film coated tool for turning - Google Patents

Hard coating film coated tool for turning Download PDF

Info

Publication number
JP2010120100A
JP2010120100A JP2008293995A JP2008293995A JP2010120100A JP 2010120100 A JP2010120100 A JP 2010120100A JP 2008293995 A JP2008293995 A JP 2008293995A JP 2008293995 A JP2008293995 A JP 2008293995A JP 2010120100 A JP2010120100 A JP 2010120100A
Authority
JP
Japan
Prior art keywords
hard coating
film
hard
value
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008293995A
Other languages
Japanese (ja)
Inventor
Kazuyuki Kubota
和幸 久保田
Hitoshi Onuma
仁志 大沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2008293995A priority Critical patent/JP2010120100A/en
Publication of JP2010120100A publication Critical patent/JP2010120100A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hard coating film coated tool for turning, having high abrasion resistance by high hardness and excellent chipping resistance by high hardness. <P>SOLUTION: In the hard coating film coated tool for turning, a hard coating film is formed by coating a first hard coating film and a second hard coating film from a base surface. The first hard coating film is shown by (Al<SB>a</SB>Me<SB>1-a</SB>)<SB>e</SB>N<SB>f</SB>, where 35≤a≤65, and 0.85≤e/f≤1.25. The second hard coating film is shown by (Ti<SB>1-h</SB>B<SB>h</SB>)<SB>m</SB>N<SB>p</SB>, where 1≤h≤30, and 0.85≤m/p≤1.25. When surface intervals (nm) of (200) surfaces in X-ray diffraction of the first hard coating film and the second hard coating film are taken as d1 and d2, an equation of 1.01≤d2/d1≤1.05 is obtained. The second hard coating film has a columnar structure, and a crystal grain of the columnar structure has a composition modulation structure with a compositional difference in a B component. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本願発明は、金属部品加工等に用いられる旋削加工用工具に関するものである。特に、耐摩耗性や耐欠損性向上が要求される工具表面に、物理蒸着法(以下、PVD法と記す。)を用いて硬質皮膜を被覆した旋削加工用硬質皮膜被覆工具に関する。   The present invention relates to a turning tool used for processing metal parts and the like. In particular, the present invention relates to a hard coating tool for turning, in which a hard coating is coated on the surface of a tool that requires improved wear resistance and fracture resistance using a physical vapor deposition method (hereinafter referred to as PVD method).

特許文献1、2は、PVD法により被覆した硬質皮膜のX線回折における(200)面の配向性と回折ピークの半価幅について開示されている。特許文献3は、(220)面、(111)面のピーク強度制御の技術が開示されている。特許文献4は、硬質皮膜を構成する金属元素とガス成分元素の構成比率を調整する技術がされている。特許文献5は、エピタキシャル成長により皮膜界面の密着性改善に関する技術が開示されている。   Patent Documents 1 and 2 disclose the orientation of the (200) plane and the half width of the diffraction peak in X-ray diffraction of a hard coating coated by the PVD method. Patent Document 3 discloses a technique for controlling peak intensity on the (220) plane and the (111) plane. Patent Document 4 discloses a technique for adjusting the constituent ratio of a metal element and a gas component element constituting a hard coating. Patent Document 5 discloses a technique related to improvement in adhesion at a film interface by epitaxial growth.

特開2003−136302号公報JP 2003-136302 A 特開2003−145313号公報JP 2003-145313 A 特開2003−71611号公報JP 2003-71611 A 特開平7−188901号公報JP-A-7-188901 特開2001−181826号公報JP 2001-181826 A

本願発明の解決課題は、厚膜化した硬質皮膜における圧縮応力の低減と密着性を確保しつつ、高硬度化による耐摩耗性と、高靭性化による耐欠損性に優れた旋削加工用の硬質膜被覆工具を提供することである。   The problem to be solved by the present invention is that it is hard for turning with excellent wear resistance due to high hardness and fracture resistance due to high toughness while ensuring reduction of compressive stress and adhesion in a hard film that is thickened. It is to provide a film coating tool.

本願発明は、超硬合金を基体に圧縮応力を有する硬質皮膜を5〜30μmの膜厚で被覆した旋削加工用の硬質皮膜被覆工具において、該硬質皮膜は、該基体表面から第1硬質皮膜、第2硬質皮膜が被覆され、最外皮膜は該第2硬質皮膜が被覆され、該第1硬質皮膜は、(AlMe1−aで示され、但し、aは原子%、e、fは原子比を表し、35≦a≦65、0.85≦e/f≦1.25、であり、Meは4a、5a、6a族、Si、Bから選択される1種以上を有し、該第2硬質皮膜は、(Ti1−hで示され、但し、hは原子%、m、pは原子比を表し、1≦h≦30、0.85≦m/p≦1.25、であり、該第1硬質皮膜、該第2硬質皮膜の結晶構造は面心立方構造であり、該第1硬質皮膜のX線回折において(111)面のピーク強度をIr、(200)面のピーク強度をIs、(220)面のピーク強度をItとしたときに、1.5≦Is/Ir≦15.0、0.6≦It/Ir≦1.5、であり、該第1硬質皮膜と該第2硬質皮膜のX線回折における(200)面の面間隔(nm)を夫々、d1、d2としたときに、1.01≦d2/d1≦1.05であり、該第2硬質皮膜は柱状組織構造を有し、該柱状組織構造の結晶粒はB成分に組成差を有する組成変調構造を有していること、を特徴とする旋削加工用硬質皮膜被覆工具である。上記の構成を採用することによって、厚膜化した硬質皮膜における圧縮応力の低減と密着性を確保しつつ、高硬度化による耐摩耗性と、高靭性化による耐欠損性に優れた旋削加工用の硬質膜被覆工具を提供することができる。 The present invention relates to a hard film coating tool for turning, in which a hard film having a compressive stress is coated on a substrate with a cemented carbide alloy in a film thickness of 5 to 30 μm. The hard film is a first hard film from the surface of the substrate, The second hard coating is coated, the outermost coating is coated with the second hard coating, and the first hard coating is represented by (Al a Me 1-a ) e N f , where a is atomic%, e and f represent atomic ratios, 35 ≦ a ≦ 65, 0.85 ≦ e / f ≦ 1.25, and Me is one or more selected from the group 4a, 5a, 6a, Si, and B The second hard coating is represented by (Ti 1-h B h ) m N p , where h is atomic%, m, p represents an atomic ratio, 1 ≦ h ≦ 30, 0.85 ≦ m / p ≦ 1.25, and the crystal structure of the first hard coating and the second hard coating is a face-centered cubic structure, and the X-ray rotation of the first hard coating is When the peak intensity of the (111) plane is Ir, the peak intensity of the (200) plane is Is, and the peak intensity of the (220) plane is It, 1.5 ≦ Is / Ir ≦ 15.0,. 6 ≦ It / Ir ≦ 1.5, and when the distance (nm) between the (200) planes in the X-ray diffraction of the first hard coating and the second hard coating is d1 and d2, respectively. 1.01 ≦ d2 / d1 ≦ 1.05, the second hard film has a columnar structure, and the crystal grains of the columnar structure have a composition modulation structure having a composition difference in the B component. This is a hard film coated tool for turning. By adopting the above configuration, while ensuring reduced compression stress and adhesion in hard coatings that have become thicker, for turning with excellent wear resistance due to increased hardness and fracture resistance due to increased toughness The hard film-coated tool can be provided.

本願発明の旋削加工用の硬質膜被覆工具は、該第1硬質皮膜における非金属成分のN元素について、その1部をC元素、O元素で置換し、該非金属成分全体を1とし、原子%でC元素の含有量をx、O元素の含有量をyとしたとき、0<x≦10、0<y≦10、0<x+y≦10、N元素の含有量は1−x−y、であることが好ましい。また、該第2硬質皮膜における金属成分のTi元素について、その1部をSi元素で置換し、該金属成分全体を1としたとき、原子%でSi元素の含有量をk、としたとき、0<k≦20、Ti元素の含有量は1−h−k、であることが好ましい。   In the hard film-coated tool for turning of the present invention, the N element of the non-metallic component in the first hard film is partially replaced with C element and O element, and the whole non-metallic component is set to 1, atomic%. Where the content of the C element is x and the content of the O element is y, 0 <x ≦ 10, 0 <y ≦ 10, 0 <x + y ≦ 10, the content of the N element is 1-xy, It is preferable that Further, regarding the Ti element of the metal component in the second hard film, when 1 part thereof is substituted with the Si element and the entire metal component is 1, the content of the Si element in atomic% is k, It is preferable that 0 <k ≦ 20 and the content of Ti element is 1-hk.

本願発明によって、厚膜化した硬質皮膜における圧縮応力の低減と密着性を確保しつつ、高硬度化による耐摩耗性と、高靭性化による耐欠損性に優れた旋削加工用の硬質膜被覆工具を提供することができた。   Hard film coated tool for turning with excellent wear resistance due to high hardness and fracture resistance due to high toughness while ensuring reduction of compressive stress and adhesion in hard film thickened by the present invention Could be provided.

本願発明の硬質膜被覆工具における第1硬質皮膜の金属成分は、Al含有量を表すa値が35≦a≦65の範囲のとき、耐熱性、耐摩耗性が優れる。一方、a値が65%を超えて大きいと、皮膜の断面組織が微細化して残留圧縮応力が増大し密着性が劣化する不都合が生じる。Me成分として、例えばTiを選択することにより、皮膜の高硬度化に有効である。また、例えばSi、Bでは、固溶体を維持する含有量の範囲が1%から20%であることから、優れた耐熱性や潤滑特性を得られる。また、W、Nb、Crを含有することにより、皮膜の耐熱性、高硬度化の改善に有効である。イオン半径が0.041〜0.1nmの4a、5a、6a族の元素や、イオン半径が0.002〜0.04nmのSi、B等を含有した窒化物を被覆することが好ましい。
第1硬質皮膜の金属成分と非金属成分との比e/f値を0.85〜1.25、とすることにより、硬質皮膜の圧縮応力を最適な範囲にすることができ、高い密着性を得ることができる。また、硬質皮膜組織は高靭性を有する柱状結晶構造とすることができ、優れた欠損性と耐摩耗性を得ることができる。e/f値が0.85以上のとき、硬質皮膜の結晶格子歪を低減できるが、0.85未満になると、結晶格子歪が大きくなり、結晶格子縞の連続性が失われる現象や、硬質皮膜の断面組織が微細化し粒界欠陥が増大する。その結果、残留圧縮応力を増大して密着性が劣化する。例えば、切削工具用の硬質皮膜においては、この粒界欠陥が皮膜の密度低下や、被加工物を構成する元素の硬質皮膜内部への内向拡散を招き、硬質皮膜の硬度低下や耐欠損性を劣化させる。e/f値が1.25を超えると硬質皮膜は柱状結晶構造を有するが、結晶の粒界部に不純物を取り込みすくなる。この不純物は被覆処理を行う装置内部に残留する成分である。その結果、結晶粒間の接合強度が劣化し、硬質皮膜は外部からの衝撃によって容易に破壊される。本願発明の硬質皮膜は、0.85≦e/f≦1.25の範囲に制御されることにより、皮膜の残留圧縮応力は1.5〜5.0GPaの範囲になる。産業的には、e/f値を求めて硬質皮膜の残留圧縮応力を管理することが可能である。
The metal component of the first hard coating in the hard film-coated tool of the present invention is excellent in heat resistance and wear resistance when the a value representing the Al content is in the range of 35 ≦ a ≦ 65. On the other hand, if the value a is larger than 65%, the cross-sectional structure of the film becomes finer and the residual compressive stress increases and the adhesiveness deteriorates. Selecting, for example, Ti as the Me component is effective for increasing the hardness of the film. Further, for example, in Si and B, the content range for maintaining the solid solution is from 1% to 20%, so that excellent heat resistance and lubrication characteristics can be obtained. Moreover, containing W, Nb, and Cr is effective in improving the heat resistance and hardness of the coating. It is preferable to cover nitrides containing elements of groups 4a, 5a, 6a having an ionic radius of 0.041 to 0.1 nm, and Si, B having an ionic radius of 0.002 to 0.04 nm.
By setting the ratio e / f value of the metal component and the non-metal component of the first hard coating to 0.85 to 1.25, the compressive stress of the hard coating can be set to an optimum range, and high adhesion is achieved. Can be obtained. Further, the hard film structure can have a columnar crystal structure having high toughness, and excellent chipping and wear resistance can be obtained. When the e / f value is 0.85 or more, the crystal lattice strain of the hard coating can be reduced. However, when the e / f value is less than 0.85, the crystal lattice strain increases and the continuity of crystal lattice fringes is lost. The cross-sectional structure becomes finer and grain boundary defects increase. As a result, the residual compressive stress is increased and the adhesion is deteriorated. For example, in hard coatings for cutting tools, this grain boundary defect leads to a reduction in coating density and inward diffusion of the elements that make up the workpiece into the hard coating, reducing the hardness and fracture resistance of the hard coating. Deteriorate. When the e / f value exceeds 1.25, the hard coating has a columnar crystal structure, but impurities are likely to be taken into the crystal grain boundary. This impurity is a component remaining inside the apparatus that performs the coating process. As a result, the bonding strength between crystal grains deteriorates, and the hard coating is easily broken by an external impact. By controlling the hard coating of the present invention in the range of 0.85 ≦ e / f ≦ 1.25, the residual compressive stress of the coating is in the range of 1.5 to 5.0 GPa. Industrially, it is possible to determine the e / f value and manage the residual compressive stress of the hard coating.

第2硬質皮膜が、Ti、Bを含有する面心立方構造の窒化物であることにより、優れた耐溶着性を実現できる。第2硬質皮膜におけるB含有量を示すh値は1≦h≦30、である。これは、第2硬質皮膜を柱状組織構造とするために重要である。またB元素を含有させると、工具のすくい面の耐摩耗特性が向上する。切削初期において、Bは工具刃先がまだ低温である状態から酸化され、B含有酸化物を形成する。このB含有酸化物が、被加工物成分の硬質皮膜内部への拡散を抑制させる効果を発揮する。しかし、h値が30%を超えると、皮膜の組織が微細化する。また、BNの結晶が出現し硬度が低下し、皮膜の圧縮応力が増大して密着性が低下する欠点が現れる。h値は、1%程度でも効果が現れるが、1%未満では、汎用的な分析設備での検出が困難となるため、品質管理を行うことが難しくなる。そのため、分析装置にて検出可能な1%以上とした。
また、第2硬質皮膜の金属成分と非金属成分の比m/p値を0.85〜1.25に制御することにより、皮膜の圧縮応力を最適な範囲にすることができ、高い密着性を得ることができる。また、硬質皮膜組織は高靭性を有する柱状結晶構造とすることができ、優れた欠損性と耐摩耗性を得ることができる。第1硬質皮膜、第2硬質皮膜が面心立方構造であることにより、高硬度を有する硬質皮膜が得られる。また皮膜組織を柱状結晶に制御することによって、優れた欠損性と耐摩耗性を得ることができる。
When the second hard coating is a nitride having a face-centered cubic structure containing Ti and B, excellent welding resistance can be realized. The h value indicating the B content in the second hard coating is 1 ≦ h ≦ 30. This is important for making the second hard coating a columnar structure. Moreover, when B element is contained, the wear resistance of the rake face of the tool is improved. In the initial stage of cutting, B is oxidized from the state where the tool edge is still at a low temperature to form a B-containing oxide. This B-containing oxide exhibits the effect of suppressing the diffusion of workpiece components into the hard coating. However, when the h value exceeds 30%, the structure of the film becomes finer. In addition, BN crystals appear, the hardness decreases, the compressive stress of the film increases, and the drawback of decreasing adhesion appears. Even if the h value is about 1%, the effect appears, but if it is less than 1%, it becomes difficult to perform quality control because detection with a general-purpose analysis facility becomes difficult. Therefore, it was set to 1% or more that can be detected by the analyzer.
In addition, by controlling the ratio m / p value of the metal component and the non-metal component of the second hard coating to 0.85 to 1.25, the compressive stress of the coating can be adjusted to an optimum range, and high adhesion Can be obtained. Further, the hard film structure can have a columnar crystal structure having high toughness, and excellent chipping and wear resistance can be obtained. When the first hard film and the second hard film have a face-centered cubic structure, a hard film having high hardness can be obtained. Further, by controlling the film structure to columnar crystals, it is possible to obtain excellent chipping and wear resistance.

第1硬質皮膜を、0.85≦e/f≦1.25の範囲に制御するためには、成膜時の反応圧力を制御することが重要である。窒化物を得ために、窒素の反応圧力を3Pa〜8Paとする。より好ましくは3.5Pa〜7Paの範囲に制御する。反応圧力が3Pa未満では、基体に入射するイオンの運動エネルギーが抑制できず、それが結晶格子歪となって現れ、残留圧縮応力が抑制できなくなり、e/f値は0.85未満となる。8Paを超えた条件で成膜を行うと、プラズマ密度が低下し、入射するイオンの運動エネルギーが低下し、e/f値は1.25を超える。
第1硬質皮膜を成膜する際の条件として、パルス化されたバイアス電圧印加を負と正に振幅させて制御を行い、更に(200)面に強く配向させることで、硬質皮膜の圧縮応力を制御することが実現できる。そのためには、バイアス20〜100Vを負に、正の電圧を5〜10Vに制御すると実現できる。
第1硬質皮膜のIs/Ir値を1.5≦Is/Ir≦15、とするためには、バイアス電圧の制御が必要であり、バイアス電圧をパルス化させて印加させることが好ましい。バイアス電圧が20V未満では、Is/Ir値は大きくなる傾向にあり、圧縮応力は低減されるものの、硬質皮膜の硬度が低下し、耐摩耗性が劣化する。また、バイアス電圧をパルス化させて印加させることにより、成膜時にプラズマ中でイオン化された硬質皮膜構成元素の被処理物に到達する際の運動エネルギーを調整することが可能となる。バイアス電圧をパルス化させた場合特に重要なのは、パルス周波数の制御である。バイアス電圧をパルス化させて印加させると、(111)面、(200)面や(220)面のピーク強度を変化させることが可能となり、特に(111)面への結晶成長を抑制することによって、圧縮応力を抑制し密着性を高めることができる。
パルス周波数が5〜35kHzのときに、It/Ir値は0.6≦It/Ir≦1.5となり、このときの硬質皮膜の圧縮応力が2.0〜6.0GPaの最適な範囲に制御できる。パルス周波数が5kHzより低くなると、It/Ir値は1.5を超える。また、35kHzを超えると、イオンが被処理物に到達する際の運動エネルギーが低減できないため、It/Ir値は0.6未満になる。
In order to control the first hard film in the range of 0.85 ≦ e / f ≦ 1.25, it is important to control the reaction pressure during film formation. In order to obtain a nitride, the reaction pressure of nitrogen is set to 3 Pa to 8 Pa. More preferably, it is controlled in the range of 3.5 Pa to 7 Pa. When the reaction pressure is less than 3 Pa, the kinetic energy of ions incident on the substrate cannot be suppressed, which appears as crystal lattice strain, the residual compressive stress cannot be suppressed, and the e / f value is less than 0.85. When film formation is performed under conditions exceeding 8 Pa, the plasma density decreases, the kinetic energy of incident ions decreases, and the e / f value exceeds 1.25.
As a condition for forming the first hard coating, the pulsed bias voltage application is controlled by amplifying it negatively and positively, and by further orienting strongly in the (200) plane, the compressive stress of the hard coating is reduced. Control can be realized. This can be realized by controlling the bias 20 to 100V to be negative and the positive voltage to 5 to 10V.
In order to set the Is / Ir value of the first hard coating to 1.5 ≦ Is / Ir ≦ 15, it is necessary to control the bias voltage, and it is preferable to apply the pulsed bias voltage. When the bias voltage is less than 20V, the Is / Ir value tends to increase and the compressive stress is reduced, but the hardness of the hard coating is lowered and the wear resistance is deteriorated. Further, by applying the bias voltage in a pulsed manner, it is possible to adjust the kinetic energy when the hard film constituent elements ionized in the plasma at the time of film formation reach the object to be processed. The control of the pulse frequency is particularly important when the bias voltage is pulsed. When the bias voltage is applied in a pulsed manner, the peak intensity of the (111) plane, the (200) plane, and the (220) plane can be changed, particularly by suppressing crystal growth on the (111) plane. , Compressive stress can be suppressed and adhesion can be enhanced.
When the pulse frequency is 5 to 35 kHz, the It / Ir value is 0.6 ≦ It / Ir ≦ 1.5, and the compression stress of the hard coating at this time is controlled within the optimum range of 2.0 to 6.0 GPa. it can. When the pulse frequency is lower than 5 kHz, the It / Ir value exceeds 1.5. On the other hand, if it exceeds 35 kHz, the kinetic energy when ions reach the workpiece cannot be reduced, and the It / Ir value becomes less than 0.6.

第2硬質皮膜の成膜時に印加させるバイアス電圧は、第1硬質皮膜を成膜する際の条件と同様にパルス化させて行うと、基体に到達するBイオンの運動エネルギーが低く抑えられるため、TiNの結晶格子に取り込まれ、硬質皮膜はBを含む単一の結晶化された組織を有する。
一方、第2硬質皮膜を直流のバイアス電圧を印加させて成膜した場合、Bは、TiNの面心立方構造の格子に置換されるほかに、c−BN、h−BN、非晶質BNなどを含む。プラズマ中でBのイオンは、Tiなどに比べ軽元素であるため、高い運動エネルギーを有した状態で基体に到達し、様々な不安定な結合が生じるものと考えられる。硬質皮膜にh−BNのみを含む場合は、潤滑特性が向上し、すくい面摩耗抑制を実現できると期待されるが、h−BNを単独で含有させることは困難となる。c−BN等、他の結晶構造を有する物質と共存するようになるため、圧縮応力が増大する。特にc−BNを多く含む場合は、硬質皮膜の高硬度化が実現できるものの、圧縮応力が増大するため好ましくない。
When the bias voltage applied during the formation of the second hard film is pulsed in the same manner as the conditions for forming the first hard film, the kinetic energy of B ions reaching the substrate can be kept low. Incorporated into the crystal lattice of TiN, the hard coating has a single crystallized structure containing B.
On the other hand, when the second hard film is formed by applying a DC bias voltage, B is replaced by a lattice having a face-centered cubic structure of TiN, c-BN, h-BN, amorphous BN. Etc. Since ions of B in the plasma are lighter elements than Ti and the like, it is considered that the ions reach the substrate with high kinetic energy and various unstable bonds are generated. When the hard film contains only h-BN, it is expected that the lubrication characteristics are improved and the rake face wear can be suppressed, but it is difficult to contain h-BN alone. Since it comes to coexist with substances having other crystal structures such as c-BN, the compressive stress increases. In particular, when a large amount of c-BN is contained, the hardness of the hard coating can be increased, but the compressive stress increases, which is not preferable.

本願発明においては、面心立方構造を有する硬質皮膜において、(200)面に最も強く配向させることが必要である。その理由は、切削におけるせん断方向からの切削力に対する耐久性が優れるためである。一方、(111)面への配向が強くなると、圧縮応力が高くなり、硬質皮膜の密着性が低下し、その結果、耐欠損性や耐摩耗性が低下して不都合が生じる。そこで、第1硬質皮膜のIs/Ir値を、1.5≦Is/Ir≦15、It/Ir値を0.6≦It/Ir≦1.5に規定する。第1硬質皮膜を、1.5≦Is/Ir≦15、に制御すれば優れた耐摩耗性を実現でき、また、0.6≦It/Ir≦1.5、に制御すれば適正な残留圧縮応力の範囲に制御することができる。従って、厚膜化された皮膜が高い密着性を有しつつ、高硬度な皮膜を得ることができる。しかし、Is/Ir値が1.5未満、It/Ir値が0.6未満のときは、硬質皮膜の断面組織が微細化し、残留応力が増大する。そのため、耐摩耗性は優れるが、容易に皮膜剥離が発生する。特にIt/Ir値が0.6未満では、硬質皮膜の内部欠陥が増加する。また、It/Ir値が0.6未満のときは、たとえIs/Ir値が1.5≦Is/Ir≦15.0、であっても、(111)面のピーク強度が大きく出現する。このときの第1硬質皮膜の残留圧縮応力は5.0GPa程度となり基体と硬質皮膜の密着性は確保できても、柱状結晶粒界間の密着強度が劣化し、耐摩耗性が低下する。そこで、0.6≦It/Ir≦1.5に規定する。Is/Ir値が15を超えて大きく、It/Ir値が1.5を超えて大きいときは、残留応力は低減されるが、硬質皮膜の断面組織における粒界の接合強度が低下して密着性と耐摩耗性が劣化する。また、It/Ir値が1.5を超えると、皮膜は柱状結晶構造を有し低残留圧縮応力を得ることが可能であるが、柱状結晶の粒界における密着強度が低下し、皮膜表面から基体方向へほぼ垂直方向の亀裂破壊が発生しやすくなる。その結果、耐欠損性、耐摩耗性が改善されない。また、粒界に被加工物元素が拡散しやすくなる傾向にあり、機械的特性が劣化する。   In the present invention, it is necessary that the hard film having a face-centered cubic structure be oriented most strongly in the (200) plane. This is because the durability against cutting force from the shear direction in cutting is excellent. On the other hand, when the orientation to the (111) plane becomes strong, the compressive stress becomes high and the adhesion of the hard coating is lowered. As a result, the chipping resistance and wear resistance are lowered, resulting in inconvenience. Therefore, the Is / Ir value of the first hard coating is defined as 1.5 ≦ Is / Ir ≦ 15, and the It / Ir value is defined as 0.6 ≦ It / Ir ≦ 1.5. If the first hard coating is controlled to 1.5 ≦ Is / Ir ≦ 15, excellent wear resistance can be realized, and if it is controlled to 0.6 ≦ It / Ir ≦ 1.5, an appropriate residual can be achieved. It can be controlled within the range of compressive stress. Therefore, it is possible to obtain a high hardness film while the thick film has high adhesion. However, when the Is / Ir value is less than 1.5 and the It / Ir value is less than 0.6, the cross-sectional structure of the hard coating becomes finer and the residual stress increases. Therefore, although abrasion resistance is excellent, film peeling occurs easily. Particularly when the It / Ir value is less than 0.6, the internal defects of the hard coating increase. When the It / Ir value is less than 0.6, the peak intensity of the (111) plane appears greatly even if the Is / Ir value is 1.5 ≦ Is / Ir ≦ 15.0. At this time, the residual compressive stress of the first hard film is about 5.0 GPa, and even though the adhesion between the substrate and the hard film can be ensured, the adhesion strength between the columnar crystal grain boundaries deteriorates and the wear resistance decreases. Therefore, it is defined as 0.6 ≦ It / Ir ≦ 1.5. When the Is / Ir value is larger than 15 and the It / Ir value is larger than 1.5, the residual stress is reduced, but the bonding strength of the grain boundary in the cross-sectional structure of the hard film is lowered and the adhesion is reduced. And wear resistance deteriorate. When the It / Ir value exceeds 1.5, the film has a columnar crystal structure and a low residual compressive stress can be obtained. However, the adhesion strength at the grain boundaries of the columnar crystals decreases, and the film surface Crack fracture in a direction substantially perpendicular to the substrate direction tends to occur. As a result, chipping resistance and wear resistance are not improved. In addition, the workpiece element tends to diffuse into the grain boundary, and the mechanical characteristics are deteriorated.

本願発明の硬質皮膜について、d2/d1値を、1.01≦d2/d1≦1.05とすることにより、第1硬質皮膜と第2硬質皮膜との密着性が改善され、耐摩耗性が優れる。皮膜間の密着性を高めるには皮膜間の結晶格子歪を低減させる必要がある。この歪を低減させるためには、皮膜間の(200)面の面間隔の差を小さくしてミスフィットを低減させることにより、高い密着性が得られる。そこで、d2/d1値を、1.01≦d2/d1≦1.05範囲に規定することで基体との密着性が損なわれることなく耐摩耗性及び耐欠損性に優れた硬質皮膜が得られる。d2/d1値が1.01未満では、硬質皮膜全体の残留圧縮応力が増大するため、基体との密着性が劣化する。1.05を超えると、皮膜界面の内部欠陥が多くなり、皮膜間の密着性が損なわれるだけでなく、硬質皮膜全体の残留圧縮応力が増大し、基体との密着性が低下する。   For the hard coating of the present invention, the d2 / d1 value is 1.01 ≦ d2 / d1 ≦ 1.05, whereby the adhesion between the first hard coating and the second hard coating is improved, and the wear resistance is improved. Excellent. In order to improve the adhesion between the films, it is necessary to reduce the crystal lattice strain between the films. In order to reduce this strain, high adhesion can be obtained by reducing the difference in the (200) plane spacing between the films to reduce misfit. Therefore, by defining the d2 / d1 value in the range of 1.01 ≦ d2 / d1 ≦ 1.05, a hard coating excellent in wear resistance and fracture resistance can be obtained without impairing adhesion to the substrate. . If the d2 / d1 value is less than 1.01, the residual compressive stress of the entire hard coating increases, and the adhesion to the substrate deteriorates. If it exceeds 1.05, the number of internal defects at the film interface increases, and not only the adhesion between the films is impaired, but also the residual compressive stress of the entire hard film increases and the adhesion with the substrate decreases.

本願発明の硬質皮膜について、第2硬質皮膜は柱状組織構造を有し、結晶粒成長方向に対して界面を形成することなく境界領域で結晶粒が連続的に成長した硬質皮膜である。ここで、柱状組織構造とは、膜厚方向に伸びた縦長成長結晶組織である。該硬質皮膜は多結晶材料であるが、結晶粒1つ1つの単位で捉えれば、単結晶材料の成長に類似した形態となっている。柱状組織構造の結晶粒は結晶粒成長方向に対してB成分に組成差を有する組成変調構造を有していることである。このとき、この組成変調構造における組成変調境界部では結晶格子縞が連続していることが好ましい。第2硬質皮膜がB成分の組成変調構造を有し、残留圧縮応力を制御することによって、皮膜の機械的強度が高まる。例えば、B含有量の富化層では、比較的軟質な層が形成される。この軟質層が、他の比較的硬質な層との層間に存在すると緩衝効果を示し、硬質皮膜全体として残留圧縮応力を緩和するようになる。更に、B成分の潤滑特性によって、潤滑性を有する硬質皮膜を得ることができる。しかし、この時の好ましいB成分の組成差は、最大でも10%である。より好ましくは、0.1%以上、7%以下の範囲に制御することである。B成分の組成変調構造とするには、B含有量の異なるターゲットを用いて、パルスバイアスを印加しながら成膜を行うことで実現できる。B含有量が組成差を有する部分は組成変調構造のようになり、層間は結晶格子縞が連続して成長する。これは例えば、日本電子製JEM−2010F型の電界放出型透過型電子顕微鏡(以下、TEMと記す。)を用いて、加速電圧20kVの条件で柱状結晶粒を観察することによって確認できる。
硬質皮膜全体の膜厚を5μm以上とすることにより、優れた耐摩耗性が得られる。一方、30μm以上では、硬質皮膜は圧縮応力が高くなり、基体との密着性が劣化するため、30μm以下であるのが好ましい。また第1硬質皮膜の膜厚は第2硬質皮膜よりも厚く、より好ましくは第2硬質皮膜の膜厚は硬質皮膜全体の膜厚に対し、50%以下であることが好適である。
Regarding the hard coating of the present invention, the second hard coating has a columnar structure and is a hard coating in which crystal grains are continuously grown in the boundary region without forming an interface with respect to the crystal grain growth direction. Here, the columnar structure is a vertically grown crystal structure extending in the film thickness direction. The hard coating is a polycrystalline material, but has a form similar to the growth of a single crystal material if it is grasped in units of crystal grains. The crystal grain of the columnar structure has a composition modulation structure having a composition difference in the B component with respect to the crystal grain growth direction. At this time, it is preferable that crystal lattice fringes are continuous at the composition modulation boundary in the composition modulation structure. The second hard film has a B component composition modulation structure, and the mechanical strength of the film is increased by controlling the residual compressive stress. For example, a B layer enriched layer forms a relatively soft layer. When this soft layer is present between other relatively hard layers, a buffering effect is exhibited, and the residual compressive stress is relieved as the entire hard film. Further, a hard film having lubricity can be obtained by the lubrication characteristics of the B component. However, the preferable composition difference of the B component at this time is 10% at the maximum. More preferably, it is controlled within a range of 0.1% to 7%. The composition modulation structure of the B component can be realized by performing film formation while applying a pulse bias using targets having different B contents. A portion where the B content has a composition difference becomes a composition modulation structure, and crystal lattice fringes continuously grow between the layers. This can be confirmed, for example, by observing the columnar crystal grains under the condition of an acceleration voltage of 20 kV using a JEM-2010F type field emission transmission electron microscope (hereinafter referred to as TEM) manufactured by JEOL.
By setting the film thickness of the entire hard coating to 5 μm or more, excellent wear resistance can be obtained. On the other hand, when the thickness is 30 μm or more, the hard coating film has a high compressive stress and deteriorates the adhesion to the substrate. Further, the film thickness of the first hard film is thicker than that of the second hard film, and more preferably, the film thickness of the second hard film is 50% or less with respect to the film thickness of the entire hard film.

第1硬質皮膜における非金属成分のN元素について、その1部をC元素、O元素で置換し、原子%でC元素の含有量をx値、O元素の含有量をy値としたとき、0<x≦10、0<y≦10、0<x+y≦10の範囲にすることが好ましい。これにより、高硬度、優れた耐酸化特性、密着性及び潤滑特性を有する硬質皮膜が得られる。C元素、O元素を含有させるときは、皮膜の機械的強度劣化を回避するために、x値とy値との和を10%以下にすることで、優れた耐溶着性と摺動性を有する硬質皮膜が得られる。より好ましくは、C元素、O元素が単独で含有する場合は、2%〜10%とすることである。しかし、x値、y値が10%を超えると皮膜の結晶組織が微細化し、結晶粒界にける欠陥が増大する。その結果、たとえ硬質皮膜の潤滑特性が改善されても、残留圧縮応力が増大するため密着性や耐欠損性が低下する欠点が現れる。第1硬質皮膜にC元素、O元素を含有させる場合には、炭化水素系ガスや酸素含有ガスを使用することが好ましい。ガスを導入して成膜を行う場合、Nガスと併せた全圧が、3〜8Paの範囲にすることが好ましい。或いは、ターゲット蒸発源にC元素、O元素を含有させることも可能である。 For the N element of the non-metallic component in the first hard film, when 1 part thereof is replaced with the C element and the O element, the content of the C element in atomic% is the x value and the content of the O element is the y value. It is preferable that 0 <x ≦ 10, 0 <y ≦ 10, and 0 <x + y ≦ 10. As a result, a hard coating having high hardness, excellent oxidation resistance, adhesion and lubrication can be obtained. When C element and O element are contained, in order to avoid deterioration of the mechanical strength of the film, the sum of the x value and the y value is 10% or less, so that excellent welding resistance and slidability are obtained. The hard film which has is obtained. More preferably, when the C element and the O element are contained alone, the content is made 2% to 10%. However, if the x value and y value exceed 10%, the crystal structure of the film becomes finer, and defects at the grain boundaries increase. As a result, even if the lubrication characteristics of the hard coating are improved, the residual compressive stress increases, so that there is a drawback that the adhesion and fracture resistance are lowered. When C element and O element are contained in the first hard film, it is preferable to use hydrocarbon-based gas or oxygen-containing gas. When film formation is performed by introducing a gas, the total pressure combined with the N 2 gas is preferably in the range of 3 to 8 Pa. Alternatively, the target evaporation source can contain C element and O element.

第2硬質皮膜における金属成分のTi元素について、その1部をSi元素で置換し、該金属成分全体を1としたとき、原子%でSi元素の含有量をkとしたとき、0<k≦20、とすることにより、耐摩耗性が向上する。第2硬質皮膜の皮膜組織を柱状組織構造とするため、k値は20%以下に制御することが好ましい。Siを含有させる場合は、TiNの単一な結晶質組織が固溶体となるように制御することで、例えば、切削工具のすくい面における耐摩耗性に優れた硬質皮膜を得られる。一方、k値が20%を超えると皮膜組織が微細化し、残留圧縮応力が増大し、密着性を低下させる欠点が現れる。また、皮膜組織は、TiNの結晶質組織、SiN組成系の結晶質組織や非晶質組織といった形で、様々な組織が混在する。その結果、結晶粒界が増大し、結晶格子歪が発生して残留圧縮応力が増大する。   With respect to the Ti element of the metal component in the second hard film, when 1 part of the Ti element is substituted with the Si element and the entire metal component is 1, the content of Si element in atomic% is k, and 0 <k ≦ By setting it to 20, the wear resistance is improved. In order to make the film structure of the second hard film a columnar structure, the k value is preferably controlled to 20% or less. When Si is contained, by controlling so that the single crystalline structure of TiN becomes a solid solution, for example, a hard film having excellent wear resistance on the rake face of the cutting tool can be obtained. On the other hand, if the k value exceeds 20%, the film structure becomes finer, the residual compressive stress increases, and the disadvantage of decreasing the adhesion appears. Further, the film structure includes various structures such as a TiN crystalline structure, a SiN composition crystalline structure, and an amorphous structure. As a result, crystal grain boundaries increase, crystal lattice distortion occurs, and residual compressive stress increases.

本願発明の硬質皮膜の組成は、例えば、日本電子製のJXA8500F形EPMA分析装置を用いて測定できる。硬質皮膜の垂直断面もしくは膜断面を17度斜めに傾けて研磨した傾斜断面において、硬質皮膜部を基体の影響を受けない位置から行い、加速電圧10kV、照射電流1.0μA、プローブ径を10μm程度に設定するとにより可能である。硬質皮膜表面から測定する場合は、プローブ径を50μm程度に設定することが好ましい。また、C元素やO元素を含有させたときは、2%未満になると分析での検出が困難となる。硬質皮膜の膜厚は、例えば、日立製作所製S−4200型電解放射走査型電子顕微鏡を用いて、垂直方向の破断から測定できる。
硬質皮膜のX線回折における(111)、(200)、(220)面のピーク強度比の測定は、例えば、理学電気製RU−200BH型X線回折装置を用いて2θ−θ走査法により測定できる。2θ(度)の範囲は、10〜145度、X線源はλ値が0.15405nmのCuKα1線を用い、バックグランドノイズは装置に内蔵されたソフトにより除去した。測定結果は、検出された2θのピーク位置が、結晶構造が面心立方構造であるTiNのX線回折パターン(JCPDSファイル番号38−1420)に略一致したので、その(111)、(200)、(220)ピークの強度を測定した。ピーク強度は、各指数面のピークトップの最大値をピーク強度し、それを用いてピーク強度比を求めた。更に、面間隔は、上記(200)面を示すピーク位置の数値を適用した。また、CrNがベースとなるような硬質皮膜の場合も同様にして、ピーク強度を測定した。
本願発明の硬質皮膜における残留圧縮応力は以下に示す曲率測定法で算出した。即ち、ヤング率とポアッソン比が既知となっている基体を所定の形状に加工した試験片を用い、その表面に被覆を行うと、硬質皮膜中に発生する残留圧縮応力により、被覆された試験片がたわみ変形する。そのたわみ変形量を求め、化1を用いて、硬質皮膜全体の残留圧縮応力σ値を算出した。
The composition of the hard coating of the present invention can be measured, for example, using a JXA8500F type EPMA analyzer manufactured by JEOL. In the vertical section of the hard coating or the inclined section polished by tilting the film cross section at 17 degrees, the hard coating is performed from a position not affected by the substrate, the acceleration voltage is 10 kV, the irradiation current is 1.0 μA, and the probe diameter is about 10 μm. It is possible by setting to. When measuring from the surface of the hard coating, the probe diameter is preferably set to about 50 μm. Moreover, when C element and O element are contained, if it is less than 2%, detection by analysis becomes difficult. The film thickness of the hard coating can be measured from a vertical break using, for example, an S-4200 type electrolytic emission scanning electron microscope manufactured by Hitachi, Ltd.
Measurement of the peak intensity ratio of the (111), (200), (220) planes in the X-ray diffraction of the hard coating is measured by, for example, 2θ-θ scanning method using a RU-200BH X-ray diffractometer manufactured by Rigaku Corporation it can. The range of 2θ (degrees) was 10 to 145 degrees, the X-ray source used was a CuKα1 line having a λ value of 0.15405 nm, and background noise was removed by software built in the apparatus. As a result of the measurement, the detected 2θ peak position substantially coincided with the X-ray diffraction pattern (JCPDS file number 38-1420) of TiN whose crystal structure is a face-centered cubic structure. , (220) peak intensity was measured. For the peak intensity, the maximum value of the peak top of each index surface was used as the peak intensity, and the peak intensity ratio was determined using the peak intensity. Furthermore, the numerical value of the peak position which shows the said (200) plane was applied to the surface space | interval. Similarly, the peak intensity was measured in the case of a hard film based on CrN.
The residual compressive stress in the hard coating of the present invention was calculated by the curvature measurement method shown below. That is, when a test piece obtained by processing a base having a known Young's modulus and Poisson's ratio into a predetermined shape is coated on the surface, the test piece is coated by the residual compressive stress generated in the hard coating. Will bend and deform. The amount of deflection deformation was determined, and the residual compressive stress σ value of the entire hard coating was calculated using Chemical Formula 1.

Figure 2010120100
Figure 2010120100

ここで、Es値(GPa)は、試験片に使用した基体のヤング率、D値(mm)は試験片の厚み、δ値(μm)は被覆前後で生じる試験片のたわみ量、l値(mm)は被覆によってたわみが生じた試験片の長さ方向端面から、最大たわみ部までの長さ、νs値は試験片に使用した基体のポアッソン比、d(μm)は試験片表面に被覆した硬質皮膜の膜厚である。また、試験片材料は、超硬合金材料が、測定数値のばらつきが少なく適している。試験片形状は、短冊型の形状が望ましく、例えば8mm幅、25mm長さ、0.5〜1.5mm厚さの形状を使用すると、測定数値のばらつきが少ない。試験片の面積の大きい上下面について、平行度±0.1mmになるよう、鏡面研磨を施した後、600〜1000℃の真空中で熱処理を行い、試験片に用いる材料の、特に表面部分の歪を除去させる。この歪をある程度除去しなければ、得られる残留圧縮応力の値にばらつきが発生する。試験片面積の大きい、鏡面加工された一面のたわみ変形量を被覆前に測定した後、その面に被覆を行い、再度、得られた被覆試験片のたわみ量を測定する。被覆前後のたわみ量と、被覆によってたわみが生じた試験片の長さ方向端面から、最大たわみ部までの長さ、および被覆した硬質皮膜の膜厚を測定し、その数値を化1に代入すれば、硬質皮膜の組成や、成膜条件が変化しても、また、組成変調構造を有していても、本測定方法により圧縮応力の値を算出することが可能である。   Here, the Es value (GPa) is the Young's modulus of the substrate used for the test piece, the D value (mm) is the thickness of the test piece, the δ value (μm) is the amount of deflection of the test piece before and after coating, and the l value ( mm) is the length from the end surface in the longitudinal direction of the test piece where the deflection is caused by the coating to the maximum deflection part, νs value is the Poisson's ratio of the substrate used for the test piece, and d (μm) is coated on the surface of the test piece. It is the film thickness of the hard coating. In addition, as a specimen material, a cemented carbide material is suitable with little variation in measurement values. The shape of the test piece is preferably a strip shape. For example, when a shape having a width of 8 mm, a length of 25 mm, and a thickness of 0.5 to 1.5 mm is used, variation in measured numerical values is small. The upper and lower surfaces having a large area of the test piece are mirror-polished so that the parallelism is ± 0.1 mm, and then heat-treated in a vacuum of 600 to 1000 ° C., and particularly the surface portion of the material used for the test piece. Remove distortion. If this distortion is not removed to some extent, the resulting residual compressive stress varies. After measuring the deflection deformation amount of one mirror-finished surface having a large test piece area before coating, the surface is coated, and the deflection amount of the obtained coated test piece is measured again. Measure the amount of deflection before and after coating, the length from the end surface in the length direction of the test piece where the deflection occurred due to coating, to the maximum deflection, and the thickness of the coated hard coating. For example, even if the composition of the hard coating, the film forming conditions change, or the composition has a modulation structure, the value of the compressive stress can be calculated by this measurement method.

硬質皮膜被覆工具は、基体に炭化タングステン基超硬合金、高速度工具鋼基体、サーメット等を用いると、より耐摩耗性と靱性のバランスが最適化される。ただし、高速度工具鋼を基体として用いる場合は、その熱処理特性を考慮し500〜550℃の範囲で被覆することが好ましい。このような比較的低温で成膜する場合は、印加させるバイアス電圧や成膜時の反応圧力を適宜最適化させる。成膜方法としては、パルス化されたバイアス電圧が印加可能で、圧縮応力が付与される成膜方式が好ましい。アークイオンプレーティング(以下、AIPと記す。)法、スパッタリング法等のイオンプレーティング方式等が好ましい。適切な製造条件を適用すれば、各々の方式が一つの設備に設置された複合装置を用いてもよい。本願発明を以下の実施例により更に詳細に説明する。   When the hard coating tool is made of tungsten carbide base cemented carbide, high-speed tool steel substrate, cermet, or the like, the balance between wear resistance and toughness is further optimized. However, when high-speed tool steel is used as the substrate, it is preferable to coat in the range of 500 to 550 ° C. in consideration of its heat treatment characteristics. When the film is formed at such a relatively low temperature, the bias voltage to be applied and the reaction pressure at the time of film formation are appropriately optimized. As a film forming method, a film forming method in which a pulsed bias voltage can be applied and compressive stress is applied is preferable. An ion plating method such as an arc ion plating (hereinafter referred to as AIP) method or a sputtering method is preferred. If appropriate manufacturing conditions are applied, a composite apparatus in which each method is installed in one facility may be used. The present invention will be described in more detail by the following examples.

残留圧縮応力測定が行える試験片、旋削用のインサート形状の超硬合金製基体表面に、本願発明の硬質皮膜を被覆して、本発明例1を作成した。本発明例1は、AIP装置を用いて、金属成分のみの組成が原子%で、Ti:50%、Al:50%の(TiAl)N膜を6μm膜厚、その後、金属成分のみの組成が、Ti:90%、B:10%の(TiB)N膜を6μmの膜厚で成膜し、総膜厚が12μmとなるようにした。成膜温度は550℃、反応圧力は3.5Paとし、初期の(TiAl)N膜は直流50Vのバイアス電圧で1μm成膜した後、パルス化させたバイアス電圧を印加した。パルス周波数は10kHz、正のバイアス電圧を5Vに設定した。(TiAl)N膜を成膜後、(TiB)N膜も(TiAl)Nと同条件にて成膜した。蒸発源は、各種合金製ターゲットを選択して用い、窒化物、炭窒化物、酸窒化物、酸炭窒化物とするために窒素、酸素、アセチレンなどの炭化水素系のガスを単独、もしくは、混合させて成膜時に導入させて作成した。本発明例1の製膜条件を標準として、硬質皮膜の膜厚、組成、X線回折ピーク強度、ならびに残留応力を変化させた本発明例2〜35と比較例36〜52を作製した。
作製した試料の詳細と、硬質皮膜組成、硬質皮膜の製造条件、残留圧縮応力の測定値や被覆したインサートの切削試験の評価結果を表1、2、3に示す。また、TEMによる皮膜断面観察の結果、本発明例における第2硬質皮膜は全て柱状組織構造を有し、柱状組織の結晶粒は結晶粒成長方向に対してB成分に組成差を有する組成変調構造を有していることを確認した。
Example 1 of the present invention was prepared by coating a test piece capable of measuring residual compressive stress and the surface of a cemented carbide substrate having an insert shape for turning with the hard coating of the present invention. Example 1 of the present invention uses an AIP apparatus, the composition of only the metal component is atomic%, the Ti: 50%, Al: 50% (TiAl) N film is 6 μm thick, and then the composition of only the metal component A (TiB) N film of Ti: 90% and B: 10% was formed to a film thickness of 6 μm so that the total film thickness was 12 μm. The deposition temperature was 550 ° C., the reaction pressure was 3.5 Pa, and the initial (TiAl) N film was deposited with a bias voltage of DC 50V to 1 μm, and then a pulsed bias voltage was applied. The pulse frequency was set to 10 kHz, and the positive bias voltage was set to 5V. After the (TiAl) N film was formed, the (TiB) N film was also formed under the same conditions as (TiAl) N. The evaporation source is selected from various alloy targets and used as a nitride, carbonitride, oxynitride, oxycarbonitride alone, or a hydrocarbon gas such as nitrogen, oxygen, acetylene, or It was mixed and introduced during film formation. Invention Examples 2 to 35 and Comparative Examples 36 to 52 in which the film thickness, composition, X-ray diffraction peak intensity, and residual stress of the hard coating were changed using the film forming conditions of Invention Example 1 as a standard were prepared.
Tables 1, 2 and 3 show the details of the prepared samples, the hard coating composition, the manufacturing conditions of the hard coating, the measured values of the residual compressive stress, and the evaluation results of the coated insert cutting test. Further, as a result of TEM film cross-sectional observation, all of the second hard films in the examples of the present invention have a columnar structure, and the crystal grains of the columnar structure have a compositional difference in the B component with respect to the crystal grain growth direction. It was confirmed that it has.

Figure 2010120100
Figure 2010120100

Figure 2010120100
Figure 2010120100

Figure 2010120100
Figure 2010120100

作製した旋削用インサートを刃先交換式バイトに取り付け、以下の条件で旋削加工試験を行い、残留圧縮応力を有する硬質皮膜における耐摩耗性、耐欠損性、密着性の優劣を確認した。切削評価に使用したインサートは、汎用的なCNMG120408形状を用い、超硬合金を基体として、JIS規格におけるM20種相当でHRA91を使用した。旋削加工を行うに当たり、チップブレーカ付き、すくい角が1度の特殊形状のインサートを使用した。評価方法は、切削距離5m時に発生する硬質皮膜被覆インサートの逃げ面、すくい面に発生する摩耗を、光学顕微鏡で50倍に拡大して観察した。更に切削を継続し、10μm以上の微小チッピングを含む欠損が発生した時点、欠損がない場合は、逃げ面摩耗幅のVBmax値が0.3mmに到達した時点を工具寿命とし、この時の切削距離(m)によって性能を評価した。切削途中の刃先の損傷状態は、適宜観察を行った。
(試験条件)
切削方法:長手方向連続切削
被削材形状:直径160mm、長さ600mmの丸棒材
被削材:S53C、HB260、調質材
軸方向切込み量:2.0mm
切削速度:220m/分
1回転あたりの送り量:0.4mm/回転
切削油:なし
The produced turning insert was attached to a blade-type replaceable cutting tool, and a turning test was performed under the following conditions to confirm the superiority or inferiority of wear resistance, fracture resistance, and adhesion in a hard film having residual compressive stress. The insert used for the cutting evaluation uses a general-purpose CNMG120408 shape, using cemented carbide as a base, and HRA91 corresponding to M20 type in the JIS standard. In turning, a special insert with a chip breaker and a rake angle of 1 degree was used. In the evaluation method, the abrasion generated on the flank and rake face of the hard film-coated insert generated at a cutting distance of 5 m was observed with an optical microscope at a magnification of 50 times. Further, when cutting was continued and a defect including micro chipping of 10 μm or more occurred, or when there was no defect, the tool life was defined as the time when the VBmax value of the flank wear width reached 0.3 mm, and the cutting distance at this time The performance was evaluated by (m). The damage state of the cutting edge during cutting was appropriately observed.
(Test conditions)
Cutting method: Continuous cutting in the longitudinal direction Work material shape: Round bar material with a diameter of 160 mm and a length of 600 mm Work material: S53C, HB260, tempered material Axial depth of cut: 2.0 mm
Cutting speed: 220 m / min Feed rate per rotation: 0.4 mm / rotation Cutting oil: None

本発明例1〜5、比較例36、37は、硬質皮膜の膜厚の影響を見るために作成した。膜厚は被覆時間により調節した。第1硬質皮膜と第2硬質皮膜の比は1:1として全体の膜厚のみを変化させた。硬質皮膜の膜厚が厚くなに従って残留圧縮応力は増大した。本発明例1〜5に示す総膜厚が5μm以上の有するものは、耐摩耗性に優れた。いずれの試料についても、被加工物成分の刃先への溶着の発生はなく、第2硬質皮膜の(TiB)Nは、クレータ摩耗、耐溶着性に対し、大きな効果を持つものと考えられた。本発明例1の総膜厚は12μm、残留圧縮応力値は1.6GPaであり、工具寿命は24mと満足のいく結果を得た。切削時間5分経過時の刃先の摩耗状態を確認した結果、逃げ面摩耗量は0.088mmと少なく耐摩耗性に優れていた。切削途中の刃先の損傷状態を確認した所、切刃近傍における硬質皮膜の脱落、剥離、チッピング等は観察されず、正常摩耗を呈していた。パルス化されたバイアス電圧印加して成膜を行った本発明例は、工具寿命が長く優れた結果であった。一方、比較例36の総膜厚は40μmであり、残留圧縮応力は6.8GPaであり、本発明例1〜5に対して、工具寿命が劣った。比較例36は、切削前に刃先エッジ部で微細な皮膜破壊が観察された。切削途中の刃先エッジ部の損傷状態を確認したところ、皮膜破壊が8μm以上の幅に拡大しており、この破壊部分から欠損に至った。厚膜化により残留圧縮応力が増大したためである。比較例37の総膜厚は4μmであり、1.6GPaと低い残留圧縮応力を有していた。しかし、アブレッシブ摩耗が劣ったため工具寿命は短かった。
本発明例6、7は、第1硬質皮膜、第2硬質皮膜の膜厚比の影響を見るために作成した。本発明例6に示す様に、第1硬質皮膜が厚くすることによって、本発明例1に比して工具寿命が優れた。しかし、本発明例6、7は、(TiB)Nの第2硬質皮膜が夫々1μm、3μmと薄く、切削途中でクレータ摩耗が発生した。クレータ摩耗の進行によって刃先強度が失われ、欠損に至った。再現性確認のために、総膜厚を12μmとし、第2硬質皮膜を0.3μmに被覆したものについても切削評価を行ったが、同様にクレータ摩耗が主体に進行した。
本発明例8〜17、比較例38、39は、第1硬質皮膜の組成の影響を見るために作成した。被覆用ターゲット材組成を変化させて作成した。工具寿命の最も優れた本発明例8は、Wを10%含有し、本発明例1に比して、約1.3倍優れた。切削距離5m時の刃先状態を確認した所、刃先エッジ部においてチッピングは確認されず、逃げ面摩耗が0.034mmであった。切削部位における被加工物の溶着もほとんど発生しておらず、正常摩耗の進行のみで寿命に至った。溶着が発生しなかった理由は、最外皮膜の第2硬質皮膜にBを含有し、潤滑特性が優れたためである。本発明例9はNbを10%含有し、本発明例10、11はCr、Siを含有したため、本発明例1に比して優れた。本発明例12に示すように、第1硬質皮膜にBを含有させても工具寿命は優れるが、第2硬質皮膜が摩耗した後に露出する第1硬質皮膜の部分で溶着が若干発生した。第1硬質皮膜中にBを含有することで、溶着やクレータ摩耗に対し、格段な効果を期待したが、本発明例1の工具寿命に届かなかった。本発明例8〜17は、第1硬質皮膜がAlと4a、5a、6a族元素、Si、Bから選択された元素の窒化物の硬質皮膜であるため、皮膜の耐熱性、硬度が格段に高められた。一方、比較例38は、Al含有量が75%の皮膜であり、切削初期から溶着現象や、工具逃げ面のアブレッシブ摩耗が進行した。皮膜断面の組織観察では、微細化していた。このため、残留圧縮応力が増大し密着性の劣化が考えられる。また、皮膜硬度は20GPaとなり、硬度低下が摩耗の早期進行をもたらしたものと考えられた。比較例39も皮膜断面の組織観察を行い、同様の微細化を確認した。
Invention Examples 1 to 5 and Comparative Examples 36 and 37 were prepared in order to see the influence of the film thickness of the hard coating. The film thickness was adjusted by the coating time. The ratio between the first hard film and the second hard film was 1: 1, and only the entire film thickness was changed. The residual compressive stress increased as the thickness of the hard coating increased. What the total film thickness shown to this invention examples 1-5 has 5 micrometers or more was excellent in abrasion resistance. In any of the samples, there was no occurrence of welding of the workpiece components to the cutting edge, and (TiB) N of the second hard coating was considered to have a great effect on crater wear and welding resistance. The total film thickness of Invention Example 1 was 12 μm, the residual compressive stress value was 1.6 GPa, and the tool life was 24 m. As a result of confirming the wear state of the blade edge after the cutting time of 5 minutes, the flank wear amount was as small as 0.088 mm and was excellent in wear resistance. When the damaged state of the cutting edge was confirmed during cutting, the hard coating was not dropped, peeled off, chipped, or the like in the vicinity of the cutting edge, and normal wear was exhibited. The example of the present invention in which film formation was performed by applying a pulsed bias voltage had a long tool life and excellent results. On the other hand, the total film thickness of Comparative Example 36 was 40 μm, the residual compressive stress was 6.8 GPa, and the tool life was inferior to Invention Examples 1-5. In Comparative Example 36, fine film breakage was observed at the edge of the blade edge before cutting. When the damage state of the edge part of the cutting edge during the cutting was confirmed, the film breakage expanded to a width of 8 μm or more, and this broken part led to a defect. This is because the residual compressive stress is increased by increasing the film thickness. The total film thickness of Comparative Example 37 was 4 μm and had a low residual compressive stress of 1.6 GPa. However, the tool life was short due to inferior abrasive wear.
Invention Examples 6 and 7 were prepared in order to observe the influence of the film thickness ratio of the first hard film and the second hard film. As shown in Invention Example 6, the tool life was superior to Invention Example 1 by increasing the thickness of the first hard coating. However, in Invention Examples 6 and 7, the second hard coating of (TiB) N was as thin as 1 μm and 3 μm, respectively, and crater wear occurred during cutting. The blade edge strength was lost due to the progress of crater wear, leading to defects. In order to confirm reproducibility, cutting evaluation was also performed on a film having a total film thickness of 12 μm and a second hard film coated to 0.3 μm. Similarly, crater wear mainly proceeded.
Invention Examples 8 to 17 and Comparative Examples 38 and 39 were prepared in order to observe the influence of the composition of the first hard film. It was prepared by changing the composition of the target material for coating. Invention Example 8, which had the best tool life, contained 10% W, and was approximately 1.3 times better than Invention Example 1. When the cutting edge state was confirmed when the cutting distance was 5 m, chipping was not confirmed at the cutting edge part, and the flank wear was 0.034 mm. There was almost no welding of the workpiece at the cutting site, and the life was reached only by the progress of normal wear. The reason why welding did not occur is that the outermost second hard film contains B and has excellent lubrication characteristics. Invention Example 9 contained 10% Nb, and Invention Examples 10 and 11 contained Cr and Si, and thus were superior to Invention Example 1. As shown in Example 12 of the present invention, even when B is contained in the first hard coating, the tool life is excellent, but welding slightly occurs at the portion of the first hard coating exposed after the second hard coating is worn. By containing B in the first hard film, a remarkable effect was expected for welding and crater wear, but the tool life of Example 1 of the present invention was not reached. In Invention Examples 8 to 17, since the first hard film is a hard film of nitride of an element selected from Al, elements 4a, 5a, and 6a, Si, and B, the heat resistance and hardness of the film are remarkably high. Increased. On the other hand, Comparative Example 38 was a film having an Al content of 75%, and the welding phenomenon and the abrasive wear of the tool flank progressed from the beginning of cutting. In the observation of the structure of the cross section of the film, it was miniaturized. For this reason, the residual compressive stress increases, and the adhesiveness is considered to deteriorate. Further, the film hardness was 20 GPa, and it was considered that the decrease in hardness caused early progress of wear. In Comparative Example 39, the structure of the cross section of the film was observed, and the same refinement was confirmed.

本発明例18〜21、比較例40、41は、第2硬質皮膜の組成の影響を見るために作成した。被覆用ターゲット材の組成を変化させて作成した。本発明例18、19は、第2硬質皮膜のB含有量を夫々1%、25%とした。本発明例20のSi含有量は20%、本発明例21は、BとSiを含有させた。これらの皮膜断面の組織観察をした所、何れも柱状組織であることが確認された。一方、第2硬質皮膜のB含有量が40%の比較例40、Si含有量が30%の比較例41について、第2硬質皮膜の断面組織を観察して、何れも微細化組織を確認した。B、Si含有量が多くなると、切削初期から硬質皮膜の剥離とクレータ摩耗が発生した。組織形態の差が切削性能の優劣をもたらすものと考えた。
本発明例22、23、比較例42、43は、第1硬質皮膜に含有されるO、Cの影響を見るために作成した。酸素、炭化系水素を反応ガスの1部として用いた。本発明例22、23の工具寿命は、O、Cを含有しない本発明例1に比して10%程度優れた。また、切削距離15m時の刃先の損傷状態は、本発明例1に比して溶着が少ない傾向にあった。特にすくい面のクレータ摩耗の発生も低減していた。クレータ摩耗は、切削温度上昇に伴う化学反応によって発生することより、O、Cを含有させることによって潤滑特性が高まり摩擦係数が低減され、その結果、すくい面を切屑が擦過する際の切削温度が抑制され、摩耗が低減した。更に、皮膜断面の組織観察をした結果、柱状組織を確認した。このため、機械的強度に優れ、工具寿命が優れた。一方、比較例42、43は、x値、y値が10%以上であったため、切削初期からの硬質皮膜剥離とクレータ摩耗発生が確認され、同様に皮膜断面の組織観察をした結果、微細化していた。更に、Cを含有しない本発明例1、C含有量が7%の本発明例22、15%の比較例42について、ボールオンディスク方式の摩擦係数測定を行った。この摩擦係数測定では、コーティングした超硬合金製ディスクにSUS304のφ6mmボールを摺動させ、大気中、無潤滑で測定した。測定の結果、測定温度650℃において、本発明例1の摩擦係数は0.8、本発明例22は0.4、比較例42は0.7となった。皮膜にCが多く含有しても、皮膜断面組織を柱状化されていなければ、逃げ面摩耗、クレータ摩耗などの損傷が切削初期に発生することが確認された。
Invention Examples 18 to 21 and Comparative Examples 40 and 41 were prepared in order to see the influence of the composition of the second hard coating. It was created by changing the composition of the target material for coating. In Invention Examples 18 and 19, the B content of the second hard coating was 1% and 25%, respectively. Inventive Example 20 had a Si content of 20%, and Inventive Example 21 contained B and Si. When the structures of these film cross-sections were observed, it was confirmed that all were columnar structures. On the other hand, regarding the comparative example 40 in which the B content of the second hard coating is 40% and the comparative example 41 in which the Si content is 30%, the cross-sectional structure of the second hard coating was observed to confirm the refined structure. . When the B and Si contents were increased, peeling of the hard coating and crater wear occurred from the beginning of cutting. It was considered that the difference in the structure morphology brought about superiority or inferiority of the cutting performance.
Invention Examples 22 and 23 and Comparative Examples 42 and 43 were prepared in order to observe the influence of O and C contained in the first hard film. Oxygen and hydrocarbons were used as part of the reaction gas. The tool life of Inventive Examples 22 and 23 was about 10% superior to Inventive Example 1 containing no O or C. Moreover, the damage state of the blade edge at the time of the cutting distance of 15 m tended to be less welded than that of Example 1 of the present invention. In particular, the occurrence of crater wear on the rake face was reduced. Crater wear is caused by a chemical reaction accompanying an increase in cutting temperature, and by adding O and C, the lubrication characteristics are increased and the friction coefficient is reduced. As a result, the cutting temperature when scrapes scrape the rake face is reduced. Suppressed and reduced wear. Furthermore, as a result of observing the structure of the film cross section, a columnar structure was confirmed. For this reason, it was excellent in mechanical strength and the tool life was excellent. On the other hand, in Comparative Examples 42 and 43, since the x value and the y value were 10% or more, peeling of the hard film and occurrence of crater wear from the initial stage of cutting were confirmed. It was. Further, the friction coefficient of the ball-on-disk method was measured for Invention Example 1 containing no C, Invention Example 22 having a C content of 7%, and Comparative Example 42 having a C content of 15%. In this friction coefficient measurement, a SUS304 φ6 mm ball was slid on a coated cemented carbide disk and measured in the air without lubrication. As a result of the measurement, the friction coefficient of Invention Example 1 was 0.8, Invention Example 22 was 0.4, and Comparative Example 42 was 0.7 at a measurement temperature of 650 ° C. Even if the film contains a large amount of C, it has been confirmed that damage such as flank wear and crater wear occurs at the beginning of cutting unless the cross-sectional structure of the film is columnar.

本発明例24〜26、比較例44、45は、成膜時における反応圧力の組成への影響を見るために作成した。特にe/f値、残留圧縮応力への影響を調査した。この時反応圧力を変化させ、1.6Pa〜13.5Paの範囲に設定した。反応圧力が2.2〜8.1Paで成膜を行った本発明例1、24〜26は、何れも工具寿命が20m以上となり工具寿命が優れた。特にe/f値が1.16の本発明例24が最も優れ、皮膜のチッピングなど、不安定要素は発生しなかった。反応圧力が最も低い1.6Paで成膜を行った比較例44は、残留圧縮応力が6.5GPaであり、e/f値は0.82、工具寿命は14mとなった。これは本発明例1に比して約60%の寿命であった。窒素圧力が低い程、残留圧縮応力が増大し、e/f値は、低い値を示す傾向にあった。この理由は、皮膜の残留圧縮応力が高いためと考えられる。残留圧縮応力が6.0GPaを超える様になると、切削途中のインサート刃先損傷状態観察において、刃先エッジ部の皮膜破壊が確認された。再現性を確認するため、比較例44のインサートの新しいコーナーを用いて、数度の切削評価を行った結果、工具寿命は、9m、11mとばらつき、安定しなかった。比較例45は、残留圧縮応力が0.5GPaと比較的低い数値を示したが、工具寿命は8mであった。切削時間5m時の刃先の損傷状態を観察した結果、刃先エッジ部における基体と硬質皮膜界面からの膜剥離と逃げ面の大きな摩耗、クレータ摩耗が発生していた。皮膜硬度も低下し、耐摩耗性が劣った。e/f値は1.32を示し、皮膜断面組織において柱状組織を有するものの、硬質皮膜中に欠陥が多く発生し、密着性や耐摩耗性が劣った。この理由は、反応圧力を13.5Paで行ったことにより、イオンが基体に入射する際の運動エネルギーが低くなったためである。   Invention Examples 24-26 and Comparative Examples 44 and 45 were prepared in order to observe the influence of the reaction pressure on the composition during film formation. In particular, the influence on e / f value and residual compressive stress was investigated. At this time, the reaction pressure was changed and set in a range of 1.6 Pa to 13.5 Pa. Inventive Examples 1, 24 to 26, in which the film was formed at a reaction pressure of 2.2 to 8.1 Pa, all had a tool life of 20 m or more and an excellent tool life. In particular, Invention Example 24 having an e / f value of 1.16 was the most excellent, and unstable elements such as chipping of the film did not occur. In Comparative Example 44 in which the film was formed at the lowest reaction pressure of 1.6 Pa, the residual compressive stress was 6.5 GPa, the e / f value was 0.82, and the tool life was 14 m. This was a lifetime of about 60% as compared with Example 1 of the present invention. The lower the nitrogen pressure, the higher the residual compressive stress, and the e / f value tended to show a lower value. The reason is considered that the residual compressive stress of the film is high. When the residual compressive stress exceeded 6.0 GPa, film damage at the edge portion of the blade edge was confirmed in the damage state of the insert blade edge during cutting. In order to confirm reproducibility, the cutting life was evaluated several times using a new corner of the insert of Comparative Example 44. As a result, the tool life was 9 m and 11 m, and was not stable. In Comparative Example 45, the residual compressive stress was a relatively low value of 0.5 GPa, but the tool life was 8 m. As a result of observing the damage state of the blade edge when the cutting time was 5 m, film peeling from the base and hard film interface at the edge of the blade edge, large wear on the flank, and crater wear occurred. The film hardness also decreased and the wear resistance was inferior. The e / f value was 1.32, and although the film cross-sectional structure had a columnar structure, many defects were generated in the hard film, and adhesion and wear resistance were inferior. The reason for this is that the reaction pressure is 13.5 Pa, so that the kinetic energy when ions enter the substrate is lowered.

本発明例27〜30、比較例46、47は、Is/Ir値の影響を見るために作成した。この時パルス化バイアスのパルス周波数を10kHzに一定とし、バイアス電圧値を変化させ、30〜200Vの範囲に設定した。本発明例1、本発明例27〜30は、Is/Ir値が本願発明の規定範囲内であり、残留圧縮応力も3.5GPa以下と低くなり、工具寿命が優れた。また、バイアス電圧を変化させた場合、Is/Ir値が変化し、それに伴い残留圧縮応力も変化した。比較例46、47は、残留圧縮応力が7GPaを超え、切削初期から硬質皮膜の膜剥離が観察された。残留応力が大きくなると、工具寿命が劣る結果となった。
本発明例31〜33、比較例48〜50は、It/Ir値の残留圧縮応力への影響を見るために作成した。この時パルス化バイアス電圧の正バイアス値を5〜40Vまで変化させた。正のバイアス電圧が大きくなると、相対的に(111)面への配向強度が強くなる傾向を示し、本発明例1、31〜33、比較例48〜50のIt/Ir値は、0.3〜1.1まで変化した。本発明例1、本発明例31〜33は、It/Ir値が本願発明の規定範囲内であり、残留圧縮応力も比較的低くなり、満足のいく工具寿命が得られた。一方、比較例48〜50は正のバイアス電圧が20Vを超え、It/Ir値は0.6を下回り、切削距離5m時の刃先損傷状態観察において、硬質皮膜の剥離が多く観察された。残留圧縮応力が高くなり、硬質皮膜の剥離や破壊が主体的に進行して工具寿命が低下した。第1硬質皮膜のX線回折における(111)面の配向強度制御のほかに、第1硬質皮膜と第2硬質皮膜の界面の密着性を高めるためには、パルス化されたバイアス電圧の正のバイアス電圧値制御が重要である。負の領域のみのバイアス電圧印加では、成膜時のマイクロアーキングなどにより発生する欠陥の抑制に不十分となるからである。
Invention Examples 27 to 30 and Comparative Examples 46 and 47 were prepared in order to observe the influence of the Is / Ir value. At this time, the pulse frequency of the pulsing bias was kept constant at 10 kHz, and the bias voltage value was changed and set in the range of 30 to 200V. In Invention Example 1 and Invention Examples 27-30, the Is / Ir value was within the specified range of the present invention, the residual compressive stress was as low as 3.5 GPa or less, and the tool life was excellent. Further, when the bias voltage was changed, the Is / Ir value was changed, and the residual compressive stress was changed accordingly. In Comparative Examples 46 and 47, the residual compressive stress exceeded 7 GPa, and delamination of the hard coating was observed from the beginning of cutting. As the residual stress increased, the tool life was inferior.
Invention Examples 31 to 33 and Comparative Examples 48 to 50 were prepared in order to see the effect of the It / Ir value on the residual compressive stress. At this time, the positive bias value of the pulsed bias voltage was changed from 5 to 40V. When the positive bias voltage is increased, the orientation strength toward the (111) plane tends to be relatively increased, and the It / Ir values of Invention Examples 1, 31 to 33 and Comparative Examples 48 to 50 are 0.3. Changed to ~ 1.1. In Invention Example 1 and Invention Examples 31 to 33, the It / Ir value was within the specified range of the present invention, the residual compressive stress was relatively low, and a satisfactory tool life was obtained. On the other hand, in Comparative Examples 48 to 50, the positive bias voltage exceeded 20 V, the It / Ir value was less than 0.6, and in the blade edge damage state observation when the cutting distance was 5 m, many peeling of the hard coating was observed. Residual compressive stress increased, and the tool life decreased as the hard coating peeled and broken mainly. In addition to controlling the orientation strength of the (111) plane in the X-ray diffraction of the first hard film, in order to improve the adhesion at the interface between the first hard film and the second hard film, a positive pulse voltage is applied. Bias voltage value control is important. This is because application of a bias voltage only in the negative region is insufficient to suppress defects caused by micro arcing during film formation.

本発明例34、35、比較例51、52は、第1硬質皮膜、第2硬質皮膜の面間隔の影響を見るために作成した。面間隔はパルス化バイアス電圧のパルス周波数を1〜40kHzの範囲で変化させることにより調節した。本発明例34、35は、パルス周波数が夫々30kHz、2kHzの場合であるが、d2/d1値は1.02を示し、硬質皮膜全体の残留圧縮応力が低く制御されて第1硬質皮膜、第2硬質皮膜の密着性に優れ、満足のいく工具寿命が得られた。一方、パルス周波数を1kHzで成膜を行った比較例51は、d2/d1値が1.06となり、第1硬質皮膜と第2硬質皮膜の面間隔のズレにより密着性が劣化した。比較例52は、皮膜の剥離が発生して、短い工具寿命であった。この場合、切削途中の刃先の損傷は、基体と第1硬質皮膜の界面で膜剥離が観察された。この理由は、40kHzで成膜を行ったためd2/d1値が1.01となり、皮膜全体の残留圧縮応力が6.6GPaと増大して基体との密着性が劣化したためである。また、パルス周波数の変化によってIt/Ir値も変化することが確認された。パルス周波数と残留圧縮応力の関係には相関性があると考えられ、パルス周波数が大きくなると、残留圧縮応力は大きくなる傾向にあった。パルス周波数が大きくなると、直流バイアス電圧が印加される状態に近づくためである。   Invention Examples 34 and 35 and Comparative Examples 51 and 52 were prepared in order to observe the influence of the surface spacing of the first hard film and the second hard film. The face spacing was adjusted by changing the pulse frequency of the pulsed bias voltage in the range of 1 to 40 kHz. Examples 34 and 35 of the present invention are cases where the pulse frequencies are 30 kHz and 2 kHz, respectively, but the d2 / d1 value is 1.02, and the residual compressive stress of the entire hard film is controlled to be low, so that the first hard film and the first hard film 2 Excellent adhesiveness of hard coating, and a satisfactory tool life was obtained. On the other hand, in Comparative Example 51 in which film formation was performed at a pulse frequency of 1 kHz, the d2 / d1 value was 1.06, and the adhesion deteriorated due to the gap between the first hard coating and the second hard coating. In Comparative Example 52, peeling of the film occurred and the tool life was short. In this case, damage to the cutting edge during cutting was observed at the interface between the substrate and the first hard coating. This is because the d2 / d1 value was 1.01 because the film was formed at 40 kHz, the residual compressive stress of the entire film increased to 6.6 GPa, and the adhesion to the substrate deteriorated. It was also confirmed that the It / Ir value also changed with the change of the pulse frequency. The relationship between the pulse frequency and the residual compressive stress is considered to be correlated, and the residual compressive stress tends to increase as the pulse frequency increases. This is because when the pulse frequency is increased, the state approaches a state where a DC bias voltage is applied.

Claims (3)

超硬合金を基体に圧縮応力を有する硬質皮膜を5〜30μmの膜厚で被覆した旋削加工用の硬質皮膜被覆工具において、該硬質皮膜は、該基体表面から第1硬質皮膜、第2硬質皮膜が被覆され、最外皮膜は該第2硬質皮膜が被覆され、該第1硬質皮膜は、(AlMe1−aで示され、但し、aは原子%、e、fは原子比を表し、35≦a≦65、0.85≦e/f≦1.25、であり、Meは4a、5a、6a族、Si、Bから選択される1種以上を有し、該第2硬質皮膜は、(Ti1−hで示され、但し、hは原子%、m、pは原子比を表し、1≦h≦30、0.85≦m/p≦1.25、であり、該第1硬質皮膜、該第2硬質皮膜の結晶構造は面心立方構造であり、該第1硬質皮膜のX線回折において(111)面のピーク強度をIr、(200)面のピーク強度をIs、(220)面のピーク強度をItとしたときに、1.5≦Is/Ir≦15.0、0.6≦It/Ir≦1.5、であり、該第1硬質皮膜と該第2硬質皮膜のX線回折における(200)面の面間隔(nm)を夫々、d1、d2としたときに、1.01≦d2/d1≦1.05であり、該第2硬質皮膜は柱状組織構造を有し、該柱状組織構造の結晶粒はB成分に組成差を有する組成変調構造を有していること、を特徴とする旋削加工用硬質皮膜被覆工具。 In a hard film coated tool for turning, in which a hard film having a compressive stress is coated on a substrate with a thickness of 5 to 30 μm, the hard film is formed from the surface of the substrate by the first hard film and the second hard film. The outermost coating is coated with the second hard coating, and the first hard coating is represented by (Al a Me 1-a ) e N f , where a is atomic%, e and f are Represents an atomic ratio, 35 ≦ a ≦ 65, 0.85 ≦ e / f ≦ 1.25, Me has one or more selected from 4a, 5a, 6a group, Si, B, The second hard coating is represented by (Ti 1-h B h ) m N p , where h is atomic%, m, p represents an atomic ratio, and 1 ≦ h ≦ 30, 0.85 ≦ m / p ≦ 1.25, and the crystal structure of the first hard coating and the second hard coating is a face-centered cubic structure, and in the X-ray diffraction of the first hard coating ( When the peak intensity of the (111) plane is Ir, the peak intensity of the (200) plane is Is, and the peak intensity of the (220) plane is It, 1.5 ≦ Is / Ir ≦ 15.0, 0.6 ≦ It /Ir≦1.5, and 1.01 when the plane spacing (nm) of the (200) plane in the X-ray diffraction of the first hard coating and the second hard coating is d1 and d2, respectively. ≦ d2 / d1 ≦ 1.05, the second hard film has a columnar structure, and the crystal grains of the columnar structure have a composition modulation structure having a composition difference in the B component. A hard-coated tool for turning. 請求項1記載の該硬質皮膜被覆工具において、該第1硬質皮膜におけるN元素について、その1部をC元素、O元素で置換し、非金属成分全体を1とし、原子%でC元素の含有量をx、O元素の含有量をyとしたとき、0<x≦10、0<y≦10、0<x+y≦10、N元素の含有量は1−x−y、であることを特徴とする旋削加工用硬質皮膜被覆工具。 2. The hard coating tool according to claim 1, wherein one part of the N element in the first hard coating is replaced with C element and O element, the whole nonmetallic component is set to 1, and the C element is contained in atomic%. 0 <x ≦ 10, 0 <y ≦ 10, 0 <x + y ≦ 10, and the content of N element is 1-xy when the amount is x and the content of O element is y. Hard coating tool for turning. 請求項1、請求項2の何れかに記載の該硬質皮膜被覆工具において、該第2硬質皮膜におけるTi元素について、その1部をSi元素で置換し、金属成分全体を1としたとき、原子%でSi元素の含有量をk、としたとき、0<k≦20、Ti元素の含有量は1−h−k、であることを特徴とする旋削加工用硬質皮膜被覆工具。 3. The hard film-coated tool according to claim 1, wherein a part of the Ti element in the second hard film is replaced with an Si element, and when the entire metal component is set to 1, an atom The hard film-coated tool for turning, wherein 0 <k ≦ 20 and the content of Ti element is 1-hk where the content of Si element is k in%.
JP2008293995A 2008-11-18 2008-11-18 Hard coating film coated tool for turning Pending JP2010120100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008293995A JP2010120100A (en) 2008-11-18 2008-11-18 Hard coating film coated tool for turning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008293995A JP2010120100A (en) 2008-11-18 2008-11-18 Hard coating film coated tool for turning

Publications (1)

Publication Number Publication Date
JP2010120100A true JP2010120100A (en) 2010-06-03

Family

ID=42321890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008293995A Pending JP2010120100A (en) 2008-11-18 2008-11-18 Hard coating film coated tool for turning

Country Status (1)

Country Link
JP (1) JP2010120100A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124086A (en) * 2015-01-07 2016-07-11 日立金属株式会社 Coated tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09300106A (en) * 1996-05-21 1997-11-25 Hitachi Tool Eng Ltd Throw-away insert of surface coated super-hard alloy
JP2001152320A (en) * 1999-11-26 2001-06-05 Ebara Corp Sliding member
JP2004042149A (en) * 2002-07-09 2004-02-12 Hitachi Tool Engineering Ltd Coated cutting tool
JP2004106102A (en) * 2002-09-18 2004-04-08 Hitachi Tool Engineering Ltd Hard film coated tool
JP2008075178A (en) * 2006-08-24 2008-04-03 Hitachi Tool Engineering Ltd Thick coating film-coated member and thick coating film-coated member production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09300106A (en) * 1996-05-21 1997-11-25 Hitachi Tool Eng Ltd Throw-away insert of surface coated super-hard alloy
JP2001152320A (en) * 1999-11-26 2001-06-05 Ebara Corp Sliding member
JP2004042149A (en) * 2002-07-09 2004-02-12 Hitachi Tool Engineering Ltd Coated cutting tool
JP2004106102A (en) * 2002-09-18 2004-04-08 Hitachi Tool Engineering Ltd Hard film coated tool
JP2008075178A (en) * 2006-08-24 2008-04-03 Hitachi Tool Engineering Ltd Thick coating film-coated member and thick coating film-coated member production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124086A (en) * 2015-01-07 2016-07-11 日立金属株式会社 Coated tool

Similar Documents

Publication Publication Date Title
JP5246165B2 (en) Method for producing hard coating member
JP3934136B2 (en) Hard film coating member and coating method thereof
JP6687390B2 (en) Tool with TiAlCrSiN coating by PVD
JP5321975B2 (en) Surface coated cutting tool
JP5303816B2 (en) Hard coating tool
WO2017170536A1 (en) Coated cutting tool
KR102167200B1 (en) Cloth cutting tool
JP2010012564A (en) Hard film-coated cutting tool
JP2012045650A (en) Hard film-coated cutting tool
KR101079902B1 (en) Surface-coated cutting tool
JP2008075178A (en) Thick coating film-coated member and thick coating film-coated member production method
JP5098657B2 (en) Hard coating coated member
JP4850189B2 (en) Coated tool
JP2005126736A (en) Hard film
JP2008155329A (en) Surface-coated tool
JP5056808B2 (en) Hard coating tool
JP5305236B2 (en) Hard coating tool
JP2011189499A (en) Hard film coated tool
JP2010120100A (en) Hard coating film coated tool for turning
JP2011189498A (en) Hard film coated tool
JP2018069433A (en) Surface coated cutting tool
CN117620238A (en) Coated cutting tool
RU2613837C1 (en) METHOD OF PRODUCING ION-PLASMA VACUUM-ARC CERAMETALLIC Ti-Ni COATING FOR CARBIDE CUTTING TOOL OF EXPANDED USE
KR20240026951A (en) cutting tools
WO2019198177A1 (en) Coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130325