JP5614405B2 - Hard film coated tool and manufacturing method thereof - Google Patents

Hard film coated tool and manufacturing method thereof Download PDF

Info

Publication number
JP5614405B2
JP5614405B2 JP2011522859A JP2011522859A JP5614405B2 JP 5614405 B2 JP5614405 B2 JP 5614405B2 JP 2011522859 A JP2011522859 A JP 2011522859A JP 2011522859 A JP2011522859 A JP 2011522859A JP 5614405 B2 JP5614405 B2 JP 5614405B2
Authority
JP
Japan
Prior art keywords
upper layer
intermediate layer
layer
hard
coated tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011522859A
Other languages
Japanese (ja)
Other versions
JPWO2011007848A1 (en
Inventor
福永 有三
有三 福永
久保田 和幸
和幸 久保田
正和 伊坂
正和 伊坂
仁志 大沼
仁志 大沼
正和 塩野入
正和 塩野入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2011522859A priority Critical patent/JP5614405B2/en
Publication of JPWO2011007848A1 publication Critical patent/JPWO2011007848A1/en
Application granted granted Critical
Publication of JP5614405B2 publication Critical patent/JP5614405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/027Graded interfaces

Description

本発明は、物理蒸着法により形成された密着性及び耐チッピング性に優れた硬質皮膜を有する硬質皮膜被覆工具、及びその製造方法に関する。   The present invention relates to a hard film-coated tool having a hard film formed by physical vapor deposition and having excellent adhesion and chipping resistance, and a method for producing the same.

α型の(Al, Cr)2O3膜は優れた耐熱性及び耐酸化性を有するために、工具に設ける硬質皮膜の上層に用いられるようになった。α型の(Al, Cr)2O3膜は化学蒸着法及び物理蒸着法により形成することができる。化学蒸着法の場合、優れた密着性を有するα型の(Al, Cr)2O3膜が得られるが、成膜温度が約1000℃と高いので、基体との熱膨張係数の差により膜中に引張り応力が残留し、チッピングが起こり易いという問題がある。Since the α-type (Al, Cr) 2 O 3 film has excellent heat resistance and oxidation resistance, it has been used as an upper layer of a hard film provided on a tool. The α-type (Al, Cr) 2 O 3 film can be formed by chemical vapor deposition and physical vapor deposition. In the case of chemical vapor deposition, an α-type (Al, Cr) 2 O 3 film with excellent adhesion can be obtained, but the film formation temperature is as high as about 1000 ° C. There is a problem that tensile stress remains in the chip and chipping is likely to occur.

これに対して、物理蒸着法では成膜温度が500℃前後と低いので種々の基体に成膜できるだけでなく、得られる皮膜中に圧縮応力が残留するので耐欠損性に優れた皮膜が得られる。しかし、物理蒸着法により形成したα型の(Al, Cr)2O3膜は密着性に劣り、剥離し易いだけでなく、結晶粒の脱落によりチッピングも起こり易いという問題がある。そのため、剥離やチッピングが起こりにくい硬質皮膜を物理蒸着法により形成する技術の開発が求められている。On the other hand, in the physical vapor deposition method, the film forming temperature is as low as around 500 ° C., so that not only can the film be formed on various substrates, but also a compressive stress remains in the obtained film, so that a film having excellent fracture resistance can be obtained. . However, the α-type (Al, Cr) 2 O 3 film formed by physical vapor deposition is inferior in adhesion, and has a problem that chipping easily occurs due to falling off of crystal grains as well as easy peeling. Therefore, development of a technique for forming a hard film that hardly causes peeling or chipping by physical vapor deposition is required.

特許第3323534号は、10〜50原子%のクロムを含有する(Al, Cr)2O3結晶からなる硬質層を形成した切削用工具を開示している。この文献では、アルミニウムにクロムを加えるという非常に簡単な対策によって、高温のCVD法でしか得られない結晶質の硬質層を1000℃未満の成膜温度で得た。しかし、この文献は、(Al, Cr)2O3硬質層と中間層との組合せを全く開示していない。Japanese Patent No. 3323534 discloses a cutting tool in which a hard layer made of (Al, Cr) 2 O 3 crystal containing 10 to 50 atomic% of chromium is formed. In this document, a crystalline hard layer, which can be obtained only by a high temperature CVD method, was obtained at a film forming temperature of less than 1000 ° C. by a very simple measure of adding chromium to aluminum. However, this document does not disclose any combination of (Al, Cr) 2 O 3 hard layer and intermediate layer.

特開2008-168365号は、基材上に少なくとも酸化アルミニウム多層被膜が形成された表面被覆切削工具であって、前記酸化アルミニウム多層被膜は、α型結晶構造を有する酸化アルミニウムを含む第一の層と、γ型結晶構造を有する酸化アルミニウムを含む第二の層とが交互に積層した構造を有し、前記第一及び第二の層の厚さはそれぞれ0.5〜50 nmである表面被覆切削工具を開示している。この文献の表1は、基材上に形成したTiAlN層の上に、厚さ5.0 nmのAlCrN層と厚さ4.0 nmのAlCrNO層とを厚さ1.5μmになるまで交互に積層し、その上に7.5原子%のSiを含有する厚さ2.0 nmのγ-(Al, Si)2O3層と2.4原子%のCrを含有する厚さ3.5 nmのα-(Al, Cr)2O3層とを交互に積層した表面被覆切削工具を示している(実施例5)。この表面被覆切削工具では、AlCrNO層の組成が不明である上に、γ-(Al, Si)2O3層とα-(Al, Cr)2O3層とが混在しており、さらに成膜条件からしてα-(Al, Cr)2O3層は1.3未満のTC(006)を有し、密着力が低いと判断される。Japanese Patent Laid-Open No. 2008-168365 is a surface-coated cutting tool in which at least an aluminum oxide multilayer coating is formed on a substrate, wherein the aluminum oxide multilayer coating is a first layer containing aluminum oxide having an α-type crystal structure And a surface-coated cutting tool having a structure in which second layers containing aluminum oxide having a γ-type crystal structure are alternately laminated, and the thicknesses of the first and second layers are 0.5 to 50 nm, respectively Is disclosed. Table 1 of this document shows that an AlCrN layer having a thickness of 5.0 nm and an AlCrNO layer having a thickness of 4.0 nm are alternately stacked on a TiAlN layer formed on a substrate until the thickness becomes 1.5 μm. 2.0 nm thick γ- (Al, Si) 2 O 3 layer containing 7.5 atomic% Si and 3.5 nm thick α- (Al, Cr) 2 O 3 layer containing 2.4 atomic% Cr (Example 5). In this surface-coated cutting tool, the composition of the AlCrNO layer is unknown, and a γ- (Al, Si) 2 O 3 layer and an α- (Al, Cr) 2 O 3 layer coexist. From the film conditions, the α- (Al, Cr) 2 O 3 layer has a TC (006) of less than 1.3 and is judged to have low adhesion.

特表2010-506049号は、工具等を被覆するPVD皮膜システムであって、(Me11-xMe2x)2O3の組成を有する複酸化物の混合結晶皮膜を少なくとも1つ含み、Me1及びMe2はそれぞれAl,Cr,Fe,Li,Mg,Mn,Nb,Ti,Sb及びVの少なくとも1つの元素であって異なっている皮膜システムにおいて、前記混合結晶皮膜の結晶がコランダム型構造を有する皮膜システムを開示している。この文献は、コランダム型、三酸化二クロム型又は六方晶の結晶構造を有する複酸化物を生成することも可能であると記載している。さらに、この文献の図1A〜図1Cはそれぞれx=0.75、0.50及び0.30の場合の(Al1-xCrx)2O3皮膜のX線スペクトルを示している。中間皮膜の生成から複酸化物の混合結晶皮膜の生成に移行に関して、この文献は、AlCr (50/50)ターゲットをターンオンした後5分で酸素ガスの導入を開始し、酸素ガスの流量を10分以内に50 sccmから1000 sccmにし、同時にTiAl (50/50)ターゲットをターンオフし、窒素ガスの流量を約100 sccmに戻すと記載している。JP 2010-506049 is a PVD coating system for coating tools and the like, which includes at least one mixed oxide mixed crystal coating having a composition of (Me1 1-x Me2 x ) 2 O 3 , Me1 and Me2 is at least one element of Al, Cr, Fe, Li, Mg, Mn, Nb, Ti, Sb, and V, respectively, and the mixed crystal film has a corundum structure in the coating system. A system is disclosed. This document states that it is also possible to produce a double oxide having a corundum type, dichromium trioxide type or hexagonal crystal structure. Furthermore, FIGS. 1A to 1C of this document show the X-ray spectra of the (Al 1-x Cr x ) 2 O 3 film when x = 0.75, 0.50, and 0.30, respectively. Regarding the transition from the generation of the intermediate film to the generation of the mixed crystal film of the double oxide, this document starts the introduction of oxygen gas 5 minutes after turning on the AlCr (50/50) target, and the oxygen gas flow rate is increased to 10%. It is stated that within 50 minutes, from 50 sccm to 1000 sccm, at the same time, the TiAl (50/50) target is turned off and the flow rate of nitrogen gas is returned to about 100 sccm.

しかし、図1A〜図1Cに示すX線スペクトルから明らかなように、特表2010-506049号のコランダム型構造の(Al1-xCrx)2O3膜は(202)面に配向している。その上、この(Al1-xCrx)2O3膜は1.3未満の等価X線回折強度比TC(006)を有するので、(006)面への配向が不十分である。そのため、例えば表7に示す実験番号93のように、AlCrONからなる中間皮膜の上に(Al0.5Cr0.5)2O3からなる混合結晶皮膜を形成しても、中間皮膜と混合結晶皮膜との密着性が十分ではない。However, as is clear from the X-ray spectra shown in FIGS. 1A to 1C, the (Al 1-x Cr x ) 2 O 3 film of the corundum type structure of JP 2010-506049 is oriented in the (202) plane. Yes. In addition, since this (Al 1-x Cr x ) 2 O 3 film has an equivalent X-ray diffraction intensity ratio TC (006) of less than 1.3, the orientation to the (006) plane is insufficient. Therefore, even if a mixed crystal film made of (Al 0.5 Cr 0.5 ) 2 O 3 is formed on an intermediate film made of AlCrON, for example, as in experiment number 93 shown in Table 7, the intermediate film is mixed with the mixed crystal film. Adhesion is not enough.

従って本発明の目的は、基体上に、下層、AlCr酸窒化物中間層及びAlCr酸化物上層からなる硬質皮膜を物理蒸着法により形成してなる硬質皮膜被覆工具であって、中間層と上層との密着性を向上させるとともに、上層の耐チッピング性も向上させることにより寿命を著しく長くした硬質皮膜被覆工具、及びその製造方法を提供することである。   Accordingly, an object of the present invention is a hard film-coated tool formed on a substrate by forming a hard film composed of a lower layer, an AlCr oxynitride intermediate layer and an AlCr oxide upper layer by a physical vapor deposition method. It is to provide a hard film coated tool having a significantly increased life by improving the adhesion of the upper layer and also improving the chipping resistance of the upper layer, and a method for producing the same.

本発明の硬質皮膜被覆工具は、基体上に硬質の下層、中間層及び上層を物理蒸着法により形成したもので、
(a) 前記下層は、周期律表のIVa、Va及びVIa族の元素、Al及びSiからなる群から選ばれた少なくとも一種の金属元素と、N、C及びBからなる群から選ばれた少なくとも一種の非金属元素とを含有し、
(b) 前記上層は、一般式:(AlxCry)cOd(ただし、x及びyはAl及びCrの原子比率を表わす数字であり、c及びdはAlCr及びOの原子比率を表わす数字であり、x=0.1〜0.4、x+y=1、c=1.86〜2.14、及びd=2.79〜3.21の条件を満たす。)により表される組成を有するととにも、等価X線回折強度比TC(006)が1.3以上のα型結晶構造を有し、
(c) 前記中間層は、金属元素としてAlとCrを必須とする酸窒化物からなり、酸素濃度が前記下層側から前記上層側にかけて増加するとともに窒素濃度が前記下層側から前記上層側にかけて減少する傾斜組成を有し、その平均組成が一般式:(AlsCrt)a(NvOw)b(ただし、s、t、v及びwはそれぞれAl、Cr、N及びOの原子比率を表わす数字であり、a及びbはAlCr及びNOの原子比率を表わす数字であり、下記条件:
s=0.1〜0.4、
s+t=1、
v=0.1〜0.8、
v+w=1、
a=0.3〜0.5、及び
a+b=1を満たす。)により表され
前記中間層の結晶格子縞と前記上層の結晶格子縞とが両者の界面において少なくとも部分的に連続していることを特徴とする。
The hard film coated tool of the present invention is a hard lower layer, an intermediate layer and an upper layer formed on a substrate by physical vapor deposition,
(a) the lower layer is at least one metal element selected from the group consisting of elements IVa, Va and VIa of the periodic table, Al and Si, and at least selected from the group consisting of N, C and B Containing a kind of non-metallic element,
(b) The upper layer has the general formula: (Al x Cr y ) c O d (where x and y are numbers representing the atomic ratio of Al and Cr, and c and d represent the atomic ratio of AlCr and O) And a composition represented by the following condition: x = 0.1 to 0.4, x + y = 1, c = 1.86 to 2.14, and d = 2.79 to 3.21) TC (006) has an α-type crystal structure of 1.3 or more,
(c) The intermediate layer is made of an oxynitride essentially containing Al and Cr as metal elements, and the oxygen concentration increases from the lower layer side to the upper layer side and the nitrogen concentration decreases from the lower layer side to the upper layer side. The average composition is a general formula: (Al s Cr t ) a (N v O w ) b (where s, t, v, and w are atomic ratios of Al, Cr, N, and O, respectively) A and b are numbers representing the atomic ratio of AlCr and NO, and the following conditions:
s = 0.1-0.4,
s + t = 1,
v = 0.1-0.8,
v + w = 1,
a = 0.3-0.5, and
a + b = 1 is satisfied. ) Is represented by,
The crystal lattice fringes of the intermediate layer and the crystal lattice fringes of the upper layer are at least partially continuous at the interface between them .

前記上層の等価X線回折強度比TC(006)は1.8以上が好ましい。   The equivalent X-ray diffraction intensity ratio TC (006) of the upper layer is preferably 1.8 or more.

前記中間層の厚さ(Tm)は0.1〜5μmで、前記上層の厚さ(Tu)は0.2〜8μmで、Tm≦Tuの関係を満たすのが好ましい。前記下層の厚さは0.5〜10μmが好ましい。   The intermediate layer preferably has a thickness (Tm) of 0.1 to 5 μm, the upper layer has a thickness (Tu) of 0.2 to 8 μm, and satisfies the relationship of Tm ≦ Tu. The thickness of the lower layer is preferably 0.5 to 10 μm.

前記中間層の前記傾斜組成において、酸素濃度の前記下層側から前記上層側にかけての平均勾配は10〜600原子%/μmであるのが好ましい。   In the gradient composition of the intermediate layer, the average gradient of oxygen concentration from the lower layer side to the upper layer side is preferably 10 to 600 atomic% / μm.

前記中間層の前記傾斜組成において、窒素濃度の前記下層側から前記上層側にかけての平均勾配は−650〜−10原子%/μmであるのが好ましい。   In the gradient composition of the intermediate layer, the average gradient of the nitrogen concentration from the lower layer side to the upper layer side is preferably −650 to −10 atomic% / μm.

上記硬質皮膜被覆工具を製造する本発明の方法は、
(1) 前記中間層の成膜開始から終了までの間反応ガスとして供給する酸素ガスの流量を増大させるとともに、窒素ガスの流量を減少させ、
(2) 前記上層の成膜中の酸素ガスの流量を100〜600 sccmにして、成膜雰囲気中の酸素分圧を0.3〜2 Paに制御することを特徴とする。
The method of the present invention for producing the hard film coated tool is as follows:
(1) While increasing the flow rate of oxygen gas supplied as a reaction gas from the start to the end of the formation of the intermediate layer, and decreasing the flow rate of nitrogen gas,
(2) The oxygen gas flow rate during the film formation of the upper layer is set to 100 to 600 sccm, and the oxygen partial pressure in the film formation atmosphere is controlled to 0.3 to 2 Pa.

上記方法において、ドロップレットの生成を防止するために、上層成膜中の酸素ガスの流量を300〜500 sccmに制御するのが好ましい。   In the above method, it is preferable to control the flow rate of oxygen gas during film formation of the upper layer to 300 to 500 sccm in order to prevent the formation of droplets.

上記方法において、前記中間層の成膜終了時に前記上層用の酸素ガス流量に達しているのが好ましい。   In the above method, the upper layer oxygen gas flow rate is preferably reached at the end of the formation of the intermediate layer.

物理蒸着法により形成した本発明の硬質皮膜被覆工具は、(111)配向を有する下層と(006)配向を有する上層との間に傾斜組成を有する中間層を有するので、層間密着性及び耐チッピング性に優れており、特に断続切削等に好適である。また本発明の方法によれば、中間層成膜時に酸素ガス及び窒素ガスの流量を変化させるとともに、上層成膜中の酸素ガスの流量及び成膜雰囲気中の酸素分圧を制御することにより、上記特徴を有する硬質皮膜被覆工具を安定的に製造することができる。   The hard film coated tool of the present invention formed by physical vapor deposition has an intermediate layer having a gradient composition between a lower layer having a (111) orientation and an upper layer having a (006) orientation. It is excellent in properties and is particularly suitable for intermittent cutting and the like. Further, according to the method of the present invention, by changing the flow rates of the oxygen gas and the nitrogen gas during film formation of the intermediate layer, and by controlling the flow rate of the oxygen gas during the upper layer film formation and the oxygen partial pressure in the film formation atmosphere, A hard film coated tool having the above characteristics can be manufactured stably.

本発明に使用し得るAIP装置の一例を示す概略図である。It is the schematic which shows an example of the AIP apparatus which can be used for this invention. 実施例1における中間層の成膜工程において、酸素ガス及び窒素ガスの流量変化を示すグラフである。4 is a graph showing changes in the flow rates of oxygen gas and nitrogen gas in the intermediate layer deposition step in Example 1. FIG. 実施例1の上層のX線回折パターンを示すグラフである。2 is a graph showing an X-ray diffraction pattern of an upper layer of Example 1. FIG. 実施例1の中間層における酸素濃度分布及び窒素濃度分布を示すグラフである。2 is a graph showing an oxygen concentration distribution and a nitrogen concentration distribution in an intermediate layer of Example 1. FIG. 実施例1の硬質皮膜被覆工具における中間層と上層の界面領域を示す透過型電子顕微鏡写真(200万倍)である。2 is a transmission electron micrograph (magnified 2 million times) showing an interface region between an intermediate layer and an upper layer in the hard film-coated tool of Example 1. FIG. 図5(a) の模式図である。FIG. 6 is a schematic diagram of FIG. 実施例9における中間層の成膜工程において、酸素ガス及び窒素ガスの流量変化を示すグラフである。10 is a graph showing changes in the flow rates of oxygen gas and nitrogen gas in the intermediate layer deposition step in Example 9. FIG. 比較例1における中間層の成膜工程において、酸素ガス及び窒素ガスの流量変化を示すグラフである。6 is a graph showing changes in the flow rates of oxygen gas and nitrogen gas in the intermediate layer deposition step in Comparative Example 1. 比較例1の中間層における酸素濃度分布及び窒素濃度分布を示すグラフである。6 is a graph showing an oxygen concentration distribution and a nitrogen concentration distribution in an intermediate layer of Comparative Example 1. 実施例及び比較例の硬質皮膜被覆工具のTC(006)と寿命との関係を示すグラフである。It is a graph which shows the relationship between TC (006) and the lifetime of the hard film coating tool of an Example and a comparative example.

[1] 硬質皮膜被覆工具
(A) 基体
本発明の硬質皮膜被覆工具の基体用材料として、超硬合金、立方晶窒化ホウ素(CBN)、高速度鋼、工具鋼、サーメット、セラミックス等が好適であり,特に超硬合金が好適である。
[1] Hard coating tool
(A) Substrate As the substrate material for the hard coating coated tool of the present invention, cemented carbide, cubic boron nitride (CBN), high speed steel, tool steel, cermet, ceramics, etc. are suitable, especially cemented carbide. Is preferred.

(B) 下層
物理蒸着法により基体上に形成する下層は、周期律表のIVa、Va及びVIa族の元素、Al及びSiからなる群から選ばれた少なくとも一種の金属元素と、N、C及びBからなる群から選ばれた少なくとも一種の非金属元素とからなる硬質皮膜である。非金属元素としては、Nが必須であるのが好ましい。下層組成の具体例としては、TiAlN、TiAlNbN、TiAlCrN、AlCrSiN、CrSiBN等が挙げられる。中間層との密着性を良好にするために、Al又はCrを含有するのが好ましい。これらの下層はfcc構造を有し、(111)面に配向している。下層の膜厚は0.5〜10μmが好ましく、1〜5μmがより好ましく、2〜4μmが最も好ましい。
(B) Lower layer The lower layer formed on the substrate by physical vapor deposition comprises at least one metal element selected from the group consisting of elements IVa, Va and VIa of the periodic table, Al and Si, and N, C and A hard film comprising at least one non-metallic element selected from the group consisting of B. As a nonmetallic element, it is preferable that N is essential. Specific examples of the lower layer composition include TiAlN, TiAlNbN, TiAlCrN, AlCrSiN, and CrSiBN. In order to improve the adhesion to the intermediate layer, it is preferable to contain Al or Cr. These lower layers have an fcc structure and are oriented in the (111) plane. The thickness of the lower layer is preferably 0.5 to 10 μm, more preferably 1 to 5 μm, and most preferably 2 to 4 μm.

(C) 中間層
(1) 平均組成
物理蒸着法により下層上に形成する中間層は、金属元素としてAl及びCrを必須とする酸窒化物の硬質皮膜である。中間層の平均組成は、一般式:(AlsCrt)a(NvOw)b(ただし、s、t、v及びwはそれぞれAl、Cr、N及びOの原子比率を表わす数字であり、a及びbはAlCr及びNOの原子比率を表わす数字であり、それぞれ
s=0.1〜0.4、
s+t=1、
v=0.1〜0.8、
v+w=1、
a=0.3〜0.5、及び
a+b=1
の条件を満たす。)により表わされる。平均組成として、中間層の厚さ方向中央における組成を用いることができる。この組成により中間層は下層と同様に(111)面に配向したfcc構造を有し、下層との密着性が高い。
(C) Middle layer
(1) Average composition The intermediate layer formed on the lower layer by a physical vapor deposition method is a hard film of oxynitride in which Al and Cr are essential as metal elements. The average composition of the intermediate layer is represented by the general formula: (Al s Cr t ) a (N v O w ) b (where s, t, v and w are numbers representing the atomic ratio of Al, Cr, N and O, respectively) A and b are numbers representing the atomic ratio of AlCr and NO, respectively
s = 0.1-0.4,
s + t = 1,
v = 0.1-0.8,
v + w = 1,
a = 0.3-0.5, and
a + b = 1
Satisfy the condition of ). As the average composition, the composition at the center in the thickness direction of the intermediate layer can be used. With this composition, the intermediate layer has an fcc structure oriented in the (111) plane like the lower layer, and has high adhesion to the lower layer.

Alの原子比率sとCrの原子比率tの合計(s+t)は1である。sは0.1〜0.4であり、好ましくは0.15〜0.38であり、最も好ましくは0.2〜0.3である。tは0.9〜0.6であり、好ましくは0.85〜0.62であり、最も好ましくは0.8〜0.7である。sが0.1未満では中間層におけるCrの含有量が過多であり、中間層の硬度及び機械強度が低く、下層及び上層との密着性が低い。またsが0.4超では中間層におけるAlの含有量が過多であり、六方晶系結晶構造を有するため、やはり中間層の硬度及び機械強度が低く、下層及び上層との密着性が低い。   The sum (s + t) of the atomic ratio s of Al and the atomic ratio t of Cr is 1. s is 0.1 to 0.4, preferably 0.15 to 0.38, and most preferably 0.2 to 0.3. t is 0.9 to 0.6, preferably 0.85 to 0.62, and most preferably 0.8 to 0.7. If s is less than 0.1, the Cr content in the intermediate layer is excessive, the hardness and mechanical strength of the intermediate layer are low, and the adhesion to the lower and upper layers is low. On the other hand, when s exceeds 0.4, the content of Al in the intermediate layer is excessive, and since it has a hexagonal crystal structure, the hardness and mechanical strength of the intermediate layer are also low, and the adhesion between the lower layer and the upper layer is low.

窒素(N)の原子比率vと酸素(O)の原子比率wの合計(v+w)は1である。vは0.1〜0.8であり、好ましくは0.2〜0.7であり、最も好ましくは0.3〜0.6である。wは0.9〜0.2であり、好ましくは0.8〜0.3であり、最も好ましくは0.7〜0.4である。vが0.1〜0.8であると、中間層を構成するfcc構造のAlCr酸窒化物は(111)面が表面に現れるように配向し、その結晶格子縞が上層のAlCr酸化物の結晶格子縞と少なくとも部分的に連続する(エピタキシャル成長する)ので、中間層と上層の密着性が高い。vが0.1未満であると、中間層は酸素過剰のため脆いだけでなく、上層との密着性に劣る。一方、vが0.8超であると、中間層の格子定数が過大であり、上層のAlCr酸化物との整合性が悪く、上層との密着性に劣る。   The sum (v + w) of the atomic ratio v of nitrogen (N) and the atomic ratio w of oxygen (O) is 1. v is 0.1 to 0.8, preferably 0.2 to 0.7, and most preferably 0.3 to 0.6. w is 0.9 to 0.2, preferably 0.8 to 0.3, and most preferably 0.7 to 0.4. When v is 0.1 to 0.8, the fcc-structured AlCr oxynitride constituting the intermediate layer is oriented so that the (111) plane appears on the surface, and the crystal lattice fringes are at least partially different from the crystal lattice fringes of the upper AlCr oxide Therefore, the adhesion between the intermediate layer and the upper layer is high. When v is less than 0.1, the intermediate layer is not only brittle due to excess oxygen, but also has poor adhesion to the upper layer. On the other hand, if v is more than 0.8, the lattice constant of the intermediate layer is excessive, the consistency with the upper layer AlCr oxide is poor, and the adhesion with the upper layer is poor.

AlCrの原子比率aは(s+t)/[(s+t)+(v+w)]に相当し、NOの原子比率bは(v+w)/[(s+t)+(v+w)]に相当する。a+bは1である。aは0.3〜0.5であり、好ましくは0.38〜0.47であり、最も好ましくは0.4〜0.45である。bは0.7〜0.5であり、好ましくは0.62〜0.53であり、最も好ましくは0.6〜0.55である。aが0.3未満であると中間層における金属成分(Al, Cr)が少なすぎ、硬さが不十分である。aが0.5超であると金属成分が多過ぎ、金属成分と非金属成分のバランスが均一な中間層が得られず、機械強度が劣る。   The atomic ratio a of AlCr corresponds to (s + t) / [(s + t) + (v + w)], and the atomic ratio b of NO corresponds to (v + w) / [(s + t) + (v + w)]. a + b is 1. a is 0.3 to 0.5, preferably 0.38 to 0.47, and most preferably 0.4 to 0.45. b is 0.7 to 0.5, preferably 0.62 to 0.53, and most preferably 0.6 to 0.55. When a is less than 0.3, the metal component (Al, Cr) in the intermediate layer is too small and the hardness is insufficient. When a is more than 0.5, there are too many metal components, an intermediate layer having a uniform balance between the metal component and the non-metal component cannot be obtained, and the mechanical strength is inferior.

(2) 傾斜組成
下層及び上層と中間層とは残留応力が異なり、下層と中間層、及び中間層と上層との間で大きな応力差があると層間剥離が生じるおそれがある。これに対し、中間層が、酸素濃度が下層側から上層側にかけて増加するとともに窒素濃度が下層側から上層側にかけて減少する傾斜組成を有することにより、残留応力の急激な変化を抑制し、層間剥離を抑制できることがわかった。
(2) Gradient composition The lower layer, the upper layer and the intermediate layer have different residual stresses, and if there is a large stress difference between the lower layer and the intermediate layer and between the intermediate layer and the upper layer, delamination may occur. In contrast, the intermediate layer has a gradient composition in which the oxygen concentration increases from the lower layer side to the upper layer side and the nitrogen concentration decreases from the lower layer side to the upper layer side, thereby suppressing a rapid change in residual stress and delamination. It was found that can be suppressed.

図4に示すように、中間層における酸素濃度及び窒素濃度は実質的に直線的に変化するのが好ましい。この場合、中間層の格子定数が直線的に変化するので、残留応力の急激な変化及び層間剥離がいっそう抑制される。勿論、中間層における酸素濃度及び窒素濃度が下層側から上層側にかけて直線的に変化しなくても(例えば断続的に変化する領域があっても)、下層側から上層側にかけて酸素濃度が増加するとともに窒素濃度が減少していれば、残留応力の急激な変化が抑制され、層間剥離が抑制される。   As shown in FIG. 4, the oxygen concentration and nitrogen concentration in the intermediate layer preferably change substantially linearly. In this case, since the lattice constant of the intermediate layer changes linearly, sudden changes in residual stress and delamination are further suppressed. Of course, even if the oxygen concentration and nitrogen concentration in the intermediate layer do not change linearly from the lower layer side to the upper layer side (for example, even if there is a region that changes intermittently), the oxygen concentration increases from the lower layer side to the upper layer side. At the same time, if the nitrogen concentration is reduced, a sudden change in residual stress is suppressed, and delamination is suppressed.

中間層の傾斜組成において、酸素濃度の平均勾配は膜厚に依存するが、一般に10〜600原子%/μmであり、20〜300原子%/μmが好ましく、30〜200原子%/μmがより好ましく、特に60〜150原子%/μmが最も好ましい。中間層が厚くなるに従って酸素濃度の平均勾配が小さくなるので、酸素濃度の平均勾配が10原子%/μm未満では中間層が厚すぎることになり、かえって硬質皮膜の耐チッピング性等が低下する。また酸素濃度の平均勾配を600原子%/μm超であると、酸素濃度変化が急激であり、傾斜組成の中間層を設けた意味が失われる。   In the gradient composition of the intermediate layer, the average gradient of oxygen concentration depends on the film thickness, but is generally 10 to 600 atomic% / μm, preferably 20 to 300 atomic% / μm, more preferably 30 to 200 atomic% / μm. 60 to 150 atomic% / μm is particularly preferable. Since the average gradient of the oxygen concentration becomes smaller as the intermediate layer becomes thicker, if the average gradient of the oxygen concentration is less than 10 atomic% / μm, the intermediate layer becomes too thick, and the chipping resistance of the hard coating is deteriorated. If the average gradient of the oxygen concentration exceeds 600 atomic% / μm, the oxygen concentration changes rapidly, and the meaning of providing an intermediate layer having a gradient composition is lost.

窒素濃度の平均勾配は−650〜−10原子%/μmが好ましく、−330〜−22原子%/μmがより好ましく、−220〜−33原子%/μmが最も好ましく、−160〜−70原子%/μmが特に好ましい。窒素濃度の平均勾配における−の記号は、窒素濃度が下層側から上層側にかけて減少することを意味する。窒素濃度の平均勾配の絶対値が10原子%/μm未満では中間層が厚すぎることになり、かえって硬質皮膜の耐チッピング性等が低下する。また窒素濃度の平均勾配の絶対値が650原子%/μm超であると、窒素濃度変化が急激であり、傾斜組成の中間層を設けた意味が失われる。酸素濃度及び窒素濃度は、透過型電子顕微鏡(TEM)を用いた局所領域の電子エネルギー損失分光法(EELS)により測定できる。   The average gradient of nitrogen concentration is preferably −650 to −10 atomic% / μm, more preferably −330 to −22 atomic% / μm, most preferably −220 to −33 atomic% / μm, and −160 to −70 atoms. % / Μm is particularly preferred. The symbol “−” in the average gradient of nitrogen concentration means that the nitrogen concentration decreases from the lower layer side to the upper layer side. If the absolute value of the average gradient of the nitrogen concentration is less than 10 atomic% / μm, the intermediate layer is too thick, and the chipping resistance of the hard coating is deteriorated. If the absolute value of the average gradient of nitrogen concentration is more than 650 atomic% / μm, the nitrogen concentration changes rapidly, and the meaning of providing an intermediate layer having a gradient composition is lost. The oxygen concentration and the nitrogen concentration can be measured by electron energy loss spectroscopy (EELS) in a local region using a transmission electron microscope (TEM).

(3) 厚さ
下層及び上層との高い密着性とともに高い耐衝撃性を有するために、中間層の膜厚(Tm)は0.1〜5μmが好ましく、0.2〜3μmがより好ましく、0.3〜2μmが最も好ましく、0.3〜1μmが特に好ましい。
(3) Thickness In order to have high impact resistance as well as high adhesion with the lower layer and upper layer, the film thickness (Tm) of the intermediate layer is preferably 0.1-5 μm, more preferably 0.2-3 μm, most preferably 0.3-2 μm Preferably, 0.3-1 micrometer is especially preferable.

(D) 上層
(1) 組成
物理蒸着法により中間層上に形成する上層は、金属元素としてAl及びCrを必須とする酸化物の硬質皮膜である。上層の組成は、一般式:(AlxCry)cOd(ただし、x及びyはAl及びCrの原子比率を表わす数字であり、c及びdはAlCr及びOの原子比率を表わす数字であり、x=0.1〜0.4、x+y=1、c=1.86〜2.14、及びd=2.79〜3.21の条件を満たす。)により表される。Alの原子比率xとCrの原子比率yの合計(x+y)は1である。xは0.1〜0.4であり、好ましくは0.15〜0.38であり、最も好ましくは0.2〜0.35である。yは0.9〜0.6であり、好ましくは0.85〜0.62であり、最も好ましくは0.8〜0.65である。0.1〜0.4のxにより上層はα型結晶構造を有する。xが0.1未満であるとCrが過多になり、上層の硬さ及び機械強度が低く中間層との密着性に劣るだけでなく、Cr2O3が過多になるため耐熱性も劣る。xが0.4を超えると低融点のAlが過多になり、成膜時に正常にイオン化されない原子数が増すので、未反応の金属や異常に反応した生成物がドロップレットとして上層中又は表面に存在し、層密度が低下し、密着性及び耐チッピング性が悪化する。
(D) Upper layer
(1) Composition The upper layer formed on the intermediate layer by physical vapor deposition is a hard oxide film that essentially contains Al and Cr as metal elements. The composition of the upper layer is represented by the general formula: (Al x Cr y ) c O d (where x and y are numbers representing the atomic ratio of Al and Cr, and c and d are numbers representing the atomic ratio of AlCr and O. And x = 0.1 to 0.4, x + y = 1, c = 1.86 to 2.14, and d = 2.79 to 3.21. The sum (x + y) of the atomic ratio x of Al and the atomic ratio y of Cr is 1. x is 0.1 to 0.4, preferably 0.15 to 0.38, and most preferably 0.2 to 0.35. y is 0.9 to 0.6, preferably 0.85 to 0.62, and most preferably 0.8 to 0.65. The upper layer has an α-type crystal structure with x of 0.1 to 0.4. When x is less than 0.1, Cr is excessive, and not only the hardness and mechanical strength of the upper layer are low and the adhesion to the intermediate layer is poor, but also the heat resistance is poor because Cr 2 O 3 is excessive. When x exceeds 0.4, the low melting point Al becomes excessive, and the number of atoms that are not normally ionized during film formation increases.Therefore, unreacted metals and abnormally reacted products exist as droplets in the upper layer or on the surface. The layer density is lowered, and the adhesion and chipping resistance are deteriorated.

上層は化学量論値である(AlCr)2O3を基本組成とするが、物理蒸着法で形成される組成は必ずしも化学量論値にはならない。従って、c及びdは2及び3を中止とする範囲内の値であり、具体的にはcは1.86〜2.14であり、好ましくは1.9〜2.1であり、より好ましくは1.93〜2.06であり、最も好ましくは1.94〜2.06である。またdは2.79〜3.21であり、好ましくは2.85〜3.15であり、より好ましくは2.90〜3.10であり、最も好ましくは2.91〜3.09である。The upper layer has a basic composition of (AlCr) 2 O 3 which is a stoichiometric value, but the composition formed by physical vapor deposition does not necessarily have a stoichiometric value. Therefore, c and d are values within a range where 2 and 3 are discontinued, specifically, c is 1.86 to 2.14, preferably 1.9 to 2.1, more preferably 1.93 to 2.06, Preferably it is 1.94 to 2.06. Further, d is 2.79 to 3.21, preferably 2.85 to 3.15, more preferably 2.90 to 3.10, and most preferably 2.91 to 3.09.

(2) 結晶構造
硬質皮膜被覆工具の刃先は800℃以上の切削熱に曝されるので、酸化物上層は優れた耐熱性を有する必要がある。ところが、酸化物上層がγ型、κ型又はδ型等のα型以外の結晶形態の場合、高温でα型に変態するとともに収縮が発生する。また物理蒸着法により形成された硬質皮膜中には圧縮応力が残留するので、結晶形態の変態による収縮の影響が大きい。そのため、酸化物上層は中間層から剥離したり、チッピングしたりする。しかし、本発明の上層はα型結晶構造を有するので、中間層との密着性に優れており、耐剥離性及び耐チッピング性に優れた硬質皮膜被覆工具が得られる。
(2) Crystal structure Since the cutting edge of a hard-coated tool is exposed to cutting heat of 800 ° C or higher, the oxide upper layer must have excellent heat resistance. However, when the oxide upper layer is in a crystal form other than α-type such as γ-type, κ-type, or δ-type, it transforms into α-type and contracts at a high temperature. Further, since compressive stress remains in the hard film formed by physical vapor deposition, the influence of shrinkage due to transformation of the crystal form is great. Therefore, the oxide upper layer is peeled off or chipped from the intermediate layer. However, since the upper layer of the present invention has an α-type crystal structure, it is excellent in adhesion to the intermediate layer, and a hard film coated tool excellent in peeling resistance and chipping resistance can be obtained.

物理蒸着法により形成したAlCr酸化物は化学蒸着法により形成したAlCr酸化物より密度が低いので、密着力に劣るものであった。この問題を解決するため、本発明では、(a) AlCr酸化物上層の結晶構造を、立方晶(fcc)構造を有するAlCrNO中間層中の結晶粒の(111)面と整合性が良い(006)面に配向した六方晶とするとともに、(b) (111)面に配向したAlCr酸窒化物中間層上に、(006)面に配向したAlCr酸化物上層を形成することにより、AlCr酸化物上層をAlCr酸窒化物中間層上にエピタキシャル成長させた。上層中に中間層からエピタキシャル成長した部分が多いために、上層は中間層に対して高い密着力を有し、工具寿命が長くなる。   Since the AlCr oxide formed by the physical vapor deposition method has a lower density than the AlCr oxide formed by the chemical vapor deposition method, the adhesion was inferior. In order to solve this problem, in the present invention, (a) the crystal structure of the upper layer of the AlCr oxide has good consistency with the (111) plane of the crystal grains in the AlCrNO intermediate layer having a cubic (fcc) structure (006) (B) an AlCr oxide upper layer oriented in the (006) plane on the AlCr oxynitride intermediate layer oriented in the (111) plane. The upper layer was epitaxially grown on the AlCr oxynitride interlayer. Since there are many portions epitaxially grown from the intermediate layer in the upper layer, the upper layer has high adhesion to the intermediate layer, and the tool life is prolonged.

AlCr酸化物上層の(006)面の配向度は、等価X線回折強度比TC(006)により評価する。上層中のAlCr酸化物結晶粒の主たる結晶面は、(012)面、(104)面、(110)面、(006)面、(113)面、(202)面、(024)面及び(116)面であるので、全ての結晶面に対する(006)面の割合を表す等価X線回折強度比TC(006)は下記の式により表される。
TC(006)=[I(006)/I0(006)]/Σ[I(hkl)/8I0(hkl)]
(ただし、(hkl)は(012)、(104)、(110)、(006)、(113)、(202)、(024)及び(116)である。)
The degree of orientation of the (006) plane of the AlCr oxide upper layer is evaluated by the equivalent X-ray diffraction intensity ratio TC (006). The main crystal planes of the AlCr oxide crystal grains in the upper layer are (012) plane, (104) plane, (110) plane, (006) plane, (113) plane, (202) plane, (024) plane and ( 116) plane, the equivalent X-ray diffraction intensity ratio TC (006) representing the ratio of the (006) plane to all crystal planes is expressed by the following equation.
TC (006) = [I (006) / I 0 (006)] / Σ [I (hkl) / 8I 0 (hkl)]
(However, (hkl) is (012), (104), (110), (006), (113), (202), (024) and (116)).

I(hkl)は上層の(hkl)面からの実測X線回折強度であり、I0(hkl)はASTMファイル番号381479に記載されているα型酸化クロムの標準X線回折強度である。I0(hkl)は、等方的に配向したα型酸化クロム粉末粒子の(hkl)面からのX線回折強度を表す。TC(006)は実測X線回折ピークの相対強度を示し、TC(006)が大きいほど(006)面からのX線回折ピーク強度が強い。これは、(006)面が膜厚方向に対して垂直に配向していることを示す。I (hkl) is the measured X-ray diffraction intensity from the (hkl) plane of the upper layer, and I 0 (hkl) is the standard X-ray diffraction intensity of α-type chromium oxide described in ASTM file number 381479. I 0 (hkl) represents the X-ray diffraction intensity from the (hkl) plane of the isotropically oriented α-type chromium oxide powder particles. TC (006) indicates the relative intensity of the actually measured X-ray diffraction peak. The larger the TC (006), the stronger the X-ray diffraction peak intensity from the (006) plane. This indicates that the (006) plane is oriented perpendicular to the film thickness direction.

TC(006)は1.3以上であり、1.5〜3が好ましく、1.8〜2.5がより好ましく、2〜2.3が最も好ましい。TC(006)が大きいことは、AlCr酸化物結晶粒が(006)面(基体表面に対して垂直)に強く配向していること、即ち、AlCr酸化物結晶粒が[006]方向に優先的に成長し、縦長の微細結晶粒になったことを示す。α型の(006)面はAlCr酸化物の結晶格子のc軸に対して垂直である。その結果、上層の(006)面の格子縞は中間層の(111)面の格子縞と連続的に連なり、縦長に成長する。このように成長したAlCr酸化物結晶粒からなる上層は密度が高く、耐チッピング性に優れている。TC(006)が1.8以上である場合、微細な結晶粒がより縦長に成長したので、密着性及び耐チッピング性が非常に高い。しかしTC(006)が2.5を超えると、工具寿命はかえって短くなる傾向がある。   TC (006) is 1.3 or more, preferably 1.5 to 3, more preferably 1.8 to 2.5, and most preferably 2 to 2.3. The large TC (006) means that the AlCr oxide crystal grains are strongly oriented in the (006) plane (perpendicular to the substrate surface), that is, the AlCr oxide crystal grains are preferential in the [006] direction. It has grown to become vertically long fine crystal grains. The α-type (006) plane is perpendicular to the c-axis of the crystal lattice of the AlCr oxide. As a result, the lattice stripes on the (006) plane of the upper layer are continuously connected to the lattice stripes on the (111) plane of the intermediate layer and grow vertically. The upper layer made of AlCr oxide crystal grains grown in this way has a high density and excellent chipping resistance. When TC (006) is 1.8 or more, fine crystal grains are grown more vertically, so that adhesion and chipping resistance are very high. However, when TC (006) exceeds 2.5, the tool life tends to be shortened.

(3) 厚さ
上層の特性を効果的に発揮するために、上層の膜厚(Tu)は0.2〜8μmが好ましく、0.2〜5μmがより好ましく、0.3〜3μmが最も好ましく、0.3〜2μmが特に好ましい。高性能化のために、上層と中間層との膜厚比(Tu/Tm)は1以上が好ましく、1〜100がより好ましく、2〜50が最も好ましく、3〜10が特に好ましい。膜厚比(Tu/Tm)が1未満又は100超であると、中間層と上層との密着力の低い。
(3) Thickness In order to effectively exhibit the characteristics of the upper layer, the film thickness (Tu) of the upper layer is preferably 0.2 to 8 μm, more preferably 0.2 to 5 μm, most preferably 0.3 to 3 μm, and particularly preferably 0.3 to 2 μm. preferable. For higher performance, the film thickness ratio (Tu / Tm) between the upper layer and the intermediate layer is preferably 1 or more, more preferably 1 to 100, most preferably 2 to 50, and particularly preferably 3 to 10. When the film thickness ratio (Tu / Tm) is less than 1 or more than 100, the adhesion between the intermediate layer and the upper layer is low.

[2] 成膜装置
物理蒸着法の成膜装置として、アークイオンプレーティング(AIP)装置、フィルター方式アークイオンプレーティング装置、スパッタリング装置等が好適である。図1は本発明に使用し得るAIP装置1の一例を示す。このAIP装置1は、基体ホルダー11と、下層形成用のソース(ターゲット)12及びそのシャッター22と、中間層形成用のソース(ターゲット)13及びそのシャッター23と、上層形成用のソース(ターゲット)14,15及びそれらのシャッター24,25と、反応ガス供給パイプ16と、基体にバイアス電圧を印加するためのバイアス電源17とを具備する。なお上層の金属成分が中間層と同じ場合にはソース14,15及びそれらのシャッター24,25を省略しても良い。
[2] Film forming apparatus As a film forming apparatus for physical vapor deposition, an arc ion plating (AIP) apparatus, a filter-type arc ion plating apparatus, a sputtering apparatus, and the like are suitable. FIG. 1 shows an example of an AIP device 1 that can be used in the present invention. The AIP apparatus 1 includes a substrate holder 11, a lower layer forming source (target) 12 and its shutter 22, an intermediate layer forming source (target) 13 and its shutter 23, and an upper layer forming source (target). 14 and 15 and their shutters 24 and 25, a reaction gas supply pipe 16, and a bias power source 17 for applying a bias voltage to the substrate. If the upper metal component is the same as that of the intermediate layer, the sources 14 and 15 and their shutters 24 and 25 may be omitted.

[3] 製造方法
(A) 下層の形成
基体のクリーニング後、ソース12のシャッター22を開き、450〜600℃の温度で基体上に下層を形成する。下層の成膜温度が450℃未満では密着力が低く、また600℃を超えると加熱効果が飽和する。
[3] Manufacturing method
(A) Formation of lower layer After cleaning the substrate, the shutter 22 of the source 12 is opened, and a lower layer is formed on the substrate at a temperature of 450 to 600 ° C. When the lower layer deposition temperature is less than 450 ° C., the adhesion is low, and when it exceeds 600 ° C., the heating effect is saturated.

成膜雰囲気は下層の組成に依存する。下層が窒化物の場合窒素雰囲気を用い、炭窒化物の場合炭化水素(アセチレン、メタン等)ガスと窒素ガスとの混合雰囲気を用いる。成膜時に供給する雰囲気ガスの流量は400〜1500 sccmが好ましい。400 sccm未満では窒化物又は炭窒化物の生成が不十分であり、また1500 sccm超としても雰囲気ガスの効果が飽和する。図2は反応ガスとして供給する窒素ガスの流量の一例を示す。点Aは下層の成膜開始時点を示し、点Bは下層の成膜終了時点を示す。   The film forming atmosphere depends on the composition of the lower layer. When the lower layer is a nitride, a nitrogen atmosphere is used, and when the lower layer is a carbonitride, a mixed atmosphere of a hydrocarbon (acetylene, methane, etc.) gas and nitrogen gas is used. The flow rate of the atmospheric gas supplied during the film formation is preferably 400-1500 sccm. If it is less than 400 sccm, the formation of nitride or carbonitride is insufficient, and even if it exceeds 1500 sccm, the effect of the atmospheric gas is saturated. FIG. 2 shows an example of the flow rate of nitrogen gas supplied as a reaction gas. Point A indicates the time when the lower layer is formed, and point B indicates the time when the lower layer is completed.

下層の成膜時に基体に印加するDCバイアス電圧は−400 V〜−10 Vが好ましい。DCバイアス電圧が−400 V未満では残留応力が大きすぎ、下層の剥離のおそれがある。また−10 V超では下層が形成されない。パルスバイアス電圧の場合、周波数は0.1〜300 kHzの範囲が好ましい。周波数が0.1 kHz未満では下層が形成されず、300 kHz超ではパルスバイアス電圧の印加効果が飽和する。   The DC bias voltage applied to the substrate during the formation of the lower layer is preferably −400 V to −10 V. If the DC bias voltage is less than −400 V, the residual stress is too large and the lower layer may be peeled off. If it exceeds -10 V, the lower layer is not formed. In the case of a pulse bias voltage, the frequency is preferably in the range of 0.1 to 300 kHz. If the frequency is less than 0.1 kHz, the lower layer is not formed, and if it exceeds 300 kHz, the effect of applying the pulse bias voltage is saturated.

(B) 中間層の形成
下層形成用ソース12のシャッター22を閉じて中間層形成用ソース13のシャッター23を開く。中間層の成膜温度は450〜580℃が好ましく、470〜570℃がより好ましい。成膜温度が450℃未満では中間層の残留応力が高くなり密着性が低下する。また成膜温度が580℃を超えると残留応力が大きく低下し、皮膜の硬度及び機械強度が低下する。
(B) Formation of Intermediate Layer Shutter 22 of lower layer forming source 12 is closed and shutter 23 of intermediate layer forming source 13 is opened. The film forming temperature of the intermediate layer is preferably 450 to 580 ° C, more preferably 470 to 570 ° C. When the film forming temperature is less than 450 ° C., the residual stress of the intermediate layer is increased and the adhesion is lowered. When the film forming temperature exceeds 580 ° C., the residual stress is greatly reduced, and the hardness and mechanical strength of the film are reduced.

(1) 成膜雰囲気
中間層の成膜雰囲気に窒素ガス及び酸素ガスの混合ガス(反応ガス)を用いる。混合ガスはArガスを含有しても良い。この場合、Arガスの割合は混合ガスの70体積%以下が好ましく、50体積%以下がより好ましい。成膜雰囲気の圧力は0.3〜3 Paが好ましく、0.5〜2 Paがより好ましい。成膜雰囲気圧力が上記範囲外であると、中間層の形成が困難になる。
(1) Film formation atmosphere A mixed gas (reaction gas) of nitrogen gas and oxygen gas is used for the film formation atmosphere of the intermediate layer. The mixed gas may contain Ar gas. In this case, the proportion of Ar gas is preferably 70% by volume or less, more preferably 50% by volume or less of the mixed gas. The pressure of the film forming atmosphere is preferably 0.3 to 3 Pa, more preferably 0.5 to 2 Pa. When the film formation atmosphere pressure is outside the above range, it is difficult to form the intermediate layer.

(2) 反応ガスの流量変化
中間層に、酸素濃度が下層側から上層側にかけて増加するとともに窒素濃度が下層側から上層側にかけて減少する傾斜組成を与えるために、中間層の成膜時に供給する酸素ガスの流量を徐々に増大させるとともに、窒素ガスの流量を徐々に減少させる。図2は中間層成膜用の酸素ガス及び窒素ガスの流量変化の一例を示す。点T1は中間層の成膜開始時点を示し、点T2は中間層の成膜終了時点を示す。
(2) Reactant gas flow rate change In order to give the intermediate layer a gradient composition in which the oxygen concentration increases from the lower layer side to the upper layer side and the nitrogen concentration decreases from the lower layer side to the upper layer side, it is supplied during film formation of the intermediate layer While gradually increasing the flow rate of oxygen gas, the flow rate of nitrogen gas is gradually decreased. FIG. 2 shows an example of changes in the flow rates of oxygen gas and nitrogen gas for forming the intermediate layer. Point T 1 indicates the time when the intermediate layer is formed, and point T 2 indicates the time when the intermediate layer is completed.

図2において、酸素ガスの流量変化のパターンは点E,F,Gで表される。中間層の成膜工程前半での酸化を抑制するために、成膜開始時点Eにおける酸素ガス流量は100 sccm以下が好ましく、50 sccm以下がより好ましく、10 sccm以下が最も好ましい。中間層から上層へのエピタキシャル成長を得るためには、成膜終了時点Fでの酸素ガス流量が600 sccm以下である必要があることが分った。酸素ガス流量が600 sccm超であるとドロップレットの生成が多く、密着性及び平滑性に優れた硬質皮膜が得られない上、上層の形成が早すぎ、中間層から上層へのエピタキシャル成長が得られない。成膜終了時点Fでの酸素ガス流量は600 sccm以下が好ましく、300〜500 sccmがより好ましい。中間層の成膜終了と同時に上層の成膜が開始するので、中間層の成膜終了時の酸素ガス流量は上層成膜用の酸素ガス流量に達しているのが好ましいが、両者は完全に一致していなくても良い。中間層成膜終了時の酸素ガス流量と上層成膜用の酸素ガス流量との差は50 sccm以内が好ましく、10 sccm以内がより好ましい。   In FIG. 2, the flow rate change pattern of oxygen gas is represented by points E, F, and G. In order to suppress oxidation in the first half of the film formation step of the intermediate layer, the oxygen gas flow rate at the film formation start point E is preferably 100 sccm or less, more preferably 50 sccm or less, and most preferably 10 sccm or less. It has been found that in order to obtain epitaxial growth from the intermediate layer to the upper layer, the oxygen gas flow rate at the film formation end point F needs to be 600 sccm or less. If the oxygen gas flow rate exceeds 600 sccm, a lot of droplets are generated, and a hard film excellent in adhesion and smoothness cannot be obtained. Also, the upper layer is formed too early, and epitaxial growth from the intermediate layer to the upper layer is obtained. Absent. The oxygen gas flow rate at the film formation end point F is preferably 600 sccm or less, more preferably 300 to 500 sccm. Since the upper layer film formation starts simultaneously with the completion of the intermediate layer film formation, it is preferable that the oxygen gas flow rate at the end of the intermediate layer film formation reaches the oxygen gas flow rate for the upper layer film formation. It doesn't have to match. The difference between the oxygen gas flow rate at the end of intermediate layer deposition and the oxygen gas flow rate for upper layer deposition is preferably within 50 sccm, more preferably within 10 sccm.

中間層における酸素濃度分布は正の勾配を有する(下層側から上層側にかけて増加する)ので、点Eから点Fの間で酸素ガスの流量変化は正の傾斜を有する。点Eから点Fまでの期間(T1〜T2)における酸素ガス流量の平均勾配は20〜400 sccm/分が好ましく、40〜300 sccm/分がより好ましく、60〜200 sccm/分が最も好ましく、80〜150 sccm/分が特に好ましい。酸素ガス流量は直線的に増加させるのが理想的であるが、段階的に増加させても良い。酸素ガス流量の平均勾配が20 sccm/分未満では酸化が不十分であり、400 sccm/分超ではエピタキシャル成長が得られない。Since the oxygen concentration distribution in the intermediate layer has a positive gradient (increases from the lower layer side to the upper layer side), the change in the flow rate of oxygen gas from point E to point F has a positive gradient. The average gradient of the oxygen gas flow rate during the period from point E to point F (T 1 to T 2 ) is preferably 20 to 400 sccm / min, more preferably 40 to 300 sccm / min, and most preferably 60 to 200 sccm / min. 80 to 150 sccm / min is particularly preferable. The oxygen gas flow rate is ideally increased linearly, but may be increased stepwise. If the average gradient of the oxygen gas flow is less than 20 sccm / min, the oxidation is insufficient, and if it exceeds 400 sccm / min, epitaxial growth cannot be obtained.

中間層の成膜開始時点Bにおける窒素ガス流量は好ましくは400〜1500 sccmである。上層の成膜開始時点Dでは窒素ガス流量は0 sccmであるが、中間層の成膜終了時点Cでの窒素ガス流量を完全に0 sccmとする必要はなく、400 sccm以下が好ましく、100 sccm以下がより好ましく、50 sccm以下が最も好ましい。中間層における窒素濃度分布は負の勾配を有する(下層側から上層側にかけて減少する)ので、点Bから点Cまでの期間(T1〜T2)で窒素ガスの流量変化は負の傾斜を有する。期間(T1〜T2)での窒素ガス流量は平均勾配は−900 sccm/分〜−30 sccm/分が好ましく、−500 sccm/分〜−60 sccm/分がより好ましく、−300 sccm/分〜−80 sccm/分が最も好ましく、−200 sccm/分〜−100 sccm/分が特に好ましい。窒素ガス流量は直線的に減少するのが理想的であるが、段階的に減少しても良い。窒素ガス流量の平均勾配が−900 sccm/分未満では中間層における窒素濃度勾配が急激すぎ、また−30 sccm/分超では十分な傾斜組成が得られない。The flow rate of nitrogen gas at the start point B of the intermediate layer is preferably 400-1500 sccm. The nitrogen gas flow rate at the upper layer deposition start point D is 0 sccm, but the nitrogen gas flow rate at the intermediate layer deposition end point C need not be completely 0 sccm, preferably 400 sccm or less, and 100 sccm The following is more preferable, and 50 sccm or less is most preferable. Since the nitrogen concentration distribution in the intermediate layer has a negative gradient (decreases from the lower layer side to the upper layer side), the change in nitrogen gas flow rate has a negative gradient during the period from point B to point C (T 1 to T 2 ). Have. The average gradient of the nitrogen gas flow rate during the period (T 1 to T 2 ) is preferably −900 sccm / min to −30 sccm / min, more preferably −500 sccm / min to −60 sccm / min, and −300 sccm / min. Minutes to -80 sccm / min are most preferred, with -200 sccm / min to -100 sccm / min being particularly preferred. Ideally, the nitrogen gas flow rate decreases linearly, but it may decrease stepwise. If the average gradient of the nitrogen gas flow rate is less than −900 sccm / min, the nitrogen concentration gradient in the intermediate layer is too steep, and if it exceeds −30 sccm / min, a sufficient gradient composition cannot be obtained.

図2では中間層の成膜期間(T1〜T2)は5分間であるが、特に限定されない。AlCr酸窒化物中間層の形成を十分に行うために、一般に成膜期間(T1〜T2)は1〜30分が好ましく、3〜10分がより好ましい。In FIG. 2, the film formation period (T 1 to T 2 ) of the intermediate layer is 5 minutes, but is not particularly limited. In order to sufficiently form the AlCr oxynitride intermediate layer, generally, the film formation period (T 1 to T 2 ) is preferably 1 to 30 minutes, and more preferably 3 to 10 minutes.

(3) バイアス電圧
中間層の成膜時に基体に印加するバイアス電圧は−100 V〜−50 Vが好ましい。−100 V未満では残留応力が大きすぎ、−50 V超では下層に中間層が付かない。基体に入射するイオンのエネルギーを、例えば−90 V〜−60 Vと低くすると、平滑な中間層が得られる。パルスバイアス電圧を使用する場合、中間層の密着性を大きくするため周波数は10〜80 kHzが好ましい。パルスバイアス電圧は、バイアス電圧が正負に振幅するバイポーラパルスが好ましい。正バイアス値は5〜10 Vの間で十分である。
(3) Bias voltage The bias voltage applied to the substrate during the formation of the intermediate layer is preferably -100 V to -50 V. If it is less than -100 V, the residual stress is too large, and if it exceeds -50 V, no intermediate layer is attached to the lower layer. When the energy of ions incident on the substrate is lowered to, for example, −90 V to −60 V, a smooth intermediate layer can be obtained. When a pulse bias voltage is used, the frequency is preferably 10 to 80 kHz in order to increase the adhesion of the intermediate layer. The pulse bias voltage is preferably a bipolar pulse in which the bias voltage has positive and negative amplitudes. A positive bias value between 5 and 10 V is sufficient.

(4) アーク電流
中間層は低融点のAlを含むので、急激な蒸発や異常なイオン化によりドロップレットが生成されやすい。これを抑制するために、放電電流である成膜アーク電流を100〜150 Aと低いの範囲に保つのが好ましい。アーク電流が100 A未満では安定した放電が維持されず、また150 A超では急激なAlの蒸発のために平滑な中間層が得られない。
(4) Arc current Since the intermediate layer contains low melting point Al, droplets are likely to be generated by rapid evaporation and abnormal ionization. In order to suppress this, it is preferable to keep the film-forming arc current as a discharge current in a low range of 100 to 150 A. If the arc current is less than 100 A, stable discharge cannot be maintained, and if it exceeds 150 A, a smooth intermediate layer cannot be obtained due to rapid evaporation of Al.

(C) 上層の形成
中間層の形成後に上層形成用ソース14,15のシャッター24,25を開き、上層を形成する。上層の金属成分が中間層のものと同じ場合には、中間層用ソース13をそのまま用いても良い。
(C) Formation of the upper layer After the formation of the intermediate layer, the shutters 24 and 25 of the upper layer forming sources 14 and 15 are opened to form the upper layer. When the upper layer metal component is the same as that of the intermediate layer, the intermediate layer source 13 may be used as it is.

(1) 成膜温度
上層の成膜温度は450〜580℃が好ましく、470〜570℃がより好ましい。成膜温度が450℃未満では上層は非晶質になり、580℃超ではTC(006)を1.3以上にするのが困難である。
(1) Film formation temperature The film formation temperature of the upper layer is preferably 450 to 580 ° C, more preferably 470 to 570 ° C. If the film forming temperature is less than 450 ° C., the upper layer becomes amorphous, and if it exceeds 580 ° C., it is difficult to make TC (006) 1.3 or more.

(2) 成膜雰囲気
上層成膜用の反応ガスとして酸素ガスを用いる。ドロップレットが基体に到達するのを防ぐために、成膜雰囲気中の酸素分圧は0.3〜2 Paが好ましく、0.4〜1.8 Paがより好ましく、0.5〜1.6 Paが最も好ましく、0.8〜1.4 Paが特に好ましい。酸素分圧が0.3 Pa未満又は2 Pa超であると、1.3以上のTC(006)が得られない。成膜雰囲気がArガスを含有する場合、Arガスの含有量は成膜雰囲気の50体積%以下が好ましく、30体積%以下がより好ましい。
(2) Film formation atmosphere Oxygen gas is used as a reaction gas for film formation on the upper layer. In order to prevent the droplets from reaching the substrate, the oxygen partial pressure in the film forming atmosphere is preferably 0.3 to 2 Pa, more preferably 0.4 to 1.8 Pa, most preferably 0.5 to 1.6 Pa, and particularly preferably 0.8 to 1.4 Pa. preferable. When the oxygen partial pressure is less than 0.3 Pa or more than 2 Pa, TC (006) of 1.3 or more cannot be obtained. When the film formation atmosphere contains Ar gas, the content of Ar gas is preferably 50% by volume or less, and more preferably 30% by volume or less of the film formation atmosphere.

(3) 酸素ガス流量
上層成膜時の酸素ガス流量は一般に100〜600 sccm である必要がある。酸素ガス流量が100 sccm未満では上層を十分に形成できず、また600 sccmを超えると上層が緻密化せず、また中間層からのエピタキシャル成長も得られない。上層成膜時の酸素ガス流量は好ましくは200〜500 sccmであり、より好ましくは250〜500 sccmであり、最も好ましくは300〜450 sccmである。図2において上層の成膜開始時点Fと上層の成膜終了時点Gとの時間は例えば60分であるが、特に限定されない。酸化を十分に行うために、上層の成膜時間は30〜100分が好ましく、40〜80分がより好ましい。
(3) Oxygen gas flow rate The oxygen gas flow rate during upper layer deposition generally needs to be 100 to 600 sccm. If the oxygen gas flow rate is less than 100 sccm, the upper layer cannot be sufficiently formed, and if it exceeds 600 sccm, the upper layer is not densified, and epitaxial growth from the intermediate layer cannot be obtained. The oxygen gas flow rate during upper layer deposition is preferably 200 to 500 sccm, more preferably 250 to 500 sccm, and most preferably 300 to 450 sccm. In FIG. 2, the time between the upper layer deposition start point F and the upper layer deposition end point G is, for example, 60 minutes, but is not particularly limited. In order to sufficiently oxidize, the film formation time of the upper layer is preferably 30 to 100 minutes, and more preferably 40 to 80 minutes.

(4) バイアス電圧
上層成膜時に基体に印加するバイアス電圧は−100 V〜−50 Vが好ましく、−90 V〜−60 Vがより好ましい。この範囲のバイアス電圧により上層の生成が促進され、α型酸化物層の結晶配向は(006)優位となり、TC(006)が高くなる。またパルスバイアス電圧を使用する場合、バイアス電圧を正負に振幅させたバイポーラパルスが好ましい。正バイアスは5〜10 Vの間とすることが好ましい。パルスバイアスの周波数は10〜80 kHzが好ましい。
(4) Bias voltage The bias voltage applied to the substrate during the upper layer deposition is preferably -100 V to -50 V, more preferably -90 V to -60 V. The generation of the upper layer is promoted by the bias voltage in this range, the crystal orientation of the α-type oxide layer becomes (006) dominant, and TC (006) becomes high. In addition, when using a pulse bias voltage, a bipolar pulse having a bias voltage with positive and negative amplitudes is preferable. The positive bias is preferably between 5 and 10V. The frequency of the pulse bias is preferably 10 to 80 kHz.

(5) アーク電流
上層は低融点のAlを含むので、Alの急激な蒸発や異常なイオン化によりドロップレットが生成されやすい。これを抑制するために、放電電流である成膜アーク電流を100〜150 Aと低く設定するのが好ましい。アーク電流が100 A未満では成膜が不可能となる。また150 A超では急激なAlの蒸発が促進されるため、平滑な上層を成膜できない。アーク電流値を低くすることにより、ドロップレットの少ない平滑な(006)面に配向した[TC(006)が1.3以上]耐チッピング性及び耐欠損性に優れた上層が得られる。
(5) Arc current Since the upper layer contains low melting point Al, droplets are likely to be generated due to rapid evaporation of Al and abnormal ionization. In order to suppress this, it is preferable to set the film-forming arc current as a discharge current as low as 100 to 150 A. If the arc current is less than 100 A, film formation is impossible. On the other hand, if it exceeds 150 A, rapid evaporation of Al is promoted, so that a smooth upper layer cannot be formed. By reducing the arc current value, an upper layer excellent in chipping resistance and chipping resistance can be obtained, which is oriented on a smooth (006) plane with few droplets [TC (006) is 1.3 or more].

上記成膜条件により、α型Cr酸化物の生成よりα型Al酸化物の生成が促進されるので、上層を構成するα型結晶構造のAlCr酸化物は、α型Al酸化物にCrが固溶した固溶体である。α型結晶構造のAlCr系酸化物結晶粒が(006)面に優先的に配向し、等価X線回折強度比TC(006)が顕著に高くなり、高い平滑性を有する上層が得られる。   The above film formation conditions promote the generation of α-type Al oxide rather than the formation of α-type Cr oxide, so the α-type crystal structure AlCr oxide constituting the upper layer is solidified with Cr in the α-type Al oxide. It is a melted solid solution. The AlCr-based oxide crystal grains having an α-type crystal structure are preferentially oriented in the (006) plane, the equivalent X-ray diffraction intensity ratio TC (006) is remarkably increased, and an upper layer having high smoothness can be obtained.

[4] 刃先処理
上層の結晶粒の脱落を減少させ、密着性を更に高めるために、上層をブラシ、バフ又はブラスト等により平滑にしても良い。また上層の上に、周期律表IVa、Va、VIa族、Al及びSiからなる群から選ばれた少なくとも一種の金属元素と、C、N及びOから選択される少なくとも1種の非金属元素とを必須とする硬質保護膜を形成しても良い。
[4] Blade edge treatment The upper layer may be smoothed with a brush, buff, blast or the like in order to reduce the dropout of crystal grains in the upper layer and further enhance the adhesion. Further, on the upper layer, at least one metal element selected from the group consisting of periodic table IVa, Va, VIa group, Al and Si, and at least one nonmetallic element selected from C, N and O; You may form the hard protective film which makes this essential.

本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。各実施例及び比較例において、各層の厚さは、走査型電子顕微鏡(SEM)の2万倍の断面写真における任意の5箇所の膜厚を測定し、平均することにより求めた。また中間層の膜厚方向中心における組成を中間層の平均組成とした。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. In each example and comparative example, the thickness of each layer was determined by measuring and averaging film thicknesses at arbitrary five locations in a 20,000-fold cross-sectional photograph of a scanning electron microscope (SEM). The composition at the center of the intermediate layer in the film thickness direction was defined as the average composition of the intermediate layer.

実施例1
(1) 下層の形成
6.0質量%のCo及び0.5質量%のTaCを含有し、残部WC及び不可避的不純物からなるの切削工具用超硬合金製基体(SNGA120408)を図1に示すAIP装置1内のホルダー11にセットし、TiAlターゲット及び1200 sccm のN2ガスを使用し、550℃で基体上に(Ti0.5Al0.5)Nの組成(原子比率)を有する厚さ3.0μmの硬質の下層を形成した。
Example 1
(1) Formation of the lower layer
A cemented carbide substrate (SNGA120408) containing 6.0% by mass of Co and 0.5% by mass of TaC and consisting of the remainder WC and inevitable impurities is set in the holder 11 in the AIP apparatus 1 shown in FIG. Using a TiAl target and 1200 sccm of N 2 gas, a hard lower layer having a composition (atomic ratio) of (Ti 0.5 Al 0.5 ) N having a thickness of 3.0 μm was formed on the substrate at 550 ° C.

(2) 中間層の形成
AlCrターゲットを使用し、成膜温度550℃、バイアス電圧−60 V、及びパルスバイアス周波数20 kHzの条件で、図2に示すようにN2ガスの流量を5分間で1200 sccmから300 sccmまで徐々に(実質的に直線的に)下げ、またO2ガスの流量を5分間で10 sccmから500 sccmまで徐々に(実質的に直線的に)上げ、(Al0.27Cr0.73)0.38(O0.5N0.5)0.62(原子比率)の平均組成を有する厚さ0.5μmの硬質酸窒化物中間層を形成した。中間層の成膜終了時点Bでの雰囲気圧力(酸素分圧)は3.0 Paであった。
(2) Formation of intermediate layer
Using an AlCr target, with a film formation temperature of 550 ° C, a bias voltage of -60 V, and a pulse bias frequency of 20 kHz, the N 2 gas flow rate is gradually increased from 1200 sccm to 300 sccm in 5 minutes as shown in Fig. 2. To (substantially linearly) and gradually increase the O 2 gas flow rate from 10 sccm to 500 sccm over 5 minutes (substantially linearly), (Al 0.27 Cr 0.73 ) 0.38 (O 0.5 N A 0.5 μm thick hard oxynitride intermediate layer having an average composition of 0.5 ) 0.62 (atomic ratio) was formed. The atmospheric pressure (oxygen partial pressure) at the time point B when the intermediate layer was formed was 3.0 Pa.

(3) 上層の形成
中間層の形成から連続してAlCrターゲットを使用し、成膜温度550℃、バイアス電圧−60 V、及びパルス周波数20 kHzの条件で、O2ガスの流量を500 sccmに約1時間維持し、(Al0.27Cr0.73)1.9O3.1(原子比率)の組成を有する厚さ2.0μmの硬質酸化物上層を形成した。上層成膜時の雰囲気圧力(酸素分圧)は1.2 Paであった。
(3) Formation of the upper layer Using an AlCr target continuously from the formation of the intermediate layer, the flow rate of O 2 gas was set to 500 sccm under the conditions of film formation temperature 550 ° C, bias voltage -60 V, and pulse frequency 20 kHz. The hard oxide upper layer having a composition of (Al 0.27 Cr 0.73 ) 1.9 O 3.1 (atomic ratio) and having a thickness of 2.0 μm was formed for about 1 hour. The atmospheric pressure (oxygen partial pressure) at the time of forming the upper layer was 1.2 Pa.

(4) 上層の結晶構造の分析
得られた硬質被膜被覆工具の上層の結晶構造を同定するため、理学電気(株)製のX線回折装置(RU-200BH)を用いて下記の条件でX線回折測定を行った。上層のX線回折パターンを図3に示す。
X線源:CuKα1線(波長λ:0.15405 nm)
管電圧:120 kV
管電流:40 mA
X線入射角:5°
X線入射スリット:0.4 mm
2θ:20〜70°。
(4) Analysis of the crystal structure of the upper layer To identify the crystal structure of the upper layer of the hard-coated tool obtained, an X-ray diffractometer (RU-200BH) manufactured by Rigaku Corporation was used under the following conditions. Line diffraction measurement was performed. The X-ray diffraction pattern of the upper layer is shown in FIG.
X-ray source: CuKα1 ray (wavelength λ: 0.15405 nm)
Tube voltage: 120 kV
Tube current: 40 mA
X-ray incident angle: 5 °
X-ray entrance slit: 0.4 mm
2θ: 20 to 70 °.

図3に示す上層のX線回折パターンには、(012)面、(104)面、(110)面、(006)面、(113)面、(024)面及び(116)面のピークがあるが、(202)面のピークは現れなかった。(012)面のピークが1つであることから、α型酸化アルミニウムのピークとα型酸化クロムのピークとが分離していないことが分かる。図3のX線回折パターンから求めた上層の実測面間距離dを表1に示す。またα型酸化アルミニウム(ASTMファイル番号100173)及びα型酸化クロム(ASTMファイル番号381479)の面間距離d、標準X線回折強度I0及び2θをそれぞれ表2及び表3に示す。面間距離dの実測値から、上層の組成はα型酸化アルミニウムよりα型酸化クロムに近いことが分かる。In the X-ray diffraction pattern of the upper layer shown in FIG. 3, the peaks of the (012) plane, (104) plane, (110) plane, (006) plane, (113) plane, (024) plane and (116) plane are shown. There was no peak on the (202) plane. Since the (012) plane has one peak, it can be seen that the α-type aluminum oxide peak and the α-type chromium oxide peak are not separated. Table 1 shows the measured distance d between the upper surfaces obtained from the X-ray diffraction pattern of FIG. Tables 2 and 3 show the inter-plane distance d and standard X-ray diffraction intensities I 0 and 2θ of α-type aluminum oxide (ASTM file number 100173) and α-type chromium oxide (ASTM file number 381479), respectively. From the measured value of the inter-surface distance d, it can be seen that the composition of the upper layer is closer to the α-type chromium oxide than the α-type aluminum oxide.

下記の等価X線回折強度比TC(006)を用いて、上層の(006)面の配向度を定量した。
TC(006)=[I(006)/I0(006)]/Σ[I(hkl)/8I0(hkl)]
(ただし、(hkl)は(012)、(104)、(110)、(006)、(113)、(202)、(024)及び(116)であり、I0(hkl)はα型酸化クロムの標準X線回折強度である。)その結果、実施例1の上層のTC(006)は2.08であった。
Using the following equivalent X-ray diffraction intensity ratio TC (006), the degree of orientation of the upper (006) plane was quantified.
TC (006) = [I (006) / I 0 (006)] / Σ [I (hkl) / 8I 0 (hkl)]
(However, (hkl) is (012), (104), (110), (006), (113), (202), (024) and (116), and I 0 (hkl) is α-type oxidation) This is the standard X-ray diffraction intensity of chromium.) As a result, the TC (006) of the upper layer of Example 1 was 2.08.

(5) 組成分析
電子プローブマイクロ分析装置(EPMA、日本電子株式会社製JXA-8500F)を用いて、加速電圧10 kV、照射電流1.0 uA及びプローブ径0.01μmの条件で、中間層の厚さ方向中央部の組成を測定し、平均組成とした。中間層の平均組成は、10.4原子%のAl、27.9原子%のCr、31.9原子%のN及び29.8原子%のOであった。また上層の組成は、10.1原子%のAl、27.9原子%のCr及び62.0原子%のOであった。X線回折の結果、上層はα型の結晶構造を有することが分った。
(5) Composition analysis Using an electron probe microanalyzer (EPMA, JXA-8500F manufactured by JEOL Ltd.), in the thickness direction of the intermediate layer under the conditions of acceleration voltage 10 kV, irradiation current 1.0 uA and probe diameter 0.01 μm The composition at the center was measured and taken as the average composition. The average composition of the intermediate layer was 10.4 atomic percent Al, 27.9 atomic percent Cr, 31.9 atomic percent N and 29.8 atomic percent O. The composition of the upper layer was 10.1 atomic% Al, 27.9 atomic% Cr and 62.0 atomic% O. As a result of X-ray diffraction, it was found that the upper layer had an α-type crystal structure.

(6) 中間層内の酸素濃度勾配及び窒素濃度勾配の測定
電子ビーム径が0.1 nmの電子エネルギー損失分光器(EELS、Gatan社製のENFINA1000)を用いて、中間層と下層との界面及び中間層と上層との界面を含む厚さ方向領域における酸素及び窒素の濃度分布を測定した。測定結果を図4に示す。酸素濃度は下層側から上層側まで実質的に直線的に増加しており、窒素濃度は下層側から上層側まで実質的に直線的に減少していた。酸素濃度及び窒素濃度のプロットから最小二乗法により平均勾配を求めた。
(6) Measurement of oxygen concentration gradient and nitrogen concentration gradient in the intermediate layer Using an electron energy loss spectrometer (EELS, ENFINA1000 manufactured by Gatan) with an electron beam diameter of 0.1 nm, the interface between the intermediate layer and the lower layer and the intermediate layer The concentration distribution of oxygen and nitrogen in the thickness direction region including the interface between the layer and the upper layer was measured. The measurement results are shown in FIG. The oxygen concentration increased substantially linearly from the lower layer side to the upper layer side, and the nitrogen concentration decreased substantially linearly from the lower layer side to the upper layer side. The average gradient was determined from the plots of oxygen concentration and nitrogen concentration by the method of least squares.

(7) エピタキシャル成長の分析
中間層と上層との界面を含む領域を透過型電子顕微鏡(TEM)により観察した。TEM写真(200万倍)を図5(a) に示し、TEM写真の模式図を図5(b) に示す。図5(a) から明らかなように、中間層と上層との界面領域の少なくとも一部では、中間層の結晶格子縞と上層の結晶格子縞とが連続しており、エピタキシャル成長が認められた。
(7) Analysis of epitaxial growth The region including the interface between the intermediate layer and the upper layer was observed with a transmission electron microscope (TEM). A TEM photograph (2 million times) is shown in FIG. 5 (a), and a schematic diagram of the TEM photograph is shown in FIG. 5 (b). As is clear from FIG. 5 (a), in at least a part of the interface region between the intermediate layer and the upper layer, the crystal lattice stripes in the intermediate layer and the crystal lattice stripes in the upper layer are continuous, and epitaxial growth was observed.

(8) 工具寿命の測定
硬質皮膜被覆工具に対して下記の条件で切削試験を行った後、工具の刃先を倍率100倍の光学顕微鏡で観察し、刃先の上層が剥離又はチッピングするまで時間を工具寿命と判定した。上層の剥離はEPMAによる面分析により判断した。
被削材 :FC250(角型)
切削方法:断続的な旋削
工具形状:SNGA120408
切削速度:300 m/分
送り :0.25 mm/rev
切り込み:1.0 mm
切削液 :無し(乾式加工)
(8) Measurement of tool life After performing a cutting test on a hard-coated tool under the following conditions, observe the cutting edge of the tool with an optical microscope with a magnification of 100 times, and wait for the upper layer of the cutting edge to peel or chip. The tool life was determined. The peeling of the upper layer was judged by surface analysis with EPMA.
Work material: FC250 (square)
Cutting method: Intermittent turning Tool shape: SNGA120408
Cutting speed: 300 m / min Feed: 0.25 mm / rev
Cut depth: 1.0 mm
Cutting fluid: None (dry machining)

実施例2〜7
上層におけるAl及びCrの含有量の影響を調べるために、上層の成膜に異なる組成のAlCrターゲットを使用した以外実施例1と同様にして硬質皮膜被覆工具を作製し、実施例1と同じ測定を行った。
Examples 2-7
In order to investigate the effect of the content of Al and Cr in the upper layer, a hard film coated tool was prepared in the same manner as in Example 1 except that an AlCr target having a different composition was used for the upper layer, and the same measurement as in Example 1 was performed. Went.

実施例8〜13
中間層におけるN及びOの含有量の影響を調べるために、N2ガス及びO2ガスの流量を変化させた以外実施例1と同様にして硬質皮膜被覆工具を作製し、実施例1と同じ測定を行った。図6に、実施例9における中間層成膜時の酸素ガス及び窒素ガスの流量変化を示す。図6から明らかなように、90 sccm/分の酸素ガス流量勾配を得るために、酸素ガス流量を中間層成膜開始時点Eで50 sccmとし、中間層成膜終了時点Fで500 sccmとし、また−90 sccm/分の窒素ガス流量勾配を得るために、窒素ガス流量を中間層成膜開始時点Bで500 sccmとし、中間層成膜終了時点Cで50 sccmとした。実施例8〜13のガス流量を表4に示す。
Examples 8-13
In order to investigate the influence of the N and O contents in the intermediate layer, a hard film coated tool was prepared in the same manner as in Example 1 except that the flow rates of N 2 gas and O 2 gas were changed. Measurements were made. FIG. 6 shows changes in the flow rates of oxygen gas and nitrogen gas during intermediate layer deposition in Example 9. As is apparent from FIG. 6, in order to obtain an oxygen gas flow rate gradient of 90 sccm / min, the oxygen gas flow rate is set to 50 sccm at the intermediate layer deposition start time E, and is set to 500 sccm at the intermediate layer deposition end time F. In order to obtain a nitrogen gas flow rate gradient of −90 sccm / min, the nitrogen gas flow rate was set to 500 sccm at the intermediate layer deposition start point B and 50 sccm at the intermediate layer deposition end point C. The gas flow rates of Examples 8 to 13 are shown in Table 4.

実施例14〜19
中間層におけるAl及びCrの含有量の影響を調べるために、中間層の成膜に用いるAlCrターゲットの組成を変えた以外実施例1と同様にして硬質皮膜被覆工具を作製し、実施例1と同じ測定を行った。
Examples 14-19
In order to investigate the influence of the content of Al and Cr in the intermediate layer, a hard film coated tool was prepared in the same manner as in Example 1 except that the composition of the AlCr target used for film formation of the intermediate layer was changed. The same measurement was performed.

実施例20〜42
中間層成膜用のAlCrターゲットの組成を変更して中間層の組成(AlsCrt)a(NvOw)bにおけるa及びbを変更した以外実施例1と同様にして硬質皮膜被覆工具を作製し、実施例1と同じ測定を行った。
Examples 20-42
Hard film coating in the same manner as in Example 1 except that the composition of the AlCr target for forming the intermediate layer was changed to change the composition of the intermediate layer (Al s Cr t ) a (N v O w ) b . A tool was prepared and the same measurement as in Example 1 was performed.

実施例22
中間層成膜開始時点における酸素ガス流量及び窒素ガス流量をそれぞれ0 sccm及び1000 sccmとし、中間層成膜終了時点における酸素ガス流量及び窒素ガス流量をそれぞれ500 sccm及び200 sccmとし、バイアス電圧を−100 Vとし、中間層成膜時間を10分とした実施例1と同様にして硬質皮膜被覆工具を作製し、実施例1と同じ測定を行った。得られた硬質皮膜被覆工具中の中間層の厚さは1.0μmであった。
Example 22
The oxygen gas flow rate and the nitrogen gas flow rate at the start of the intermediate layer deposition are set to 0 sccm and 1000 sccm, respectively, the oxygen gas flow rate and the nitrogen gas flow at the end of the intermediate layer deposition are set to 500 sccm and 200 sccm, respectively, and the bias voltage is − A hard film-coated tool was produced in the same manner as in Example 1 with 100 V and an intermediate layer deposition time of 10 minutes, and the same measurement as in Example 1 was performed. The thickness of the intermediate layer in the obtained hard film-coated tool was 1.0 μm.

比較例1
図7に示すように、中間層の成膜工程において酸素ガス流量及び窒素ガス流量をそれぞれ500 sccmと一定にした以外実施例1と同様にして硬質皮膜被覆工具を作製し、実施例1と同じ測定を行った。EELS法により中間層と下層との界面及び中間層と上層との界面を含む厚さ方向領域における酸素及び窒素の濃度分布を測定した。測定結果を図8に示す。酸素濃度は下層側から上層側まで実質的に同じであった。
Comparative Example 1
As shown in FIG. 7, a hard film coated tool was prepared in the same manner as in Example 1 except that the oxygen gas flow rate and the nitrogen gas flow rate were kept constant at 500 sccm in the intermediate layer deposition step, respectively. Measurements were made. The concentration distribution of oxygen and nitrogen in the thickness direction region including the interface between the intermediate layer and the lower layer and the interface between the intermediate layer and the upper layer was measured by the EELS method. The measurement results are shown in FIG. The oxygen concentration was substantially the same from the lower layer side to the upper layer side.

比較例2
実施例1と同じ基体上に、化学蒸着法によりTi(CN)下層、Ti(NO)中間層及びα型Al2O3層を形成することにより、硬質皮膜被覆工具を作製し、実施例1と同じ測定を行った。
Comparative Example 2
On the same substrate as Example 1, a Ti (CN) lower layer, Ti (NO) intermediate layer and α-type Al 2 O 3 layer were formed by chemical vapor deposition to produce a hard film-coated tool. The same measurement was performed.

各実施例及び比較例の成膜方法、下層及び中間層の種類及び厚さ、並びにOの連続的増加の有無を表5に示し、中間層の組成を表6に示し、中間層の成膜条件及び傾斜組成を表7に示し、上層の組成を表8に示し、上層の成膜方法、種類、厚さ、結晶構造及び等価X線回折強度比TC(006)、並びに工具寿命を表9に示す。ただし、表9では上記組成を(AlCr)2O3と略記している。Table 5 shows the film formation method of each example and comparative example, the type and thickness of the lower layer and the intermediate layer, and whether or not O is continuously increased. Table 6 shows the composition of the intermediate layer. Table 7 shows the conditions and gradient composition, Table 8 shows the composition of the upper layer, Table 9 shows the film formation method, type, thickness, crystal structure and equivalent X-ray diffraction intensity ratio TC (006), and tool life of the upper layer. Shown in However, in Table 9, the above composition is abbreviated as (AlCr) 2 O 3 .

表7(続き)
Table 7 (continued)

実施例23〜28、比較例3及び4
上層の成膜温度を表10に示すように変更した以外実施例1と同様にして硬質皮膜被覆工具を作製し、上層の結晶構造及びTC(006)、並びに工具寿命を測定した。測定結果を成膜温度とともに表10に示す。
Examples 23-28, Comparative Examples 3 and 4
A hard film coated tool was produced in the same manner as in Example 1 except that the upper layer deposition temperature was changed as shown in Table 10, and the upper layer crystal structure, TC (006), and tool life were measured. The measurement results are shown in Table 10 together with the film formation temperature.

実施例29〜33、比較例5及び6
上層成膜時のバイアス電圧を表11に示すように変更した以外実施例1と同様にして硬質皮膜被覆工具を作製し、上層の結晶構造及びTC(006)、並びに工具寿命を測定した。測定結果をバイアス電圧とともに表11に示す。
Examples 29-33, Comparative Examples 5 and 6
A hard film coated tool was prepared in the same manner as in Example 1 except that the bias voltage at the time of forming the upper layer was changed as shown in Table 11, and the crystal structure of the upper layer, TC (006), and the tool life were measured. The measurement results are shown in Table 11 together with the bias voltage.

実施例34〜36、比較例7及び8
上層成膜時の雰囲気圧力(酸素ガスの分圧)を表12に示すように変更した以外実施例1と同様にして硬質皮膜被覆工具を作製し、上層の結晶構造及びTC(006)、並びに工具寿命を測定した。測定結果を雰囲気圧力とともに表12に示す。
Examples 34-36, Comparative Examples 7 and 8
A hard film-coated tool was prepared in the same manner as in Example 1 except that the atmospheric pressure (partial pressure of oxygen gas) at the time of forming the upper layer was changed as shown in Table 12, and the upper layer crystal structure and TC (006), and Tool life was measured. The measurement results are shown in Table 12 together with the atmospheric pressure.

実施例37〜40、比較例9及び10
上層成膜用の酸素ガスの流量を表13に示すように変更した以外実施例1と同様にして硬質皮膜被覆工具を作製し、上層の結晶構造及びTC(006)、並びに工具寿命を測定した。測定結果を酸素ガスの流量とともに表13に示す。表13から明らかなように、酸素ガスの流量が300〜500 sccmの範囲で大きなTC(006)及び長い工具寿命が得られた。特に酸素ガスの流量が300〜400 sccmの範囲で工具寿命が長かったので、その原因を調べるために、上層の表面粗さを測定した。表面粗さの測定には、曲率半径5μmのダイヤモンド触針を有する小坂研究所株式会社製の粗さ測定器(サーフコーダSE-30D)を使用し、上層の任意の5箇所を測定して、平均した。その結果、酸素ガスの流量が300 sccm及び400 sccmの実施例39及び40では、上層の平均表面粗さRaは0.4μmであり、酸素ガスの流量が500 sccmの実施例1では、上層の平均表面粗さRaは0.5μmであった。上層の表面粗さの主な原因はドロップレットであるので、酸素ガスの流量が300〜500 sccmの範囲、特に300〜400 sccmの範囲でドロップレットの生成が少ないことが分った。
Examples 37-40, Comparative Examples 9 and 10
A hard film coated tool was prepared in the same manner as in Example 1 except that the flow rate of the oxygen gas for forming the upper layer was changed as shown in Table 13, and the upper layer crystal structure and TC (006) were measured. . The measurement results are shown in Table 13 together with the flow rate of oxygen gas. As is apparent from Table 13, a large TC (006) and a long tool life were obtained when the flow rate of oxygen gas was in the range of 300 to 500 sccm. In particular, since the tool life was long when the flow rate of oxygen gas was in the range of 300 to 400 sccm, the surface roughness of the upper layer was measured to investigate the cause. For the measurement of surface roughness, use a roughness measuring instrument (Surfcoder SE-30D) manufactured by Kosaka Laboratories with a diamond stylus with a radius of curvature of 5 μm, and measure any five locations in the upper layer. Averaged. As a result, in Examples 39 and 40 where the flow rate of oxygen gas was 300 sccm and 400 sccm, the average surface roughness Ra of the upper layer was 0.4 μm, and in Example 1 where the flow rate of oxygen gas was 500 sccm, the average of the upper layer The surface roughness Ra was 0.5 μm. Since the main cause of the surface roughness of the upper layer is droplets, it has been found that the generation of droplets is small when the flow rate of oxygen gas is in the range of 300 to 500 sccm, particularly in the range of 300 to 400 sccm.

実施例及び比較例の硬質皮膜被覆工具のTC(006)と寿命との関係を図9に示す。図中、黒丸(●)は実施例であり、白抜きの三角(△)は比較例である。実施例1〜61の硬質皮膜被覆工具の寿命はいずれも4分以上であり、比較例1〜14の工具寿命の約2倍以上も長かった。これは、(006)面に強く配向した上層が微細なAlCr酸化物結晶粒により形成されており、結晶粒の脱落が少なく、高い密着性を有し、耐チッピング性に優れているためである。TC(006)が1.8〜2.5では、非常に長い工具寿命が得られた。特にTC(006)が2〜2.3の範囲ではほとんどの工具の寿命が10分以上であった。   FIG. 9 shows the relationship between the TC (006) and the life of the hard film coated tools of Examples and Comparative Examples. In the figure, black circles (●) are examples, and white triangles (Δ) are comparative examples. The lifetimes of the hard film-coated tools of Examples 1 to 61 were all 4 minutes or longer, and were about twice as long as the tool lifetimes of Comparative Examples 1 to 14. This is because the upper layer that is strongly oriented in the (006) plane is formed of fine AlCr oxide crystal grains, has little dropout of crystal grains, has high adhesion, and is excellent in chipping resistance. . When TC (006) was 1.8 to 2.5, a very long tool life was obtained. Especially in the range of TC (006) from 2 to 2.3, the life of most tools was more than 10 minutes.

実施例41〜46、比較例11及び12
中間層又は上層の成膜時間を変化させることにより中間層の厚さ及び上層の厚さを変更した以外実施例1と同様にして硬質皮膜被覆工具を作製し、上層の結晶構造及びTC(006)、並びに工具寿命を測定した。結果を表14に示す。なお上層の組成を(AlCr)2O3と略記したが、厳密には(Al0.27Cr0.73)1.9O3.1である。
Examples 41-46, Comparative Examples 11 and 12
A hard film coated tool was prepared in the same manner as in Example 1 except that the thickness of the intermediate layer and the upper layer were changed by changing the film formation time of the intermediate layer or the upper layer, and the crystal structure of the upper layer and the TC (006 ) And tool life. The results are shown in Table 14. Although the composition of the upper layer is abbreviated as (AlCr) 2 O 3 , it is strictly (Al 0.27 Cr 0.73 ) 1.9 O 3.1 .

中間層の厚さ(Tm)が0.1〜5μmで、上層の厚さ(Tu)が0.3〜6μmの実施例41〜46の硬質皮膜被覆工具はいずれも寿命が長かった。ただし、Tm>Tuである実施例46の硬質皮膜被覆工具は、Tm≦Tuを満たす実施例41〜45の硬質皮膜被覆工具より寿命が短かった。比較例11の硬質皮膜被覆工具は、上層が0.02μmと薄いために磨耗により寿命が短かった。比較例12の硬質皮膜被覆工具は、中間層が0.04μmと薄いために、中間層と上層との間で剥離が発生し、寿命が短かった。   Each of the hard film-coated tools of Examples 41 to 46 having an intermediate layer thickness (Tm) of 0.1 to 5 μm and an upper layer thickness (Tu) of 0.3 to 6 μm had a long life. However, the hard film coated tool of Example 46 where Tm> Tu had a shorter life than the hard film coated tools of Examples 41 to 45 satisfying Tm ≦ Tu. The hard film coated tool of Comparative Example 11 had a short life due to wear because the upper layer was as thin as 0.02 μm. In the hard film-coated tool of Comparative Example 12, the intermediate layer was as thin as 0.04 μm, so peeling occurred between the intermediate layer and the upper layer, and the life was short.

実施例47〜57
下層の成膜に使用するターゲット及び反応ガスを表15に示すように変更した以外実施例1と同様にして硬質皮膜被覆工具を作製した。下層の成膜に用いた反応ガスの流量は100〜1500 sccmの範囲内であり、実施例52〜57では、アセチレンガスの流量を100 sccmとし、窒素ガスの流量を500 sccmとした。各硬質皮膜被覆工具の寿命、及び上層のTC(006)を実施例1と同様にして測定した。結果を表15に示す。実施例47〜57の硬質皮膜被覆工具はいずれも、下層の種類を変えても比較例の硬質皮膜被覆工具より十分に寿命が長かった。
Examples 47-57
A hard film-coated tool was produced in the same manner as in Example 1 except that the target and reaction gas used for forming the lower layer were changed as shown in Table 15. The flow rate of the reaction gas used for forming the lower layer was in the range of 100-1500 sccm. In Examples 52-57, the flow rate of acetylene gas was 100 sccm, and the flow rate of nitrogen gas was 500 sccm. The life of each hard film coated tool and the TC (006) of the upper layer were measured in the same manner as in Example 1. The results are shown in Table 15. All of the hard film-coated tools of Examples 47 to 57 had a longer life than the hard film-coated tool of the comparative example, even if the type of the lower layer was changed.

実施例58〜62、比較例13及び14
下層の成膜時間を変更して下層の膜厚を変化させた以外実施例1と同様にして硬質皮膜被覆工具を作製し、上層のTC(006)及び工具寿命を測定した。結果を表16に示す。表16より、下層の厚さが0.5〜10μmの場合に工具寿命が長いことが分かる。
Examples 58-62, Comparative Examples 13 and 14
A hard film-coated tool was produced in the same manner as in Example 1 except that the film formation time of the lower layer was changed to change the film thickness of the lower layer, and the TC (006) and tool life of the upper layer were measured. The results are shown in Table 16. Table 16 shows that the tool life is long when the thickness of the lower layer is 0.5 to 10 μm.

Claims (8)

基体上に硬質の下層、中間層及び上層を物理蒸着法により形成した硬質皮膜被覆工具であって、
(a) 前記下層は、周期律表のIVa、Va及びVIa族の元素、Al及びSiからなる群から選ばれた少なくとも一種の金属元素と、N、C及びBからなる群から選ばれた少なくとも一種の非金属元素とを含有し、
(b) 前記上層は、一般式:(AlxCry)cOd(ただし、x及びyはAl及びCrの原子比率を表わす数字であり、c及びdはAlCr及びOの原子比率を表わす数字であり、x=0.1〜0.4、x+y=1、c=1.86〜2.14、及びd=2.79〜3.21の条件を満たす。)により表される組成を有するととにも、等価X線回折強度比TC(006)が1.3以上のα型結晶構造を有し、
(c) 前記中間層は、金属元素としてAlとCrを必須とする酸窒化物からなり、酸素濃度が前記下層側から前記上層側にかけて増加するとともに窒素濃度が前記下層側から前記上層側にかけて減少する傾斜組成を有し、その平均組成が一般式:(AlsCrt)a(NvOw)b(ただし、s、t、v及びwはそれぞれAl、Cr、N及びOの原子比率を表わす数字であり、a及びbはAlCr及びNOの原子比率を表わす数字であり、下記条件:
s=0.1〜0.4、
s+t=1、
v=0.1〜0.8、
v+w=1、
a=0.3〜0.5、及び
a+b=1を満たす。)により表され
前記中間層の結晶格子縞と前記上層の結晶格子縞とが両者の界面において少なくとも部分的に連続していることを特徴とする硬質皮膜被覆工具。
A hard coating tool in which a hard lower layer, an intermediate layer, and an upper layer are formed on a substrate by physical vapor deposition,
(a) the lower layer is at least one metal element selected from the group consisting of elements IVa, Va and VIa of the periodic table, Al and Si, and at least selected from the group consisting of N, C and B Containing a kind of non-metallic element,
(b) The upper layer has the general formula: (Al x Cr y ) c O d (where x and y are numbers representing the atomic ratio of Al and Cr, and c and d represent the atomic ratio of AlCr and O) And a composition represented by the following condition: x = 0.1 to 0.4, x + y = 1, c = 1.86 to 2.14, and d = 2.79 to 3.21) TC (006) has an α-type crystal structure of 1.3 or more,
(c) The intermediate layer is made of an oxynitride essentially containing Al and Cr as metal elements, and the oxygen concentration increases from the lower layer side to the upper layer side and the nitrogen concentration decreases from the lower layer side to the upper layer side. The average composition is a general formula: (Al s Cr t ) a (N v O w ) b (where s, t, v, and w are atomic ratios of Al, Cr, N, and O, respectively) A and b are numbers representing the atomic ratio of AlCr and NO, and the following conditions:
s = 0.1-0.4,
s + t = 1,
v = 0.1-0.8,
v + w = 1,
a = 0.3-0.5, and
a + b = 1 is satisfied. ) Is represented by,
The hard coat coated tool , wherein the crystal lattice fringes of the intermediate layer and the crystal lattice fringes of the upper layer are at least partially continuous at the interface between them .
請求項1に記載の硬質皮膜被覆工具において、前記中間層の厚さ(Tm)が0.1〜5μmであり、前記上層の厚さ(Tu)が0.2〜8μmであり、Tm≦Tuの関係を満たすことを特徴とする硬質皮膜被覆工具。 2. The hard film coated tool according to claim 1 , wherein the thickness of the intermediate layer (Tm) is 0.1 to 5 μm, the thickness of the upper layer (Tu) is 0.2 to 8 μm, and satisfies the relationship of Tm ≦ Tu. Hard film coated tool characterized by that. 請求項1又は2に記載の硬質皮膜被覆工具において、前記下層の厚さが0.5〜10μmであることを特徴とする硬質皮膜被覆工具。 3. The hard film-coated tool according to claim 1 , wherein the lower layer has a thickness of 0.5 to 10 [mu] m. 請求項1〜3のいずれかに記載の硬質皮膜被覆工具において、前記中間層の前記傾斜組成における酸素濃度の前記下層側から前記上層側にかけての平均勾配が10〜600原子%/μmであることを特徴とする硬質皮膜被覆工具。 In hard-coated tool according to any one of claims 1 to 3, and said average slope from the lower side of the oxygen concentration in the graded composition of the intermediate layer toward the upper layer side is 10 to 600 atomic% / [mu] m Hard film coated tool characterized by 請求項1〜4のいずれかに記載の硬質皮膜被覆工具において、前記中間層の前記傾斜組成における窒素濃度の前記下層側から前記上層側にかけての平均勾配が−650〜−10原子%/μmであることを特徴とする硬質皮膜被覆工具。 In hard-coated tool according to any of claims 1-4, the average slope of toward the upper from the lower side of the nitrogen concentration in the graded composition of said intermediate layer is at -650~-10 atomic% / [mu] m A hard-coated tool characterized by being. 基体上に物理蒸着法により形成した硬質の下層、中間層及び上層を有する硬質皮膜被覆工具であって、(a) 前記下層は、周期律表のIVa、Va及びVIa族の元素、Al及びSiからなる群から選ばれた少なくとも一種の金属元素と、N、C及びBからなる群から選ばれた少なくとも一種の非金属元素とを含有し、(b) 前記上層は、一般式:(AlxCry)cOd(ただし、x及びyはAl及びCrの原子比率を表わす数字であり、c及びdはAlCr及びOの原子比率を表わす数字であり、x=0.1〜0.4、x+y=1、c=1.86〜2.14、及びd=2.79〜3.21の条件を満たす。)により表される組成を有するととにも、等価X線回折強度比TC(006)が1.3以上のα型結晶構造を有し、(c) 前記中間層は、金属元素としてAlとCrを必須とする酸窒化物からなり、酸素濃度が前記下層側から前記上層側にかけて増加するとともに窒素濃度が前記下層側から前記上層側にかけて減少する傾斜組成を有し、その平均組成が一般式:(AlsCrt)a(NvOw)b(ただし、s、t、v及びwはそれぞれAl、Cr、N及びOの原子比率を表わす数字であり、a及びbはAlCr及びNOの原子比率を表わす数字であり、s=0.1〜0.4、s+t=1、v=0.1〜0.8、v+w=1、a=0.3〜0.5、及びa+b=1の条件を満たす。)により表され、前記中間層の結晶格子縞と前記上層の結晶格子縞とが両者の界面において少なくとも部分的に連続している硬質皮膜被覆工具を製造する方法であって、
(1) 前記中間層の成膜開始から終了までの間反応ガスとして供給する酸素ガスの流量を600 sccm以下まで増大させるとともに、窒素ガスの流量を減少させ、
(2) 前記上層の成膜中の酸素ガスの流量を100〜600 sccmにして、成膜雰囲気中の酸素分圧を0.3〜2 Paに制御することを特徴とする方法。
A hard-coated tool having a hard lower layer, an intermediate layer and an upper layer formed by physical vapor deposition on a substrate, wherein: (a) the lower layer is an element of groups IVa, Va and VIa of the periodic table, Al and Si At least one metal element selected from the group consisting of and at least one non-metal element selected from the group consisting of N, C and B, and (b) the upper layer has the general formula: (Al x Cr y ) c O d (where x and y are numbers representing the atomic ratio of Al and Cr, c and d are numbers representing the atomic ratio of AlCr and O, and x = 0.1 to 0.4, x + y = 1 C = 1.86-2.14 and d = 2.79-3.21), and an α-type crystal structure having an equivalent X-ray diffraction intensity ratio TC (006) of 1.3 or more. And (c) the intermediate layer is made of an oxynitride essentially containing Al and Cr as metal elements, and the oxygen concentration increases from the lower layer side to the upper layer side. Nitrogen concentration has a gradient composition that decreases toward the upper side from the lower side, the average composition formula to: (Al s Cr t) a (N v O w) b ( However, s, t, v and w is a number representing the atomic ratio of Al, Cr, N and O, a and b are numbers representing the atomic ratio of AlCr and NO, s = 0.1 to 0.4, s + t = 1, v = 0.1 to 0.8 V + w = 1, a = 0.3 to 0.5, and a + b = 1.) The crystal lattice fringes of the intermediate layer and the crystal lattice fringes of the upper layer are at least partially continuous at the interface between them. a method of manufacturing a hard film-coated tool have,
(1) While increasing the flow rate of oxygen gas supplied as a reaction gas from the start to the end of the formation of the intermediate layer to 600 sccm or less, decrease the flow rate of nitrogen gas,
(2) The method is characterized in that the flow rate of oxygen gas during the formation of the upper layer is set to 100 to 600 sccm, and the oxygen partial pressure in the film formation atmosphere is controlled to 0.3 to 2 Pa.
請求項6に記載の硬質皮膜被覆工具の製造方法において、前記上層成膜中の酸素ガスの流量を300〜500 sccmに制御することを特徴とする方法。 7. The method for manufacturing a hard film-coated tool according to claim 6 , wherein a flow rate of oxygen gas during the upper layer film formation is controlled to 300 to 500 sccm. 請求項6又は7により記載の硬質皮膜被覆工具の製造方法において、前記中間層の成膜終了時に前記上層用の酸素ガス流量に達していることを特徴とする方法。
The method of manufacturing a hard film-coated tool according the claim 6 or 7, wherein it has reached the oxygen gas flow rate for the upper layer at the time of forming the end of said intermediate layer.
JP2011522859A 2009-07-15 2010-07-15 Hard film coated tool and manufacturing method thereof Active JP5614405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011522859A JP5614405B2 (en) 2009-07-15 2010-07-15 Hard film coated tool and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009182830 2009-07-15
JP2009182830 2009-07-15
PCT/JP2010/062016 WO2011007848A1 (en) 2009-07-15 2010-07-15 Hard film-coated tool and manufacturing method for the same
JP2011522859A JP5614405B2 (en) 2009-07-15 2010-07-15 Hard film coated tool and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPWO2011007848A1 JPWO2011007848A1 (en) 2012-12-27
JP5614405B2 true JP5614405B2 (en) 2014-10-29

Family

ID=43449458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011522859A Active JP5614405B2 (en) 2009-07-15 2010-07-15 Hard film coated tool and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5614405B2 (en)
WO (1) WO2011007848A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011053372A1 (en) * 2011-09-07 2013-03-07 Walter Ag Tool with chromium-containing functional layer
JP7445595B2 (en) * 2017-11-24 2024-03-07 エリコン・サーフェス・ソリューションズ・アクチェンゲゼルシャフト,プフェフィコーン Al-Cr based ceramic coating with increased thermal stability

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188736A (en) * 2005-01-07 2006-07-20 Nissin Electric Co Ltd Article coated with abrasion resistant film
WO2007121954A1 (en) * 2006-04-21 2007-11-01 Cemecon Ag Coated body
WO2008043606A1 (en) * 2006-10-10 2008-04-17 Oerlikon Trading Ag, Trübbach Layer system having at least one mixed crystal layer of a polyoxide
JP2009072837A (en) * 2007-09-19 2009-04-09 Tokyo Institute Of Technology Surface-coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed milling, and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188736A (en) * 2005-01-07 2006-07-20 Nissin Electric Co Ltd Article coated with abrasion resistant film
WO2007121954A1 (en) * 2006-04-21 2007-11-01 Cemecon Ag Coated body
WO2008043606A1 (en) * 2006-10-10 2008-04-17 Oerlikon Trading Ag, Trübbach Layer system having at least one mixed crystal layer of a polyoxide
JP2009072837A (en) * 2007-09-19 2009-04-09 Tokyo Institute Of Technology Surface-coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed milling, and its manufacturing method

Also Published As

Publication number Publication date
WO2011007848A1 (en) 2011-01-20
JPWO2011007848A1 (en) 2012-12-27

Similar Documents

Publication Publication Date Title
JP5621881B2 (en) Hard coating tool
WO2014103533A1 (en) Surface coated member, and manufacturing method for same
KR101701186B1 (en) Cutting tool
JPWO2010007958A1 (en) Covering member
JP2011093085A (en) Hard film-coated tool
MX2011003838A (en) Non gamma - phase cubic alcro.
JP2020528831A (en) Coating cutting tool and its manufacturing method
KR101079902B1 (en) Surface-coated cutting tool
US10744568B2 (en) Coated tool
WO2018216256A1 (en) Coating and cutting tool
JP6387190B2 (en) Coating
US10994341B2 (en) Surface-coated cutting tool and method for manufacturing same
JP5660457B2 (en) Hard film coated mold
CN114945708B (en) PVD coated cemented carbide cutting tool with improved coating adhesion
JP2010188460A (en) Surface coated cutting tool
JP2009167498A (en) Hard film-coated member, and method for producing hard film-coated member
KR20130028080A (en) Cutting tool
JP5617933B2 (en) Hard film coated tool and manufacturing method thereof
JP5614405B2 (en) Hard film coated tool and manufacturing method thereof
JP4968674B2 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance with excellent hard coating layer in high-speed cutting and method for manufacturing the same
JP2019084671A (en) Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and wear resistance
JP6701384B2 (en) Film
JP7072053B2 (en) Coating
JP2017024136A (en) Coated cutting tool
JP2021185009A (en) Coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140825

R150 Certificate of patent or registration of utility model

Ref document number: 5614405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350