JP2011167838A - Hard-film coated cutting tool - Google Patents

Hard-film coated cutting tool Download PDF

Info

Publication number
JP2011167838A
JP2011167838A JP2011007432A JP2011007432A JP2011167838A JP 2011167838 A JP2011167838 A JP 2011167838A JP 2011007432 A JP2011007432 A JP 2011007432A JP 2011007432 A JP2011007432 A JP 2011007432A JP 2011167838 A JP2011167838 A JP 2011167838A
Authority
JP
Japan
Prior art keywords
hard coating
coating layer
film
hard
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011007432A
Other languages
Japanese (ja)
Inventor
Seiji Nakanishi
征次 中西
Kazuyuki Kubota
和幸 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2011007432A priority Critical patent/JP2011167838A/en
Publication of JP2011167838A publication Critical patent/JP2011167838A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To extend a service life of a hard-film coated cutting tool by suppressing the propagation of a crack caused by residual compression stress in a hard film layer 1, thickening a hard film layer 2 by reducing the residual compression stress, and improving adhesion strength with a base material, in the hard film layers 1, 2 forming a double layer structure. <P>SOLUTION: In the hard-film coated cutting tool including cemented carbide as a base material and coated with a hard film, the front surface side is coated with the hard film layer 1 and the base material side is coated with the hard film layer 2. The hard film layer 1 is composed of (Al<SB>a</SB>Cr<SB>1-a</SB>)N<SB>x</SB>where 0.5≤a≤0.75 and 0.9≤x≤1.1, and the hard film layer 2 is composed of (Ti<SB>b</SB>Al<SB>1-b</SB>)N<SB>y</SB>where 0.4≤b≤0.6 and 0.9≤y≤1.1. When a lattice constant of a plane (111) of the hard film layer 1 in the X-ray diffraction is a1 (nm), and a lattice constant of a plane (200) of the hard film layer 2 is a2 (nm), 0.990≤a1/a2≤0.999 is satisfied. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、金属部品や金型等の加工に用いられ、耐摩耗性や耐欠損性の向上が要求される硬質皮膜被覆切削工具に関する。   The present invention relates to a hard film-coated cutting tool that is used for processing metal parts, molds, and the like and that requires improvement in wear resistance and fracture resistance.

特許文献1には、(TiAl)N膜と(AlCr)N膜とから構成される多層膜が開示されている(表1中試料番号2等を参照)。   Patent Document 1 discloses a multilayer film composed of a (TiAl) N film and an (AlCr) N film (see sample number 2 in Table 1).

特許文献2には、所定組成の(AlCr)N系硬質皮膜であって、(111)面又は(200)面のいずれかのX線回折ピークの2θの半価幅が0.5〜2度であること(請求項1、表1等参照)、及び(200)面と(111)面とのX線回折強度比I(200)/(111)が、0.3<I(200)/(111)<12であること(請求項3、表1を参照)が開示されている。   Patent Document 2 discloses an (AlCr) N-based hard coating having a predetermined composition, in which the half width of 2θ of the X-ray diffraction peak of either the (111) plane or the (200) plane is 0.5 to 2 degrees. (Refer to claim 1, Table 1, etc.) and the X-ray diffraction intensity ratio I (200) / (111) between the (200) plane and the (111) plane is 0.3 <I (200) / (111) <12 (see claim 3, Table 1).

特許文献3には、基材の上に、結晶の配向性が異なる第1被覆層と第2被覆層とを積層被覆されており、両層はチタンとアルミニウムとの窒化物、炭窒化物、窒酸化物、炭酸化物、炭窒酸化物のうちの1種又は2種以上の多層からなり、第1被覆層はX線回折ピーク強度が(200)面に最大高さを有し、第2被覆層はX線回折ピーク強度が(111)面に最大高さを有する旨が開示されている(請求項1を参照)。   In Patent Document 3, a first coating layer and a second coating layer having different crystal orientations are laminated and coated on a base material, and both layers are nitrides and carbonitrides of titanium and aluminum, It consists of one or two or more layers of nitride oxide, carbonate, or oxynitride, and the first coating layer has an X-ray diffraction peak intensity having a maximum height on the (200) plane, It is disclosed that the X-ray diffraction peak intensity of the coating layer has a maximum height in the (111) plane (see claim 1).

特許文献4には、基体上に、0.05〜0.5μmの平均層厚を有する所定組成の(TiAl)N層であって、(111)面にX線回折の最高ピークが現われ、かつ前記最高ピークの半価幅が2θで0.8度以下であるものと、2〜10μmの平均層厚を有する所定組成の(TiAl)N層であって、(111)面にX線回折の最高ピークが現われ、かつ前記最高ピークの半価幅が2θで0.8度以下であるものを、物理蒸着してなる、表面被覆超硬合金製切削工具が開示されている(請求項1、表3等を参照)。   In Patent Document 4, a (TiAl) N layer having a predetermined composition having an average layer thickness of 0.05 to 0.5 μm on a substrate, the highest peak of X-ray diffraction appears on the (111) plane, and A (TiAl) N layer having a predetermined composition having an average layer thickness of 2 to 10 μm, and a (111) plane of X-ray diffraction. A surface-coated cemented carbide cutting tool is disclosed in which the highest peak appears and the half-width of the highest peak is 2θ and 0.8 degrees or less, and is physically vapor-deposited (claim 1, claim 2). (See Table 3).

特開2008−93760号公報JP 2008-93760 A 特開2005−126736号公報Japanese Patent Laying-Open No. 2005-126736 特開平10−330914号公報JP-A-10-330914 特開2003−117705号公報JP 2003-117705 A

しかし、特許文献1〜4のいずれにも、物理蒸着法により、超硬合金基材上に、特定の適正範囲に調整された組成、X線回折パターン及び格子定数を有する(TiAl)N皮膜層と(AlCr)N皮膜層とを総膜厚で5μm以上に積層することにより、従来に比べて格段に高性能の硬質皮膜被覆切削工具が得られることについて何ら記載及び示唆がされていない。   However, in any of Patent Documents 1 to 4, a (TiAl) N coating layer having a composition, an X-ray diffraction pattern and a lattice constant adjusted to a specific appropriate range on a cemented carbide substrate by physical vapor deposition. There is no description or suggestion that a high performance hard coating coated cutting tool can be obtained by laminating the (AlCr) N coating layer with a total film thickness of 5 μm or more.

本発明は、物理的蒸着によって成膜して5μm以上に厚膜化した硬質皮膜を有する硬質皮膜被覆切削工具において、前記硬質皮膜が新規高性能な硬質皮膜層1及び2から構成される2層構造を有することにより、硬質皮膜層1では残留圧縮応力により切削時に発生する亀裂の伝播抑制を図り、また硬質皮膜層2では残留圧縮応力の低減化により厚膜化を可能とし、更に基材との密着強度を改善することによって、従来の硬質皮膜被覆切削工具に比べて長寿命化を実現できる新規高性能な硬質皮膜被覆切削工具を提供することを目的とする。   The present invention relates to a hard film coated cutting tool having a hard film formed by physical vapor deposition and thickened to 5 μm or more, wherein the hard film is composed of new high performance hard film layers 1 and 2. By having the structure, the hard coating layer 1 can suppress propagation of cracks generated during cutting due to the residual compressive stress, and the hard coating layer 2 can be made thicker by reducing the residual compressive stress. An object of the present invention is to provide a new high-performance hard coating-coated cutting tool capable of realizing a longer life than conventional hard coating-coated cutting tools by improving the adhesion strength.

本発明の硬質皮膜被覆切削工具は、超硬合金を基材とする切削工具に硬質皮膜を被覆した硬質皮膜被覆切削工具において、該硬質皮膜は物理的蒸着によって成膜された2層構造を有し、該2層構造は表面側に被覆された硬質皮膜層1及び基材側に被覆された硬質皮膜層2を有して構成され、該硬質皮膜層1の組成は(AlCr1−a1−x(但し、夫々の元素の含有量は原子比であり、0.5≦a≦0.75、及び0.45≦x≦0.55である。)で表され、該硬質皮膜層1のX線回折における(111)面の半価幅をW(度)としたとき、0.7≦W≦1.1であり、(111)面のピーク強度Ir、(200)面のピーク強度Is、及び(220)面のピーク強度Itとしたとき、0.3≦Is/Ir<1、及び0.3≦It/Ir<1であり、該硬質皮膜層2の組成は、(TiAl1−b1−y(但し、夫々の元素の含有量は原子比であり、0.4≦b≦0.6、及び0.45≦y≦0.55である。)で表され、該硬質皮膜層2のX線回折における(200)面の半価幅をW(度)としたとき、0.4≦W≦0.6であり、(111)面のピーク強度Iu、(200)面のピーク強度Iv、及び(220)面のピーク強度Iwとしたとき、5≦Iv/Iu≦15、及び2≦Iw/Iu≦4であり、X線回折における該硬質皮膜層1の(111)面の格子定数をa1(nm)および該硬質皮膜層2の(111)面の格子定数をa2(nm)としたとき、0.990≦a1/a2≦0.999であり、該硬質皮膜層1の膜厚をT1(μm)、および該硬質皮膜層2の膜厚をT2(μm)としたとき、5≦T1+T2≦12、T1<T2、であることを特徴とする。
前記本発明によって、物理的蒸着によって成膜して5μm以上に厚膜化した硬質皮膜における硬質皮膜層1の亀裂の伝播抑制と、硬質皮膜層2の厚膜化及び基材との密着強度の改善を図ることができる。前記2層構造を有する硬質皮膜層1、2の特徴を反映し、従来に比べて硬質皮膜被覆切削工具の長寿命化を図ることができる。
The hard film-coated cutting tool of the present invention is a hard film-coated cutting tool in which a hard film is coated on a cutting tool based on a cemented carbide, and the hard film has a two-layer structure formed by physical vapor deposition. The two-layer structure has a hard coating layer 1 coated on the surface side and a hard coating layer 2 coated on the substrate side, and the composition of the hard coating layer 1 is (Al a Cr 1-1 a ) 1-x N x (wherein the content of each element is an atomic ratio, and 0.5 ≦ a ≦ 0.75 and 0.45 ≦ x ≦ 0.55), When the half width of the (111) plane in the X-ray diffraction of the hard coating layer 1 is W 1 (degrees), 0.7 ≦ W 1 ≦ 1.1, and the peak intensity Ir of the (111) plane, When the peak intensity Is of the (200) plane and the peak intensity It of the (220) plane are 0.3 ≦ Is / Ir <1, and A .3 ≦ It / Ir <1, the composition of the hard coating layer 2, the content of (Ti b Al 1-b) 1-y N y ( where each element is the atomic ratio of 0. 4 ≦ b ≦ 0.6 and 0.45 ≦ y ≦ 0.55), and the half width of the (200) plane in the X-ray diffraction of the hard coating layer 2 is expressed as W 2 (degrees). Where 0.4 ≦ W 2 ≦ 0.6, and (111) plane peak intensity Iu, (200) plane peak intensity Iv, and (220) plane peak intensity Iw, 5 ≦ Iv / Iu ≦ 15 and 2 ≦ Iw / Iu ≦ 4, the lattice constant of the (111) plane of the hard coating layer 1 in X-ray diffraction is a1 (nm) and the (111) plane of the hard coating layer 2 When the lattice constant of a2 is a2 (nm), 0.990 ≦ a1 / a2 ≦ 0.999, and the film thickness of the hard coating layer 1 is T1. [mu] m), and when the film thickness of the hard coating layer 2 was T2 (μm), characterized in that 5 ≦ T1 + T2 ≦ 12, T1 <T2, a.
According to the present invention, the propagation of cracks in the hard film layer 1 in the hard film thickened to a thickness of 5 μm or more by physical vapor deposition, the increase in the thickness of the hard film layer 2 and the adhesion strength with the substrate Improvements can be made. Reflecting the characteristics of the hard coating layers 1 and 2 having the two-layer structure, the life of the hard coating-coated cutting tool can be extended compared to the conventional one.

前記本発明の硬質皮膜被覆切削工具において、実用性の観点から、該硬質皮膜が高い密着性を有するように、膜厚方向が長手方向となる柱状結晶粒を有し、該硬質皮膜層2と該硬質皮膜層1との界面において、該硬質皮膜層2と該硬質皮膜層1とを横断する柱状結晶粒を有していることが好ましい。   In the hard film-coated cutting tool of the present invention, from the viewpoint of practicality, the hard film has columnar crystal grains whose longitudinal direction is the longitudinal direction so that the hard film has high adhesion, It is preferable to have columnar crystal grains that cross the hard coating layer 2 and the hard coating layer 1 at the interface with the hard coating layer 1.

前記本発明の硬質皮膜被覆切削工具において、実用性の観点から、該硬質皮膜層1のAl及びCrのうちの少なくとも1種の元素について、夫々10原子%以下の範囲でSi、B、V、Nb及びWのうちから選択される少なくとも1種の元素で置換することが好ましい。
また、前記本発明の硬質皮膜被覆切削工具において、実用性の観点から、該硬質皮膜層2のTi及びAlのうちの少なくとも1種の元素について、夫々10原子%以下の範囲でSi、B、V、Nb及びWのうちから選択される少なくとも1種の元素で置換することが好ましい。
In the hard film-coated cutting tool of the present invention, from the viewpoint of practicality, at least one element of Al and Cr of the hard film layer 1 is Si, B, V, Substitution with at least one element selected from Nb and W is preferred.
In the hard film-coated cutting tool of the present invention, from the viewpoint of practicality, at least one element of Ti and Al of the hard film layer 2 is Si, B, Substitution with at least one element selected from V, Nb and W is preferred.

本発明によれば、物理的蒸着によって成膜して5μm以上に厚膜化した新規で高性能な2層構造を有する硬質皮膜において、上層側の硬質皮膜層1における亀裂の伝播抑制と、下層側の硬質皮膜層2における厚膜化および基材との密着強度の改善を図ることができる。前記2層構造を有する硬質皮膜層1、2により、従来に比べて硬質皮膜被覆切削工具の長寿命化を達成することができる。   According to the present invention, in a hard film having a new and high-performance two-layer structure formed by physical vapor deposition and thickened to 5 μm or more, crack propagation in the upper hard film layer 1 is suppressed, and the lower layer The thickness of the hard coating layer 2 on the side can be increased, and the adhesion strength with the substrate can be improved. With the hard coating layers 1 and 2 having the two-layer structure, it is possible to achieve a longer life of the hard coating-coated cutting tool as compared with the conventional one.

本発明の硬質皮膜被覆切削工具を模式的に説明する図である。It is a figure which illustrates typically the hard coat coat cutting tool of the present invention. 本発明例1の被膜の破断面写真を示す。The fracture surface photograph of the film of example 1 of the present invention is shown. 図2のA部の拡大写真を示す。The enlarged photograph of the A section of FIG. 2 is shown.

硬質皮膜被覆切削工具において硬質皮膜の耐摩耗性は重要な要素であり、更なる向上が望まれている。硬質皮膜の耐摩耗性を向上させる手段として、概略2通りの手段が考えられ、1つは硬質皮膜の厚膜化、他の1つは硬質皮膜の高硬度化である。
硬質皮膜の厚膜化により構成元素に関わらず耐摩耗性を向上することが可能であるが、厚膜化した際に発生する残留応力を緩和する必要がある。硬質皮膜の高硬度化は硬質皮膜の構成元素や成膜条件に大きく依存する。
本発明は、物理的蒸着(以下、PVDと記す場合がある。)法による硬質皮膜を被覆した硬質皮膜被覆切削工具において、基材と接する下層側の硬質皮膜層2において厚膜化を図り、また上層側の硬質皮膜層1において高硬度化と亀裂の伝播抑制を実現した。硬質皮膜は残留圧縮応力が2GPaを超えると硬質皮膜の自己破壊を発生し易くなることから、硬質皮膜層2を厚膜化した際の残留圧縮応力を2GPa以下に低減化した。さらに、2層構造を有する硬質皮膜層間の密着性の改善についても実現した。
In the hard coating coated cutting tool, the wear resistance of the hard coating is an important factor, and further improvement is desired. As means for improving the wear resistance of the hard film, roughly two kinds of means are conceivable. One is to increase the thickness of the hard film, and the other is to increase the hardness of the hard film.
Although it is possible to improve the wear resistance regardless of the constituent elements by increasing the thickness of the hard coating, it is necessary to mitigate the residual stress generated when the thickness is increased. Increasing the hardness of the hard coating greatly depends on the constituent elements of the hard coating and the film forming conditions.
In the hard film-coated cutting tool coated with a hard film by a physical vapor deposition (hereinafter sometimes referred to as PVD) method, the present invention aims to increase the thickness of the hard film layer 2 on the lower layer side in contact with the substrate. In addition, in the hard coating layer 1 on the upper layer side, high hardness and crack propagation suppression were realized. If the hard coating film has a residual compressive stress exceeding 2 GPa, the hard coating layer tends to self-destruct. Therefore, the residual compressive stress when the hard coating layer 2 is thickened is reduced to 2 GPa or less. Furthermore, the improvement of the adhesion between the hard coating layers having a two-layer structure was also realized.

本発明が採用する硬質皮膜を構成する硬質皮膜層1は、AlとCrを金属成分とする窒化物皮膜であり、潤滑性に優れ、溶着に起因する脱落やチッピングを抑制する効果を発揮する。
そこで硬質皮膜層1を高硬度に維持するために組成(AlCr1−a1−xを次のように規定した。Alの含有量はa>0.75である場合、六方最密構造(以下、hcp構造と記す。)のAlNが生成しやすくなり、密着強度が劣化するだけでなく硬度低下が生じる。また、Al含有量よりCr含有量が多い場合も、残留圧縮応力が増大して密着強度が低下する傾向にある。以上より、0.5≦a≦0.75と規定した。より好ましくは、0.6≦a≦0.7である。
The hard film layer 1 constituting the hard film employed by the present invention is a nitride film containing Al and Cr as metal components, is excellent in lubricity, and exhibits an effect of suppressing dropout and chipping caused by welding.
Therefore, in order to maintain the hard coating layer 1 at high hardness, the composition (Al a Cr 1-a ) 1-x N x was defined as follows. When the Al content is a> 0.75, AlN having a hexagonal close-packed structure (hereinafter referred to as an hcp structure) is likely to be generated, which not only deteriorates the adhesion strength but also decreases the hardness. Also, when the Cr content is higher than the Al content, the residual compressive stress increases and the adhesion strength tends to decrease. From the above, it was defined as 0.5 ≦ a ≦ 0.75. More preferably, 0.6 ≦ a ≦ 0.7.

次に、硬質皮膜層1の金属成分と非金属成分の組成比に関しては、0.45≦x≦0.55の範囲に制御することにより、残留圧縮応力を1GPaから2GPaの範囲に制御することができる。一方、x<0.45の場合は、結晶格子中において(AlCr1−a)元素同士が結合する割合が増加し結晶格子の歪が大きくなる。したがって、硬質皮膜層1の断面組織が微細化して粒界欠陥が増大し、残留圧縮応力が増大して基材と硬質皮膜間の密着性が劣化してしまう。例えば、切削工具用の硬質皮膜では、粒界欠陥が密度低下や被加工物を構成する元素の内向拡散を生じ機械的特性、硬度や耐欠損性を低下させる。従って、粒界欠陥の低減のためにx値を0.45以上に制御しなければならない。他方、x>0.55の場合、硬質皮膜層1の結晶組織形態は柱状組織を有するが、粒界部に不純物が取り込まれやすくなる。この不純物は成膜処理装置の内部残留物に由来する。その結果、結晶粒界における接合強度が劣化し、外部衝撃によって容易に硬質皮膜層1が破壊されてしまう。x値は、成膜時のガス圧力に大きく依存する。x値の最適制御に関して、成膜装置のガス圧力を1〜7Paに調節した場合、硬質皮膜の残留圧縮応力を1〜2GPaに制御することが可能となる。 Next, regarding the composition ratio between the metal component and the non-metal component of the hard coating layer 1, the residual compressive stress is controlled in the range of 1 GPa to 2 GPa by controlling in the range of 0.45 ≦ x ≦ 0.55. Can do. On the other hand, in the case of x <0.45, the ratio of bonding of (Al a Cr 1-a ) elements in the crystal lattice increases and the strain of the crystal lattice increases. Therefore, the cross-sectional structure of the hard coating layer 1 becomes finer, grain boundary defects increase, residual compressive stress increases, and the adhesion between the substrate and the hard coating deteriorates. For example, in a hard film for a cutting tool, a grain boundary defect causes a decrease in density or inward diffusion of elements constituting the workpiece, thereby reducing mechanical properties, hardness, and fracture resistance. Therefore, the x value must be controlled to 0.45 or more in order to reduce grain boundary defects. On the other hand, when x> 0.55, the crystal structure of the hard coating layer 1 has a columnar structure, but impurities are easily taken into the grain boundary part. This impurity is derived from an internal residue of the film forming apparatus. As a result, the bonding strength at the crystal grain boundary deteriorates, and the hard coating layer 1 is easily broken by an external impact. The x value greatly depends on the gas pressure during film formation. Regarding the optimum control of the x value, when the gas pressure of the film forming apparatus is adjusted to 1 to 7 Pa, the residual compressive stress of the hard film can be controlled to 1 to 2 GPa.

硬質皮膜層1のW値が、0.7≦W≦1.1の範囲において、結晶組織は微細な粒状を形成する。一般に、ホールペッチの法則から、結晶粒径が小さいほど硬度が高くなる傾向にある。よって、W値が上記範囲内にある硬質皮膜層1では、高硬度を有する硬質皮膜が得られる。W<0.7の場合、結晶組織は柱状結晶を形成し、切削加工時に発生した亀裂が粒界を伝播することにより、亀裂が基材へ到達しやすくなり、切削工具の欠損を生じる可能性が高い。また、W>1.1の場合、皮膜組織が非晶質化しやすく皮膜硬度の低下に繋がる。W値の制御には、成膜温度を最適化する必要があり、バイアス電圧印加条件、反応ガス圧力条件に加え、300〜550℃の範囲で成膜する必要がある。300℃未満では、W値が1.1を超え、550℃を超えると0.7未満となる。 When the W 1 value of the hard coating layer 1 is in the range of 0.7 ≦ W 1 ≦ 1.1, the crystal structure forms fine grains. Generally, from the Hall Petch's law, the smaller the crystal grain size, the higher the hardness. Therefore, in the hard film layer 1 having the W 1 value within the above range, a hard film having a high hardness can be obtained. In the case of W 1 <0.7, the crystal structure forms columnar crystals, and cracks generated during the cutting process propagate through the grain boundary, so that the cracks can easily reach the base material and the cutting tool can be damaged. High nature. Further, when W 1 > 1.1, the film structure is likely to become amorphous, leading to a decrease in film hardness. In order to control the W 1 value, it is necessary to optimize the film formation temperature, and it is necessary to form a film in the range of 300 to 550 ° C. in addition to the bias voltage application condition and the reaction gas pressure condition. Is less than 300 ° C., W 1 value exceeds 1.1, the weight, the less than 0.7 550 ° C..

硬質皮膜層1の耐摩耗性を改善するためには、皮膜を高硬度化するのが好ましい。ここで、面心立方構造では(111)面が原子の最密面であるため、硬質皮膜のX線回折における最強ピークが(111)面である場合に高密度化し、高硬度化しやすい。この硬質皮膜の高硬度化によって切削加工時に発生する亀裂の伝播抑制を実現した。0.3≦Is/Ir<1、及び0.3≦It/Ir<1とすることで、X線回折により測定した硬質皮膜層1の最強ピークが(111)面にあり、高硬度化するため耐摩耗性と亀裂の伝播抑制に優れる。
一方、Is/Ir<0.3、及びIt/Ir<0.3である場合、結晶粒界が増大し残留圧縮応力が増大しすぎるため、硬質皮膜の自己破壊に繋がってしまう。さらに、Is/Ir≧1、及びIt/Ir≧1である場合、太い柱状の結晶組織が形成され、亀裂が粒界を伝播して基材へ到達しやすく、切削工具のチッピングや欠損に至りやすい。Is/Ir値、及びIt/Ir値の制御には、成膜時の反応ガス圧力を1.5Pa以上、3.5Pa以下に設定すれば実現できる。1.5Pa未満では結晶配向を制御することが困難となる。また、3.5Paを超えると皮膜硬度が低下する。
In order to improve the wear resistance of the hard coating layer 1, it is preferable to increase the hardness of the coating. Here, in the face-centered cubic structure, the (111) plane is a close-packed plane of atoms, so when the strongest peak in the X-ray diffraction of the hard coating is the (111) plane, the density is increased and the hardness is easily increased. By increasing the hardness of this hard coating, it was possible to suppress the propagation of cracks that occur during cutting. By setting 0.3 ≦ Is / Ir <1 and 0.3 ≦ It / Ir <1, the strongest peak of the hard coating layer 1 measured by X-ray diffraction is on the (111) plane and the hardness is increased. Therefore, it is excellent in wear resistance and crack propagation suppression.
On the other hand, when Is / Ir <0.3 and It / Ir <0.3, the crystal grain boundary increases and the residual compressive stress increases excessively, leading to self-destruction of the hard coating. Furthermore, when Is / Ir ≧ 1 and It / Ir ≧ 1, a thick columnar crystal structure is formed, cracks easily propagate through the grain boundary and reach the substrate, leading to chipping and chipping of the cutting tool. Cheap. The control of the Is / Ir value and the It / Ir value can be realized by setting the reaction gas pressure during film formation to 1.5 Pa or more and 3.5 Pa or less. If it is less than 1.5 Pa, it becomes difficult to control the crystal orientation. Moreover, when it exceeds 3.5 Pa, film hardness will fall.

本発明が採用する硬質皮膜を構成する硬質皮膜層2は、TiとAlを金属成分とする窒化物皮膜であり、耐摩耗性や密着強度に優れ、切削工具としての寿命向上に効果を発揮する。一般に、皮膜硬度が高いほど耐摩耗性は大きい。そこで硬質皮膜層2を高硬度に維持するために組成(TiAl1−b1−yについて、Tiの含有量は、0.4≦b≦0.6に規定した。b>0.6の場合、十分な耐摩耗性や耐酸化性が得られない。b<0.4である場合、結晶構造が面心立方晶の(TiAl)Nにhcp構造のAlNが含まれるようになり皮膜硬度が低下し耐摩耗性が劣化する。より好ましくは、0.45≦b≦0.55である。 The hard coating layer 2 constituting the hard coating employed in the present invention is a nitride coating containing Ti and Al as metal components, and is excellent in wear resistance and adhesion strength, and is effective in improving the life as a cutting tool. . Generally, the higher the film hardness, the greater the wear resistance. Therefore, in order to maintain the hard coating layer 2 at a high hardness, the Ti content of the composition (Ti b Al 1-b ) 1-y N y is defined as 0.4 ≦ b ≦ 0.6. When b> 0.6, sufficient wear resistance and oxidation resistance cannot be obtained. When b <0.4, (TiAl) N having a crystal structure of face-centered cubic crystal contains AlN having an hcp structure, and the film hardness is lowered and the wear resistance is deteriorated. More preferably, 0.45 ≦ b ≦ 0.55.

次に、硬質皮膜層2の金属成分と非金属成分の組成比に関しては、0.45≦y≦0.55の範囲に制御することにより、残留圧縮応力を0.5〜2GPaの範囲に制御することができる。数値範囲の規定理由は硬質皮膜層1の場合と同様である。y値を0.45≦y≦0.55の範囲に制御するには、成膜時の反応ガス圧力を2.5Pa以上、7Pa以下に設定すれば実現できる。2.5Pa未満では、y値は0.45未満となり、7Paを超えると0.55を超える。   Next, regarding the composition ratio between the metal component and the non-metal component of the hard coating layer 2, the residual compressive stress is controlled within the range of 0.5 to 2 GPa by controlling within the range of 0.45 ≦ y ≦ 0.55. can do. The reason for defining the numerical range is the same as in the case of the hard coating layer 1. The y value can be controlled within the range of 0.45 ≦ y ≦ 0.55 by setting the reaction gas pressure during film formation to 2.5 Pa or more and 7 Pa or less. If it is less than 2.5 Pa, the y value is less than 0.45, and if it exceeds 7 Pa, it exceeds 0.55.

硬質皮膜層2のW値は、0.4≦W≦0.6の範囲に規定した。これにより、硬質皮膜層2は結晶粒界における結合強度と靭性が確保され、切削時の耐摩耗性が発揮されるからである。W<0.4の場合、結晶組織は柱状結晶の結晶性が高まるが、硬度が低下してしまう。また、W>0.6の場合、結晶組織は微細化組織を形成して高硬度化する一方、皮膜靭性が不足して切削時のチッピングを誘発する。また、残留圧縮応力が増大するため、密着強度が劣化する。W値の制御には、成膜温度を最適化する必要があり、バイアス電圧印加条件、反応ガス圧力条件に加え、400〜650℃の範囲で成膜する必要がある。400℃未満では、W値が0.6を超え、650℃を超えると0.4未満となる。 The W 2 value of the hard coating layer 2 was defined in the range of 0.4 ≦ W 2 ≦ 0.6. This is because the hard coating layer 2 ensures the bond strength and toughness at the grain boundaries and exhibits wear resistance during cutting. When W 2 <0.4, the crystal structure increases the crystallinity of the columnar crystal, but the hardness decreases. In the case of W 2 > 0.6, the crystal structure forms a refined structure to increase the hardness, while the film toughness is insufficient to induce chipping during cutting. Moreover, since the residual compressive stress increases, the adhesion strength deteriorates. In order to control the W 2 value, it is necessary to optimize the film formation temperature, and it is necessary to form the film in the range of 400 to 650 ° C. in addition to the bias voltage application condition and the reaction gas pressure condition. If it is less than 400 ° C., the W 2 value exceeds 0.6, and if it exceeds 650 ° C., it becomes less than 0.4.

硬質皮膜層2の残留圧縮応力は、Iv/Iu値、Iw/Iu値と相関性があるので、残留圧縮応力値を低減化するためには、Iv/Iu値、Iw/Iu値を制御すれば可能である。最強ピーク面は(200)面であるのが好ましく、(111)面への配向が強くなると残留圧縮応力が増大し密着性が低下する傾向にある。そこで、5≦Iv/Iu≦15、2≦Iw/Iu≦4に規定することにより、残留圧縮応力が最適範囲に制御され、高い密着強度を有する厚膜の硬質皮膜が実現できる。一方、Iv/Iu<5の場合、Iw/Iu<2の場合は、原子密度の高い(111)面への配向が強い状態であるため、残留圧縮応力が高くなる。また硬質皮膜層2の断面組織が微細化し、結晶粒界が多くなり欠陥が多く含まれる状態となって残留圧縮応力が増大する。また、Iv/Iu>15の場合、Iw/Iu>4の場合は、残留圧縮応力は低減するが、皮膜硬度が減少し、耐摩耗性を阻害する。断面組織における粒界の密着強度が低下し、外部衝撃に対して硬質皮膜表面が容易に破壊したり、剥離したりする。Iv/Iu値、Iw/Iu値の制御には、成膜時の反応ガス圧力を2Pa以上、7Pa以下に設定すれば実現できる。2Pa未満、7Paを超えると結晶配向を制御することが困難となる。   Since the residual compressive stress of the hard coating layer 2 has a correlation with the Iv / Iu value and the Iw / Iu value, the Iv / Iu value and the Iw / Iu value should be controlled in order to reduce the residual compressive stress value. Is possible. The strongest peak surface is preferably the (200) plane, and when the orientation to the (111) plane becomes strong, the residual compressive stress increases and the adhesion tends to decrease. Therefore, by defining 5 ≦ Iv / Iu ≦ 15 and 2 ≦ Iw / Iu ≦ 4, the residual compressive stress is controlled in the optimum range, and a thick hard film having high adhesion strength can be realized. On the other hand, in the case of Iv / Iu <5, in the case of Iw / Iu <2, since the orientation to the (111) plane having a high atomic density is strong, the residual compressive stress becomes high. Moreover, the cross-sectional structure of the hard coating layer 2 becomes finer, and the number of crystal grain boundaries increases and a lot of defects are included, and the residual compressive stress increases. Further, in the case of Iv / Iu> 15, in the case of Iw / Iu> 4, the residual compressive stress is reduced, but the film hardness is reduced and the wear resistance is inhibited. The adhesion strength of the grain boundaries in the cross-sectional structure decreases, and the hard coating surface easily breaks or peels off against external impacts. The control of the Iv / Iu value and the Iw / Iu value can be realized by setting the reaction gas pressure during film formation to 2 Pa or more and 7 Pa or less. If it is less than 2 Pa or more than 7 Pa, it becomes difficult to control the crystal orientation.

本発明において、硬質皮膜層1および硬質皮膜層2の皮膜界面からの皮膜破壊を抑制し、切削工具としての優れた耐摩耗性を発揮させるため、界面の密着強度改善を実現した。硬質皮膜層1および2は共に面心立方構造を有しており、切削工具としての耐摩耗性を改善するために、硬質皮膜層1は、高硬度化が可能な(111)面に強く配向する成膜条件を選定した。一方、硬質皮膜層2は、残留圧縮応力の低減化が可能な(200)面に強く配向する成膜条件を選定した。
さらに、硬質皮膜層1および硬質皮膜層2の界面における密着強度を確保するため、各々の格子定数を整合させる検討を行った。つまり、硬質皮膜層1、2の格子定数を近似させることで、硬質皮膜層1、2の界面における結晶成長に連続性を持たせることができる。ただし、本発明においては硬質皮膜層1、2の組成が異なるため、両者の格子定数を整合させることは困難である。この理由は、硬質皮膜層1がCrを含み、硬質皮膜層2がTiを含む硬質皮膜であり、夫々のイオン半径が異なることによる。例えば、本発明例の硬質皮膜層1、2が含有するAlを、何れも70原子%を超えて多くすれば、両者の格子定数を完全に整合させることは可能である。しかし、Al含有量が70原子%を超えると、hcp構造のAlN結晶が含まれるため、硬度低下をもたらし、耐摩耗性が極度に劣化する。
また、本発明においては硬質皮膜層1、2の配向が異なるため、硬質皮膜層界面でエピタキシャル成長させることは困難である。そこで、硬質皮膜層界面での密着性を確保するため、硬質皮膜層1、2の(111)面から算出した格子定数を近似させる検討を行った。上述のように、硬質皮膜層1、2の組成の違いから、(111)面から算出した格子定数は全般にa1<a2であった。そこで、硬質皮膜層1に対しては、格子定数が大きくなるような成膜条件として、バイアス電圧値を高めた。バイアス電圧を高めることで、プラズマ中でイオン化された元素が基材に到達する際の運動エネルギーが高まり、硬質皮膜に歪を与えながら成膜されるため、格子定数が大きくなる。また、硬質皮膜層2に対しては、バイアス電圧を低めに設定し、格子定数がなるべく大きくならない条件を選定した。
In the present invention, in order to suppress film breakage from the film interface of the hard film layer 1 and the hard film layer 2 and to exhibit excellent wear resistance as a cutting tool, improvement in adhesion strength at the interface was realized. Both hard coating layers 1 and 2 have a face-centered cubic structure, and in order to improve the wear resistance as a cutting tool, the hard coating layer 1 is strongly oriented in the (111) plane where the hardness can be increased. The film forming conditions were selected. On the other hand, for the hard coating layer 2, film forming conditions were selected so as to be strongly oriented in the (200) plane where residual compressive stress can be reduced.
Furthermore, in order to ensure the adhesion strength at the interface between the hard coating layer 1 and the hard coating layer 2, studies were made to match each lattice constant. That is, by approximating the lattice constants of the hard coating layers 1 and 2, the crystal growth at the interface between the hard coating layers 1 and 2 can be made continuous. However, in the present invention, since the compositions of the hard coating layers 1 and 2 are different, it is difficult to match the lattice constants of the two. The reason is that the hard coating layer 1 contains Cr and the hard coating layer 2 is a hard coating containing Ti, and the ionic radii are different from each other. For example, if the amount of Al contained in the hard coating layers 1 and 2 according to the present invention is increased beyond 70 atomic%, the lattice constants of both can be perfectly matched. However, when the Al content exceeds 70 atomic%, since an AlN crystal having an hcp structure is included, the hardness is lowered and the wear resistance is extremely deteriorated.
In the present invention, since the orientations of the hard coating layers 1 and 2 are different, it is difficult to perform epitaxial growth at the hard coating layer interface. Therefore, in order to ensure the adhesion at the hard coating layer interface, examination was made to approximate the lattice constant calculated from the (111) plane of the hard coating layers 1 and 2. As described above, the lattice constant calculated from the (111) plane was generally a1 <a2 due to the difference in the composition of the hard coating layers 1 and 2. Therefore, for the hard coating layer 1, the bias voltage value was increased as a film forming condition for increasing the lattice constant. By increasing the bias voltage, the kinetic energy when the element ionized in the plasma reaches the substrate is increased, and the film is formed while distorting the hard film, so that the lattice constant increases. For the hard coating layer 2, the bias voltage was set to be low and the conditions were selected so that the lattice constant would not increase as much as possible.

なお、硬質皮膜層1、2の成膜にあたっては、バイアス電圧をパルス化(間欠化)させて印加した。ここで、バイアス電圧のパルス化について説明する。一般的に、バイアス電圧は負の直流電圧として基材に印加される。この場合、膜厚の増大に伴って残留圧縮応力が増大する。とくに本願発明に規定するような膜厚範囲(5≦T1+T2≦12)おいては、残留圧縮応力が過大となって、硬質皮膜の自己破壊を招く。そこで、バイアス電圧をパルス化させることで、バイアス電圧が低い瞬間に、格子歪が生成されにくくなり、残留圧縮応力の低減化につながる。   In forming the hard coating layers 1 and 2, the bias voltage was applied in the form of pulses (intermittent). Here, pulsing of the bias voltage will be described. Generally, the bias voltage is applied to the substrate as a negative DC voltage. In this case, the residual compressive stress increases as the film thickness increases. In particular, in the film thickness range (5 ≦ T1 + T2 ≦ 12) as defined in the present invention, the residual compressive stress becomes excessive, leading to self-destruction of the hard coating. Therefore, by pulsing the bias voltage, it becomes difficult to generate lattice strain at the moment when the bias voltage is low, leading to a reduction in residual compressive stress.

また、バイアス電圧をパルス化する際の周波数が、残留圧縮応力の制御に重要である。本発明者らが鋭意研究を重ねた結果、パルス周波数5〜30kHzのときに、硬質皮膜層1では(220)面と(111)面のピーク強度比が0.30≦It/Ir≦1.0、および硬質皮膜層2では(220)面と(111)面のピーク強度比が2.0≦Iw/Iu≦4.0となり、硬質皮膜の残留圧縮応力を0.50〜2.0GPaの最適な範囲に制御できることを見出した。パルス周波数が5kHzより低くなるとIt/Irは1.0を超え、Iw/Iu値は4.0を超える。このとき、柱状組織からなる低圧縮応力の硬質皮膜が得られるが、柱状組織間の密着強度が低く、耐欠損性が高まらない。また、パルス周波数が30kHzを超えると、成膜物質が基材に到達する際の運動エネルギーが低減できず、It/Irは0.3未満となり、Iw/Iuは2.0未満となる。その結果、残留圧縮応力が2.0GPaを超えてしまう。   Further, the frequency at which the bias voltage is pulsed is important for controlling the residual compressive stress. As a result of intensive studies by the inventors, when the pulse frequency is 5 to 30 kHz, in the hard coating layer 1, the peak intensity ratio between the (220) plane and the (111) plane is 0.30 ≦ It / Ir ≦ 1. 0, and in the hard coating layer 2, the peak intensity ratio between the (220) plane and the (111) plane is 2.0 ≦ Iw / Iu ≦ 4.0, and the residual compressive stress of the hard coating is 0.50 to 2.0 GPa. We found that it was possible to control within the optimum range. When the pulse frequency is lower than 5 kHz, It / Ir exceeds 1.0 and the Iw / Iu value exceeds 4.0. At this time, a hard film having a low compressive stress composed of a columnar structure is obtained, but the adhesion strength between the columnar structures is low, and the fracture resistance is not increased. On the other hand, if the pulse frequency exceeds 30 kHz, the kinetic energy when the film-forming substance reaches the substrate cannot be reduced, It / Ir is less than 0.3, and Iw / Iu is less than 2.0. As a result, the residual compressive stress exceeds 2.0 GPa.

さらに、バイアス電圧のパルス化方法について説明する。パルス化方式は、ユニポーラー方式とバイポーラー方式に大別される。ユニポーラー方式は、負もしくはゼロの範囲でバイアス電圧をパルス化させて印加する方法である。このとき、上述のように、バイアス電圧が低い瞬間に、格子歪が生成されにくくなり、残留圧縮応力の低減化につながる。一方、バイポーラー方式は、正の範囲でバイアス電圧をパルス化させて印加する方法である。このとき、正のバイアス電圧が印加された瞬間に、格子歪の一部が緩和されるため、さらなる残留圧縮応力の低減化を図ることが可能となる。   Further, a bias voltage pulsing method will be described. The pulsing method is roughly divided into a unipolar method and a bipolar method. The unipolar method is a method in which a bias voltage is pulsed and applied in a negative or zero range. At this time, as described above, lattice strain is hardly generated at the moment when the bias voltage is low, which leads to reduction in residual compressive stress. On the other hand, the bipolar method is a method of applying a pulsed bias voltage within a positive range. At this time, since a part of the lattice strain is relieved at the moment when the positive bias voltage is applied, it is possible to further reduce the residual compressive stress.

以上より、硬質皮膜層1、2の界面における密着性を改善するために、硬質皮膜層1ではバイアス電圧値を高く設定し、バイポーラー方式でパルス化させたバイアス電圧を印加して成膜を行った。また、硬質皮膜層2ではバイアス電圧値を低く設定し、ユニポーラー方式でパルス化させたバイアス電圧を印加して成膜を行った。すなわち、0.990≦a1/a2≦0.999に制御することで、硬質皮膜層1および硬質皮膜層2の密着強度を高めた。硬質皮膜層1および硬質皮膜層2の格子定数は、成膜条件によって近似させることが可能である。   From the above, in order to improve the adhesion at the interface between the hard coating layers 1 and 2, the hard coating layer 1 is set to a high bias voltage, and a film is formed by applying a bias voltage pulsed by the bipolar method. went. In the hard coating layer 2, the bias voltage value was set low, and a film was formed by applying a bias voltage pulsed by a unipolar method. That is, the adhesion strength between the hard coating layer 1 and the hard coating layer 2 was increased by controlling 0.990 ≦ a1 / a2 ≦ 0.999. The lattice constants of the hard coating layer 1 and the hard coating layer 2 can be approximated by the film forming conditions.

T1<T2とする理由について説明する。構成元素の観点から、硬質皮膜層1の残留圧縮応力は硬質皮膜層2より高い傾向にある。T1値が2μmを超えて厚い場合は、工具の刃先稜線部において皮膜の自己破壊が起こりやすくなる。また、硬質皮膜層1の潤滑性を得るには、0.1μm以上であることが好ましい。より好ましくは0.3μm≦T1≦2μmである。また、硬質皮膜層2は耐摩耗性に優れるが、T2<4μmの場合、耐摩耗性が発揮されない。T2値の増加に伴って残留圧縮応力は徐々に上昇する傾向にあり、T2>10μmの場合、残留圧縮応力が過大となり、基材と硬質皮膜界面での密着強度が低下し、硬質皮膜がはく離しやすくなる。より好ましくは、5μm≦T2≦8μmである。したがって、本発明における硬質皮膜層1の潤滑性や耐欠損性と、硬質皮膜層2の耐摩耗性を両立するためには、T1<T2として、硬質皮膜層全体の残留圧縮応力を抑制することが必要である。   The reason why T1 <T2 will be described. From the viewpoint of constituent elements, the residual compressive stress of the hard coating layer 1 tends to be higher than that of the hard coating layer 2. When the T1 value exceeds 2 μm and is thick, self-destruction of the coating tends to occur at the edge of the cutting edge of the tool. Moreover, in order to obtain the lubricity of the hard coating layer 1, it is preferable that it is 0.1 micrometer or more. More preferably, 0.3 μm ≦ T1 ≦ 2 μm. Further, the hard coating layer 2 is excellent in wear resistance, but when T2 <4 μm, the wear resistance is not exhibited. As the T2 value increases, the residual compressive stress tends to gradually increase. When T2> 10 μm, the residual compressive stress becomes excessive, the adhesion strength at the interface between the base material and the hard coating is reduced, and the hard coating is peeled off. It becomes easy to do. More preferably, 5 μm ≦ T2 ≦ 8 μm. Therefore, in order to achieve both the lubricity and fracture resistance of the hard coating layer 1 and the wear resistance of the hard coating layer 2 in the present invention, the residual compressive stress of the entire hard coating layer is suppressed as T1 <T2. is required.

該硬質皮膜は少なくとも該硬質皮膜層1と該硬質皮膜層2とを横断する結晶粒を有し、この場合、同一結晶粒内での硬質皮膜層1、2界面における密着強度が改善される。よって、本発明の硬質皮膜は切削加工時の層間はく離の抑制に効果を発揮する。   The hard coating has crystal grains that cross at least the hard coating layer 1 and the hard coating layer 2, and in this case, the adhesion strength at the interface between the hard coating layers 1 and 2 in the same crystal grain is improved. Therefore, the hard coating of the present invention is effective in suppressing delamination during cutting.

硬質皮膜層1のAl及びCr、硬質皮膜層2のTi及びAlにおいて、それらの夫々の金属成分の少なくとも1種の元素を10原子%以下の範囲で置換を行うことによって硬質皮膜の機能を十分に発揮させることに有効である。Si、B、V、Nb及びWのうちから選択される少なくとも1種の元素の添加によって、結晶組織内に元素置換による格子歪みが生じ皮膜の高硬度化が図られる。しかしながら、前記元素の添加に伴い、残留圧縮応力は増大する傾向にあるため、その置換比率は10原子%以下にすることが好ましい。Siを添加した場合には、皮膜の高硬度化、耐酸化性の改善に効果がある。同様に、Nb又はWの添加も耐熱性向上に効果的である。更にV又はBの添加は、皮膜の潤滑性向上に有効であり好ましい。高速、高送りといった過酷な切削条件に耐えることが可能となる。   Al and Cr of the hard coating layer 1 and Ti and Al of the hard coating layer 2 have sufficient function of the hard coating by substituting at least one element of their respective metal components in a range of 10 atomic% or less. It is effective for making it exhibit. Addition of at least one element selected from Si, B, V, Nb, and W causes lattice distortion due to element substitution in the crystal structure, thereby increasing the hardness of the coating. However, since the residual compressive stress tends to increase with the addition of the element, the substitution ratio is preferably 10 atomic% or less. Addition of Si is effective in increasing the hardness of the film and improving the oxidation resistance. Similarly, addition of Nb or W is also effective for improving heat resistance. Furthermore, the addition of V or B is effective and preferable for improving the lubricity of the film. It is possible to withstand severe cutting conditions such as high speed and high feed.

<成膜条件>
本発明は、成膜時のバイアス電圧、反応圧力及び成膜温度を最適化させることによって、硬質皮膜層1、2の結晶構造を前記の範囲に制御でき、厚膜化された硬質皮膜は最適な残留圧縮応力が内在し、かつ高硬度を維持できる。
例えば、バイアス電圧値が大きい程残留圧縮応力は増大傾向にある。ここで、1μm/時間以下の比較的遅い成膜速度で、皮膜を結晶成長させることが重要である。このとき、最適化された残留圧縮応力値の範囲は0.5〜2GPaである。残留圧縮応力値が0.5GPa未満であると耐摩耗性は確保できるものの耐欠損性が不十分であり、2GPaを超えて大きいと硬質皮膜のチッピングを生じやすくなる。
<Film formation conditions>
In the present invention, the crystal structure of the hard coating layers 1 and 2 can be controlled within the above range by optimizing the bias voltage, reaction pressure, and film formation temperature during film formation, and the hard coating that is thickened is optimal. The residual compressive stress is inherent and high hardness can be maintained.
For example, the residual compressive stress tends to increase as the bias voltage value increases. Here, it is important to crystallize the film at a relatively slow film formation rate of 1 μm / hour or less. At this time, the range of the optimized residual compressive stress value is 0.5 to 2 GPa. If the residual compressive stress value is less than 0.5 GPa, the wear resistance can be ensured, but the fracture resistance is insufficient, and if it exceeds 2 GPa, chipping of the hard coating tends to occur.

また、硬質皮膜層1の成膜時のバイアス電圧を負の値で30〜200Vに制御することにより、Is/Ir値を0.3以上に制御でき、硬質皮膜層2の成膜時のバイアス電圧を30〜100Vに制御することにより、Iv/Iu値を5以上に制御できる。バイアス電圧が200V以下の範囲で低いほどIs/Ir値は大きくなり、バイアス電圧が100V以下の範囲で低いほどIv/Iu値は大きくなるが、30Vよりも低い電圧では、残留圧縮応力は低減され密着性は高まるが、皮膜硬度は低下し耐摩耗性が劣化する。面心立方構造を有する硬質皮膜層1においては、原子の最密面である(111)面に配向したほうが、より皮膜密度が高くなり高硬度化する。さらに、硬質皮膜層1に残留する圧縮応力が高まり、切削加工時の亀裂伝播抑制に効果を発揮する。そのため、成膜時のバイアス電圧を上記範囲内に制御することが重要である。
更に、成膜時のバイアス電圧をパルス化して印加する方法により、It/Ir値を制御することができる。このとき、硬質皮膜層を厚膜化した際に顕著となる残留圧縮応力の増大を抑制し、硬質皮膜層の厚膜化による耐摩耗性の改善が実現できる。
Further, by controlling the bias voltage at the time of forming the hard coating layer 1 to a negative value of 30 to 200 V, the Is / Ir value can be controlled to 0.3 or more, and the bias at the time of forming the hard coating layer 2 is increased. By controlling the voltage to 30 to 100 V, the Iv / Iu value can be controlled to 5 or more. The lower the bias voltage is in the range of 200V or less, the larger the Is / Ir value is. The lower the bias voltage is in the range of 100V or less, the larger the Iv / Iu value is, but at a voltage lower than 30V, the residual compressive stress is reduced. Although the adhesion is increased, the film hardness is lowered and the wear resistance is deteriorated. In the hard coating layer 1 having a face-centered cubic structure, the coating density becomes higher and the hardness is increased when oriented to the (111) plane which is the closest packed surface of atoms. Furthermore, the compressive stress remaining in the hard coating layer 1 is increased, and the effect of suppressing crack propagation during cutting is exhibited. Therefore, it is important to control the bias voltage during film formation within the above range.
Furthermore, the It / Ir value can be controlled by applying a pulsed bias voltage during film formation. At this time, it is possible to suppress an increase in residual compressive stress that becomes noticeable when the hard coating layer is thickened, and to improve the wear resistance by thickening the hard coating layer.

バイアス電圧の印加方法を、バイポーラー方式またはユニポーラー方式のパルス波とすることにより、直流のバイアス電圧で成膜した場合と比較して、特に(220)面のピーク強度が変化する。これは、成膜時にプラズマ中でイオン化された元素が被処理物に到達する際に、運動する余地があるため、結晶構造が変化するものと思われる。
さらに、本発明において、硬質皮膜層1、2の耐摩耗性改善のために厚膜化した際に生じる残留圧縮応力を制御するには、バイアス電圧をパルス化しパルス周波数を制御する必要がある。本発明ではパルス周波数を25kHzに設定した。これにより、0.3≦It/Ir<1、及び2≦Iw/Iu≦4となり、残留圧縮応力値を0.5〜2GPaの最適な範囲に制御できる。パルス周波数が5kHz未満の場合は、Iw/Iu値は4を超える。このときの皮膜断面組織は、低残留圧縮応力を有する柱状組織が得られるが、柱状組織内における粒界間の密着強度が低く、切削加工時に発生した亀裂が容易に粒界を通って伝播するため、工具の欠損が生じてしまう。一方、30kHzを超えて大きい場合は、イオンが被処理物に到達する際の運動エネルギーが低減できないためIw/Iu値は2未満となる。Iv/Iu値が15を超えて大きい場合であっても、硬質皮膜層2の残留圧縮応力が2GPaを超える様になり密着性が著しく低下する。より好ましくは、15〜30kHzである。
By using a bipolar or unipolar pulse wave as the bias voltage application method, the peak intensity of the (220) plane changes, in particular, as compared with the case where a film is formed with a DC bias voltage. This is presumably because the crystal structure changes because there is room for movement when an element ionized in plasma reaches the object to be processed during film formation.
Furthermore, in the present invention, in order to control the residual compressive stress generated when the hard coating layers 1 and 2 are thickened for improving the wear resistance, it is necessary to pulse the bias voltage and control the pulse frequency. In the present invention, the pulse frequency is set to 25 kHz. As a result, 0.3 ≦ It / Ir <1 and 2 ≦ Iw / Iu ≦ 4, and the residual compressive stress value can be controlled within the optimum range of 0.5 to 2 GPa. When the pulse frequency is less than 5 kHz, the Iw / Iu value exceeds 4. As the cross-sectional structure of the film at this time, a columnar structure having a low residual compressive stress is obtained, but the adhesion strength between the grain boundaries in the columnar structure is low, and cracks generated during the cutting process easily propagate through the grain boundaries. Therefore, the tool is lost. On the other hand, if it exceeds 30 kHz, the kinetic energy when ions reach the workpiece cannot be reduced, so the Iw / Iu value is less than 2. Even when the Iv / Iu value exceeds 15 and the residual compressive stress of the hard coating layer 2 exceeds 2 GPa, the adhesion is remarkably lowered. More preferably, it is 15-30 kHz.

バイアス電圧が高いほど、成膜時に基材に到達するイオンのエネルギーが高まり(111)配向しやすくなるとともに、格子間に歪が発生しながら成膜されることから、格子定数が大きくなる。すなわち、バイアス電圧を調整することで、硬質皮膜層の格子定数を制御することができる。そこで本発明では、硬質皮膜層1と硬質皮膜層2の格子定数差を整合させる検討を行った。本発明に規定される硬質皮膜層1と硬質皮膜層2の格子定数を測定すると、全般にa1<a2であった。これは、硬質皮膜層を構成する金属原子の中で相対的に小さな原子であるAlの含有量の差によると思われる。そこで、硬質皮膜層1に対しては、格子定数が大きくなるような成膜条件として、バイアス電圧値を高めた。また、バイアス電圧を高めたことで残留圧縮応力が過大となるのを抑制するため、バイポーラー方式でパルス化させたバイアス電圧として基材に印加した。一方、硬質皮膜層2に対しては、ユニポーラー方式のパルス波でバイアス電圧を印加し、厚膜化した際の残留圧縮応力が過大となるのを抑制した。
以下、本発明を下記の実施例により詳細に説明するが、下記の実施例により本発明が限定されるものではない。
The higher the bias voltage, the higher the energy of ions that reach the substrate during film formation, and the easier it is to (111) orientation, and the film is formed while distortion occurs between the lattices, and the lattice constant increases. That is, the lattice constant of the hard coating layer can be controlled by adjusting the bias voltage. Therefore, in the present invention, studies were made to match the lattice constant difference between the hard coating layer 1 and the hard coating layer 2. When the lattice constants of the hard coating layer 1 and the hard coating layer 2 defined in the present invention were measured, it was generally a1 <a2. This seems to be due to the difference in the content of Al, which is a relatively small atom among the metal atoms constituting the hard coating layer. Therefore, for the hard coating layer 1, the bias voltage value was increased as a film forming condition for increasing the lattice constant. Further, in order to prevent the residual compressive stress from becoming excessive due to the increased bias voltage, it was applied to the substrate as a bias voltage pulsed by a bipolar method. On the other hand, a bias voltage was applied to the hard coating layer 2 with a unipolar pulse wave to suppress an excessive residual compressive stress when the film was thickened.
Hereinafter, the present invention will be described in detail by the following examples, but the present invention is not limited to the following examples.

[1] 成膜装置
物理蒸着法の成膜装置として、アークイオンプレーティング(AIP)装置、フィルター方式アークイオンプレーティング装置又はスパッタリング装置等が好適である。これより、本発明例1に用いる硬質皮膜の作製方法について以下に説明する。
被覆に使用した装置は、AIP装置であり、AIP装置内には基材装着用回転治具(プラネタリー方式)と、下層形成用のアークカソード2及びそのシャッターと、上層形成用のアークカソード1及びそのシャッターと、反応ガス供給口と、基材にバイアス電圧を印加するためのバイアス電源と、減圧容器とを具備する。アークカソード1は、組成が原子%で、Al:60%、Cr:40%のターゲットを、アークカソード2は、Ti:50%、Al:50%のターゲットを装着した。基材装着用回転治具には、切削評価用として超硬合金製インサート工具を装着した。
[1] Film Forming Apparatus As a film forming apparatus for physical vapor deposition, an arc ion plating (AIP) apparatus, a filter-type arc ion plating apparatus, a sputtering apparatus, or the like is suitable. From this, the manufacturing method of the hard film | membrane used for this invention example 1 is demonstrated below.
The apparatus used for the coating was an AIP apparatus, and in the AIP apparatus, there was a rotating jig for mounting a substrate (planetary system), an arc cathode 2 for forming a lower layer and its shutter, and an arc cathode 1 for forming an upper layer. And a shutter, a reaction gas supply port, a bias power source for applying a bias voltage to the substrate, and a decompression vessel. The arc cathode 1 had a composition of atomic% and Al: 60% and Cr: 40% targets, and the arc cathode 2 had Ti: 50% and Al: 50% targets. A cemented carbide insert tool was mounted on the substrate mounting rotating jig for cutting evaluation.

[2] 製造方法
(A) 基体のクリーニング
まずAIP装置内を2Pa以下の減圧状態に保ちながら、基材を600℃まで加熱した。続いてArガス流量を100sccmで導入し、AIP装置内を2.5Pa程度の真空に保ちながら、基材に負の電圧で200Vのバイアス電圧を印加しながら、Arイオンによる基材表面のエッチング処理を行った。
[2] Manufacturing Method (A) Cleaning of Substrate First, the substrate was heated to 600 ° C. while maintaining the inside of the AIP apparatus at a reduced pressure of 2 Pa or less. Subsequently, the Ar gas flow rate was introduced at 100 sccm, and the substrate surface was etched with Ar ions while applying a bias voltage of 200 V at a negative voltage to the substrate while maintaining a vacuum of about 2.5 Pa inside the AIP apparatus. Went.

(B) 硬質皮膜層2の形成
(1)硬質皮膜層2の成膜温度
本発明例1における硬質皮膜層2の成膜温度は、600℃に設定した。W値の制御には、成膜温度を最適化する必要があり、400〜650℃の範囲で成膜する必要がある。400℃未満では、W値が0.6を超え、650℃を超えると0.4未満となるからである。
(B) Formation of Hard Film Layer 2 (1) Film Formation Temperature of Hard Film Layer 2 The film formation temperature of the hard film layer 2 in Invention Example 1 was set to 600 ° C. In order to control the W 2 value, it is necessary to optimize the film formation temperature, and it is necessary to form a film in the range of 400 to 650 ° C. This is because the W 2 value exceeds 0.6 when the temperature is less than 400 ° C., and becomes less than 0.4 when the temperature exceeds 650 ° C.

(2)硬質皮膜層2の成膜雰囲気の圧力
本発明例1における硬質皮膜層2は、窒素ガスを導入して圧力を3Paとした。このとき、窒素ガス流量は750sccmに設定し、一定に保ちながら、真空排気系のメインバルブの開口率により減圧容器内の圧力制御を行った。硬質皮膜層2のy値を0.45≦y≦0.55の範囲に制御するには、成膜時の反応ガス圧力を2.5Pa以上、7Pa以下に設定すれば実現できる。2.5Pa未満では、y値は0.45未満となり、7Paを超えると0.55を超えてしまう。Iv/Iu値、Iw/Iu値の制御には、成膜時の反応ガス圧力を2Pa以上、7Pa以下に設定すれば実現できる。一方、2Pa未満、7Paを超えると結晶配向を制御することが困難となる。好ましい窒素ガス圧力は、3Pa以上、4Pa以下である。
(2) Pressure in the film forming atmosphere of the hard coating layer 2 In the hard coating layer 2 in the present invention example 1, nitrogen gas was introduced and the pressure was set to 3 Pa. At this time, the flow rate of nitrogen gas was set to 750 sccm, and the pressure in the decompression vessel was controlled by the opening ratio of the main valve of the vacuum exhaust system while keeping it constant. The y value of the hard coating layer 2 can be controlled within the range of 0.45 ≦ y ≦ 0.55 by setting the reaction gas pressure during film formation to 2.5 Pa or more and 7 Pa or less. If it is less than 2.5 Pa, y value will be less than 0.45, and if it exceeds 7 Pa, it will exceed 0.55. The control of the Iv / Iu value and the Iw / Iu value can be realized by setting the reaction gas pressure during film formation to 2 Pa or more and 7 Pa or less. On the other hand, if it is less than 2 Pa or more than 7 Pa, it becomes difficult to control the crystal orientation. A preferable nitrogen gas pressure is 3 Pa or more and 4 Pa or less.

(3)硬質皮膜層2のバイアス電圧
本発明例1における硬質皮膜層2のバイアス電圧は、負の電圧で50Vに設定した。硬質皮膜層2はバイアス電圧値を低く設定し、ユニポーラー方式でパルス化させたバイアス電圧を印加して成膜を行った。これは、バイアス電圧を低めに設定して格子定数がなるべく大きくならないようにするためである。成膜時のバイアス電圧を30〜100Vに制御することにより、Iv/Iu値を5以上に制御できる。バイアス電圧が100V以下の範囲で低いほどIv/Iu値は大きくなるが、30Vよりも低い電圧では、残留圧縮応力は低減され密着性は高まるが、皮膜硬度は低下し耐摩耗性が劣化してしまう。
(3) Bias voltage of hard coating layer 2 The bias voltage of the hard coating layer 2 in Invention Example 1 was set to 50 V as a negative voltage. The hard coating layer 2 was formed by applying a bias voltage pulsed by a unipolar method with a low bias voltage value. This is to prevent the lattice constant from becoming as large as possible by setting the bias voltage low. The Iv / Iu value can be controlled to 5 or more by controlling the bias voltage during film formation to 30 to 100V. The Iv / Iu value increases as the bias voltage is lower than 100 V. However, at a voltage lower than 30 V, the residual compressive stress is reduced and the adhesion is increased, but the film hardness is lowered and the wear resistance is deteriorated. End up.

(4)硬質皮膜層2のパルス周波数
本発明例1における硬質皮膜層2の成膜にあたっては、バイアス電圧をパルス化(間欠化)させて印加した。硬質皮膜層2におけるバイアス電圧は、負の電圧50Vと0Vの間で周期的に振幅させて基材に印加させた。このユニポーラー方式のパルス波でバイアス電圧を印加し、パルス周波数を25kHzに設定した。これにより、2≦Iw/Iu≦4となり、残留圧縮応力値を0.5〜2GPaの最適な範囲に制御できるから、厚膜化した際の残留圧縮応力が過大となるのを抑制できる。パルス周波数が30kHzを超えると、成膜物質が基材に到達する際の運動エネルギーが低減できず、Iw/Iuは2.0未満となる。その結果、残留圧縮応力が2.0GPaを超えてしまう。パルス周波数が5kHz未満の場合は、Iw/Iu値は4を超える。より好ましくは、パルス周波数は15〜30kHzである。
(4) Pulse frequency of hard coating layer 2 In forming the hard coating layer 2 in Example 1 of the present invention, the bias voltage was applied in a pulsed (intermittent) manner. The bias voltage in the hard coating layer 2 was applied to the substrate with a periodic amplitude between a negative voltage of 50V and 0V. A bias voltage was applied with this unipolar pulse wave, and the pulse frequency was set to 25 kHz. Accordingly, 2 ≦ Iw / Iu ≦ 4 is established, and the residual compressive stress value can be controlled within an optimum range of 0.5 to 2 GPa. Therefore, it is possible to suppress the residual compressive stress from being excessive when the film is thickened. If the pulse frequency exceeds 30 kHz, the kinetic energy when the film-forming substance reaches the substrate cannot be reduced, and Iw / Iu is less than 2.0. As a result, the residual compressive stress exceeds 2.0 GPa. When the pulse frequency is less than 5 kHz, the Iw / Iu value exceeds 4. More preferably, the pulse frequency is 15-30 kHz.

(5) 硬質皮膜層2のアーク電流
本発明例1における硬質皮膜層2の成膜にあたっては、アークカソード2に150Aの電流を流してアーク放電を発生させ、T2値が5.8μmとなるまで成膜した。
(5) Arc current of the hard coating layer 2 In forming the hard coating layer 2 in Example 1 of the present invention, a current of 150 A was passed through the arc cathode 2 to generate an arc discharge until the T2 value reached 5.8 μm. A film was formed.

(C)硬質皮膜層1の形成
(1)硬質皮膜層1の成膜温度
硬質皮膜層2の成膜終了時から硬質皮膜層1の成膜開始時への移行期は、両層界面における格子定数の比を規定の数値範囲内に制御し、また連続した柱状結晶を成長させるために、緻密な制御が必要となる。そこで、成膜温度の制御に当たっては、硬質皮膜層2の成膜終了と同時に設定温度を600℃から500℃へ変更した。実際の温度下降は、ヒーター制御により2分以内に設定温度の500℃となるようにした。
硬質皮膜層1の成膜における定常期も、500℃に設定した。硬質皮膜層1の成膜温度は、300〜550℃の範囲で成膜する必要がある。300℃未満では、W値が1.1を超え、550℃を超えると0.7未満となるからである。
(C) Formation of the hard coating layer 1 (1) Film formation temperature of the hard coating layer 1 The transition period from the end of film formation of the hard coating layer 2 to the start of film formation of the hard coating layer 1 is a lattice at the interface between the two layers. In order to control the ratio of the constants within a specified numerical range and to grow a continuous columnar crystal, precise control is required. Therefore, in controlling the film formation temperature, the set temperature was changed from 600 ° C. to 500 ° C. simultaneously with the completion of the film formation of the hard coating layer 2. The actual temperature drop was set to the set temperature of 500 ° C. within 2 minutes by heater control.
The stationary phase in the formation of the hard coating layer 1 was also set to 500 ° C. The film formation temperature of the hard coating layer 1 needs to be formed in the range of 300 to 550 ° C. This is because if it is less than 300 ° C., the W 1 value exceeds 1.1 and if it exceeds 550 ° C., it is less than 0.7.

(2)硬質皮膜層1の成膜雰囲気の圧力
硬質皮膜層2の成膜終了時から、硬質皮膜層1の成膜開始時への移行期は、硬質皮膜層2の成膜終了と同時に窒素ガスの設定流量を750sccmから800sccmへと変更したが、真空排気系メインバルブの開口率制御により、圧力は3Paに調整した。
硬質皮膜層1の成膜の定常期も、800sccmに設定し、圧力は3Paを維持した。硬質皮膜層1のx値の最適制御に関して、成膜装置のガス圧力を1〜7Paに調節した場合、硬質皮膜の残留圧縮応力を1〜2GPaに制御することが可能となる。また、Is/Ir値、及びIt/Ir値の制御には、成膜時の反応ガス圧力を1.5Pa以上、3.5Pa以下に設定すれば実現できる。1.5Pa未満では結晶配向を制御することが困難となる。また、3.5Paを超えると皮膜硬度が低下する。
(2) Pressure in Hard Film Layer 1 Film Forming Atmosphere Transition from the end of hard film layer 2 film formation to the start of hard film layer 1 film formation is performed simultaneously with the end of hard film layer 2 film formation. The gas flow rate was changed from 750 sccm to 800 sccm, but the pressure was adjusted to 3 Pa by controlling the opening ratio of the vacuum exhaust system main valve.
The stationary phase of the hard coating layer 1 was also set to 800 sccm, and the pressure was maintained at 3 Pa. Regarding the optimum control of the x value of the hard coating layer 1, when the gas pressure of the film forming apparatus is adjusted to 1 to 7 Pa, the residual compressive stress of the hard coating can be controlled to 1 to 2 GPa. The control of the Is / Ir value and the It / Ir value can be realized by setting the reaction gas pressure during film formation to 1.5 Pa or more and 3.5 Pa or less. If it is less than 1.5 Pa, it becomes difficult to control the crystal orientation. Moreover, when it exceeds 3.5 Pa, film hardness will fall.

(3)硬質皮膜層1のバイアス電圧
硬質皮膜層2の成膜終了時から、硬質皮膜層1の成膜開始時への移行期は、硬質皮膜層1、2の界面における密着性を改善するために、硬質皮膜層2の条件よりも硬質皮膜層1の負のバイアス電圧値を高く設定し、バイポーラー方式でパルス化させたバイアス電圧を印加して成膜を行った。ここで、負のバイアス電圧値を高くするとは、電圧値の絶対値が大きいことである。しかし、バイアス電圧値が高い程、残留圧縮応力は増大傾向にある。これは、バイアス電圧値が高いほど、成膜時に基材に到達するイオンのエネルギーが高まり(111)配向しやすくなるとともに、格子間に歪が発生しながら成膜されるためである。また、格子定数が大きくなるといった効果もある。そこで、本発明例1は、バイポーラー方式でパルス化させたバイアス電圧を印加した。このときの設定は、負の電圧を150V、正の電圧を10Vとし、周期的に振幅させて基材に印加させた。
硬質皮膜層1の成膜の定常期も、バイアス電圧をパルス化させて印加した。成膜時の負のバイアス電圧を30〜200Vに制御することにより、Is/Ir値を0.3以上に制御でき、バイアス電圧が200V以下の範囲で低いほど、Is/Ir値は大きくなり、30Vよりも低い電圧では、残留圧縮応力は低減され密着性は高まるが、皮膜硬度は低下し耐摩耗性が劣化する。
(3) Bias voltage of hard coating layer 1 The transition period from the end of film formation of hard coating layer 2 to the start of film formation of hard coating layer 1 improves the adhesion at the interface of hard coating layers 1 and 2 Therefore, the negative bias voltage value of the hard coating layer 1 was set higher than the conditions of the hard coating layer 2, and the film was formed by applying a bias voltage pulsed by the bipolar method. Here, increasing the negative bias voltage value means that the absolute value of the voltage value is large. However, as the bias voltage value increases, the residual compressive stress tends to increase. This is because the higher the bias voltage value, the higher the energy of ions that reach the substrate during film formation, and the easier (111) orientation occurs, and the film is formed while distortion occurs between the lattices. In addition, there is an effect that the lattice constant is increased. Therefore, in Example 1 of the present invention, a bias voltage pulsed by a bipolar method was applied. In this setting, the negative voltage was 150 V, the positive voltage was 10 V, and the amplitude was periodically applied to the substrate.
The bias voltage was applied in a pulsed manner during the stationary phase of the hard coating layer 1 as well. By controlling the negative bias voltage during film formation to 30 to 200 V, the Is / Ir value can be controlled to 0.3 or more. The lower the bias voltage is in the range of 200 V or less, the larger the Is / Ir value becomes. At a voltage lower than 30 V, the residual compressive stress is reduced and the adhesion is increased, but the film hardness is lowered and the wear resistance is deteriorated.

(4)硬質皮膜層1のパルス周波数
硬質皮膜層2の成膜終了時から、硬質皮膜層1の成膜開始時への移行期は、短時間のうちに、ユニポーラー方式からバイポーラー方式へと切り替え操作を行った。
本発明例1における硬質皮膜層1の成膜では、パルス周波数を25kHzに設定した。これにより、0.3≦It/Ir<1、となり、残留圧縮応力値を0.5〜2GPaの最適な範囲に制御できる。
パルス周波数5〜30kHzのときに、硬質皮膜層1の(220)面と(111)面のピーク強度比が0.30≦It/Ir<1.0、となりパルス周波数が5kHzより低くなるとIt/Irは1.0を超える。パルス周波数が30kHzを超えると、成膜物質が基材に到達する際の運動エネルギーが低減できず、It/Irは0.3未満となり、その結果、残留圧縮応力が2.0GPaを超えてしまう。
(4) Pulse frequency of hard coating layer 1 The transition period from the end of film formation of hard coating layer 2 to the start of film formation of hard coating layer 1 is from a unipolar system to a bipolar system within a short time. And switching operation.
In the film formation of the hard coating layer 1 in Invention Example 1, the pulse frequency was set to 25 kHz. Thereby, it becomes 0.3 <= It / Ir <1, and it can control a residual compressive stress value to the optimal range of 0.5-2GPa.
When the pulse frequency is 5 to 30 kHz, the peak intensity ratio between the (220) plane and the (111) plane of the hard coating layer 1 is 0.30 ≦ It / Ir <1.0, and when the pulse frequency is lower than 5 kHz, It / Ir exceeds 1.0. When the pulse frequency exceeds 30 kHz, the kinetic energy when the film-forming substance reaches the substrate cannot be reduced, and It / Ir is less than 0.3, and as a result, the residual compressive stress exceeds 2.0 GPa. .

(5) 硬質皮膜層1のアーク電流
硬質皮膜層2の成膜終了時から、硬質皮膜層1の成膜開始時への移行期は、両層界面における格子定数の比を規定の数値範囲内に制御し、また連続した柱状結晶を成長させるために、緻密な制御が必要となるが、特に成膜速度の制御が重要である。そこで、硬質皮膜層2の成膜終了するために、アークカソード2のシャッター操作により閉状態とする30秒前からアークカソード1も稼働させ、シャッターは閉状態を維持したままで150Aの電流を流し始めた。アークカソード2のシャッター操作により閉状態とするのと同時に、アークカソード1はシャッター操作により開状態とした。これら一連の操作は、5秒以内に完了させることが好ましい。その後、アークカソード2の電流を止めるとよい。
ここで、アークカソード1、2の電流値を150Aとした理由は、1(μm/時間)程度の最適な成膜速度を得ることによって、両層の皮膜の柱状結晶を成長させることが重要だからである。このとき、硬質皮膜層2と硬質皮膜層1との界面では、硬質皮膜層2の(200)面の配向から硬質皮膜層の(111)面の配向への連続した柱状結晶の成長が可能となる。また、残留圧縮応力値も最適化され、その範囲は0.5〜2GPaとなる。しかし、120A以下では、成膜速度が遅いため、成膜時間が長くなり、非効率となる。一方、180A以上では、成膜速度が速くなると伴に、アークスポットにより局所的に高いエネルギーがターゲット表面に供給されるため、硬質皮膜層2と硬質皮膜層1との界面において、巨大粒子(ドロップレット)の存在比率が高まってしまう。その影響により、(200)面の配向から(111)面への配向へ連続した柱状結晶の成長が困難となる。
硬質皮膜層1の成膜の定常期は、バイポーラー方式のパルスバイアス電圧を印加しながらアークカソード1に150Aの電流を流してT1値が1.6μmとなるまで成膜した。
上記の被覆プロセスによって、本発明例1を作製した。
(5) Arc current of the hard coating layer 1 The transition period from the end of the film formation of the hard coating layer 2 to the start of the film formation of the hard coating layer 1 is within the specified numerical range of the ratio of lattice constants at the interface between both layers. In order to control the growth rate and to grow a continuous columnar crystal, precise control is required, but control of the film formation rate is particularly important. Therefore, in order to complete the formation of the hard coating layer 2, the arc cathode 1 is also operated 30 seconds before the arc cathode 2 is closed by the shutter operation of the arc cathode 2, and a current of 150 A is passed while the shutter is kept closed. I started. At the same time that the arc cathode 2 was closed by the shutter operation, the arc cathode 1 was opened by the shutter operation. These series of operations are preferably completed within 5 seconds. Thereafter, the current of the arc cathode 2 may be stopped.
Here, the reason why the current values of the arc cathodes 1 and 2 are set to 150 A is that it is important to grow columnar crystals of the coatings of both layers by obtaining an optimum film formation rate of about 1 (μm / hour). It is. At this time, at the interface between the hard coating layer 2 and the hard coating layer 1, continuous columnar crystals can be grown from the orientation of the (200) plane of the hard coating layer 2 to the orientation of the (111) plane of the hard coating layer. Become. Also, the residual compressive stress value is optimized, and the range is 0.5-2 GPa. However, at 120 A or less, the film formation speed is slow, so the film formation time becomes long and inefficient. On the other hand, at 180A or higher, high energy is locally supplied to the target surface by the arc spot as the film forming speed increases, and therefore, large particles (drops) are formed at the interface between the hard coating layer 2 and the hard coating layer 1. (Let)) will increase. Due to the influence, it becomes difficult to grow columnar crystals from the orientation of the (200) plane to the orientation of the (111) plane.
During the stationary phase of the formation of the hard coating layer 1, a current of 150 A was applied to the arc cathode 1 while applying a bipolar pulse bias voltage until the T1 value reached 1.6 μm.
Invention Example 1 was produced by the above coating process.

また、本発明例2から10、比較例11から20では、各アークカソード1、2のターゲット組成、各バイアス電圧値、各バイアス電圧印加方式の設定以外の条件は、本発明例1の被覆プロセスに準拠した。成膜条件を表1に示す。   Further, in Examples 2 to 10 of the present invention and Comparative Examples 11 to 20, the conditions other than the setting of the target composition of each arc cathode 1 and 2, each bias voltage value, and each bias voltage application method are the same as the coating process of Example 1 of the present invention. Compliant with. The film forming conditions are shown in Table 1.
















表1(続き)















Table 1 (continued)















表1(続き)















Table 1 (continued)















表1(続き)















Table 1 (continued)















得られた硬質皮膜の硬質皮膜層1および硬質皮膜層2の組成、X線回折ピーク強度比、(200)面、(111)面での格子定数、皮膜硬度、及び残留圧縮応力値を測定した。以下に測定方法を述べる。
硬質皮膜の組成測定は、各試料の切削用テストピースの膜断面を平面に研削・研磨し、その研磨部をEPMA(例えば日本電子(株)製JXA−8500R型)を用いて、加速電圧10kV、試料電流1μAで分析した。膜厚は、各試料の切削用テストピースを垂直方向に破断して、電解放射走査型電子顕微鏡(例えば日立製作所製S−4200型)で観察し、測定した。硬質皮膜のX線回折ピーク強度比、(200)面、(111)面の格子定数の測定は、X線回折装置(理学電気(株)製RU−200BH型)を用いて、薄膜測定法では角度を1度に固定した薄膜設定(θ=5度を標準とし、必要に応じてθ=1度でも測定を行った)により2θを30〜70度の範囲で測定した。X線源にはλが0.1541nmのCuKα線を用い、バックグランドノイズは装置に内蔵されたソフトにより除去した。
本発明例1から36の硬質皮膜層1における(111)面から算出した格子定数の測定結果において、a1値は、0.410≦a1≦0.413であり、硬質皮膜層2における(111)面から算出した格子定数の測定結果において、a2値は、0.413≦a2≦0.416の範囲内であった。硬質皮膜の残留圧縮応力の測定は、曲率測定法により行い、残留応力測定用のテストピースを用いた。これは、縦10mm、横25mm、厚さ1mmの微粒超硬合金製の基材上下面を鏡面研磨することにより作製し、鏡面部の反り量(δ)を測定した。このテストピースの片面にのみ硬質皮膜が被覆されるように、成膜装置に装着し成膜した。成膜後、同様に反り量(δ)を測定し、テストピース厚さ(D)、破断面膜厚(d)を測定した。これらの数値から、(数1)によって残留応力値を算出した。(数1)において、Es値は基板のヤング率として518GPa、νs値は基板のポアッソン比として0.238、l値は最大たわみ量までの基板長さを12.5mmとした。測定結果を表2に示す。
The composition of hard coating layer 1 and hard coating layer 2 of the obtained hard coating, X-ray diffraction peak intensity ratio, lattice constant on (200) plane, (111) plane, coating hardness, and residual compressive stress value were measured. . The measurement method is described below.
The composition of the hard coating is measured by grinding and polishing the cross section of the test piece for each sample to a flat surface, and using an EPMA (for example, JXA-8500R type, manufactured by JEOL Ltd.), an acceleration voltage of 10 kV. The sample current was analyzed at 1 μA. The film thickness was measured by observing with a field emission scanning electron microscope (for example, S-4200 manufactured by Hitachi, Ltd.) by cutting a test piece for each sample in the vertical direction. The X-ray diffraction peak intensity ratio of the hard coating, and the lattice constants of the (200) plane and (111) plane are measured using an X-ray diffractometer (Ru-200BH type, manufactured by Rigaku Corporation) with a thin film measurement method. 2θ was measured in the range of 30 to 70 degrees by thin film setting with an angle fixed at 1 degree (θ = 5 degrees as a standard, and measurement was performed even if θ = 1 degree as necessary). A CuKα ray having a λ of 0.1541 nm was used as the X-ray source, and background noise was removed by software built in the apparatus.
In the measurement results of the lattice constant calculated from the (111) plane in the hard coating layer 1 of Invention Examples 1 to 36, the a1 value is 0.410 ≦ a1 ≦ 0.413, and the (111) in the hard coating layer 2 In the measurement result of the lattice constant calculated from the surface, the a2 value was within the range of 0.413 ≦ a2 ≦ 0.416. The residual compressive stress of the hard coating was measured by a curvature measurement method, and a test piece for residual stress measurement was used. This was prepared by mirror polishing the upper and lower surfaces of a base material made of a fine cemented carbide having a length of 10 mm, a width of 25 mm, and a thickness of 1 mm, and the amount of warpage (δ 0 ) of the mirror surface portion was measured. The test piece was attached to a film forming apparatus so that only one side of the test piece was covered with the hard film, and the film was formed. After film formation, the amount of warpage (δ 1 ) was measured in the same manner, and the test piece thickness (D) and the fracture surface thickness (d) were measured. From these numerical values, the residual stress value was calculated by (Equation 1). In (Equation 1), the Es value is 518 GPa as the Young's modulus of the substrate, the νs value is 0.238 as the Poisson's ratio of the substrate, and the l value is 12.5 mm of the substrate length up to the maximum deflection. The measurement results are shown in Table 2.



本発明例1〜36は、走査型電子顕微鏡(以下、SEMと記す。)による倍率50k倍の硬質皮膜の断面観察の結果、硬質皮膜層1と硬質皮膜層2とを横断する柱状結晶粒が存在していることを確認した。この柱状結晶粒は、膜厚方向が長手方向となる形状をしていた。例えば、図2に本発明例1の被膜の破断面写真を示し、また、図3には、図2のA部の拡大写真を示した。図3では、硬質皮膜層1と2との界面を横断する2つの柱状結晶粒の輪郭を点線で示した。また、観察により、柱状結晶粒内に硬質皮膜層1と2との界面が存在していることを確認した。   In Examples 1 to 36 of the present invention, columnar crystal grains traversing the hard coating layer 1 and the hard coating layer 2 are obtained as a result of cross-sectional observation of the hard coating with a magnification of 50 k using a scanning electron microscope (hereinafter referred to as SEM). Confirmed that it exists. The columnar crystal grains had a shape in which the film thickness direction was the longitudinal direction. For example, FIG. 2 shows a fractured cross-sectional photograph of the coating film of Example 1 of the present invention, and FIG. 3 shows an enlarged photograph of part A of FIG. In FIG. 3, the outlines of the two columnar crystal grains crossing the interface between the hard coating layers 1 and 2 are indicated by dotted lines. Moreover, it was confirmed by observation that an interface between the hard coating layers 1 and 2 exists in the columnar crystal grains.
















表2(続き)















Table 2 (continued)















表2(続き)















Table 2 (continued)















表2(続き)















Table 2 (continued)















次に、得られた硬質皮膜被覆インサートの切削性能を、下記の試験条件を用い評価した。工具寿命の評価方法は、切削加工時に欠損が発生しやすい断続環境において、インサート逃げ面における最大摩耗幅が0.3mmに達するまでの加工時間とした。切削評価において発生する損傷も確認した。注目すべき損傷を摩耗量(幅)、硬質皮膜剥離、硬質皮膜破壊、チッピングとした。
(試験条件)
切削方法: 断続加工
被削材: SKD11、50mm×250mmの板材を2本(加工方向に対し平行に並べた)
切削速度: 200m/min
一刃送り量:0.35mm/刃
切り込み量:1.0mm
切削油:なし、乾式切削
Next, the cutting performance of the obtained hard coating-coated insert was evaluated using the following test conditions. The tool life evaluation method was a processing time until the maximum wear width on the insert flank surface reached 0.3 mm in an intermittent environment in which chipping is likely to occur during cutting. Damage that occurred in the cutting evaluation was also confirmed. Notable damages were wear (width), hard film peeling, hard film breakage, and chipping.
(Test conditions)
Cutting method: Intermittent processing work material: SKD11, two 50 mm × 250 mm plate materials (arranged parallel to the processing direction)
Cutting speed: 200 m / min
Single-blade feed amount: 0.35 mm / blade cutting depth: 1.0 mm
Cutting oil: None, dry cutting

本発明例1および比較例37、38では残留圧縮応力が切削性能に及ぼす影響を調査した。比較例37では、残留圧縮応力が4.2GPaであり、比較例38では、残留圧縮応力が3.4GPaであった。これらは、いずれも加工初期(5分)で刃先稜線部でのチッピングが確認され、工具寿命も短かった。一方、本発明例1では残留圧縮応力は1.7GPaに低減された。そのため、切削加工時に適度な残留圧縮応力が付与され、皮膜の亀裂伝播やチッピングが抑制されたため、工具寿命は長くなった。さらに、切削途中(10分)の刃先表面をEPMAにより元素マッピングした結果、例えば従来例73のような(TiAl)N膜が硬質皮膜層表面に存在する場合と比較して、Fe元素の検出量が少なかった。すなわち、硬質皮膜層1の組成から、被削材の溶着が抑制され、硬質皮膜層の溶着に伴うチッピングを防いだものと思われる。   In Inventive Example 1 and Comparative Examples 37 and 38, the effect of residual compressive stress on cutting performance was investigated. In Comparative Example 37, the residual compressive stress was 4.2 GPa, and in Comparative Example 38, the residual compressive stress was 3.4 GPa. In all of these, chipping at the edge of the cutting edge was confirmed at the initial stage of machining (5 minutes), and the tool life was short. On the other hand, in Example 1 of the present invention, the residual compressive stress was reduced to 1.7 GPa. Therefore, an appropriate residual compressive stress was applied during the cutting process, and crack propagation and chipping of the film were suppressed, so that the tool life was extended. Furthermore, as a result of elemental mapping of the cutting edge surface in the middle of cutting (10 minutes) by EPMA, for example, the amount of Fe element detected compared to the case where a (TiAl) N film as in Conventional Example 73 is present on the hard coating layer surface, for example. There were few. That is, it is considered that the welding of the work material is suppressed from the composition of the hard coating layer 1 and the chipping accompanying the welding of the hard coating layer is prevented.

本発明例2、3および比較例39、40では硬質皮膜層1の組成比が切削性能に及ぼす影響を確認した。比較例39では、相対的にAl含有量が多く、部分的にhcp構造のAlNの存在が確認された。hcp構造のAlNは、皮膜硬度が低く、切削加工時の逃げ面摩耗が大幅に進行し、短寿命であった。また、比較例40では相対的にCr含有量が多く、残留圧縮応力が高くなったため硬質皮膜層2との密着性が劣化した。したがって、切削加工時の逃げ面摩耗が進行し、工具寿命は短くなった。
一方、本発明例2ではhcp構造のAlNは確認されず、硬質皮膜層1として充分な高硬度を維持した。また本発明例3では、残留圧縮応力が適切な範囲に制御されていた。したがって、これらの工具寿命は比較例より長くなった。
In Invention Examples 2 and 3 and Comparative Examples 39 and 40, the influence of the composition ratio of the hard coating layer 1 on the cutting performance was confirmed. In Comparative Example 39, the Al content was relatively large, and the presence of AlN having an hcp structure was partially confirmed. AlN having an hcp structure has a low film hardness, flank wear during cutting significantly progresses, and has a short life. In Comparative Example 40, the Cr content was relatively high, and the residual compressive stress was high, so that the adhesion with the hard coating layer 2 was deteriorated. Therefore, flank wear during cutting progressed and the tool life was shortened.
On the other hand, in Example 2 of the present invention, AlN having an hcp structure was not confirmed, and sufficient hardness as the hard coating layer 1 was maintained. In Example 3 of the present invention, the residual compressive stress was controlled within an appropriate range. Therefore, these tool lifetimes were longer than in the comparative examples.

本発明例4、5および比較例41、42では硬質皮膜層1の成膜に対するガス(窒素)圧力の検討を行った。比較例41ではガス圧力を7Paに設定した。このとき、x値が0.59であったため、硬質皮膜層1が軟化してしまい、耐摩耗性が低下した。また、比較例42ではガス圧力を1Paに設定した。このとき、x値が0.42であり、硬質皮膜層1は高硬度化したものの残留圧縮応力が増大しすぎたために、切削初期からのチッピングが多く、短寿命であった。
一方、本発明例4ではガス圧力を3.5Paに設定した。また、本発明例5ではガス圧力を1.5GPaに設定した。いずれの場合も硬質皮膜層1の残留圧縮応力が適切に制御され、工具寿命は長くなった。
In Invention Examples 4 and 5 and Comparative Examples 41 and 42, the gas (nitrogen) pressure for the film formation of the hard coating layer 1 was examined. In Comparative Example 41, the gas pressure was set to 7 Pa. At this time, since the x value was 0.59, the hard coating layer 1 was softened and the wear resistance was lowered. In Comparative Example 42, the gas pressure was set to 1 Pa. At this time, the x value was 0.42, and although the hard coating layer 1 was hardened, the residual compressive stress was excessively increased, so that there was much chipping from the beginning of cutting and the life was short.
On the other hand, in Invention Example 4, the gas pressure was set to 3.5 Pa. In Example 5 of the present invention, the gas pressure was set to 1.5 GPa. In any case, the residual compressive stress of the hard coating layer 1 was appropriately controlled, and the tool life was prolonged.

本発明例6、7および比較例43では、硬質皮膜層1の膜厚と切削性能の関係を調査した。比較例43は、硬質皮膜層1が5.9μm、硬質皮膜層2が5.6μmであり、残留圧縮応力が2.7GPaであった。構成元素の観点から、硬質皮膜層2と比較して硬質皮膜層1の残留圧縮応力が高くなった。したがって、切削初期からのチッピングが目立ち、工具寿命は短かった。
本発明例6では硬質皮膜層1の膜厚が本発明例1と比較して厚かったが、残留圧縮応力は1.9GPaに低減され、亀裂伝播抑制の効果から、工具寿命も長くなった。一方、本発明例7は硬質皮膜層1の膜厚は0.3μmであり、本発明例1と比較して薄かったが、硬質皮膜層1としての潤滑性は充分に機能した。
したがって、硬質皮膜層1の潤滑性や耐欠損性と、後述する硬質皮膜層2の耐摩耗性を両立するためには、残留圧縮応力のバランスが重要であり、本発明では相対的に残留圧縮応力が高い硬質皮膜層1の膜厚を、硬質皮膜層2よりも薄く設定する、すなわちT1<T2であることが必要であることが分かった。
In Invention Examples 6 and 7 and Comparative Example 43, the relationship between the film thickness of the hard coating layer 1 and the cutting performance was investigated. In Comparative Example 43, the hard coating layer 1 was 5.9 μm, the hard coating layer 2 was 5.6 μm, and the residual compressive stress was 2.7 GPa. From the viewpoint of the constituent elements, the residual compressive stress of the hard coating layer 1 was higher than that of the hard coating layer 2. Therefore, chipping from the beginning of cutting was conspicuous and the tool life was short.
In Example 6 of the present invention, the film thickness of the hard coating layer 1 was thicker than that of Example 1 of the present invention, but the residual compressive stress was reduced to 1.9 GPa, and the tool life was extended due to the effect of suppressing crack propagation. On the other hand, in Example 7 of the present invention, the thickness of the hard coating layer 1 was 0.3 μm, which was thinner than that of Example 1 of the present invention, but the lubricity as the hard coating layer 1 functioned sufficiently.
Therefore, in order to achieve both the lubricity and fracture resistance of the hard coating layer 1 and the wear resistance of the hard coating layer 2 to be described later, the balance of residual compressive stress is important. It has been found that the thickness of the hard coating layer 1 having a high stress is set to be thinner than that of the hard coating layer 2, that is, T1 <T2.

本発明例8、9および比較例44、45では、硬質皮膜層1で印加したバイアス電圧の大きさが切削性能に及ぼす影響を調査した。比較例44では、バイアス電圧が高すぎたために、バイポーラー方式でバイアス電圧をパルス化したものの、残留圧縮応力を2GPa以下に低減することができず、切削加工時のチッピングが多くなり、工具寿命は短かった。また、比較例45では、バイアス電圧が低く、残留圧縮応力が低減され密着性が高まったものの、皮膜硬度が低下し、耐摩耗性が劣化した。そのため、工具寿命は短かった。
一方、本発明例8、9では残留圧縮応力が適切な範囲に制御され、工具寿命は長くなった。とくに、本発明例8では成膜条件の点で、格子定数比a1/a2が0.999で本発明例の中でも最も近接し、硬質皮膜層1、2の界面における密着性が高まっていたと考えられ、工具寿命も長かった。
In Invention Examples 8 and 9 and Comparative Examples 44 and 45, the influence of the magnitude of the bias voltage applied in the hard coating layer 1 on the cutting performance was investigated. In Comparative Example 44, since the bias voltage was too high, the bias voltage was pulsed by the bipolar method, but the residual compressive stress could not be reduced to 2 GPa or less, and chipping during cutting was increased, resulting in tool life. Was short. In Comparative Example 45, although the bias voltage was low, the residual compressive stress was reduced and the adhesion was increased, the film hardness was lowered and the wear resistance was deteriorated. Therefore, the tool life was short.
On the other hand, in Examples 8 and 9 of the present invention, the residual compressive stress was controlled within an appropriate range, and the tool life was increased. In particular, in Example 8 of the present invention, in terms of film formation conditions, the lattice constant ratio a1 / a2 was 0.999, which was the closest among the examples of the present invention, and the adhesion at the interface between the hard coating layers 1 and 2 was considered to have increased. The tool life was also long.

本発明例10、11および比較例46、47では、硬質皮膜層1にバイアス電圧を印加した際のパルス波印加方式およびパルス部分での電圧設定値が切削性能に及ぼす影響を調査した。比較例46では、残留圧縮応力が0.8GPaに低減されたものの、バイポーラー方式で正の電圧(+40V)にパルス化したことにより、硬質皮膜層1の結晶性が失われ、皮膜硬度の低下につながった。また、比較例47ではユニポーラー方式で負の電圧(−50V)にパルス化したことにより、残留圧縮応力が低減されず、切削加工時のチッピングが発生し、短寿命であった。
一方、本発明例10、11では残留圧縮応力が適切な範囲に制御され、硬質皮膜層1がもつ、優れた耐欠損性が発揮され、長寿命化した。
In Examples 10 and 11 of the present invention and Comparative Examples 46 and 47, the influence of the pulse wave application method and the voltage setting value at the pulse portion when a bias voltage was applied to the hard coating layer 1 on the cutting performance was investigated. In Comparative Example 46, although the residual compressive stress was reduced to 0.8 GPa, the bipolar film was pulsed to a positive voltage (+40 V), so that the crystallinity of the hard film layer 1 was lost and the film hardness was reduced. Led to. Further, in Comparative Example 47, since the unipolar pulse was applied to a negative voltage (−50 V), the residual compressive stress was not reduced, chipping occurred during cutting, and the life was short.
On the other hand, in Examples 10 and 11 of the present invention, the residual compressive stress was controlled within an appropriate range, the excellent fracture resistance of the hard coating layer 1 was exhibited, and the life was extended.

本発明例12、13および比較例48、49ではバイアス電圧をパルス化した際の周波数の影響を調査した。比較例48では、パルス波の周波数を50kHzと高く設定したため、成膜物質が基材に到達する際の運動エネルギーが極度に減じてしまい、硬質皮膜の軟質化につながった。また、比較例49ではパルス波の周波数を5kHzと低く設定したため、成膜物質が基材に到達する際の運動エネルギーを低減することができず、残留圧縮応力が増大し、硬質皮膜層1、2界面での密着性が劣化し、工具寿命は短かった。
一方、本発明例12、13では成膜物質が基材に到達する際の運動エネルギーが適切に制御され、残留圧縮応力が2GPa以下に低減されたため、硬質皮膜層1のチッピングが抑制され、工具寿命は長くなった。
また、本発明例12、13におけるIt/Ir値は、いずれも0.3≦It/Ir≦1.0を満たしたが、比較例48ではIt/Ir<0.3、比較例49ではIt/Ir>1であった。したがって、パルス波をバイアス電圧に印加する際には、It/Ir値の制御が重要であることが分かった。
In Examples 12 and 13 of the present invention and Comparative Examples 48 and 49, the influence of the frequency when the bias voltage was pulsed was investigated. In Comparative Example 48, since the frequency of the pulse wave was set as high as 50 kHz, the kinetic energy when the film-forming substance reached the substrate was extremely reduced, leading to softening of the hard coating. In Comparative Example 49, since the frequency of the pulse wave was set as low as 5 kHz, the kinetic energy when the film-forming substance reached the base material could not be reduced, and the residual compressive stress increased. Adhesion at the two interfaces deteriorated and the tool life was short.
On the other hand, in the inventive examples 12 and 13, the kinetic energy when the film-forming substance reaches the substrate is appropriately controlled and the residual compressive stress is reduced to 2 GPa or less, so that the chipping of the hard coating layer 1 is suppressed, and the tool Lifespan has been extended.
The In / Ir values in Invention Examples 12 and 13 both satisfied 0.3 ≦ It / Ir ≦ 1.0. In Comparative Example 48, It / Ir <0.3, and in Comparative Example 49, It / Ir <0.3. / Ir> 1. Therefore, it was found that it is important to control the It / Ir value when applying a pulse wave to the bias voltage.

本発明例15〜19および比較例50〜54では、硬質皮膜層1に対する添加元素の影響を調査した。本発明例15〜19では、添加元素量がいずれも10原子%以下であり、硬質皮膜層1を構成する(AlCr)N結晶格子内に、添加元素が進入あるいは置換することで、適度な歪みが発生し、皮膜の高硬度化が促進され、耐摩耗性が高まり、工具寿命も長くなったと推察される。また、B、V、Si元素を硬質皮膜層に添加することで、切削加工時に切刃に生成する被削材の溶着成分が減少していることが確認され、耐溶着性の改善に効果的であった。さらに、NbやWの添加で硬質皮膜層の耐酸化性が改善され、工具寿命の改善に効果的であった。
しかしながら、比較例50〜54のように添加元素量が10原子%を超えると、工具寿命は低下した。これは、(AlCr)Nもしくは(TiAl)N皮膜結晶構造内に、添加元素が進入型あるいは置換型で取り込まれるが、添加元素量が多いために(AlCr)Nもしくは(TiAl)N皮膜の結晶構造が崩れ、皮膜の低硬度化につながるためと思われる。また、比較例50のようにSi元素が多い場合には、皮膜組織がアモルファス化しやすくなり、同時に皮膜が軟質化した。
In Invention Examples 15 to 19 and Comparative Examples 50 to 54, the influence of additive elements on the hard coating layer 1 was investigated. In Examples 15 to 19 of the present invention, the amount of the additive element is 10 atomic% or less, and the additive element enters or substitutes into the (AlCr) N crystal lattice constituting the hard coating layer 1 so that an appropriate strain is obtained. It is assumed that the hardness of the film was increased, the wear resistance was increased, and the tool life was extended. Also, by adding B, V, and Si elements to the hard coating layer, it has been confirmed that the welding component of the work material generated on the cutting edge during cutting is reduced, which is effective in improving welding resistance. Met. Furthermore, the addition of Nb and W improved the oxidation resistance of the hard coating layer, and was effective in improving the tool life.
However, when the amount of added elements exceeded 10 atomic% as in Comparative Examples 50 to 54, the tool life was reduced. This is because the additive element is incorporated into the (AlCr) N or (TiAl) N film crystal structure in an intrusion type or a substitution type, but because of the large amount of additive element, the crystal of the (AlCr) N or (TiAl) N film This seems to be because the structure collapses, leading to a reduction in the hardness of the film. Moreover, when there was much Si element like the comparative example 50, the film | membrane structure | tissue became amorphous easily and the film | membrane softened simultaneously.

本発明例20、21および比較例55、56では硬質皮膜層2の組成比が切削性能に及ぼす影響を確認した。比較例55では、相対的にAl含有量が多く、部分的にhcp構造のAlNの存在が確認された。hcp構造のAlNは、皮膜硬度が低く、切削加工時の逃げ面摩耗が大幅に進行し、短寿命であった。また、比較例56では相対的にTi含有量が多く、残留圧縮応力が低減されたものの、基材から硬質皮膜層1の膜厚方向へ柱状晶が成長したが、柱状晶の粒界強度が弱く、チッピングが多く確認され、工具寿命は短くなった。
一方、本発明例20ではhcp構造のAlNは確認されず、硬質皮膜層1として充分な高硬度を維持した。また本発明例21では、残留圧縮応力が適切な範囲に制御され、基材との密着性が高まったため、工具寿命は長くなった。
In Examples 20 and 21 of the present invention and Comparative Examples 55 and 56, the influence of the composition ratio of the hard coating layer 2 on the cutting performance was confirmed. In Comparative Example 55, the Al content was relatively large, and the presence of AlN having an hcp structure was partially confirmed. AlN having an hcp structure has a low film hardness, flank wear during cutting significantly progresses, and has a short life. Further, in Comparative Example 56, although the Ti content was relatively large and the residual compressive stress was reduced, columnar crystals grew from the base material in the film thickness direction of the hard coating layer 1, but the grain boundary strength of the columnar crystals was high. It was weak, a lot of chipping was confirmed, and the tool life was shortened.
On the other hand, in Example 20 of the present invention, AlN having an hcp structure was not confirmed, and sufficient hardness as the hard coating layer 1 was maintained. In Inventive Example 21, the residual compressive stress was controlled in an appropriate range, and the adhesion with the base material was increased, so that the tool life was extended.

本発明例22、23および比較例57、58では硬質皮膜層2の成膜に対するガス(窒素)圧力の検討を行った。これらは硬質皮膜層1の場合と同様の傾向であった。   In Invention Examples 22 and 23 and Comparative Examples 57 and 58, the gas (nitrogen) pressure for the film formation of the hard coating layer 2 was examined. These tend to be the same as in the case of the hard coating layer 1.

本発明例24、25および比較例59、60では、硬質皮膜層2の膜厚と切削性能の関係を調査した。比較例59では硬質皮膜層2を12.2μmと厚くした。このとき、硬質皮膜層2の残留圧縮応力が(TiAl)N組成では比較的低くなるものの、厚膜化しすぎると無効化されてしまうことが示された。また、比較例60では硬質皮膜層2を1.3μmとし薄くした。これは、硬質皮膜層1の1.6μmより薄かった。この場合、残留圧縮応力が低減され、基材との密着性は高まったものの、逃げ面摩耗が急速に進行し短寿命であった。
一方、本発明例24では硬質皮膜層2の膜厚が10.1μmであった。このとき、残留圧縮応力は2GPa以下には低減されたものの、本発明例1と比較して大幅な耐摩耗性の改善には至らなかった。これは、硬質皮膜層2の膜厚が厚いほど、残留圧縮応力が増大し、基材との密着性を阻害したと考えられる。工業上の生産性を考慮すると、切削工具としての用途に適した硬質皮膜層の膜厚範囲に制御することが肝要である。また、本発明例25の硬質皮膜層2の膜厚は3.5μmであり、これは本発明例1の硬質皮膜層2の膜厚5.8μmよりも薄かった。このとき、残留圧縮応力は1.2GPaに低減され、基材との密着性が改善されたものの、本発明例1と比較して耐摩耗性が低下した。したがって、残留圧縮応力を適切な範囲に制御したうえで厚膜化を行うことで、工具寿命の改善につながることが示唆された。
In Inventive Examples 24 and 25 and Comparative Examples 59 and 60, the relationship between the film thickness of the hard coating layer 2 and the cutting performance was investigated. In Comparative Example 59, the hard coating layer 2 was thickened to 12.2 μm. At this time, it was shown that although the residual compressive stress of the hard coating layer 2 is relatively low in the (TiAl) N composition, it is invalidated if the film thickness is excessively increased. In Comparative Example 60, the hard coating layer 2 was thinned to 1.3 μm. This was thinner than 1.6 μm of the hard coating layer 1. In this case, although the residual compressive stress was reduced and the adhesion to the substrate was increased, the flank wear progressed rapidly and the life was short.
On the other hand, in Example 24 of the present invention, the film thickness of the hard coating layer 2 was 10.1 μm. At this time, although the residual compressive stress was reduced to 2 GPa or less, the wear resistance was not significantly improved as compared with Example 1 of the present invention. This is probably because the thicker the hard coating layer 2 is, the more the residual compressive stress is increased, which inhibits the adhesion with the substrate. In consideration of industrial productivity, it is important to control the film thickness range of the hard coating layer suitable for use as a cutting tool. The film thickness of the hard coating layer 2 of Invention Example 25 was 3.5 μm, which was thinner than the film thickness of 5.8 μm of the hard coating layer 2 of Invention Example 1. At this time, although the residual compressive stress was reduced to 1.2 GPa and the adhesion with the base material was improved, the wear resistance was lowered as compared with Example 1 of the present invention. Therefore, it was suggested that the tool life can be improved by increasing the film thickness after controlling the residual compressive stress within an appropriate range.

本発明例26、27および比較例61、62では、硬質皮膜層2で印加したバイアス電圧の大きさが切削性能に及ぼす影響を調査した。これらは硬質皮膜層1の場合と同様の傾向であった。   In inventive examples 26 and 27 and comparative examples 61 and 62, the influence of the magnitude of the bias voltage applied in the hard coating layer 2 on the cutting performance was investigated. These tend to be the same as in the case of the hard coating layer 1.

本発明例28、29および比較例63、64では、硬質皮膜層2にバイアス電圧を印加した際のパルス波印加方式およびパルス部分での電圧設定値が切削性能に及ぼす影響を調査した。これらは硬質皮膜層1の場合と同様の傾向であった。   In Invention Examples 28 and 29 and Comparative Examples 63 and 64, the influence of the pulse wave application method and the voltage setting value at the pulse portion on the cutting performance when a bias voltage was applied to the hard coating layer 2 was investigated. These tend to be the same as in the case of the hard coating layer 1.

本発明例30、31および比較例65、66ではバイアス電圧をパルス化した際の周波数の影響を調査した。これらは硬質皮膜層1の場合と同様の傾向であった。   In the inventive examples 30 and 31, and the comparative examples 65 and 66, the influence of the frequency when the bias voltage was pulsed was investigated. These tend to be the same as in the case of the hard coating layer 1.

本発明例32〜36および比較例67〜71では、硬質皮膜層1に対する添加元素の影響を調査した。これらは硬質皮膜層1の場合と同様であった。   In Invention Examples 32-36 and Comparative Examples 67-71, the influence of additive elements on the hard coating layer 1 was investigated. These were the same as in the case of the hard coating layer 1.

従来例72、73は何れも直流バイアス電圧条件下にて成膜を行い、膜厚が3μm程度であったため、工具寿命は短かった。膜厚は工具寿命に大きな影響を及ぼすが、硬質皮膜の物性を適正な範囲に制御できなければ、産業上の優位点は得られないことが確認された。   In the conventional examples 72 and 73, film formation was performed under a DC bias voltage condition, and the film thickness was about 3 μm, so the tool life was short. Although the film thickness has a great influence on the tool life, it was confirmed that if the physical properties of the hard coating could not be controlled within an appropriate range, no industrial advantage could be obtained.

本発明の硬質皮膜被覆切削工具は、例えば、金属部品や金型等の加工などの用途に好適であり、特に高送り切削加工や高送りの高速切削加工等の非常に厳しい耐摩耗性や耐欠損性が要求される用途に使用することができる。   The hard film coated cutting tool of the present invention is suitable for applications such as processing of metal parts and dies, for example, and has extremely severe wear resistance and resistance such as high feed cutting and high feed high speed cutting. It can be used for applications that require deficiency.

1 硬質皮膜層1
2 硬質皮膜層2
3 基材
1 Hard coating layer 1
2 Hard coating layer 2
3 Base material

Claims (4)

超硬合金を基材とする切削工具に硬質皮膜を被覆した硬質皮膜被覆切削工具において、該硬質皮膜は物理的蒸着によって成膜された2層構造を有し、該2層構造は表面側に被覆された硬質皮膜層1、及び基材側に被覆された硬質皮膜層2を有して構成され、該硬質皮膜層1の組成は(AlCr1−a1−x(但し、夫々の元素の含有量は原子比であり、0.5≦a≦0.75、及び0.45≦x≦0.55である。)で表され、該硬質皮膜層1のX線回折における(111)面の半価幅をW(度)としたとき、0.7≦W≦1.1であり、(111)面のピーク強度Ir、(200)面のピーク強度Is、及び(220)面のピーク強度Itとしたとき、0.3≦Is/Ir<1、及び0.3≦It/Ir<1であり、該硬質皮膜層2の組成は、(TiAl1−b1−y(但し、夫々の元素の含有量は原子比であり、0.4≦b≦0.6、及び0.45≦y≦0.55である。)で表され、該硬質皮膜層2のX線回折における(200)面の半価幅をW(度)としたとき、0.4≦W≦0.6であり、(111)面のピーク強度Iu、(200)面のピーク強度Iv、及び(220)面のピーク強度Iwとしたとき、5≦Iv/Iu≦15、及び2≦Iw/Iu≦4であり、X線回折における該硬質皮膜層1の(111)面の格子定数をa1(nm)及び該硬質皮膜層2の(111)面の格子定数をa2(nm)としたとき、0.990≦a1/a2≦0.999であり、該硬質皮膜層1の膜厚をT1(μm)、および該硬質皮膜層2の膜厚をT2(μm)としたとき、5≦T1+T2≦12、T1<T2、であることを特徴とする硬質皮膜被覆切削工具。 In a hard film coated cutting tool in which a hard film is coated on a cutting tool based on cemented carbide, the hard film has a two-layer structure formed by physical vapor deposition, and the two-layer structure is formed on the surface side. The hard coating layer 1 is coated, and the hard coating layer 2 is coated on the substrate side. The composition of the hard coating layer 1 is (Al a Cr 1-a ) 1-x N x (however, The content of each element is an atomic ratio, and 0.5 ≦ a ≦ 0.75 and 0.45 ≦ x ≦ 0.55)), and the X-ray diffraction of the hard coating layer 1 When the half width of the (111) plane at W 1 (degrees) is 0.7 ≦ W 1 ≦ 1.1, the peak intensity Ir of the (111) plane, the peak intensity Is of the (200) plane, And (220) plane peak intensity It, 0.3 ≦ Is / Ir <1, and 0.3 ≦ It / Ir <1, The composition of the hard coating layer 2, (Ti b Al 1-b ) 1-y N y ( where the content of the element each is an atomic ratio, 0.4 ≦ b ≦ 0.6 and 0.45, ≦ y ≦ 0.55), and when the half width of the (200) plane in the X-ray diffraction of the hard coating layer 2 is W 2 (degrees), 0.4 ≦ W 2 ≦ 0 .6, 5 ≦ Iv / Iu ≦ 15, and 2 ≦ Iw / Iu, where (111) plane peak intensity Iu, (200) plane peak intensity Iv, and (220) plane peak intensity Iw ≦ 4, when the lattice constant of the (111) plane of the hard coating layer 1 in X-ray diffraction is a1 (nm) and the lattice constant of the (111) plane of the hard coating layer 2 is a2 (nm), 0.990 ≦ a1 / a2 ≦ 0.999, the thickness of the hard coating layer 1 is T1 (μm), and the film of the hard coating layer 2 A hard film-coated cutting tool, wherein 5 ≦ T1 + T2 ≦ 12 and T1 <T2 when the thickness is T2 (μm). 請求項1に記載の硬質皮膜被覆切削工具において、該硬質皮膜は膜厚方向が長手方向となる柱状結晶粒を有し、該硬質皮膜層2と該硬質皮膜層1との界面において、該硬質皮膜層2と該硬質皮膜層1とを横断する柱状結晶粒を有していることを特徴とする硬質皮膜被覆切削工具。   2. The hard coating-coated cutting tool according to claim 1, wherein the hard coating has columnar crystal grains whose film thickness direction is a longitudinal direction, and the hard coating is formed at an interface between the hard coating layer 2 and the hard coating layer 1. A hard film-coated cutting tool characterized by having columnar crystal grains traversing the film layer 2 and the hard film layer 1. 請求項1に記載の硬質皮膜被覆切削工具において、該硬質皮膜層1のAl及びCrのうちの少なくとも1種の元素について、夫々10原子%以下の範囲でSi、B、V、Nb、及びWのうちから選択される少なくとも1種の元素で置換したことを特徴とする硬質皮膜被覆切削工具。   2. The hard film-coated cutting tool according to claim 1, wherein at least one element of Al and Cr of the hard film layer 1 is Si, B, V, Nb, and W within a range of 10 atomic% or less, respectively. A hard film-coated cutting tool characterized by being substituted with at least one element selected from the above. 請求項1に記載の硬質皮膜被覆切削工具において、該硬質皮膜層2のTi及びAlのうちの少なくとも1種の元素について、夫々10原子%以下の範囲でSi、B、V、Nb、及びWのうちから選択される少なくとも1種の元素で置換したことを特徴とする硬質皮膜被覆切削工具。   2. The hard film-coated cutting tool according to claim 1, wherein at least one element of Ti and Al of the hard film layer 2 is Si, B, V, Nb, and W within a range of 10 atomic% or less, respectively. A hard film-coated cutting tool characterized by being substituted with at least one element selected from the above.
JP2011007432A 2010-01-20 2011-01-18 Hard-film coated cutting tool Pending JP2011167838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011007432A JP2011167838A (en) 2010-01-20 2011-01-18 Hard-film coated cutting tool

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010024726 2010-01-20
JP2010024726 2010-01-20
JP2011007432A JP2011167838A (en) 2010-01-20 2011-01-18 Hard-film coated cutting tool

Publications (1)

Publication Number Publication Date
JP2011167838A true JP2011167838A (en) 2011-09-01

Family

ID=44682480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011007432A Pending JP2011167838A (en) 2010-01-20 2011-01-18 Hard-film coated cutting tool

Country Status (1)

Country Link
JP (1) JP2011167838A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016032861A (en) * 2014-07-29 2016-03-10 日立金属株式会社 Coated tool
JP2019111631A (en) * 2017-12-26 2019-07-11 三菱日立ツール株式会社 Coated cutting tool
JP2020157377A (en) * 2019-03-25 2020-10-01 株式会社Moldino Coated tool
WO2023008113A1 (en) * 2021-07-30 2023-02-02 京セラ株式会社 Coated tool and cutting tool

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016032861A (en) * 2014-07-29 2016-03-10 日立金属株式会社 Coated tool
JP2019111631A (en) * 2017-12-26 2019-07-11 三菱日立ツール株式会社 Coated cutting tool
JP2020157377A (en) * 2019-03-25 2020-10-01 株式会社Moldino Coated tool
JP7250243B2 (en) 2019-03-25 2023-04-03 株式会社Moldino coated tool
WO2023008113A1 (en) * 2021-07-30 2023-02-02 京セラ株式会社 Coated tool and cutting tool

Similar Documents

Publication Publication Date Title
JP5246165B2 (en) Method for producing hard coating member
JP5206167B2 (en) Hard film coated cutting tool
JP5303816B2 (en) Hard coating tool
JP5098726B2 (en) Coated tool and method for producing coated tool
US8460803B2 (en) Hard coating layer and method for forming the same
KR20140109857A (en) Surface-coated cutting tool with hard coating that exhibits excellent chipping resistance and abrasion resistance
JP2012045650A (en) Hard film-coated cutting tool
JP6844705B2 (en) Cover cutting tool
JP5261018B2 (en) Surface coated cutting tool
JP2017148930A (en) Coated cutting tool
JP2010284787A (en) Hard film coated cutting tool
WO2019065397A1 (en) Coated cutting tool
JP2011189419A (en) Coated tool excellent in wear resistance
EP4292735A1 (en) Coated tool
JP2011167838A (en) Hard-film coated cutting tool
JP4676780B2 (en) Hard coating, laminated hard coating and method for producing the same
JP6155204B2 (en) Hard coating and method for forming the same
JP2021126738A (en) Surface-coated cutting tool exhibiting excellent chipping resistance and wear resistance in strong intermittent cutting
JP6844704B2 (en) Cover cutting tool
EP4316707A1 (en) Coated cutting tool
JP5858363B2 (en) Substrate for cutting tool and surface-coated cutting tool including the same
JP2011167839A (en) Hard-film coated cutting tool
JP5056808B2 (en) Hard coating tool
JP2011189499A (en) Hard film coated tool
JP5305236B2 (en) Hard coating tool