JP2011189499A - Hard film coated tool - Google Patents

Hard film coated tool Download PDF

Info

Publication number
JP2011189499A
JP2011189499A JP2011031349A JP2011031349A JP2011189499A JP 2011189499 A JP2011189499 A JP 2011189499A JP 2011031349 A JP2011031349 A JP 2011031349A JP 2011031349 A JP2011031349 A JP 2011031349A JP 2011189499 A JP2011189499 A JP 2011189499A
Authority
JP
Japan
Prior art keywords
hard film
hard
film
coating
compressive stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011031349A
Other languages
Japanese (ja)
Inventor
Kazuyuki Kubota
和幸 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2011031349A priority Critical patent/JP2011189499A/en
Publication of JP2011189499A publication Critical patent/JP2011189499A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To realize the long service life of a hard film coated cutting tool, wherein a first hard film improves abrasion resistance by the realization of high hardness and a second hard film reduces compressive stress and improves adhesion. <P>SOLUTION: In this hard film coated tool, a hard film is covered with the first hard film and the second hard film from a base body surface. The first hard film is indicated by (Al<SB>a</SB>Me<SB>100-a</SB>)<SB>e</SB>N<SB>f</SB>, and here, (a) is atomic%, (e and f) express the atomic ratio, 35≤a≤65 and 0.90≤e/f≤1.15 are realized, Me is one or more of elements selected from 4a, 5a and 6a groups, Si and B, and N is nitrogen. The second hard film is indicated by (Ti<SB>100-h</SB>B<SB>h</SB>)<SB>m</SB>N<SB>p</SB>, and here, (h) is atomic%, (m and p) express the atomic ratio, and 1≤h≤30 and 0.90≤m/p≤1.15 are realized. Assuming respectively spacing (nm) of a (111) surface in X-ray diffraction in the first hard film and the second hard film as d1 and d2, 1.01≤d2/d1≤1.05 is realized. The second hard film has a columnar structure, and a crystal grain of the columnar structure is a composition modulation structure having a composition difference in a B component. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、金属部品加工等に用いられる工具に関するものである。特に、耐摩耗性と密着性が必要とされる工具表面に、物理蒸着(以下、PVD法と記す。)を用いて硬質皮膜を被覆した硬質皮膜被覆工具に関する。   The present invention relates to a tool used for processing metal parts and the like. In particular, the present invention relates to a hard film-coated tool in which a hard film is coated on a tool surface that requires wear resistance and adhesion using physical vapor deposition (hereinafter referred to as PVD method).

特許文献1には、PVD法により被覆した硬質皮膜のX線回折における(111)面の配向性と回折ピークの半価幅について開示されている。特許文献2には、(220)面、(111)面のピーク強度を制御する技術が開示されている。特許文献3には、硬質皮膜を構成する金属元素とガス成分元素の構成比率を調整する技術が開示されている。特許文献4には、エピタキシャル成長により皮膜界面の密着性改善に関する技術が開示されている。   Patent Document 1 discloses the orientation of the (111) plane and the half-value width of the diffraction peak in X-ray diffraction of a hard film coated by the PVD method. Patent Document 2 discloses a technique for controlling peak intensities on the (220) plane and the (111) plane. Patent Document 3 discloses a technique for adjusting the composition ratio between a metal element and a gas component element constituting a hard coating. Patent Document 4 discloses a technique related to improvement in adhesion at a film interface by epitaxial growth.

特開2006−281363号公報JP 2006-281363 A 特開2003−71611号公報JP 2003-71611 A 特開平7−188901号公報JP-A-7-188901 特開2001−181826号公報JP 2001-181826 A

本発明の解決しようとする課題は、厚膜化した硬質皮膜における圧縮応力の低減と密着性を確保しつつ、高硬度化による耐摩耗性に優れた硬質皮膜被覆工具を提供することである。   The problem to be solved by the present invention is to provide a hard film coated tool excellent in wear resistance by increasing the hardness while ensuring a reduction in compressive stress and adhesion in a hard film having increased thickness.

本発明は、超硬合金を基体に圧縮応力を有する硬質皮膜を5〜30μmの膜厚で被覆した硬質皮膜被覆工具において、該硬質皮膜は、該基体表面から第1硬質皮膜、第2硬質皮膜が被覆され、最外皮膜は該第2硬質皮膜が被覆され、該第1硬質皮膜は、(AlMe100−aで示され、但し、aは原子%、e、fは原子比を表し、35≦a≦65、0.90≦e/f≦1.15、であり、Meは4a、5a、6a族、Si、Bから選択される1種以上を有し、該第2硬質皮膜は、(Ti100−hで示され、但し、hは原子%、m、pは原子比を表し、1≦h≦30、0.90≦m/p≦1.15、であり、該第1硬質皮膜、該第2硬質皮膜の結晶構造は面心立方構造であり、該第1硬質皮膜のX線回折において(111)面のピーク強度をIr、(200)面のピーク強度をIs、(220)面のピーク強度をItとしたときに、0.2≦Is/Ir≦1.4、0.6≦It/Is≦1.5、であり、該第2硬質皮膜のX線回折において(111)面のピーク強度Iu、(200)面のピーク強度Iv、及び(220)面のピーク強度Iwとしたとき、5≦Iv/Iu≦15、及び2≦Iw/Iv≦4であり、該第1硬質皮膜と該第2硬質皮膜のX線回折における(111)面の面間隔(nm)を夫々、d1、d2としたときに、1.01≦d2/d1≦1.05であり、該第2硬質皮膜は柱状組織を有し、該柱状組織の結晶粒はB成分に組成差を有する組成変調構造であることを特徴とする硬質皮膜被覆工具である。上記の構成を採用することによって、厚膜化した硬質皮膜における圧縮応力の低減と密着性を確保しつつ、高硬度化による耐摩耗性に優れた硬質膜被覆工具を提供することができる。 The present invention relates to a hard film-coated tool in which a hard film having a compressive stress is coated on a substrate with a film thickness of 5 to 30 μm. The hard film is formed from the surface of the substrate by the first hard film and the second hard film. The outermost coating is coated with the second hard coating, and the first hard coating is represented by (Al a Me 100-a ) e N f , where a is atomic%, e and f are Represents an atomic ratio, 35 ≦ a ≦ 65, 0.90 ≦ e / f ≦ 1.15, Me has one or more selected from 4a, 5a, 6a group, Si, B, The second hard coating is represented by (Ti 100-h B h ) m N p , where h is atomic%, m and p are atomic ratios, 1 ≦ h ≦ 30, 0.90 ≦ m / p ≦ 1.15, and the crystal structure of the first hard film and the second hard film is a face-centered cubic structure. When the peak intensity of the (111) plane is Ir, the peak intensity of the (200) plane is Is, and the peak intensity of the (220) plane is It, 0.2 ≦ Is / Ir ≦ 1.4, 0.6 ≦ It / Is ≦ 1.5, and in the X-ray diffraction of the second hard coating, (111) plane peak intensity Iu, (200) plane peak intensity Iv, and (220) plane peak intensity Iw 5 ≦ Iv / Iu ≦ 15 and 2 ≦ Iw / Iv ≦ 4, and the (111) plane spacing (nm) in the X-ray diffraction of the first hard coating and the second hard coating is respectively , D1, and d2, 1.01 ≦ d2 / d1 ≦ 1.05, the second hard film has a columnar structure, and the crystal grains of the columnar structure have a compositional difference in the B component A hard coating tool characterized by a modulation structure. By adopting the above-described configuration, it is possible to provide a hard film-coated tool that is excellent in wear resistance due to high hardness while ensuring a reduction in compressive stress and adhesion in a hard film that has been thickened.

本発明の硬質膜被覆工具は、該第1硬質皮膜における非金属成分の窒素(N)元素について、その1部を炭素(C)元素、酸素(O)元素で置換し、該非金属成分全体を100とし、原子%でC元素の含有量をx、O元素の含有量をyとしたとき、0<x≦10、0<y≦10、0<x+y≦10、N元素の含有量は100−x−y、であることが好ましい。また、該第2硬質皮膜における金属成分のTi元素について、その1部を珪素(Si)元素で置換し、該金属成分全体を100としたとき、原子%でSi元素の含有量をk、としたとき、0<k≦20、Ti元素の含有量は100−h−k、であることが好ましい。圧縮応力を有する該硬質皮膜は、10μm〜30μmの膜厚であることが、より好ましい。   In the hard film-coated tool of the present invention, a part of the nonmetallic component nitrogen (N) element in the first hard coating is replaced with carbon (C) element and oxygen (O) element, and the entire nonmetallic component is 100, the content of C element in atomic% is x, and the content of O element is y, 0 <x ≦ 10, 0 <y ≦ 10, 0 <x + y ≦ 10, and the content of N element is 100 -Xy is preferable. Further, regarding the Ti element of the metal component in the second hard film, when one part thereof is replaced with silicon (Si) element and the total of the metal component is 100, the content of Si element in atomic% is k, Then, it is preferable that 0 <k ≦ 20 and the content of Ti element is 100-hk. It is more preferable that the hard film having a compressive stress has a thickness of 10 μm to 30 μm.

本発明によって、厚膜化した硬質皮膜における圧縮応力の低減と密着性を確保しつつ、高硬度化による耐摩耗性に優れた硬質皮膜被覆工具を提供することができた。   According to the present invention, it is possible to provide a hard film coated tool having excellent wear resistance due to high hardness while ensuring a reduction in compression stress and adhesion in a thick hard film.

本発明の硬質皮膜被覆工具おける第1硬質皮膜は組成として、(AlMe100−aで示され、アルミニウム(Al)含有量を表すa値が35≦a≦65、の範囲のとき、耐熱性、耐摩耗性が優れる。a値が65%を超えて大きいと、第1皮膜断面組織が微細化して圧縮応力が増大し基体との密着性が劣化する不都合が生じる。a値が35%未満であると、耐摩耗性が劣ると言う不都合が生じる。元素をMeとして集合的に呼称するMe成分は、イオン半径が0.041〜0.1nmの4a、5a、6a族の元素や、イオン半径が0.002〜0.04nmの珪素(Si)、硼素(B)等を含有した窒化物として被覆することが好ましい。この理由は、Me成分、珪素や硼素のイオン半径と、アルミニウム元素のイオン半径との間に差が生じ、結晶構造に応力が作用して、皮膜の高硬度化に好都合だからである。Me成分として、例えばチタニウム(Ti)を選択することにより、第1硬質皮膜の高硬度化に有効である。また、例えばMeが珪素(Si)、硼素(B)では、固溶体を維持する含有量の範囲が1%から20%であり、優れた耐熱性や潤滑特性を得られる。また、MeとしてW、Nb、Crを含有することにより、第1硬質皮膜の耐熱性、高硬度化の改善に有効である。 The first hard film in the hard film-coated tool of the present invention is represented by (Al a Me 100-a ) e N f as a composition, and the a value representing the aluminum (Al) content is in the range of 35 ≦ a ≦ 65. In this case, heat resistance and wear resistance are excellent. If the a value exceeds 65%, the first film cross-sectional structure becomes finer, increasing the compressive stress and deteriorating the adhesion to the substrate. If the a value is less than 35%, there is a disadvantage that the wear resistance is poor. The Me component collectively referred to as the element Me includes elements 4a, 5a, and 6a having an ionic radius of 0.041 to 0.1 nm, silicon (Si) having an ionic radius of 0.002 to 0.04 nm, It is preferable to coat as a nitride containing boron (B) or the like. This is because there is a difference between the ionic radius of the Me component, silicon or boron, and the ionic radius of the aluminum element, and stress acts on the crystal structure, which is convenient for increasing the hardness of the film. By selecting, for example, titanium (Ti) as the Me component, it is effective for increasing the hardness of the first hard coating. For example, when Me is silicon (Si) or boron (B), the content range for maintaining a solid solution is 1% to 20%, and excellent heat resistance and lubrication characteristics can be obtained. Moreover, containing W, Nb, and Cr as Me is effective in improving the heat resistance and hardness of the first hard coating.

第1硬質皮膜の金属成分と非金属成分との比e/f値を0.90〜1.15、とすることにより、硬質皮膜の圧縮応力を最適な範囲にすることができ、高い密着性を得ることができる。また、e/f値を0.90〜1.15とすると、第1硬質皮膜の組織は高靭性を有する柱状組織とすることができ、優れた欠損性と耐摩耗性を得ることができる。e/f値が0.85以上のとき、第1硬質皮膜の結晶格子歪を低減できるが、0.90未満になると、結晶格子歪が大きくなり、結晶格子縞の連続性が失われる現象や、第1硬質皮膜の断面組織が微細化し粒界欠陥が増大する。その結果、圧縮応力を増大して密着性が劣化する。例えば、切削工具用の硬質皮膜においては、この粒界欠陥が硬質皮膜の密度低下や、被加工物を構成する元素の硬質皮膜内部への内向拡散を招き、硬質皮膜の硬度低下や耐欠損性を劣化させる。e/f値が1.15を超えると第1硬質皮膜は柱状組織を有するが、結晶の粒界部に不純物を取り込みやすくなる。この不純物は被覆処理を行う装置内部に残留する成分である。その結果、結晶粒間の接合強度が劣化し、第1硬質皮膜は外部からの衝撃によって容易に破壊される。本発明の第1硬質皮膜は、0.90≦e/f≦1.15の範囲とすることにより、第1硬質皮膜の圧縮応力は1.5〜5.0GPaの範囲になる。産業的には、e/f値を本発明の範囲にすることで、第1硬質皮膜に圧縮応力を有しつつ、かつその圧縮応力が過度ではない範囲に管理することが可能である。   By setting the ratio e / f value between the metal component and the non-metal component of the first hard coating to 0.90 to 1.15, the compressive stress of the hard coating can be set to an optimum range, and high adhesion is achieved. Can be obtained. Further, when the e / f value is 0.90 to 1.15, the structure of the first hard film can be a columnar structure having high toughness, and excellent chipping and wear resistance can be obtained. When the e / f value is 0.85 or more, the crystal lattice strain of the first hard film can be reduced. However, when the e / f value is less than 0.90, the crystal lattice strain increases and the continuity of crystal lattice fringes is lost. The cross-sectional structure of the first hard coating becomes finer and grain boundary defects increase. As a result, the compressive stress is increased and the adhesion is deteriorated. For example, in hard coatings for cutting tools, this grain boundary defect causes a decrease in the density of the hard coating and inward diffusion of the elements constituting the workpiece into the hard coating. Deteriorate. When the e / f value exceeds 1.15, the first hard film has a columnar structure, but it is easy to incorporate impurities into the crystal grain boundary. This impurity is a component remaining inside the apparatus that performs the coating process. As a result, the bonding strength between the crystal grains deteriorates, and the first hard coating is easily broken by an external impact. By setting the first hard coating of the present invention in the range of 0.90 ≦ e / f ≦ 1.15, the compressive stress of the first hard coating is in the range of 1.5 to 5.0 GPa. Industrially, by setting the e / f value within the range of the present invention, it is possible to manage the first hard coating within a range where the compressive stress is not excessive while having the compressive stress.

第2硬質皮膜が、Ti、Bを含有する面心立方構造の窒化物であることにより、優れた耐溶着性を実現できる。第2硬質皮膜におけるB含有量を示すh値(原子%)は、1≦h≦30である。h値のこの範囲は第2硬質皮膜を柱状組織とするために重要である。またB元素を含有させると、工具のすくい面の耐摩耗特性が向上する。切削初期において、Bは工具刃先がまだ低温である状態から酸化され、B含有酸化物を形成する。このB含有酸化物が、被加工物成分の第2硬質皮膜内部への拡散を抑制させる効果を発揮する。しかし、h値が30%を超えると、第2硬質皮膜の組織が微細化する。また、窒化硼素(BN)の結晶が出現し硬度が低下し、第2硬質皮膜の圧縮応力が増大して密着性が低下する欠点が現れる。h値は、1%程度でも効果が現れる。   When the second hard coating is a nitride having a face-centered cubic structure containing Ti and B, excellent welding resistance can be realized. The h value (atomic%) indicating the B content in the second hard coating is 1 ≦ h ≦ 30. This range of h values is important for making the second hard coating a columnar structure. Moreover, when B element is contained, the wear resistance of the rake face of the tool is improved. In the initial stage of cutting, B is oxidized from the state where the tool edge is still at a low temperature to form a B-containing oxide. This B-containing oxide exhibits the effect of suppressing diffusion of the workpiece component into the second hard coating. However, when the h value exceeds 30%, the structure of the second hard coating becomes finer. In addition, boron nitride (BN) crystals appear and the hardness is lowered, and the compressive stress of the second hard film is increased, resulting in a drawback that adhesion is lowered. An effect appears even if the h value is about 1%.

また、第2硬質皮膜の金属成分と窒素成分の比m/p値を0.90〜1.15とすることにより、第2硬質皮膜の圧縮応力を最適な範囲にすることができ、高い密着性を得ることができる。また、m/p値が0.90〜1.15のときには第2硬質皮膜は高靭性を有する柱状組織とすることができ、優れた欠損性と耐摩耗性を両立することができる。第1硬質皮膜、第2硬質皮膜が面心立方構造であることにより、皮膜全体として高硬度を有する耐摩耗性に優れた硬質皮膜が得られる。   Moreover, by setting the ratio m / p value of the metal component and the nitrogen component of the second hard coating to 0.90 to 1.15, the compressive stress of the second hard coating can be set to an optimum range, and high adhesion can be achieved. Sex can be obtained. Further, when the m / p value is 0.90 to 1.15, the second hard film can be made to have a columnar structure having high toughness, and both excellent defectability and wear resistance can be achieved. When the first hard film and the second hard film have a face-centered cubic structure, a hard film having high hardness and excellent wear resistance as a whole can be obtained.

以下に、本発明の組成や組織の条件を達成するための製造条件について説明する。第1硬質皮膜である(AlMe100−aにおいて、0.90≦e/f≦1.15の範囲とするためには、成膜時の反応圧力を制御することが重要である。窒化物を得るために、窒素の反応圧力を3Pa〜8Paとする。より好ましくは3.5Pa〜7Paの範囲にするとよい。反応圧力が3Pa未満では、基体に入射するイオンの運動エネルギーが高くなり、それが結晶格子歪となって現れ、圧縮応力が抑制できなくなる。このときe/f値は0.90未満となる。8Paを超えた条件で成膜を行うと、プラズマ密度が低下し、入射するイオンの運動エネルギーが低下する。このときe/f値は1.15を超える。 Below, the manufacturing conditions for achieving the composition and structure conditions of the present invention will be described. In the case of (Al a Me 100-a ) e N f which is the first hard film, it is important to control the reaction pressure during film formation in order to make the range 0.90 ≦ e / f ≦ 1.15. It is. In order to obtain a nitride, the reaction pressure of nitrogen is set to 3 Pa to 8 Pa. More preferably, it is good to set it as the range of 3.5 Pa-7Pa. When the reaction pressure is less than 3 Pa, the kinetic energy of ions incident on the substrate becomes high, which appears as crystal lattice strain, and the compressive stress cannot be suppressed. At this time, the e / f value is less than 0.90. When film formation is performed under conditions exceeding 8 Pa, the plasma density decreases and the kinetic energy of incident ions decreases. At this time, the e / f value exceeds 1.15.

第1硬質皮膜を成膜する際の条件として、パルス化されたバイアス電圧印加を負と正に振幅させ、(111)面に強く配向させることで、第1硬質皮膜の高い耐摩耗性を実現できる。そのためには、バイアス電圧印加は、負の100〜200V、正の電圧5〜10Vの間で振幅させることによって実現できる。   As a condition for forming the first hard coating, the pulsed bias voltage application is negatively and positively amplituded and strongly oriented on the (111) plane, thereby realizing high wear resistance of the first hard coating. it can. For this purpose, the bias voltage application can be realized by making the amplitude between negative 100 to 200V and positive voltage 5 to 10V.

第1硬質皮膜のIs/Ir値を0.2≦Is/Ir≦1.4、とするためには、バイアス電圧の制御が必要であり、バイアス電圧をパルス化させて印加させることが好ましい。バイアス電圧がマイナス100V未満では、Is/Ir値は大きくなる傾向にあり、圧縮応力は低減されるものの、第1硬質皮膜の硬度が低下し、耐摩耗性が劣化する。マイナス200Vまでの比較的高い負のバイアス電圧を印加させて成膜を行うと、基体に引きつけられるイオンの運動エネルギーが大きくなる。それが圧縮応力の増大をもたらす。圧縮応力は、第1硬質皮膜の膜厚にも影響を受ける。即ち、厚膜ほど、圧縮応力が増大する傾向にある。本発明の面心立方構造の第1硬質皮膜は、原子の最充填面である(111)面に強く配向させ、厚膜にした。しかし、第1硬質皮膜を厚膜化すると圧縮応力は著しく増大し、基体との高い密着性が得られない。そこで、バイアス電圧をパルス化させて印加させることにより、成膜時にプラズマ中でイオン化された第1硬質皮膜を構成する元素の基体に到達する際の運動エネルギーを調整することが必要となる。バイアス電圧をパルス化させた場合特に重要なのは、パルス周波数の制御である。バイアス電圧をパルス化させて印加させると、(111)面、(200)面や(220)面のピーク強度を変化させることが可能となり、このとき、特に(200)面への結晶成長を抑制することによって、高い密着性を確保しつつ、耐摩耗性を高めることが可能となる。第1硬質皮膜の組織は、(111)面ですべりが発生し圧縮応力が緩和されると考えられる。   In order to make the Is / Ir value of the first hard film 0.2 ≦ Is / Ir ≦ 1.4, it is necessary to control the bias voltage, and it is preferable to apply the bias voltage in a pulsed manner. When the bias voltage is less than minus 100 V, the Is / Ir value tends to increase and the compressive stress is reduced, but the hardness of the first hard film is lowered and the wear resistance is deteriorated. When film formation is performed by applying a relatively high negative bias voltage up to minus 200 V, the kinetic energy of ions attracted to the substrate increases. That leads to an increase in compressive stress. The compressive stress is also affected by the film thickness of the first hard coating. That is, the thicker the film, the more the compressive stress tends to increase. The first hard film having a face-centered cubic structure according to the present invention was strongly oriented to the (111) plane that is the most filled surface of atoms to form a thick film. However, when the thickness of the first hard coating is increased, the compressive stress is remarkably increased and high adhesion to the substrate cannot be obtained. Therefore, it is necessary to adjust the kinetic energy when the element constituting the first hard film ionized in the plasma at the time of film formation reaches the substrate by applying a pulsed bias voltage. The control of the pulse frequency is particularly important when the bias voltage is pulsed. When the bias voltage is applied in the form of a pulse, it becomes possible to change the peak intensity of the (111) plane, the (200) plane, and the (220) plane, and at this time, particularly suppresses crystal growth on the (200) plane. By doing so, it becomes possible to improve wear resistance while ensuring high adhesion. It is considered that the structure of the first hard coating slips on the (111) plane and the compressive stress is relieved.

パルス周波数が5〜35kHzのときに、It/Is値は0.6≦It/Is≦1.5となり、このときの第1硬質皮膜の圧縮応力を2.0〜6.0GPaの最適な範囲にすることができる。パルス周波数が5kHzより低くなると、It/Is値は1.5を超える。また、35kHzを超えると、イオンが基体に到達する際の運動エネルギーが調整できないため、It/Is値は0.6未満になる。   When the pulse frequency is 5 to 35 kHz, the It / Is value is 0.6 ≦ It / Is ≦ 1.5, and the compressive stress of the first hard coating at this time is in an optimal range of 2.0 to 6.0 GPa. Can be. When the pulse frequency is lower than 5 kHz, the It / Is value exceeds 1.5. If it exceeds 35 kHz, the kinetic energy when ions reach the substrate cannot be adjusted, so the It / Is value is less than 0.6.

第2硬質皮膜の成膜時に印加するバイアス電圧を、第1硬質皮膜を成膜する際の条件と同様にパルス化させると、基体に到達する硼素(B)イオンの運動エネルギーが調整できるため、窒化チタン(代表的にTiNと表記する)の結晶格子に取り込まれ、第2硬質皮膜はBを含む単一の結晶化された組織を有する。   If the bias voltage applied when forming the second hard film is pulsed in the same manner as the conditions for forming the first hard film, the kinetic energy of boron (B) ions reaching the substrate can be adjusted. Incorporated into the crystal lattice of titanium nitride (typically referred to as TiN), the second hard coating has a single crystallized structure containing B.

第2硬質皮膜を成膜する際の条件として、パルス化されたバイアス電圧印加を負と正に振幅させ、(200)面に強く配向させることで、第2硬質皮膜の圧縮応力を制御することができる。そのためには、バイアス電圧印加は、負の電圧20〜100V、パルス周波数を5〜35kHz、正の電圧5〜10Vの間で振幅させることによって実現できる。このとき、第2硬質皮膜のX線回折において(111)面のピーク強度Iu、(200)面のピーク強度Iv、及び(220)面のピーク強度Iwとしたとき、5.0≦Iv/Iu≦15.0、及び2.0≦Iw/Iu≦4.0の範囲になる。第2硬質皮膜が上記範囲に制御すると、硬質皮膜の靭性が高まり、耐衝撃特性に優れる。さらに耐摩耗性が改善される。バイアス電圧の制御のほかには、反応圧力を2〜5Paの範囲に制御すれば可能である。第2硬質皮膜成膜時のバイアス電圧を20V未満にすると(200)面のピークが強く出現するが、イオンが基体に到達する際の運動エネルギーが低くなり、結晶成長時に結晶粒界に不純物が多く取り込まれるようになり、粒界の接合強度が劣化し、硬質皮膜の機械的強度が劣る。また、100Vを超えて高いときは、硬質皮膜の残留圧縮応力が増大し、第1硬質皮膜との密着性が劣化する。   As a condition for forming the second hard coating, the compression stress of the second hard coating is controlled by amplifying the pulsed bias voltage application to negative and positive and strongly orienting the (200) plane. Can do. For this purpose, bias voltage application can be realized by amplifying the negative voltage between 20 and 100 V, the pulse frequency between 5 and 35 kHz, and the positive voltage between 5 and 10 V. At this time, in the X-ray diffraction of the second hard film, when the peak intensity Iu of the (111) plane, the peak intensity Iv of the (200) plane, and the peak intensity Iw of the (220) plane are 5.0 ≦ Iv / Iu ≦ 15.0 and 2.0 ≦ Iw / Iu ≦ 4.0. When the second hard film is controlled within the above range, the toughness of the hard film is increased and the impact resistance is excellent. Furthermore, the wear resistance is improved. In addition to controlling the bias voltage, it is possible to control the reaction pressure in the range of 2 to 5 Pa. When the bias voltage at the time of forming the second hard film is less than 20 V, the peak of the (200) plane appears strongly, but the kinetic energy when ions reach the substrate decreases, and impurities are present at the grain boundaries during crystal growth. A large amount is taken in, the joint strength of the grain boundary is deteriorated, and the mechanical strength of the hard coating is inferior. Moreover, when it exceeds 100V, the residual compressive stress of a hard film will increase and adhesiveness with a 1st hard film will deteriorate.

第2硬質皮膜のIv/Iu値を5.0≦Iv/Iu≦15.0、とするためには、バイアス電圧の制御が必要であり、バイアス電圧をパルス化させて印加させることが好ましい。バイアス電圧がマイナス20V未満では、Iv/Iu値は大きくなる傾向にあり、圧縮応力は低減されるものの、第2硬質皮膜の硬度が低下し、耐摩耗性が劣化すること、結晶粒界の接合強度が劣化する。マイナス100Vを超えて比較的高い負のバイアス電圧を印加させて成膜を行うと、基体に引きつけられるイオンの運動エネルギーが大きくなる。それが圧縮応力の増大をもたらす。バイアス電圧をパルス化させて印加させることにより、成膜時にプラズマ中でイオン化された第2硬質皮膜を構成する元素の基体に到達する際の運動エネルギーを調整することが必要となる。バイアス電圧をパルス化させた場合特に重要なのは、パルス周波数の制御である。バイアス電圧をパルス化させて印加させると、(111)面、(200)面や(220)面のピーク強度を変化させることが可能となり、特に(111)面への結晶成長を抑制することによって、圧縮応力を抑制し密着性を高めることができる。   In order to set the Iv / Iu value of the second hard coating to 5.0 ≦ Iv / Iu ≦ 15.0, it is necessary to control the bias voltage, and it is preferable to apply the bias voltage in a pulsed manner. When the bias voltage is less than minus 20 V, the Iv / Iu value tends to increase and the compressive stress is reduced, but the hardness of the second hard film is reduced, the wear resistance is deteriorated, and the grain boundary is bonded. Strength deteriorates. When film formation is performed by applying a relatively high negative bias voltage exceeding minus 100 V, the kinetic energy of ions attracted to the substrate increases. That leads to an increase in compressive stress. By applying the bias voltage in a pulsed manner, it is necessary to adjust the kinetic energy when the element constituting the second hard coating ionized in the plasma during film formation reaches the substrate. The control of the pulse frequency is particularly important when the bias voltage is pulsed. When the bias voltage is applied in a pulsed manner, the peak intensity of the (111) plane, the (200) plane, and the (220) plane can be changed, particularly by suppressing crystal growth on the (111) plane. , Compressive stress can be suppressed and adhesion can be enhanced.

パルス周波数が5〜35kHzのときに、Iw/Iv値は2.0≦Iw/Iu≦4.0となり、このときの第2硬質皮膜の圧縮応力を1〜5GPaの最適な範囲にすることができる。パルス周波数が5kHz未満になると、Iw/Iv値は4.0を超える。また、35kHzを超えると、イオンが基体に到達する際の運動エネルギーが大きくなり、(111)面のピークが強くなるため、Iw/Iv値は2.0未満になる。   When the pulse frequency is 5 to 35 kHz, the Iw / Iv value is 2.0 ≦ Iw / Iu ≦ 4.0, and the compressive stress of the second hard film at this time is set to an optimal range of 1 to 5 GPa. it can. When the pulse frequency is less than 5 kHz, the Iw / Iv value exceeds 4.0. On the other hand, if it exceeds 35 kHz, the kinetic energy when ions reach the substrate increases, and the peak on the (111) plane increases, so the Iw / Iv value becomes less than 2.0.

一方、第2硬質皮膜を直流のバイアス電圧のみを印加させて成膜した場合、Bは、TiNの面心立方構造の格子に置換されるほかに、立方晶窒化硼素(c−BN)、六方晶窒化硼素(h−BN)、非晶質BNなどを第2硬質皮膜中に含むことが多くなる。プラズマ中でBのイオンは、Tiなどに比べ軽元素であるため、高い運動エネルギーを有した状態で基体に到達し、様々な不安定な結合が生じるものと考えられる。第2硬質皮膜にh−BNのみを含む場合は、潤滑特性が向上し、すくい面摩耗の抑制を実現できると期待されるが、h−BNを単独で含有させることは困難となる。c−BN等、他の結晶構造を有する化合物と共存するようになるため、圧縮応力が増大する。特にc−BNを多く含む場合は、第2硬質皮膜の高硬度化が実現できるものの、圧縮応力が増大し、密着性が劣化する欠点が現れるため好ましくない。   On the other hand, when the second hard film is formed by applying only a DC bias voltage, B is replaced by a lattice of a face-centered cubic structure of TiN, cubic boron nitride (c-BN), hexagonal Crystalline boron nitride (h-BN), amorphous BN, and the like are often included in the second hard film. Since ions of B in the plasma are lighter elements than Ti and the like, it is considered that the ions reach the substrate with high kinetic energy and various unstable bonds are generated. When only the h-BN is included in the second hard coating, it is expected that the lubrication characteristics are improved and the rake face wear can be suppressed, but it is difficult to contain h-BN alone. Since it comes to coexist with compounds having other crystal structures such as c-BN, the compressive stress increases. In particular, when a large amount of c-BN is contained, although it is possible to increase the hardness of the second hard coating, it is not preferable because the compressive stress increases and the adhesion deteriorates.

次に、本発明の構成要件のうち、重要な(111)面ピーク強度の条件について説明する。本発明は、面心立方構造を有する第1硬質皮膜をX線回折で評価したときに、(111)面に最も強く配向していることが大きな特徴である。この特徴により、本発明は第1硬質皮膜が高硬度となり、切削におけるせん断方向からの切削力に対する耐久性が優れる。   Next, an important (111) plane peak intensity condition among the constituent features of the present invention will be described. A major feature of the present invention is that the first hard film having a face-centered cubic structure is most strongly oriented in the (111) plane when evaluated by X-ray diffraction. Due to this feature, in the present invention, the first hard film has a high hardness, and the durability against the cutting force from the shear direction in cutting is excellent.

一般的に言って、切削による外部からの衝撃に対し、硬質皮膜に破壊(以下、クラックと記す。)が生じる。そのクラックは、基体に対して垂直方向に硬質皮膜における組織の粒界を伝播し、基体に到達し、欠損や摩耗の原因となる。従って、基体に接する第1硬質皮膜での(200)面への配向が強くなると、圧縮応力が低減され、第1硬質皮膜の密着性は高まる。しかし、(200)面への強い配向は、硬度低下による耐摩耗性の劣化や柱状組織の粗大化によって、クラックが伝播しやすくなり、耐欠損性が低下する不都合が生じる。本発明の硬質皮膜被覆工具は、第1硬質皮膜で耐摩耗性はもちろんのこと、基材との密着性を高め、第2硬質皮膜の機械的特性を改善することで優れた耐摩耗性を実現するものである。   Generally speaking, the hard coating is destroyed (hereinafter referred to as a crack) in response to an external impact caused by cutting. The crack propagates through the grain boundary of the structure in the hard film in a direction perpendicular to the base, reaches the base, and causes cracks and wear. Therefore, when the orientation to the (200) plane in the first hard film in contact with the base becomes strong, the compressive stress is reduced and the adhesion of the first hard film is increased. However, the strong orientation to the (200) plane causes a problem that cracks are easily propagated due to deterioration of wear resistance due to a decrease in hardness and coarsening of the columnar structure, resulting in a disadvantage that the fracture resistance is lowered. The hard film coated tool of the present invention has excellent wear resistance by improving the mechanical properties of the second hard film, as well as improving the mechanical properties of the second hard film, as well as wear resistance in the first hard film. It is realized.

本発明のように、第1硬質皮膜を、(111)面に強く配向させることにより、基体に対して垂直方向に発生するクラック伝播を低減して、耐摩耗性が高まる。そこで本発明では、第1硬質皮膜のX線回折において(111)面のピーク強度をIr、(200)面のピーク強度をIs、(220)面のピーク強度をItとしたときに、第1硬質皮膜のIs/Ir値を、0.2≦Is/Ir≦1.4、It/Is値を0.6≦It/Is≦1.5に規定する。第1硬質皮膜を、0.2≦Is/Ir≦1.4、にすれば優れた耐摩耗性を実現でき、また、0.6≦It/Is≦1.5、にすれば適正な圧縮応力の範囲を得ることができる。従って、厚膜化された皮膜が高い密着性を有しつつ、高硬度な第1硬質皮膜を得ることができる。しかし、Is/Ir値が0.2未満、It/Is値が0.6未満のときは、第1硬質皮膜の断面組織が著しく微細化し、圧縮応力が増大する。そのため、耐摩耗性は優れるが、容易に皮膜剥離が発生する。特にIt/Is値が0.6未満では、第1硬質皮膜の内部欠陥が著しく増加する。また、It/Is値が0.6未満のときは、たとえIs/Ir値が0.2≦Is/Ir≦1.4、であっても、第1硬質皮膜の圧縮応力を制御することが困難となる。このときの第1硬質皮膜の圧縮応力は6.5GPa程度となり基体と第1硬質皮膜の密着性は著しく劣化する。そこで、0.6≦It/Is≦1.5に規定する。Is/Ir値が1.4を超えて大きく、It/Is値が1.5を超えて大きいときは、圧縮応力は低減され、密着性は高まる。しかしその反面、硬度が著しく低下し、耐摩耗性が劣る。また硬質皮膜の断面組織における粒界の接合強度が低下して耐欠損性が劣化する。   As in the present invention, by strongly orienting the first hard film on the (111) plane, the propagation of cracks generated in the direction perpendicular to the substrate is reduced, and the wear resistance is increased. Therefore, in the present invention, in the X-ray diffraction of the first hard film, when the peak intensity of the (111) plane is Ir, the peak intensity of the (200) plane is Is, and the peak intensity of the (220) plane is It, The Is / Ir value of the hard coating is defined as 0.2 ≦ Is / Ir ≦ 1.4, and the It / Is value is defined as 0.6 ≦ It / Is ≦ 1.5. If the first hard coating is 0.2 ≦ Is / Ir ≦ 1.4, excellent wear resistance can be realized, and if 0.6 ≦ It / Is ≦ 1.5, proper compression is achieved. A range of stress can be obtained. Accordingly, the first hard film having high hardness can be obtained while the thick film has high adhesion. However, when the Is / Ir value is less than 0.2 and the It / Is value is less than 0.6, the cross-sectional structure of the first hard coating is remarkably refined and the compressive stress increases. Therefore, although abrasion resistance is excellent, film peeling occurs easily. In particular, when the It / Is value is less than 0.6, the internal defects of the first hard coating are remarkably increased. When the It / Is value is less than 0.6, the compressive stress of the first hard film can be controlled even if the Is / Ir value is 0.2 ≦ Is / Ir ≦ 1.4. It becomes difficult. At this time, the compressive stress of the first hard film is about 6.5 GPa, and the adhesion between the substrate and the first hard film is remarkably deteriorated. Therefore, it is defined as 0.6 ≦ It / Is ≦ 1.5. When the Is / Ir value is larger than 1.4 and the It / Is value is larger than 1.5, the compressive stress is reduced and the adhesion is increased. However, on the other hand, the hardness is significantly reduced and the wear resistance is poor. Moreover, the joint strength at the grain boundaries in the cross-sectional structure of the hard coating is reduced, and the fracture resistance is deteriorated.

第2硬質皮膜について、硬質皮膜のX線回折において(111)面のピーク強度Iu、(200)面のピーク強度Iv、及び(220)面のピーク強度Iwとしたとき、5.0≦Iv/Iu≦15、及び2.0≦Iw/Iu≦4.0の範囲に規定する。第2硬質皮膜を成膜する際の条件として、パルス化されたバイアス電圧印加を負と正に振幅させ、(200)面に強く配向させることで、第2硬質皮膜の圧縮応力を制御することができ、さらに耐衝撃性が改善される。そのためには、バイアス電圧印加は、負の電圧20〜100V、パルス周波数を5〜35kHz、正の電圧5〜10Vの間で振幅させることによって実現できる。第2硬質皮膜を上記範囲に制御すると、硬質皮膜が高硬度化し、耐摩耗性が改善される。バイアス電圧の制御のほかには、反応圧力を2〜5Paの範囲に制御すれば可能である。第2硬質皮膜成膜時のバイアス電圧を20V未満にすると(200)のピークが強く出現し、耐衝撃性や耐摩耗性が劣る。また、100V以上では、硬質皮膜の残留圧縮応力が増大し、第1硬質皮膜との密着性が劣化する。   With respect to the second hard film, when X-ray diffraction of the hard film is defined as (111) plane peak intensity Iu, (200) plane peak intensity Iv, and (220) plane peak intensity Iw, 5.0 ≦ Iv / It is specified in the ranges of Iu ≦ 15 and 2.0 ≦ Iw / Iu ≦ 4.0. As a condition for forming the second hard coating, the compression stress of the second hard coating is controlled by amplifying the pulsed bias voltage application to negative and positive and strongly orienting the (200) plane. And impact resistance is improved. For this purpose, bias voltage application can be realized by amplifying the negative voltage between 20 and 100 V, the pulse frequency between 5 and 35 kHz, and the positive voltage between 5 and 10 V. Controlling the second hard film within the above range increases the hardness of the hard film and improves the wear resistance. In addition to controlling the bias voltage, it is possible to control the reaction pressure in the range of 2 to 5 Pa. When the bias voltage at the time of forming the second hard film is less than 20 V, the peak of (200) appears strongly, and the impact resistance and wear resistance are inferior. Moreover, at 100 V or more, the residual compressive stress of the hard coating increases, and the adhesion with the first hard coating deteriorates.

本発明に係る硬質皮膜において、第1硬質皮膜と第2硬質皮膜のX線回折における(111)面の面間隔(nm)をそれぞれ、d1、d2としたときに、1.01≦d2/d1≦1.05であり、d2/d1値を、1.01≦d2/d1≦1.05とすることにより、第1硬質皮膜と第2硬質皮膜との密着性が改善され、耐摩耗性が優れる。硬質皮膜間の密着性を高めるには結晶格子歪を低減させる必要がある。この歪を低減させるためには、硬質皮膜間の(111)面の面間隔の差を小さくしてミスフィットを低減させることにより、高い密着性が得られる。そこで、d2/d1値を、1.01≦d2/d1≦1.05の範囲に規定することで基体との密着性が損なわれることなく耐摩耗性に優れた硬質皮膜が得られる。d2/d1値が1.01未満では、硬質皮膜全体の圧縮応力が増大するため、基体との密着性が劣化する。1.05を超えると、皮膜界面の内部欠陥が多くなり、密着性が損なわれるだけでなく、圧縮応力が増大し、基体との密着性が低下する。成膜条件として1.01≦d2/d1≦1.05の範囲にする方法を例示すると、成膜条件であるバイアス印加におけるパルス周波数を、5kHzから35kHzの範囲で使用することである。   In the hard coating according to the present invention, 1.01 ≦ d2 / d1 when the distance (nm) between the (111) planes in the X-ray diffraction of the first hard coating and the second hard coating is d1 and d2, respectively. ≦ 1.05 and by setting d2 / d1 value to 1.01 ≦ d2 / d1 ≦ 1.05, the adhesion between the first hard film and the second hard film is improved, and the wear resistance is improved. Excellent. In order to improve the adhesion between the hard films, it is necessary to reduce the crystal lattice strain. In order to reduce this distortion, high adhesion can be obtained by reducing the difference in (111) plane spacing between hard coatings to reduce misfit. Therefore, by defining the d2 / d1 value in a range of 1.01 ≦ d2 / d1 ≦ 1.05, a hard coating having excellent wear resistance can be obtained without impairing adhesion to the substrate. If the d2 / d1 value is less than 1.01, the compressive stress of the entire hard coating increases, and the adhesion to the substrate deteriorates. If it exceeds 1.05, the number of internal defects at the film interface increases, and not only the adhesion is impaired, but also the compressive stress increases and the adhesion with the substrate decreases. As an example of the film forming condition, the method of setting the range of 1.01 ≦ d2 / d1 ≦ 1.05 is to use the pulse frequency in bias application as the film forming condition in the range of 5 kHz to 35 kHz.

本発明に係る硬質皮膜について、第2硬質皮膜は柱状組織を有し、結晶粒は成長方向について界面を形成することなくB成分の組成変調構造を有し、B成分に組成差を有する層同士の境界領域で結晶格子縞が連続的に成長している。ここで、柱状組織とは、膜厚方向に伸びた縦長成長の結晶組織である。第2硬質皮膜は多結晶材料であるが、結晶粒1つ1つの単位で捉えれば、単結晶材料の成長に類似した形態となっている。本発明の特徴として、第2硬質皮膜の柱状組織の結晶粒は、成長方向に対してB成分の含有量が比較的多くなっているB富化層と、比較的少なくなっているB貧化層とが交互に存在し、B成分の組成差を有する組成変調構造を有していることである。このとき、この組成変調構造における組成変調境界部では結晶格子縞が連続していることが好ましい。第2硬質皮膜がB成分の組成変調構造を有し、圧縮応力を制御することによって機械的強度が高まる。例えば、B含有量の富化層では、比較的軟質な層が形成される。この軟質層が、他の比較的硬質な層との層間に存在すると緩衝効果を示し、第2硬質皮膜全体として圧縮応力を緩和して、靭性を有する。更に、B成分の潤滑特性によって、潤滑性を有する第2硬質皮膜を得ることができる。しかし、この時の好ましいB成分の組成差は、最大でも10%である。より好ましくは、0.1%以上、7%以下の範囲にすることである。   Regarding the hard film according to the present invention, the second hard film has a columnar structure, the crystal grains have a compositional modulation structure of the B component without forming an interface in the growth direction, and the layers having a compositional difference in the B component Crystal lattice fringes continuously grow in the boundary region. Here, the columnar structure is a vertically grown crystal structure extending in the film thickness direction. The second hard film is a polycrystalline material, but has a form similar to the growth of a single crystal material when grasped in units of crystal grains. As a feature of the present invention, the crystal grains of the columnar structure of the second hard film include a B-enriched layer in which the content of the B component is relatively large with respect to the growth direction and a B-poority that is relatively small. The layers are alternately present and have a composition modulation structure having a composition difference of the B component. At this time, it is preferable that crystal lattice fringes are continuous at the composition modulation boundary in the composition modulation structure. The second hard film has a B component composition modulation structure, and the mechanical strength is increased by controlling the compressive stress. For example, a B layer enriched layer forms a relatively soft layer. When this soft layer is present between other relatively hard layers, it exhibits a buffering effect, and the second hard coating as a whole relaxes the compressive stress and has toughness. Furthermore, the 2nd hard film | membrane which has lubricity can be obtained with the lubrication characteristic of B component. However, the preferable composition difference of the B component at this time is 10% at the maximum. More preferably, it is in the range of 0.1% or more and 7% or less.

B成分の組成変調構造とするには、例えば、B含有量の比較的多い組成のターゲット材と、比較的少ない組成のターゲット材とを組み合わせるといったように、B含有量の異なるターゲット材を用いて、パルスバイアスを印加しながら成膜を行うことで実現できる。本発明に係る第2硬質皮膜は、パルスバイアスによる高バイアス電圧印加によって実現できる。そのため、特に第2硬質皮膜においてはTiよりもイオン半径の小さいBを面心立方構造TiNの結晶格子中に含有させるため、パルスバイアスの印加によりイオンの運動エネルギーを制御する必要がある。パルスバイアスを印加させることにより、柱状組織におけるB含有量が組成差を有する部分は、B成分が交互に組成変調する構造となり、B富化層とB貧化層との層間は結晶格子縞が連続して成長する。一方、直流の高バイアス電圧印加では、Bを第2硬質皮膜中に含有させることが困難となってしまう。層間の結晶格子縞が連続して成長した組成変調構造は、例えば、日本電子株式会社製JEM−2010F型の電界放出型透過型電子顕微鏡(以下、TEMと記す。)を用いて、加速電圧20kVの条件で柱状組織を観察することによって確認できる。   In order to obtain a composition-modulated structure of the B component, for example, a target material having a different B content is used, such as a combination of a target material having a relatively large B content and a target material having a relatively small composition. This can be realized by performing film formation while applying a pulse bias. The second hard coating according to the present invention can be realized by applying a high bias voltage by a pulse bias. Therefore, in particular, in the second hard coating, since B having an ion radius smaller than that of Ti is contained in the crystal lattice of the face-centered cubic structure TiN, it is necessary to control the kinetic energy of ions by applying a pulse bias. By applying a pulse bias, the portion where the B content in the columnar structure has a compositional difference has a structure in which the B component is alternately modulated, and crystal lattice fringes are continuous between the B-rich layer and the B-poor layer. And grow up. On the other hand, when a high DC bias voltage is applied, it becomes difficult to contain B in the second hard film. The composition modulation structure in which the crystal lattice fringes between the layers are continuously grown has an acceleration voltage of 20 kV using, for example, a JEM-2010F type field emission transmission electron microscope (hereinafter referred to as TEM) manufactured by JEOL Ltd. This can be confirmed by observing the columnar structure under conditions.

硬質皮膜全体の膜厚を5μm以上とすることにより、優れた耐摩耗性が得られる。一方、30μm超では、硬質皮膜は圧縮応力が高くなり、基体との密着性が劣化するため、30μm以下であるのが好ましい。また第1硬質皮膜の膜厚は第2硬質皮膜よりも厚く、より好ましくは第2硬質皮膜の膜厚は硬質皮膜全体の膜厚に対し、50%以下であることが好適である。より好ましくい硬質皮膜全体の膜厚は、10μm〜30μmの膜厚であることにより、優れた耐摩耗性が得られる。   By setting the film thickness of the entire hard coating to 5 μm or more, excellent wear resistance can be obtained. On the other hand, if it exceeds 30 μm, the hard coating film has a high compressive stress and deteriorates the adhesion to the substrate, so that it is preferably 30 μm or less. Further, the film thickness of the first hard film is thicker than that of the second hard film, and more preferably, the film thickness of the second hard film is 50% or less with respect to the film thickness of the entire hard film. The more preferable film thickness of the entire hard coating is 10 μm to 30 μm, whereby excellent wear resistance can be obtained.

第1硬質皮膜における非金属成分の窒素元素について、その1部を炭素元素、酸素元素で置換し、原子%で炭素元素の含有量をx値、酸素元素の含有量をy値としたとき、0<x≦10、0<y≦10、0<x+y≦10の範囲にすることが好ましい。これにより、高硬度、優れた耐酸化特性、密着性及び潤滑特性を有する第1硬質皮膜が得られる。炭素元素、酸素元素を含有させるときは、機械的強度劣化を回避するために、x値とy値との和を10%以下にすることで、優れた耐溶着性と摺動性を有する。より好ましくは、炭素元素を単独で含有させる場合は、2%〜10%とすることである。しかし、x値、y値が10%を超えると結晶組織が微細化し、結晶粒界における欠陥が増大する。その結果、たとえ第1硬質皮膜の潤滑特性が改善されても、圧縮応力が増大するため密着性や耐欠損性が低下する欠点が現れる。第1硬質皮膜に炭素元素、酸素元素を含有させる場合には、炭化水素系ガスや酸素含有ガスを使用することが好ましい。ガスを導入して成膜を行う場合、窒素ガスと併せた全圧は、3〜8Paの範囲にすることが好ましい。炭素元素の添加において、ガスを導入し成膜を行う場合は、窒素(N)とメタン(CH)やアセチレン(C)、エチレン(C)などを用いた方が制御し易い。炭化水素系ガスを導入する場合は、窒素流量に対して20%程度までが安定して成膜を行うことが可能な範囲である。また酸素ガスを導入する場合は、窒素ガスと酸素ガス、又は、窒素ガス、酸素ガス、およびアルゴンを導入して成膜を行うことが好ましい。或いは、ターゲット蒸発源に炭素元素、酸素元素を含む化合物として含有させることも可能である。 Regarding the nitrogen element of the non-metallic component in the first hard film, when a part of the nitrogen element is replaced with a carbon element and an oxygen element, the content of the carbon element is x value and the oxygen element content is y value in atomic%. It is preferable that 0 <x ≦ 10, 0 <y ≦ 10, and 0 <x + y ≦ 10. Thereby, the 1st hard film which has high hardness, the outstanding oxidation-resistant characteristic, adhesiveness, and a lubrication characteristic is obtained. When carbon element and oxygen element are contained, in order to avoid mechanical strength deterioration, the sum of x value and y value is made 10% or less, so that excellent welding resistance and sliding property are obtained. More preferably, when the carbon element is contained alone, the content is 2% to 10%. However, when the x value and y value exceed 10%, the crystal structure becomes finer, and defects at the grain boundaries increase. As a result, even if the lubrication characteristics of the first hard coating are improved, the compressive stress increases, and thus a defect that adhesion and fracture resistance are lowered appears. When the first hard film contains a carbon element or an oxygen element, it is preferable to use a hydrocarbon-based gas or an oxygen-containing gas. When film formation is performed by introducing gas, the total pressure combined with nitrogen gas is preferably in the range of 3 to 8 Pa. When film formation is performed by introducing a gas in addition of carbon element, it is preferable to use nitrogen (N 2 ), methane (CH 4 ), acetylene (C 2 H 2 ), ethylene (C 2 H 6 ), or the like. Easy to control. In the case of introducing a hydrocarbon gas, up to about 20% of the nitrogen flow rate is a range in which film formation can be performed stably. In the case of introducing oxygen gas, it is preferable to perform film formation by introducing nitrogen gas and oxygen gas, or nitrogen gas, oxygen gas, and argon. Alternatively, the target evaporation source can be contained as a compound containing a carbon element or an oxygen element.

第2硬質皮膜における金属成分のTi元素について、その1部をSi元素で置換し、該金属成分全体を1としたとき、原子%でSi元素の含有量をkとしたとき、0<k≦20とすることにより、耐摩耗性が向上する。第2硬質皮膜を柱状組織とするため、k値は20%以下にすることが好ましい。Siを含有させる場合は、TiNの単一な結晶質が固溶体となることで、例えば、切削工具のすくい面における耐摩耗性に優れた第2硬質皮膜を得られる。一方、k値が20%を超えると組織が微細化し、圧縮応力が増大し、密着性を低下させる欠点が現れる。また、第2硬質皮膜は、TiNの結晶質、SiN組成系の結晶質や非晶質といった形で、様々な構造が混在する。その結果、結晶粒界が増大し、結晶格子歪が発生して圧縮応力が増大する。   With respect to the Ti element of the metal component in the second hard film, when 1 part of the Ti element is substituted with the Si element and the entire metal component is 1, the content of Si element in atomic% is k, and 0 <k ≦ By setting it to 20, the wear resistance is improved. In order to make the second hard film a columnar structure, the k value is preferably 20% or less. When Si is contained, the second hard film having excellent wear resistance on the rake face of the cutting tool can be obtained, for example, by forming a single crystal of TiN into a solid solution. On the other hand, if the k value exceeds 20%, the structure becomes finer, the compressive stress increases, and the disadvantage of decreasing the adhesion appears. In addition, the second hard coating includes various structures in the form of TiN crystalline, SiN composition crystalline, or amorphous. As a result, crystal grain boundaries increase, crystal lattice distortion occurs, and compressive stress increases.

本発明の硬質皮膜の組成は、例えば、日本電子製のJXA8500F形EPMA分析装置を用いて測定できる。具体的には硬質皮膜の垂直断面もしくは膜断面を17度斜めに傾けて研磨した傾斜断面において、硬質皮膜を基体の影響を受けない位置から行い、加速電圧10kV、照射電流1.0μA、プローブ径を10μm程度に設定することにより組成の特定が可能である。硬質皮膜表面から測定する場合は、プローブ径を50μm程度に設定することが好ましい。また、炭素や酸素を含有させたときは、2%未満になると分析での検出が困難となる。硬質皮膜の膜厚は、例えば、株式会社日立製作所製S−4200型電解放射走査型電子顕微鏡を用いて、垂直方向の破断面をたとえば倍率2万5千倍で観察して測定できる。   The composition of the hard film of the present invention can be measured, for example, using a JXA8500F type EPMA analyzer manufactured by JEOL. Specifically, in the vertical cross section of the hard film or the inclined cross section obtained by inclining the film cross section at an angle of 17 degrees, the hard film is applied from a position not affected by the substrate, the acceleration voltage is 10 kV, the irradiation current is 1.0 μA, the probe diameter. The composition can be specified by setting the value to about 10 μm. When measuring from the surface of the hard coating, the probe diameter is preferably set to about 50 μm. Further, when carbon or oxygen is contained, if it is less than 2%, detection by analysis becomes difficult. The film thickness of the hard coating can be measured, for example, by observing the fracture surface in the vertical direction at a magnification of 25,000 times, for example, using an S-4200 type electrolytic emission scanning electron microscope manufactured by Hitachi, Ltd.

第1、2硬質皮膜のX線回折における(111)、(200)、(220)面のピーク強度比の測定は、例えば、理学電気株式会社製RU−200BH型X線回折装置を用いて2θ−θ走査法により測定できる。本発明の実施例では、2θ(度)の範囲は、10〜145度、X線源はλ値が0.15405nmのCuKα1線を用い、バックグランドノイズは装置に内蔵されたソフトにより除去した。測定結果は、検出された2θのピーク位置が、結晶構造が面心立方構造であるTiNのX線回折パターン(JCPDSファイル番号38−1420)に略一致したので、その(111)、(200)、(220)ピークの強度を測定した。ピーク強度は、各指数面のピークトップの最大値をピーク強度とし、それを用いてピーク強度比を求めた。更に、面間隔は、上記(111)面を示すピーク位置の数値を適用した。また、CrNがベースとなるような第1硬質皮膜の場合も同様にして、ピーク強度を測定した。   The measurement of the peak intensity ratio of the (111), (200), (220) planes in the X-ray diffraction of the first and second hard coatings is, for example, 2θ using a RU-200BH type X-ray diffractometer manufactured by Rigaku Corporation. It can be measured by the -θ scanning method. In the embodiment of the present invention, the range of 2θ (degrees) is 10 to 145 degrees, the X-ray source is CuKα1 line having a λ value of 0.15405 nm, and background noise is removed by software built in the apparatus. As a result of the measurement, the detected 2θ peak position substantially coincided with the X-ray diffraction pattern (JCPDS file number 38-1420) of TiN whose crystal structure is a face-centered cubic structure. , (220) peak intensity was measured. For the peak intensity, the maximum value of the peak top on each index plane was taken as the peak intensity, and the peak intensity ratio was determined using this. Furthermore, the numerical value of the peak position which shows the said (111) plane was applied to the surface space | interval. Further, the peak intensity was measured in the same manner for the first hard coating based on CrN.

本発明に係る硬質皮膜における圧縮応力は以下に示す曲率測定法で算出できる。即ち、ヤング率とポアッソン比が既知となっている基体を所定の形状に加工した試験片を用い、その表面に被覆を行うと、硬質皮膜中に発生する圧縮応力により、被覆された試験片がたわみ変形する。そのたわみ変形量を求め、数1を用いて、硬質皮膜全体の圧縮応力σ値を算出する。後述の実施例等ではこの方法で算出した数値を記載した。   The compressive stress in the hard film according to the present invention can be calculated by the following curvature measurement method. That is, when a test piece obtained by processing a substrate having a known Young's modulus and Poisson's ratio into a predetermined shape is coated on the surface, the coated test piece is caused by the compressive stress generated in the hard film. Deforms and deforms. The amount of deflection deformation is obtained, and the numerical value 1 is used to calculate the compressive stress σ value of the entire hard coating. In Examples and the like described later, numerical values calculated by this method are described.

Figure 2011189499
Figure 2011189499

ここで、Es値(GPa)は、試験片に使用した基体のヤング率、D値(mm)は試験片の厚み、δ値(μm)は被覆前後で生じる試験片のたわみ量、l値(mm)は被覆によってたわみが生じた試験片の長さ方向端面から、最大たわみ部までの長さ、νs値は試験片に使用した基体のポアッソン比、d(μm)は試験片表面に被覆した硬質皮膜の膜厚である。また、試験片の形成材料としては、超硬合金材料が、測定数値のばらつきが少なく適している。試験片形状は、短冊型の形状が望ましく、例えば8mm幅、25mm長さ、0.5〜1.5mm厚さの形状を使用すると、測定数値のばらつきが少ない。試験片の面積の大きい上下面について、平行度±0.1mmになるよう、鏡面研磨を施した後、600〜1000℃の真空中で熱処理を行い、試験片に用いる材料の、特に表面部分の歪を除去することが重要である。この歪をある程度除去しなければ、得られる圧縮応力の値にばらつきが発生する。試験片面積の大きい、鏡面加工された一面のたわみ変形量を被覆前に測定した後、その面に被覆を行い、再度、得られた被覆試験片のたわみ量を測定する。被覆前後のたわみ量と、被覆によってたわみが生じた試験片の長さ方向端面から、最大たわみ部までの長さ、および被覆した硬質皮膜の膜厚を測定し、その数値を数1に代入すれば、硬質皮膜の組成や、成膜条件が変化しても、また、組成変調構造を有していても、圧縮応力の値を算出することが可能である。   Here, the Es value (GPa) is the Young's modulus of the substrate used for the test piece, the D value (mm) is the thickness of the test piece, the δ value (μm) is the amount of deflection of the test piece before and after coating, and the l value ( mm) is the length from the end surface in the longitudinal direction of the test piece where the deflection is caused by the coating to the maximum deflection part, νs value is the Poisson's ratio of the substrate used for the test piece, and d (μm) is coated on the surface of the test piece. It is the film thickness of the hard coating. In addition, as a material for forming the test piece, a cemented carbide material is suitable with little variation in measured numerical values. The shape of the test piece is preferably a strip shape. For example, when a shape having a width of 8 mm, a length of 25 mm, and a thickness of 0.5 to 1.5 mm is used, variation in measured numerical values is small. The upper and lower surfaces having a large area of the test piece are mirror-polished so that the parallelism is ± 0.1 mm, and then heat-treated in a vacuum of 600 to 1000 ° C., and particularly the surface portion of the material used for the test piece. It is important to remove the distortion. Unless this strain is removed to some extent, the resulting compressive stress values will vary. After measuring the deflection deformation amount of one mirror-finished surface having a large test piece area before coating, the surface is coated, and the deflection amount of the obtained coated test piece is measured again. Measure the amount of deflection before and after coating, the length from the end face in the length direction of the test piece where the deflection occurred to the maximum deflection, and the film thickness of the coated hard coating. For example, it is possible to calculate the value of the compressive stress even if the composition of the hard film and the film forming conditions are changed or the composition has a modulation structure.

硬質皮膜被覆工具は、基体として炭化タングステン基超硬合金、高速度工具鋼、またはサーメット等を用いると、より耐摩耗性と靱性のバランスが最適化される。ただし、高速度工具鋼を基体として用いる場合は、その熱処理特性を考慮し500〜550℃の範囲で物理蒸着により被覆することが好ましい。このような比較的低温で成膜する場合は、印加するバイアス電圧や成膜時の反応圧力を適宜最適化する。成膜方法としては、パルス化されたバイアス電圧が印加可能で、圧縮応力が付与される成膜方式が好ましい。アークイオンプレーティング(以下、AIPと記す。)法、スパッタリング法等のイオンプレーティング方式等が好ましい。適切な製造条件を適用すれば、各々の方式が一つの設備に設置された複合装置を用いてもよい。本発明を以下の実施例により更に詳細に説明するが、それにより本発明が限定されるものではない。   When the hard coating tool is made of tungsten carbide base cemented carbide, high speed tool steel, cermet or the like as the substrate, the balance between wear resistance and toughness is further optimized. However, when high-speed tool steel is used as the substrate, it is preferable to coat by physical vapor deposition in the range of 500 to 550 ° C. in consideration of its heat treatment characteristics. When the film is formed at such a relatively low temperature, the bias voltage to be applied and the reaction pressure at the time of film formation are appropriately optimized. As a film forming method, a film forming method in which a pulsed bias voltage can be applied and compressive stress is applied is preferable. An ion plating method such as an arc ion plating (hereinafter referred to as AIP) method or a sputtering method is preferred. If appropriate manufacturing conditions are applied, a composite apparatus in which each method is installed in one facility may be used. The present invention will be described in more detail by the following examples, but the present invention is not limited thereby.

圧縮応力測定が行える試験片、旋削用インサート形状の超硬合金製基体表面に、本発明に係る硬質皮膜を被覆して、本発明例1のものを作製した。本発明例1では、AIP装置を用いて、金属成分の組成が、原子%で、Ti:50%、Al:50%のターゲット材1を用いた。金属成分のみの組成が原子%で、Ti:50%、Al:50%の(TiAl)N膜を第1硬質皮膜として膜厚6μmとなるように成膜した。その後、B含有量の異なる2種類のターゲット材を用いて、第2硬質皮膜を成膜した。即ち、金属成分の組成が、原子%で、Ti:86%、B:14%のターゲット材2と、Ti:84%、B:16%のターゲット材3とを用いた。金属成分のみの組成が、Ti:85%、B:15%の(TiB)N膜を6μmの膜厚で第2硬質皮膜として成膜し、総膜厚が12μmとした。この様に、第2硬質皮膜の成膜においては、旋削用インサートを装填した治具が、AIP装置内で遊星運動を行うことによって、旋削用インサートは、ターゲット材2とターゲット材3との間を通過するときに、接近と離脱とを交互におこなうことによって、柱状組織の結晶粒が、B成分の組成変調構造をもつように調整した。成膜温度は550℃、反応圧力は3.5Paとし、窒化物とするために窒素ガスを成膜時に導入させて作製した。第1硬質皮膜である(TiAl)N膜は直流150Vの負のバイアス電圧で1μm成膜した後、パルス化したバイアス電圧を印加したものである。パルス周波数は10kHz、正のバイアス電圧を5Vに設定した。(TiAl)N膜を成膜後、第2硬質皮膜である(TiB)N膜を直流50Vの負のバイアス電圧で1μm成膜した後、パルス化したバイアス電圧を印加したものである。パルス周波数は10kHz、正のバイアス電圧を5Vの条件にて成膜した。蒸発源は、本発明例と比較例に応じて、各種合金製ターゲットを選択して用い、窒化物、炭窒化物、酸窒化物、酸炭窒化物とするために窒素、酸素、メタンなどの炭化水素系のガスを単独、もしくは、混合させて成膜時に導入させて作製した。本発明例1の成膜条件を標準として、硬質皮膜の膜厚、組成、X線回折ピーク強度、ならびに圧縮応力を変化させた本発明例2〜42と比較例43〜63のものを作製した。   A hard coating according to the present invention was coated on a surface of a cemented carbide substrate having a test piece capable of measuring compressive stress and a turning insert shape, thereby producing a sample of the present invention example 1. In Example 1 of the present invention, an AIP apparatus was used, and the target material 1 having a metal component composition of atomic%, Ti: 50%, and Al: 50% was used. A (TiAl) N film having a composition of only the metal component and containing Ti: 50% and Al: 50% was formed as a first hard film so as to have a film thickness of 6 μm. Then, the 2nd hard film was formed into a film using two types of target materials from which B content differs. That is, the target material 2 with the composition of the metal component of atomic percent, Ti: 86% and B: 14%, and the target material 3 with Ti: 84% and B: 16% were used. A (TiB) N film having a composition of only metal components of Ti: 85% and B: 15% was formed as a second hard film with a film thickness of 6 μm, and the total film thickness was 12 μm. Thus, in the film formation of the second hard coating, the turning insert is placed between the target material 2 and the target material 3 by the jig loaded with the turning insert performing a planetary motion in the AIP apparatus. The crystal grains in the columnar structure were adjusted so as to have a B-component composition modulation structure by alternately approaching and leaving when passing through. The film formation temperature was set to 550 ° C., the reaction pressure was set to 3.5 Pa, and nitrogen gas was introduced during film formation in order to form nitrides. The (TiAl) N film, which is the first hard film, is formed by forming a 1 μm film with a negative bias voltage of 150 VDC and then applying a pulsed bias voltage. The pulse frequency was set to 10 kHz, and the positive bias voltage was set to 5V. After forming the (TiAl) N film, a (TiB) N film as the second hard film is formed to a thickness of 1 μm with a negative bias voltage of DC 50V, and then a pulsed bias voltage is applied. The film was formed under the conditions of a pulse frequency of 10 kHz and a positive bias voltage of 5V. The evaporation source is selected from various alloy targets according to the present invention and the comparative example, and in order to obtain nitrides, carbonitrides, oxynitrides, oxycarbonitrides, nitrogen, oxygen, methane, etc. A hydrocarbon-based gas was produced either alone or mixed and introduced during film formation. Inventive Examples 2 to 42 and Comparative Examples 43 to 63 in which the film thickness, composition, X-ray diffraction peak intensity, and compressive stress of the hard coating were changed using the film forming conditions of Inventive Example 1 as a standard were prepared. .

作製した試料の詳細と、硬質皮膜組成、硬質皮膜の製造条件、圧縮応力の測定値や被覆したインサートの切削試験の評価結果を表1、2、3、4に示す。また、TEMによる皮膜断面観察の結果、本発明例における第2硬質皮膜は全て柱状組織を有し、この柱状組織の結晶粒は結晶粒成長方向に対してB成分に組成差を有する組成変調構造を有していることを確認した。例えば、本発明例1の第2硬質皮膜は、TEMによる皮膜断面観察の結果、柱状組織を有し、結晶粒は成長方向に対してB成分に組成差を有する組成変調構造であった。これは、B含有量の異なるターゲット材を用いて第2硬質皮膜を成膜したことにより、B富化層とB貧化層とのB成分の組成差は、2%であった。また、層間は結晶格子縞が連続して成長していた。一方、比較例の中にもB成分に組成差を有する組成変調構造を有するものがあったが、この組成差の小さいものは、高い圧縮応力を示した。   Tables 1, 2, 3, and 4 show details of the prepared samples, hard coating composition, manufacturing conditions of the hard coating, measured values of compressive stress, and evaluation results of the cutting test of the coated insert. Further, as a result of observation of the film cross-section by TEM, the second hard film in the example of the present invention all has a columnar structure, and the crystal grains of this columnar structure have a compositional difference in the B component with respect to the crystal grain growth direction. It was confirmed that it has. For example, the second hard coating of Invention Example 1 has a columnar structure as a result of observation of the cross section of the coating by TEM, and the crystal grains have a composition modulation structure having a composition difference in the B component with respect to the growth direction. This is because the composition difference of the B component between the B-enriched layer and the B-poor layer was 2% because the second hard film was formed using target materials having different B contents. Further, crystal lattice stripes were continuously grown between the layers. On the other hand, some of the comparative examples had a composition modulation structure having a composition difference in the B component. However, a small composition difference showed a high compressive stress.

Figure 2011189499
Figure 2011189499















Figure 2011189499
Figure 2011189499















Figure 2011189499
Figure 2011189499















Figure 2011189499
Figure 2011189499















作製した旋削用インサートを刃先交換式バイトに取り付け、以下の条件で旋削加工試験を行い、耐摩耗性、耐欠損性、密着性の優劣を確認した。切削評価に使用したインサートは、汎用的なCNMG120408形状を用い、超硬合金を基体として、JIS規格におけるM20種相当でHRA91を使用した。旋削加工を行うに当たり、チップブレーカ付き、すくい角が3度の特殊形状のインサートを使用した。評価方法は、切削距離5m時に発生する硬質皮膜被覆インサートの逃げ面、すくい面に発生する摩耗を、光学顕微鏡で50倍に拡大して観察した。更に切削を継続し、10μm以上の微小チッピングを含む欠損が発生した時点、欠損がない場合は、逃げ面摩耗幅のVBmax値が0.3mmに到達した時点を工具寿命とし、この時の切削距離(m)によって性能を評価した。切削途中の刃先の損傷状態は、適宜観察を行った。   The produced turning insert was attached to a blade-type replaceable cutting tool, and a turning test was performed under the following conditions to confirm superiority or inferiority of wear resistance, fracture resistance, and adhesion. The insert used for the cutting evaluation uses a general-purpose CNMG120408 shape, using cemented carbide as a base, and HRA91 corresponding to M20 type in the JIS standard. In turning, a special insert with a chip breaker and a rake angle of 3 degrees was used. In the evaluation method, the abrasion generated on the flank and rake face of the hard film-coated insert generated at a cutting distance of 5 m was observed with an optical microscope at a magnification of 50 times. Further, when cutting was continued and a defect including micro chipping of 10 μm or more occurred, or when there was no defect, the tool life was defined as the time when the VBmax value of the flank wear width reached 0.3 mm, and the cutting distance at this time The performance was evaluated by (m). The damage state of the cutting edge during cutting was appropriately observed.

(切削試験条件)
切削方法:長手方向連続切削
被削材形状:直径160mm、長さ600mmの丸棒材
被削材:S53C、HB260、調質材
軸方向切込み量:2.0mm
切削速度:300m/分
1回転あたりの送り量:0.4mm/回転
切削油:なし
(Cutting test conditions)
Cutting method: Continuous cutting in the longitudinal direction Work material shape: Round bar material with a diameter of 160 mm and a length of 600 mm Work material: S53C, HB260, tempered material Axial depth of cut: 2.0 mm
Cutting speed: 300 m / min Feed rate per rotation: 0.4 mm / rotation Cutting oil: None

本発明例1〜5、比較例43、44は、硬質皮膜の膜厚の影響を見るために作製した。膜厚は被覆時間により調節した。第1硬質皮膜と第2硬質皮膜の膜厚比は1:1として同じとし、全体の膜厚のみを変化させた。硬質皮膜の膜厚が厚くなると圧縮応力は増大する傾向にあった。本発明例1〜5に示す総膜厚が5μm以上を有するものは、逃げ面摩耗、クレータ摩耗などの耐摩耗性に優れた。いずれの試料についても、切削初期5mにおける被加工物成分の刃先への溶着の発生はなかった。これらは、本発明で規定する第2硬質皮膜を有することが、クレータ摩耗、耐溶着性に対し、大きな効果を持つものと考えられた。本発明例1の総膜厚は12μm、圧縮応力値は2.4GPaであり、工具寿命は16mという満足のいく結果を得た。切削距離5m時の刃先の損傷状態を確認した結果、逃げ面摩耗量は0.041mmとなり、薄い膜厚の本発明例4、5よりも耐摩耗性に優れ、例えば、本発明例1は、比較例44に比して8倍以上、工具寿命に優れていた。切削途中の刃先の損傷状態を確認した所、切刃近傍における硬質皮膜の脱落、剥離、チッピング等は観察されず、正常摩耗を呈していた。パルス化されたバイアス電圧を印加して成膜を行った本発明例は、工具寿命が長く優れた結果であった。   Invention Examples 1 to 5 and Comparative Examples 43 and 44 were prepared in order to see the influence of the film thickness of the hard coating. The film thickness was adjusted by the coating time. The film thickness ratio of the first hard film and the second hard film was the same as 1: 1, and only the entire film thickness was changed. The compressive stress tended to increase as the thickness of the hard coating increased. Those having a total film thickness of 5 μm or more shown in Invention Examples 1 to 5 were excellent in wear resistance such as flank wear and crater wear. In any of the samples, there was no occurrence of welding of the workpiece component to the cutting edge in the initial 5 m of cutting. It was thought that these had the big effect with respect to crater abrasion and welding resistance to have the 2nd hard film prescribed | regulated by this invention. In Example 1 of the present invention, the total film thickness was 12 μm, the compressive stress value was 2.4 GPa, and a satisfactory tool life of 16 m was obtained. As a result of confirming the damage state of the cutting edge when the cutting distance is 5 m, the flank wear amount is 0.041 mm, which is superior in wear resistance than the present invention examples 4 and 5 having a thin film thickness. Compared to Comparative Example 44, the tool life was 8 times or more. When the damaged state of the cutting edge was confirmed during cutting, the hard coating was not dropped, peeled off, chipped, or the like in the vicinity of the cutting edge, and normal wear was exhibited. The example of the present invention in which film formation was performed by applying a pulsed bias voltage had a long tool life and excellent results.

比較例43の総膜厚は40μmであり、圧縮応力は7.1GPaであり、本発明例1〜5に対して、工具寿命が劣った。比較例43は、切削前に刃先エッジ部で微細な皮膜破壊が観察された。切削途中の刃先エッジ部の損傷状態を確認したところ、皮膜破壊が9μmの幅に拡大しており、この破壊部分から欠損に至った。総膜厚が40μmという厚膜化により圧縮応力が増大したためである。比較例44の総膜厚は4μmであり、1.3GPaと低い圧縮応力を有していた。しかし、アブレッシブ摩耗が劣ったため硬質皮膜の剥離は少なかったものの、工具寿命は短かった。   The total film thickness of Comparative Example 43 was 40 μm, the compressive stress was 7.1 GPa, and the tool life was inferior to Invention Examples 1-5. In Comparative Example 43, fine film breakage was observed at the edge of the blade edge before cutting. When the damage state of the edge part of the cutting edge during the cutting was confirmed, the film breakage expanded to a width of 9 μm, and the breakage part led to a defect. This is because the compressive stress is increased by increasing the total film thickness to 40 μm. The total film thickness of Comparative Example 44 was 4 μm and had a low compressive stress of 1.3 GPa. However, although the abrasive wear was inferior, there was little peeling of the hard coating, but the tool life was short.

本発明例6、7は、第1硬質皮膜、第2硬質皮膜の膜厚比の影響を見るために作製した。本発明例6に示すように、第1硬質皮膜を厚くすることによって、本発明例1に比して工具寿命が優れた。これは、逃げ面摩耗の進行が抑制されたためと考えられた。しかし、本発明例6、7は、第2硬質皮膜が夫々1μm、3μmと薄く、切削途中でクレータ摩耗が発生した。クレータ摩耗の進行が、基材にまで到達することによって刃先強度が失われ、欠損に至った。再現性確認のために、総膜厚を12μmとし、第2硬質皮膜を0.3μmに被覆したものについても切削評価を行ったが、逃げ面摩耗の進行は抑制されるものの、クレータ摩耗が主体に進行し、寿命に至った。   Invention Examples 6 and 7 were prepared in order to observe the influence of the film thickness ratio of the first hard film and the second hard film. As shown in Inventive Example 6, the tool life was superior to Inventive Example 1 by increasing the thickness of the first hard coating. This was considered to be because progress of flank wear was suppressed. However, in Invention Examples 6 and 7, the second hard film was as thin as 1 μm and 3 μm, respectively, and crater wear occurred during cutting. As the crater wear progresses to the base material, the strength of the blade edge is lost, leading to defects. In order to confirm reproducibility, cutting evaluation was also performed for a film having a total film thickness of 12 μm and a second hard film coated to 0.3 μm, but the progress of flank wear was suppressed, but crater wear was the main component. Progressed to life.

本発明例8〜20、比較例45、46は、第1硬質皮膜の組成の影響を見るために作製した。被覆用ターゲット材組成を変化させて作製した。工具寿命の最も優れた本発明例10は、タングステン(W)を10%含有し、本発明例1に比して、約1.5倍優れた。切削距離5m時の刃先状態を確認した所、刃先エッジ部においてチッピングは確認されず、逃げ面摩耗が0.027mmであった。切削部位における被加工物の溶着もほとんど発生しておらず、正常摩耗の進行のみで寿命に至った。逃げ面摩耗が優れた理由は、Wを含有させることによって、高硬度化したことであると考えられる。本発明例1における第1硬質皮膜の硬度が28GPa、本発明例10が31GPaであった。更に、耐酸化性が高まったため、逃げ面摩耗進行が抑制されたと考えられる。特に、耐酸化性が高まると、最も切削熱が高くなる工具境界部における損傷が低減される傾向にあった。また、溶着が発生しなかった理由は、最外皮膜の第2硬質皮膜に硼素(B)を含有し、潤滑特性が優れたためである。含有するBが、第2硬質皮膜中にBN結晶として存在すること、ならびに、一部TiN結晶格子に固溶したものが、スピノーダル分解し、硬質皮膜最表面に比較的軟らかいBの酸化物を形成するためである。本発明例12はニオブ(Nb)を10%含有し、本発明例13、14はクロム(Cr)、シリコン(Si)を含有したため、第1硬質皮膜の機械的特性が高まり、本発明例1に比して優れた。本発明例15に示すように、第1硬質皮膜にBを含有させても工具寿命は優れた。第2硬質皮膜が摩耗した後に露出する第1硬質皮膜の部分でも溶着が抑制された。第1硬質皮膜中にBを含有させても、溶着やクレータ摩耗に対し、格段な効果が得られた。本発明例8〜20は、第1硬質皮膜がAlと4a、5a、6a族元素、Si、Bから選択された元素の窒化物であるため、耐熱性、硬度が格段に高められた。本発明例以外にも、上記元素の組み合わせにより耐摩耗性が優れる傾向にあった。本発明例16〜18に示す(AlCr)N系の硬質皮膜は、(TiAl)N系の硬質皮膜に対して、クレータ摩耗が早く出現した。しかしながら、境界部の摩耗進行が遅い傾向にあり工具寿命が優れた。(AlCr)N系の硬質皮膜が、(TiAl)N系の硬質皮膜よりも耐酸化性が優れたためと考えられた。   Invention Examples 8 to 20 and Comparative Examples 45 and 46 were prepared in order to observe the influence of the composition of the first hard coating. It was produced by changing the composition of the target material for coating. Invention Example 10, which has the best tool life, contained 10% tungsten (W), and was about 1.5 times better than Invention Example 1. When the cutting edge state was confirmed when the cutting distance was 5 m, chipping was not confirmed at the cutting edge part, and the flank wear was 0.027 mm. There was almost no welding of the workpiece at the cutting site, and the life was reached only by the progress of normal wear. It is considered that the reason why the flank wear is excellent is that the hardness is increased by containing W. The hardness of the first hard coating in Invention Example 1 was 28 GPa, and Invention Example 10 was 31 GPa. Furthermore, since the oxidation resistance has increased, it is considered that the progress of flank wear was suppressed. In particular, when the oxidation resistance is increased, damage at the tool boundary where the cutting heat is highest tends to be reduced. Further, the reason why welding did not occur is that boron (B) was contained in the second hard film of the outermost film and the lubrication characteristics were excellent. The contained B exists as a BN crystal in the second hard film, and partly dissolved in the TiN crystal lattice undergoes spinodal decomposition to form a relatively soft B oxide on the hard film outermost surface. It is to do. Invention Example 12 contains 10% of niobium (Nb), and Invention Examples 13 and 14 contain chromium (Cr) and silicon (Si), so that the mechanical properties of the first hard coating are enhanced, and Invention Example 1 Excellent compared to As shown in Invention Example 15, the tool life was excellent even when B was contained in the first hard coating. Welding was also suppressed at the portion of the first hard film exposed after the second hard film was worn. Even when B was contained in the first hard film, a remarkable effect was obtained with respect to welding and crater wear. In Invention Examples 8 to 20, since the first hard film is a nitride of an element selected from Al, Group 4a, 5a, and 6a elements, Si, and B, heat resistance and hardness are remarkably improved. In addition to the examples of the present invention, wear resistance tends to be excellent due to the combination of the above elements. In the (AlCr) N-based hard coatings shown in Invention Examples 16 to 18, crater wear appeared earlier than the (TiAl) N-based hard coatings. However, the wear progress at the boundary tends to be slow and the tool life is excellent. It was considered that the (AlCr) N-based hard coating had better oxidation resistance than the (TiAl) N-based hard coating.

比較例45は、第1硬質皮膜のAl含有量が75%であり、切削初期から溶着現象や、工具逃げ面のアブレッシブ摩耗が進行した。第1硬質皮膜断面の組織観察では、組織は微細化していた。このため、圧縮応力が増大し密着性の劣化が考えられる。また、第1硬質皮膜の硬度は18GPaとなり、硬度低下が摩耗の早期進行をもたらした。比較例45についてX線回折を行った結果、面心立方構造のピークの他に六方晶構造のピークが出現した。調査の結果、AlN化合物に起因するピークであることが確認された。これにより、耐摩耗性が著しく劣化したものと考えられる。比較例46も同様の現象が確認された。Al含有は、硬質皮膜の耐酸化性を高める作用があり、切削における境界部の損傷を低減する。本発明の硬質皮膜被覆工具について、再現性確認も含め最適なAl含有量について調査を行ったが、金属成分のみでAlが65原子%を超えると耐摩耗性が劣化し、75%になると、急激に耐摩耗性が劣化した。さらに、比較例45は、Is/Irが1.88となり、第1硬質皮膜の(200)面のピーク強度が強くなった。耐摩耗性の劣化は、六方晶構造のピーク出現だけでなく、(200)面へのピーク強度が高まりすぎたためと考えられる。比較例45、46について第2硬質皮膜のTEMによる皮膜断面観察の結果、柱状組織を有し、結晶粒は成長方向に対してB成分に組成差を有する組成変調構造であった。しかし、B成分の組成差は小さく、本発明例45、46ともに0.1%未満であった。また、層間は結晶格子縞が連続して成長していた。   In Comparative Example 45, the Al content of the first hard coating was 75%, and the welding phenomenon and the abrasive wear of the tool flank progressed from the beginning of cutting. In the observation of the structure of the first hard film cross section, the structure was refined. For this reason, compressive stress increases and adhesion deterioration can be considered. Further, the hardness of the first hard film was 18 GPa, and the decrease in hardness caused early progress of wear. As a result of performing X-ray diffraction on Comparative Example 45, a hexagonal structure peak appeared in addition to the face-centered cubic structure peak. As a result of the investigation, it was confirmed that the peak was attributed to the AlN compound. Thereby, it is considered that the wear resistance is remarkably deteriorated. In Comparative Example 46, the same phenomenon was confirmed. Al content has the effect of increasing the oxidation resistance of the hard coating, and reduces damage at the boundary in cutting. The hard coating tool of the present invention was investigated for the optimal Al content including reproducibility confirmation, but when the Al content exceeds 65 atomic% with only the metal component, the wear resistance deteriorates, and when it becomes 75%, The wear resistance deteriorated rapidly. Further, in Comparative Example 45, Is / Ir was 1.88, and the peak intensity of the (200) plane of the first hard coating was increased. The deterioration of the wear resistance is considered to be caused not only by the appearance of the hexagonal structure peak, but also by the excessive increase in the peak intensity on the (200) plane. As a result of observation of the cross section of the second hard film by TEM for Comparative Examples 45 and 46, the result was a columnar structure, and the crystal grains had a composition modulation structure having a composition difference in the B component with respect to the growth direction. However, the difference in composition of the B component was small, and both Inventive Examples 45 and 46 were less than 0.1%. Further, crystal lattice stripes were continuously grown between the layers.

本発明例21〜24、比較例47、48は、第2硬質皮膜の組成の影響を見るために作製した。被覆用ターゲット材の組成を変化させて作製した。本発明例21、22は、第2硬質皮膜のB含有量を夫々1%、25%とした。本発明例23、24は、BとSiを含有させた。これらの第2硬質皮膜のTEMによる皮膜断面観察の結果、柱状組織を有し、結晶粒は成長方向に対してB成分に組成差を有する組成変調構造であった。B含有量の異なるターゲット材を用いて第2硬質皮膜を成膜したことにより、B成分の組成差は夫々、本発明例21が0.5%、本発明例22が7%、本発明例23が0.1%、本発明例24が4%であった。また、層間は結晶格子縞が連続して成長していた。一方、第2硬質皮膜のB含有量が40%の比較例47、Si含有量が30%の比較例48について、第2硬質皮膜の断面組織を観察して、何れも微細化組織であることを確認した。B、Si含有量が多くなると、切削初期から硬質皮膜の剥離とクレータ摩耗が発生した。皮膜組織の差が切削性能の優劣をもたらした。特に、Siの含有量が30%の比較例48は、切削途中段階から、第2硬質皮膜の表面に溶着物が多く観察された。また、硬質皮膜の剥離は、残留圧縮応力の増大化が原因であると考えられた。B、Siを単独で含有させる場合、B含有量は1〜25%の範囲のもの、また、Si含有量は20%までのものは、再現性が得られ、優れた耐摩耗性を示した。B、Si両者を含有させる場合について種々の検討を行った結果、第2硬質皮膜において、B+Si≦25%の領域で耐摩耗性が優れる傾向にあった。   Invention Examples 21 to 24 and Comparative Examples 47 and 48 were prepared in order to see the influence of the composition of the second hard film. It was produced by changing the composition of the target material for coating. In inventive examples 21 and 22, the B content of the second hard coating was 1% and 25%, respectively. Invention Examples 23 and 24 contained B and Si. As a result of film cross-sectional observation of these second hard films by TEM, it was found that the crystal grains had a columnar structure and the crystal grains had a composition modulation structure having a composition difference in the B component with respect to the growth direction. By forming the second hard film using target materials having different B contents, the compositional difference of the B component was 0.5% for Invention Example 21 and 7% for Invention Example 22, respectively. 23 was 0.1% and Invention Example 24 was 4%. Further, crystal lattice stripes were continuously grown between the layers. On the other hand, regarding Comparative Example 47 in which the B content of the second hard coating is 40% and Comparative Example 48 in which the Si content is 30%, the cross-sectional structure of the second hard coating is observed, and both are refined structures. It was confirmed. When the B and Si contents were increased, peeling of the hard coating and crater wear occurred from the beginning of cutting. The difference in the film structure resulted in superiority or inferior cutting performance. In particular, in Comparative Example 48 in which the Si content was 30%, many deposits were observed on the surface of the second hard film from the middle of cutting. Moreover, it was thought that peeling of the hard film was caused by an increase in residual compressive stress. When B and Si are contained alone, those with a B content in the range of 1 to 25%, and those with a Si content up to 20% are reproducible and exhibit excellent wear resistance. . As a result of various studies on the case where both B and Si are contained, the second hard coating tends to have excellent wear resistance in the region of B + Si ≦ 25%.

本発明例25、26、比較例49、50は、第1硬質皮膜に含有される酸素元素、炭素元素の影響を見るために作製した。酸素、炭化水素系ガスを反応ガスの1部として用いた。酸素を含有させた本発明例26と比較例50については、成膜時に窒素、アルゴン(Ar)、酸素を同時に導入した。いずれも全圧を3.0Paとし、本発明例26の場合は、窒素85%:アルゴン10%:酸素5%のガス流量比率で導入した。これは酸素を多く導入したときに、成膜時に発生させるアーク放電が不安定になったため、不活性ガスのArを導入して、全圧を調整した。Arガスを使用しなくても放電は可能であるが、より安定化を図るためにArガスを導入した。比較例50は、酸素含有量を増やすために、全圧を3.0Paの状態で窒素量を減らし、Arガス、酸素ガス量を増やして作製した。本発明例25、26の工具寿命は、酸素元素、炭素元素を含有しない本発明例1に比して1.4倍程度優れた。また、切削距離5m時の刃先の損傷状態は、本発明例1に比して溶着、逃げ面摩耗が少ない傾向にあった。更に、すくい面のクレータ摩耗の発生も低減されていた。クレータ摩耗は、切削温度上昇に伴う化学反応によって発生することより、酸素元素、炭素元素を含有させることによって潤滑特性が高まり摩擦係数が低減される。その結果、すくい面を切屑が擦過する際の切削温度が抑制され、摩耗が低減したと考えられる。   Invention Examples 25 and 26 and Comparative Examples 49 and 50 were prepared in order to observe the influence of oxygen element and carbon element contained in the first hard film. Oxygen and hydrocarbon gas were used as part of the reaction gas. For Invention Example 26 and Comparative Example 50 containing oxygen, nitrogen, argon (Ar), and oxygen were simultaneously introduced during film formation. In all cases, the total pressure was set to 3.0 Pa. In the case of Invention Example 26, the gas was introduced at a gas flow ratio of 85% nitrogen: 10% argon: 5% oxygen. In this case, when a large amount of oxygen was introduced, the arc discharge generated during film formation became unstable. Therefore, the inert gas Ar was introduced to adjust the total pressure. Although discharge is possible without using Ar gas, Ar gas was introduced for further stabilization. In Comparative Example 50, in order to increase the oxygen content, the amount of nitrogen was reduced while the total pressure was 3.0 Pa, and the amounts of Ar gas and oxygen gas were increased. The tool life of Inventive Examples 25 and 26 was about 1.4 times better than Inventive Example 1 that did not contain oxygen and carbon elements. Moreover, the damage state of the blade edge at the time of the cutting distance of 5 m tended to be less welded and flank wear than the first example of the present invention. Furthermore, the occurrence of crater wear on the rake face was reduced. Crater wear occurs due to a chemical reaction accompanying an increase in cutting temperature, so that the inclusion of oxygen and carbon elements increases the lubrication characteristics and reduces the friction coefficient. As a result, it is considered that the cutting temperature at which the chips scrape the rake face is suppressed, and wear is reduced.

比較例49、50は、第1硬質皮膜のx値、y値が10%以上であったため、切削初期から硬質皮膜の剥離とクレータ摩耗発生が確認され、同様に第1硬質皮膜断面の組織観察をした結果、微細化していた。炭素元素を含有しない本発明例1、炭素含有量が7%の本発明例25、15%の比較例49について、第1硬質皮膜のみの試料を作製し摩擦係数測定を行った。この摩擦係数測定は、ボールオンディスク方式で行い、コーティングした超硬合金製ディスクにSUJ2のφ6mmボールを摺動させ、大気中、無潤滑で測定した。測定温度600℃における、硬質皮膜の耐摩耗性、ならびに耐溶着性を調査した。本発明例1の摩擦係数は0.8、本発明例25は0.45、比較例49は0.8となった。第1硬質皮膜に炭素元素が多く含有しても、皮膜断面の組織が微細化すると、逃げ面摩耗、クレータ摩耗や被加工物の工具刃先への溶着といった損傷が切削初期から発生することが確認された。これは、酸素を含有させた場合も同様の傾向が観察された。酸素や炭素を多く含有させた場合、硬質皮膜の硬度が16GPaとなり、本発明例1に比して低い傾向にあった。さらには、炭素や酸素を多く含有させると、第1硬質皮膜と第2硬質皮膜の界面で歪が大きくなる傾向にあることが確認された。比較例49、50について第2硬質皮膜のTEMによる皮膜断面観察の結果、柱状組織を有し、結晶粒は成長方向に対してB成分に組成差を有する組成変調構造であった。しかし、B成分の組成差は小さく、本発明例49、50ともに0.1%未満であった。また、層間は結晶格子縞が連続して成長していた。   In Comparative Examples 49 and 50, since the x value and y value of the first hard film were 10% or more, peeling of the hard film and occurrence of crater wear were confirmed from the beginning of cutting, and the structure observation of the cross section of the first hard film was similarly performed. As a result, it was miniaturized. For Invention Example 1 containing no carbon element, Invention Example 25 having a carbon content of 7%, and Comparative Example 49 having a carbon content of 15%, a sample of only the first hard film was prepared and the coefficient of friction was measured. The coefficient of friction was measured by a ball-on-disk method, and a SUJ2 φ6 mm ball was slid on a coated cemented carbide disc and measured without lubrication in the atmosphere. The wear resistance and welding resistance of the hard film at a measurement temperature of 600 ° C. were investigated. The friction coefficient of Invention Example 1 was 0.8, Invention Example 25 was 0.45, and Comparative Example 49 was 0.8. Even if the first hard coating contains a large amount of carbon element, it is confirmed that damage such as flank wear, crater wear and welding of the work piece to the tool edge will occur from the beginning of cutting if the structure of the cross section of the coating becomes finer. It was done. The same tendency was observed when oxygen was contained. When a large amount of oxygen or carbon was contained, the hardness of the hard film was 16 GPa, which was lower than Example 1 of the present invention. Furthermore, it was confirmed that when a large amount of carbon or oxygen is contained, the strain tends to increase at the interface between the first hard film and the second hard film. As a result of observation of the cross section of the second hard film by TEM for Comparative Examples 49 and 50, the result was a columnar structure, and the crystal grains had a composition modulation structure having a composition difference in the B component with respect to the growth direction. However, the difference in composition of the B component was small, and both Inventive Examples 49 and 50 were less than 0.1%. Further, crystal lattice stripes were continuously grown between the layers.

本発明例27〜29、比較例51、52は、成膜時における反応圧力の組成への影響を見るために作製した。特にe/f値による圧縮応力への影響を調査した。この時、反応圧力を変化させ、1.6Pa〜13.5Paの範囲に設定した。反応圧力が2.2〜8.1Paで成膜を行った本発明例1、27〜29の場合、本発明例1に比して高圧力側で工具寿命が優れた。本発明例1に比して低圧力側である本発明例29は、比較例51、52に比して格段に工具寿命が優れたが、切削初期に極微小なチッピングが発生していた。特にe/f値が1.07の本発明例27が最も優れ、第1硬質皮膜のチッピングなど、不安定要素は発生しなかった。反応圧力が最も低い1.6Paで成膜を行った比較例51は、圧縮応力が7.1GPaであり、e/f値は0.82、工具寿命は4mとなった。これは本発明例1に比して約25%の寿命であった。窒素圧力が低い程、圧縮応力が増大し、e/f値は、低い値を示す傾向にあった。この理由は、第1硬質皮膜の圧縮応力が高いためと考えられる。圧縮応力が6.0GPaを超える様になると、切削途中のインサート刃先損傷状態観察において、刃先エッジ部における第1硬質皮膜の破壊が確認された。再現性を確認するため、比較例51のインサートの新しいコーナーを用いて、数度の切削評価を行った結果、工具寿命は、2m、0.2mとばらつき、安定しなかった。   Invention Examples 27 to 29 and Comparative Examples 51 and 52 were prepared in order to observe the influence of the reaction pressure on the composition during film formation. In particular, the influence of the e / f value on the compressive stress was investigated. At this time, the reaction pressure was changed and set in the range of 1.6 Pa to 13.5 Pa. In the case of Inventive Examples 1 and 27 to 29 in which the film was formed at a reaction pressure of 2.2 to 8.1 Pa, the tool life was excellent on the high pressure side as compared with Inventive Example 1. Invention Example 29, which is on the low pressure side as compared with Invention Example 1, has a far superior tool life as compared with Comparative Examples 51 and 52, but extremely minute chipping occurred at the beginning of cutting. In particular, Invention Example 27 having an e / f value of 1.07 was most excellent, and unstable elements such as chipping of the first hard coating did not occur. In Comparative Example 51 in which the film was formed at the lowest reaction pressure of 1.6 Pa, the compressive stress was 7.1 GPa, the e / f value was 0.82, and the tool life was 4 m. This was a life of about 25% as compared with Example 1 of the present invention. The lower the nitrogen pressure, the greater the compressive stress and the lower the e / f value. This reason is considered to be because the compressive stress of the first hard coating is high. When the compressive stress exceeded 6.0 GPa, it was confirmed that the first hard coating was broken at the edge of the blade edge in the damage state of the insert blade edge during cutting. In order to confirm reproducibility, as a result of cutting evaluation of several degrees using a new corner of the insert of Comparative Example 51, the tool life was 2 m and 0.2 m and was not stable.

比較例52は、圧縮応力が0.5GPaと比較的低い数値を示したが、工具寿命は3mであった。切削距離5m時の刃先の損傷状態を観察できなかったため、新しいコーナーを用いて、更に、初期の切削距離1mでの損傷を確認した結果、刃先エッジ部における基体と第1硬質皮膜界面からの膜剥離と、第1硬質皮膜が脱落した部位において多量の溶着が発生していた。また、逃げ面の大きな摩耗、クレータ摩耗が発生していた。これは、第1硬質皮膜の硬度の低下が原因であると考えられた。e/f値は1.32を示し、第1硬質皮膜の断面組織において柱状組織を有するものの、第1硬質皮膜中に欠陥が多く発生し、密着性や耐摩耗性が劣った。この理由は、反応圧力を13.5Paで行ったことにより、イオンが基体に入射する際の運動エネルギーが極度に低くなったためであると考えられる。   In Comparative Example 52, the compression stress was a relatively low value of 0.5 GPa, but the tool life was 3 m. Since the damage state of the cutting edge at the cutting distance of 5 m could not be observed, the damage at the initial cutting distance of 1 m was confirmed using a new corner, and as a result, the film from the substrate and the first hard coating interface at the edge of the cutting edge A large amount of welding occurred at the site where peeling and the first hard coating were removed. In addition, large wear on the flank and crater wear occurred. This was thought to be due to a decrease in the hardness of the first hard coating. The e / f value was 1.32. Although the cross-sectional structure of the first hard film had a columnar structure, many defects were generated in the first hard film, and the adhesion and wear resistance were poor. The reason for this is considered to be that the kinetic energy when ions are incident on the substrate is extremely low due to the reaction pressure being 13.5 Pa.

本発明例30〜33、比較例53、54は、Is/Ir値の影響を見るために作製した。成膜時、パルスバイアスのパルス周波数を10kHzに一定とし、バイアス電圧値を変化させ、100〜300Vの範囲に設定した。本発明例1、本発明例30〜33は、Is/Ir値が本発明の規定範囲内であり、圧縮応力も4GPa以下となり、工具寿命が優れた。また、バイアス電圧を変化させた場合、Is/Ir値が変化し、それに伴い圧縮応力も変化した。比較例53、54は、圧縮応力が8GPaを超え、切削初期から硬質皮膜の膜剥離が観察された。圧縮応力が大きくなると、工具寿命が劣る結果となった。比較例53、54について第2硬質皮膜のTEMによる皮膜断面観察の結果、柱状組織を有し、結晶粒は成長方向に対してB成分に組成差を有する組成変調構造であった。しかし、B成分の組成差は小さく、本発明例53、54ともに0.1%未満であった。また、層間は結晶格子縞が連続して成長していた。   Invention Examples 30 to 33 and Comparative Examples 53 and 54 were prepared in order to observe the influence of the Is / Ir value. During film formation, the pulse frequency of the pulse bias was kept constant at 10 kHz, and the bias voltage value was changed and set in the range of 100 to 300V. Invention Example 1 and Invention Examples 30 to 33 have an Is / Ir value within the specified range of the present invention, a compressive stress of 4 GPa or less, and an excellent tool life. Further, when the bias voltage was changed, the Is / Ir value was changed, and the compressive stress was changed accordingly. In Comparative Examples 53 and 54, the compressive stress exceeded 8 GPa, and delamination of the hard coating was observed from the beginning of cutting. When the compressive stress was increased, the tool life was inferior. As a result of observing the cross section of the second hard film with TEM in Comparative Examples 53 and 54, it was found that the crystal grains had a columnar structure and the crystal grains had a composition modulation structure having a composition difference in the B component in the growth direction. However, the difference in the composition of the B component was small, and both Invention Examples 53 and 54 were less than 0.1%. Further, crystal lattice stripes were continuously grown between the layers.

本発明例34〜36、比較例55〜57は、It/Is値の圧縮応力への影響を見るために作製した。この時、パルスバイアス電圧の正バイアス値を10〜40Vまで変化させた。正のバイアス電圧が大きくなると、相対的に(200)面への配向強度が強くなる傾向を示し、本発明例1、34〜36、比較例55〜57のIt/Is値は、0.21〜1.44まで変化した。本発明例1、本発明例34〜36は、It/Is値が本発明の規定範囲内であり、圧縮応力も比較的低くなり、満足のいく工具寿命が得られた。一方、比較例55〜57は正のバイアス電圧が20Vを超え、It/Is値は0.6を下回り、切削距離5m時の刃先損傷状態観察において、第1硬質皮膜の剥離が多く観察された。圧縮応力が高くなり6GPaを超えたため、基体と第1硬質皮膜界面からの剥離だけでなく、貝殻状の破壊も多く観察され、これが工具寿命低下をもたらした。第1硬質皮膜と第2硬質皮膜の界面の密着性を高めるためには、パルスバイアス電圧における正のバイアス電圧値を低く制御して、第1硬質皮膜の(200)面の配向強度を低くすることが重要である。負の値のみのバイアス電圧印加では、成膜時のマイクロアーキングなどにより発生する欠陥の抑制に不十分となるからである。比較例55〜57について第2硬質皮膜のTEMによる皮膜断面観察の結果、柱状組織を有し、結晶粒は成長方向に対してB成分に組成差を有する組成変調構造であった。しかし、B成分の組成差は小さく、本発明例55〜57ともに0.1%未満であった。また、層間は結晶格子縞が連続して成長していた。   Invention Examples 34 to 36 and Comparative Examples 55 to 57 were prepared in order to observe the effect of the It / Is value on the compressive stress. At this time, the positive bias value of the pulse bias voltage was changed from 10 to 40V. When the positive bias voltage increases, the orientation strength toward the (200) plane tends to be relatively strong, and the It / Is values of Invention Examples 1, 34 to 36, and Comparative Examples 55 to 57 are 0.21. It changed to ˜1.44. In Invention Example 1 and Invention Examples 34 to 36, the It / Is value was within the specified range of the present invention, the compressive stress was relatively low, and a satisfactory tool life was obtained. On the other hand, in Comparative Examples 55 to 57, the positive bias voltage exceeded 20 V, the It / Is value was less than 0.6, and in the blade edge damage observation at the cutting distance of 5 m, many peelings of the first hard film were observed. . Since the compressive stress increased and exceeded 6 GPa, not only peeling from the interface between the substrate and the first hard coating but also many shell-like fractures were observed, which resulted in a decrease in tool life. In order to improve the adhesion at the interface between the first hard film and the second hard film, the positive bias voltage value in the pulse bias voltage is controlled to be low, and the orientation strength of the (200) plane of the first hard film is lowered. This is very important. This is because application of a bias voltage having only a negative value is insufficient for suppressing defects caused by micro arcing during film formation. As a result of observation of the cross section of the second hard film by TEM in Comparative Examples 55 to 57, the result was a columnar structure, and the crystal grains had a composition modulation structure having a composition difference in the B component with respect to the growth direction. However, the difference in the composition of the B component was small, and both Inventive Examples 55 to 57 were less than 0.1%. Further, crystal lattice stripes were continuously grown between the layers.

本発明例1、37、38、比較例58、59は、Iv/Iu値の影響を見るために、第2硬質皮膜成膜時のバイアス電圧を20〜120Vまで変化させて作製した。本発明例1、37〜38は、バイアス電圧を低くすると、Iv/Iu値は大きくなる傾向にあった。また、バイアス電圧を100Vより大きくすると、残留圧縮応力が大きくなる傾向が確認された。本発明例1、37〜38は、比較例58、59に比して工具寿命が優れた。比較例58は、硬質皮膜の残留応力は0.1GPaであった。これは、Iv/Iu値が15.46となり(200)面に強く配向したため、硬質皮膜の硬度が低下し、それが原因で逃げ面摩耗の進行が早かったものと考えられた。比較例59は、120Vのバイアス電圧で被覆を行った結果、硬質皮膜の残留圧縮応力が7.4GPaとなった。比較例59は、切削前から刃先に硬質皮膜の脱落が観察された。さらに切削を行うと、切削距離2mにも満たないうちに膜剥離が観察され、その部位を起点に欠損した。硬質皮膜の断面組織を観察した結果、微細組織と呈しており粒界欠陥が増加していると考えられた。これが、残留圧縮応力の増大化をもたらした原因であると考えられた。   Inventive Examples 1, 37 and 38 and Comparative Examples 58 and 59 were produced by changing the bias voltage during film formation of the second hard film from 20 to 120 V in order to see the influence of the Iv / Iu value. In Invention Examples 1 and 37 to 38, the Iv / Iu value tended to increase when the bias voltage was lowered. Further, it was confirmed that when the bias voltage is higher than 100 V, the residual compressive stress tends to increase. Inventive Examples 1 and 37 to 38 were superior in tool life to Comparative Examples 58 and 59. In Comparative Example 58, the residual stress of the hard coating was 0.1 GPa. This was thought to be because the Iv / Iu value was 15.46 and the film was oriented strongly in the (200) plane, so that the hardness of the hard coating was reduced, which caused the flank wear to progress quickly. In Comparative Example 59, the residual compressive stress of the hard coating was 7.4 GPa as a result of coating with a bias voltage of 120V. In Comparative Example 59, it was observed that the hard coating dropped off on the blade edge before cutting. When further cutting was performed, film peeling was observed before the cutting distance was less than 2 m, and the site was deficient from that point. As a result of observing the cross-sectional structure of the hard coating, it was considered as a fine structure and increased grain boundary defects. This was considered to be the cause of the increase in residual compressive stress.

本発明例1、39、40、比較例60、61は、Iw/Iv値の影響を見るために、第2硬質皮膜成膜時のパルス周波数を2〜40kHzに変化させて作製した。本発明例1、39、40は、パルス周波数を大きくするとIw/Iv値が小さくなる傾向にあった。また、パルス周波数を大きくすると、残留圧縮応力が大きくなる傾向が確認された。本発明例1、39、40は、比較例60、61に比して工具寿命が優れた。パルス周波数が2kHzの比較例60は、硬質皮膜の残留圧縮応力は1.9GPaと低い値を示したが、Iw/Iv値は、2.42となった。原因が不明であるが切削初期から基体と第1硬質皮膜間、第1硬質皮膜と第2硬質皮膜間の両方での剥離が観察された。比較例60については、複数の試料で切削性能の再現性を確認したが、いずれも本発明例1に比して工具寿命が短かった。これは、成膜時のバイアス電圧に対して印加したパルス周波数が2kHzであったことより、イオンが基体に到達する際の運動エネルギーが低く、特に硬質皮膜の密着性を劣化させたのではないかと考えられる。また、比較例61は、パルス周波数が40kHzであったことより、イオンの運動エネルギーが制御できず、それが硬質皮膜形成時に歪として蓄積され、残留圧縮応力が増大化したものと考えられる。そのため、切削初期に硬質皮膜の剥離が発生したのではないかと考えられる。   Inventive Examples 1, 39 and 40 and Comparative Examples 60 and 61 were produced by changing the pulse frequency at the time of forming the second hard film to 2 to 40 kHz in order to see the influence of the Iw / Iv value. In Invention Examples 1, 39 and 40, the Iw / Iv value tended to decrease when the pulse frequency was increased. Further, it was confirmed that the residual compressive stress tends to increase when the pulse frequency is increased. Inventive Examples 1, 39, and 40 were superior in tool life to Comparative Examples 60 and 61. In Comparative Example 60 with a pulse frequency of 2 kHz, the residual compressive stress of the hard film showed a low value of 1.9 GPa, but the Iw / Iv value was 2.42. Although the cause is unknown, peeling was observed between the base and the first hard film, and between the first hard film and the second hard film from the beginning of cutting. In Comparative Example 60, the reproducibility of the cutting performance was confirmed with a plurality of samples, but all of them had a tool life shorter than that of Inventive Example 1. This is because the pulse frequency applied to the bias voltage at the time of film formation was 2 kHz, so the kinetic energy when ions reached the substrate was low, and it did not particularly deteriorate the adhesion of the hard coating. It is thought. In Comparative Example 61, since the pulse frequency was 40 kHz, the kinetic energy of ions could not be controlled, which was accumulated as strain during the formation of the hard film, and the residual compressive stress increased. For this reason, it is considered that the peeling of the hard coating may have occurred in the early stage of cutting.

本発明例41、42、比較例62、63は、第1硬質皮膜、第2硬質皮膜のX線回折における(200)面の面間隔の影響を見るために作製した。面間隔は第1硬質皮膜成膜時に印加するパルスバイアス電圧のパルス周波数を1〜40kHzの範囲で変化させることにより調節した。本発明例41、42は、パルス周波数が夫々30kHz、2kHzの場合であるが、d2/d1値は1.01〜1.02を示し、硬質皮膜全体の圧縮応力が低くなり、第1硬質皮膜と第2硬質皮膜の密着性に優れ、満足のいく工具寿命が得られた。一方、第1硬質皮膜のパルス周波数を1kHzで成膜を行った比較例62は、d2/d1値が1.07となり、第1硬質皮膜と第2硬質皮膜の面間隔のズレにより密着性が劣化した。残留圧縮応力が増大したためと考えられる。また比較例63は、切削初期に基体と硬質皮膜間の剥離よりも第1硬質皮膜と第2硬質皮膜の界面で剥離が多く観察された。これが短い工具寿命の原因であった。この理由は、40kHzで成膜を行ったためd2/d1値が0.99となり、硬質皮膜全体の圧縮応力が6.9GPaと増大して基体との密着性の他に、第1硬質皮膜と第2硬質皮膜の面間隔のミスフィットにより密着性が劣化したためである。また、パルス周波数の変化によってIt/Is値も変化することが確認された。パルス周波数と圧縮応力の関係には相関性があると考えられ、パルス周波数が大きくなると、圧縮応力は大きくなる傾向にあった。パルス周波数が大きくなると、直流バイアス電圧が印加される状態に近づくためと考えられる。   Invention Examples 41 and 42 and Comparative Examples 62 and 63 were prepared in order to observe the influence of the (200) plane spacing in the X-ray diffraction of the first hard film and the second hard film. The surface spacing was adjusted by changing the pulse frequency of the pulse bias voltage applied during the formation of the first hard film in the range of 1 to 40 kHz. Inventive examples 41 and 42 are cases where the pulse frequency is 30 kHz and 2 kHz, respectively, and the d2 / d1 value is 1.01 to 1.02, and the compressive stress of the entire hard coating is reduced, and the first hard coating is reduced. And excellent adhesion of the second hard film, and a satisfactory tool life was obtained. On the other hand, in Comparative Example 62 in which the pulse frequency of the first hard film was 1 kHz, the d2 / d1 value was 1.07, and the adhesion was caused by the gap between the first hard film and the second hard film. Deteriorated. This is probably because the residual compressive stress increased. In Comparative Example 63, more peeling was observed at the interface between the first hard film and the second hard film than at the initial stage of cutting than between the base and the hard film. This was the cause of the short tool life. The reason for this is that since the film was formed at 40 kHz, the d2 / d1 value was 0.99, the compressive stress of the entire hard film increased to 6.9 GPa, and in addition to the adhesion to the substrate, the first hard film and the first hard film This is because the adhesiveness deteriorated due to misfit of the spacing between the two hard coatings. It was also confirmed that the It / Is value changed with the change of the pulse frequency. The relationship between the pulse frequency and the compressive stress is considered to be correlated, and the compressive stress tends to increase as the pulse frequency increases. This is considered to be due to the fact that the DC bias voltage is applied as the pulse frequency increases.

本発明の硬質皮膜被覆工具は、例えば、耐摩耗性が要求される金属加工用の工具全般等において適用することができる。   The hard film-coated tool of the present invention can be applied to, for example, general tools for metal processing that require wear resistance.

Claims (5)

超硬合金を基体に圧縮応力を有する硬質皮膜を5〜30μmの膜厚で被覆した硬質皮膜被覆工具において、該硬質皮膜は、該基体表面から第1硬質皮膜、第2硬質皮膜が被覆され、最外皮膜は該第2硬質皮膜が被覆され、該第1硬質皮膜は、(AlMe100−aで示され、但し、aは原子%、e、fは原子比を表し、35≦a≦65、0.90≦e/f≦1.15、であり、Alはアルミニウム、Meは4a、5a、6a族、Si、Bから選択される1種以上の元素、Nは窒素であり、該第2硬質皮膜は、(Ti100−hで示され、但し、hは原子%、m、pは原子比を表し、1≦h≦30、0.90≦m/p≦1.15、であり、Tiはチタニウム、Bは硼素、Nは窒素であり、該第1硬質皮膜、該第2硬質皮膜の結晶構造は面心立方構造であり、該第1硬質皮膜のX線回折において(111)面のピーク強度をIr、(200)面のピーク強度をIs、(220)面のピーク強度をItとしたときに、0.2≦Is/Ir≦1.4、及び0.6≦It/Is≦1.5、であり、該第2硬質皮膜のX線回折において(111)面のピーク強度Iu、(200)面のピーク強度Iv、及び(220)面のピーク強度Iwとしたとき、5≦Iv/Iu≦15、及び2≦Iw/Iv≦4であり、該第1硬質皮膜と該第2硬質皮膜のX線回折における(111)面の面間隔(nm)を夫々、d1、d2としたときに、1.01≦d2/d1≦1.05であり、該第2硬質皮膜は柱状組織を有し、該柱状組織の結晶粒はB成分に組成差を有する組成変調構造であることを特徴とする硬質皮膜被覆工具。 In a hard film coated tool in which a hard film having a compressive stress is coated on a substrate with a cemented carbide alloy in a film thickness of 5 to 30 μm, the hard film is coated with the first hard film and the second hard film from the surface of the substrate, The outermost coating is coated with the second hard coating, and the first hard coating is represented by (Al a Me 100-a ) e N f , where a represents atomic%, and e and f represent atomic ratios. 35 ≦ a ≦ 65, 0.90 ≦ e / f ≦ 1.15, Al is aluminum, Me is one or more elements selected from Group 4a, 5a, 6a, Si, B, N is It is nitrogen, and the second hard coating is represented by (Ti 100-h B h ) m N p , where h is atomic%, m and p are atomic ratios, 1 ≦ h ≦ 30,. 90 ≦ m / p ≦ 1.15, Ti is titanium, B is boron, N is nitrogen, the first hard coating, 2 The crystal structure of the hard film is a face-centered cubic structure. In the X-ray diffraction of the first hard film, the peak intensity of the (111) plane is Ir, the peak intensity of the (200) plane is Is, and the peak of the (220) plane is When the intensity is It, 0.2 ≦ Is / Ir ≦ 1.4 and 0.6 ≦ It / Is ≦ 1.5, and the (111) plane in the X-ray diffraction of the second hard film 5 ≦ Iv / Iu ≦ 15 and 2 ≦ Iw / Iv ≦ 4 when the peak intensity Iu, the (200) plane peak intensity Iv, and the (220) plane peak intensity Iw, the first hard When the distance (nm) between the (111) planes in the X-ray diffraction of the coating and the second hard coating is d1 and d2, respectively, 1.01 ≦ d2 / d1 ≦ 1.05, and the second Hard coating has a columnar structure, and the crystal grains of the columnar structure have a compositional difference in the B component. Hard film-coated tool, which is a concrete. 請求項1記載の硬質皮膜被覆工具において、該第1硬質皮膜における窒素について、その1部を炭素、酸素で置換し、非金属成分全体を100とし、原子%で炭素元素の含有量をx、酸素元素の含有量をyとしたとき、0<x≦10、0<y≦10、0<x+y≦10、窒素の含有量は100−x−y、であることを特徴とする硬質皮膜被覆工具。   The hard film-coated tool according to claim 1, wherein one part of nitrogen in the first hard film is substituted with carbon and oxygen, the whole nonmetallic component is 100, and the content of carbon element in atomic% is x, Hard film coating characterized by 0 <x ≦ 10, 0 <y ≦ 10, 0 <x + y ≦ 10, and nitrogen content 100−xy, where oxygen content is y tool. 請求項1または請求項2記載の硬質皮膜被覆工具において、該第2硬質皮膜におけるチタニウムについて、その1部をシリコンで置換し、金属成分全体を100としたとき、原子%でシリコンの含有量をk、としたとき、0<k≦20、チタニウムの含有量は100−h−k、であることを特徴とする硬質皮膜被覆工具。   3. The hard film-coated tool according to claim 1, wherein a part of the titanium in the second hard film is replaced with silicon, and when the total metal component is 100, the silicon content is expressed in atomic%. k, where 0 <k ≦ 20, and the titanium content is 100−h−k. 請求項1ないし請求項3の何れかに記載の硬質皮膜被覆工具において、圧縮応力を有する該硬質皮膜の総膜厚は、10μm〜30μmであることを特徴とする硬質皮膜被覆工具。   4. The hard film-coated tool according to claim 1, wherein the hard film having a compressive stress has a total film thickness of 10 to 30 [mu] m. 請求項1記載の硬質皮膜被覆工具において、該第2硬質皮膜の結晶粒の該組成変調構造は、B成分の組成差が、原子%で、10%以下であり、該組成変調構造における組成変調境界部では結晶格子縞が連続していること、を特徴とする硬質皮膜被覆工具。   2. The hard film-coated tool according to claim 1, wherein the compositional modulation structure of the crystal grains of the second hard film has a B component composition difference of 10% or less in atomic%, and the compositional modulation in the compositional modulation structure. A hard film coated tool characterized in that crystal lattice stripes are continuous at the boundary.
JP2011031349A 2010-02-22 2011-02-16 Hard film coated tool Withdrawn JP2011189499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011031349A JP2011189499A (en) 2010-02-22 2011-02-16 Hard film coated tool

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010053705 2010-02-22
JP2010053705 2010-02-22
JP2011031349A JP2011189499A (en) 2010-02-22 2011-02-16 Hard film coated tool

Publications (1)

Publication Number Publication Date
JP2011189499A true JP2011189499A (en) 2011-09-29

Family

ID=44794952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011031349A Withdrawn JP2011189499A (en) 2010-02-22 2011-02-16 Hard film coated tool

Country Status (1)

Country Link
JP (1) JP2011189499A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065324A (en) * 2017-09-29 2019-04-25 ユニオンツール株式会社 Hard film for cutting tool
JP2019111631A (en) * 2017-12-26 2019-07-11 三菱日立ツール株式会社 Coated cutting tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065324A (en) * 2017-09-29 2019-04-25 ユニオンツール株式会社 Hard film for cutting tool
JP2019111631A (en) * 2017-12-26 2019-07-11 三菱日立ツール株式会社 Coated cutting tool

Similar Documents

Publication Publication Date Title
KR101200785B1 (en) Member covered with hard coating film and process for the production of the member
JP3934136B2 (en) Hard film coating member and coating method thereof
KR100937072B1 (en) Hard coating having excellent wear resistance and oxidation resistance and target for forming the same, and hard coating having excellent high-temperature lubricating ability and wear resistance and target for forming the same
JP5303816B2 (en) Hard coating tool
JP5206167B2 (en) Hard film coated cutting tool
JP4388582B2 (en) Hard coating layer and method for forming the same
KR101170396B1 (en) Hard coating and its production method
JP2006152321A (en) Coated member with hard film and coating method therefor
KR102167200B1 (en) Cloth cutting tool
JP2008162008A (en) Coated cutting tool
KR20170059421A (en) Coated cutting tool
JP2012045650A (en) Hard film-coated cutting tool
KR101079902B1 (en) Surface-coated cutting tool
JP2008075178A (en) Thick coating film-coated member and thick coating film-coated member production method
JP5098657B2 (en) Hard coating coated member
JP2010284787A (en) Hard film coated cutting tool
JP5056808B2 (en) Hard coating tool
JP2011189499A (en) Hard film coated tool
JP2011167838A (en) Hard-film coated cutting tool
JP5305236B2 (en) Hard coating tool
JP4252154B2 (en) Multi-layer coating member
JP5614405B2 (en) Hard film coated tool and manufacturing method thereof
JP2011189498A (en) Hard film coated tool
JP2010120100A (en) Hard coating film coated tool for turning
JP2020199589A (en) Coated cutting tool

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513