JP2004103617A - Multilayer wiring board, its manufacturing method, semiconductor device, and radio electronic equipment - Google Patents

Multilayer wiring board, its manufacturing method, semiconductor device, and radio electronic equipment Download PDF

Info

Publication number
JP2004103617A
JP2004103617A JP2002259291A JP2002259291A JP2004103617A JP 2004103617 A JP2004103617 A JP 2004103617A JP 2002259291 A JP2002259291 A JP 2002259291A JP 2002259291 A JP2002259291 A JP 2002259291A JP 2004103617 A JP2004103617 A JP 2004103617A
Authority
JP
Japan
Prior art keywords
wiring board
multilayer wiring
dielectric constant
high dielectric
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002259291A
Other languages
Japanese (ja)
Other versions
JP4248827B2 (en
Inventor
Yasushi Shimada
島田 靖
Yoshitake Hirata
平田 善毅
Hiroyuki Kuritani
栗谷 弘之
Kazuhisa Otsuka
大塚 和久
Masanori Yamaguchi
山口 正憲
Yuichi Shimayama
島山 裕一
Takeshi Madarame
斑目 健
Etsuo Watanabe
渡辺 悦男
Yusuke Kondo
近藤 裕介
Kazunori Yamamoto
山本 和徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002259291A priority Critical patent/JP4248827B2/en
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to AU2003242008A priority patent/AU2003242008A1/en
Priority to PCT/JP2003/006860 priority patent/WO2004010751A1/en
Priority to CNB038170728A priority patent/CN100413383C/en
Priority to US10/521,470 priority patent/US7239013B2/en
Priority to TW092114940A priority patent/TWI225380B/en
Publication of JP2004103617A publication Critical patent/JP2004103617A/en
Priority to US11/653,417 priority patent/US7592250B2/en
Application granted granted Critical
Publication of JP4248827B2 publication Critical patent/JP4248827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer wiring board that is equipped with a capacitor made of high-permittivity thin material and uniform in capacitance, and high in moldability, to provide its manufacturing method, a semiconductor device, and radio electronic equipment. <P>SOLUTION: The multilayer wiring board is equipped with a plurality of insulating layers, a plurality of conductor layers, a non-through-hole which is turned conductive to electrically connect the conductor layers, and a capacitor 12 composed of an insulating layer made of high-permittivity material 8 and electrodes each formed on the top and the under surface of the insulating material. Recesses between conductor patterns containing electrodes are filled with insulating material different from the high-permittivity material, and the surfaces of the conductor patterns and the insulating material filling the recesses are flattened. The method of manufacturing the multilayer wiring board, the semiconductor device composed of the multilayer wiring board and a semiconductor chip mounted on the board, and the radio electronic equipment mounted with the semiconductor device, are provided. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、コンデンサを有する多層配線板およびその製造方法、ならびに半導体装置および無線電子装置に関する。
【0002】
【従来の技術】
近年、電子機器の発達にともない、電子部品の高性能化に加えて、小型化と軽量化の要求がますます厳しくなっている。特に携帯電話に代表される携帯無線電子機器においてはその利便性の追求からその要求が顕著である。このような背景から、半導体チップや受動素子を効率良く搭載するために、多層配線板が用いられてきた。これまでは、配線ライン幅の細線化等の高密度配線化が主流であったが、実装する部品点数を低減するためにコンデンサに代表される受動部品内蔵が求められてきている。
【0003】
多層配線板にコンデンサを内蔵化する技術としては、高誘電率無機材料を焼成して誘電体層を形成する技術、高誘電率無機材料と樹脂材料を複合化させて誘電体層を形成する技術、スパッタなどのプロセスを用いて薄膜の誘電体層を形成する技術などが公知となっている。
【0004】
高誘電率無機材料を焼成して誘電体層を形成する技術としては、基板絶縁材料と同時焼成するのに適した高誘電率材料を用いる例(特許文献1、非特許文献1参照)があり、また、薄膜の誘電体層を形成する技術としては、半導体スパッタ技術を応用して樹脂基板中にコンデンサを内蔵化した例(非特許文献2参照)がある。
【0005】
高誘電率無機材料と樹脂材料を複合化させて誘電体層を形成する技術を用いた多層配線板は、高温焼結工程やスパッタ工程がなく、経済的に優れている。樹脂を用いた多層配線板用途に数多くの高誘電率無機材料と樹脂との複合材料が提案されている(例えば、非特許文献3参照)。また、コンデンサを多層配線板内に製造する方法は、使用する材料の形態によって異なるが、例えば、従来の多層配線板の製造法(非特許文献4参照)や感光性を有する高誘電率材料を用いた多層配線板の製造法(非特許文献5参照)が挙げられる。
【0006】
【特許文献1】特開平5−55079号公報
【非特許文献1】エレクトロニクス実装学会誌第4巻第2号145〜149頁
【非特許文献2】エレクトロニクス実装学会誌第4巻第7号590〜596頁
【非特許文献3】Journal of Materials Science:Materials in Electronics第11巻253〜268頁
【非特許文献4】Embedded Decoupling Capacitance Project Final Report 3−1〜6(National Center for Manufacturing Sciences)
【非特許文献5】“Integration of Thin Film Passive Circuits Using High/Low Dielectric Constant Materials”,Electronic Components and Technology Conference(1997) 739〜744頁
【0007】
【発明が解決しようとする課題】
コンデンサの重要な特性である容量はコンデンサの誘電体の比誘電率に比例し、誘電体厚みに反比例する。すなわち、同じ材料でコンデンサの容量を大きくするためには、高誘電率材料の厚みを薄くする必要性が生じる。非特許文献4で示されたような従来の方法では、高誘電率材料を薄くすると取り扱い性が低下し、製造歩留まりが悪かった。また、ビルドアップ基板材料である接着剤付き銅箔のように、高誘電率材料を銅箔にキャスティングして用いる方法もあるが、内層回路基板と積層一体化する際の内層回路パターンの充填性と厚み制御が大きな問題であった。
【0008】
また、受動素子を多用する高周波回路向け多層配線板においては、コンデンサ以外の受動素子としてインダクタを基板に効率良く内蔵する技術も求められている。さらに、高周波回路向け多層配線板では、伝送損失の低減も併せて求められている。
【0009】
上記を鑑みて、本発明は、高誘電率材料の厚みが薄く、容量ばらつきが小さなコンデンサを有し、かつ成型性の優れた多層配線板、およびその製造方法、ならびに該多層配線板に半導体チップを搭載した半導体装置および該半導体装置を搭載した無線電子装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明は、複数の絶縁層と、複数の導体層と、複数の導体層を電気的に接続する導体化された非貫通穴と、高誘電率材料からなる少なくとも1つの絶縁層の上下面に電極を形成してなるコンデンサと、を有する多層配線板であって、電極を含む導体パターン間の凹部に高誘電率材料と異なる絶縁材料が充填され、該導体パターン表面と充填された絶縁材料表面とが平坦化されていることを特徴とする多層配線板を提供する。
【0011】
また、本発明は、複数の絶縁層と、複数の導体層と、複数の導体層を電気的に接続する導体化された非貫通穴と、高誘電率材料からなる少なくとも1つの絶縁層の上下面に電極を形成してなるコンデンサとを有する多層配線板の製造方法であって、電極の一方を含む導体パターンを形成する工程と、導体パターン間の凹部に高誘電率材料と異なる絶縁材料を充填、硬化する工程と、研磨により導体パターンの表面と該導体パターン間の凹部に充填、硬化された絶縁材料表面とを平坦にする工程と、半硬化状態の高誘電率材料を備えた金属箔を加熱積層する工程と、を少なくとも含むことを特徴とする多層配線板の製造方法を提供する。
【0012】
また、本発明は上記特徴を有する多層配線板に半導体チップが搭載されていることを特徴とする半導体装置を提供する。
【0013】
また、本発明は、上記半導体装置が搭載されたことを特徴とする無線電子装置を提供する。
【0014】
以上のような本発明によれば、高誘電率材料の厚みが薄く、容量ばらつきが小さなコンデンサを有し、かつ成型性の優れた多層配線板、およびその製造方法、ならびに半導体装置および無線電子装置を提供することが可能となる。
【0015】
以下、本発明を実施の形態により詳細に説明する。
【0016】
【発明の実施の形態】
本発明の多層配線板は、複数の絶縁層と、複数の導体層と、複数の導体層を電気的に接続する導体化された非貫通穴と、高誘電率材料からなる少なくとも1つの絶縁層の上下面に電極を形成してなるコンデンサと、を有する多層配線板であって、電極を含む導体パターン間の凹部に高誘電率材料と異なる絶縁材料が充填され、該導体パターン表面と充填された絶縁材料表面とが平坦化されていることを特徴とする多層配線板を提供する。
【0017】
従来のコンデンサ内蔵多層配線板においては、導体パターン間の凹部に絶縁樹脂を充填していないため、高弾性である高誘電材料層の厚みが厚くなり、その結果、コンデンサの容量ばらつきが大きくなる傾向であったのに対して、本発明では、上述のように導体パターン間の凹部をあらかじめ絶縁樹脂で充填し、高誘電材料層が形成される基板表面を平坦化するため、高誘電材料層を薄く、かつ厚み精度良く設けることができ、さらには、コンデンサの容量ばらつきを小さくすることが可能となった。
【0018】
さらに、導体パターン間に充填する絶縁材料として、基板の絶縁層および高誘電率材料に用いる絶縁樹脂と異なる第3の絶縁材料を用いることで、より優れたコンデンサを得ることができる。
【0019】
本発明の多層配線板のコンデンサに用いる高誘電率材料は、少なくとも絶縁樹脂および高誘電率充填材を含む樹脂組成物である。該絶縁樹脂としては、特に制限されないが、半硬化状態で用いることが可能であり、かつ硬化後には絶縁性の優れた高誘電率材料を提供することができるエポキシ樹脂およびその硬化剤を用いることが好ましい。
【0020】
エポキシ樹脂としては、硬化して接着作用を呈するものであればよいが、好ましくは二官能以上で、分子量が5000未満、より好ましくは3000未満のエポキシ樹脂を使用する。二官能エポキシ樹脂としては、ビスフェノールA型またはビスフェノールF型樹脂等が例示される。ビスフェノールA型またはビスフェノールF型液状樹脂は、油化シェルエポキシ株式会社から、エピコート807、エピコート827、エピコート828という商品名で市販されている。また、ダウケミカル日本株式会社からは、D.E.R.330、D.E.R.331、D.E.R.361という商品名で市販されている。さらに、東都化成株式会社から、YD8125、YDF8170という商品名で市販されている。
【0021】
また、高Tg化を目的に多官能エポキシ樹脂を加えてもよく、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等が例示される。フェノールノボラック型エポキシ樹脂は、日本化薬株式会社から、EPPN−201という商品名で市販されている。クレゾールノボラック型エポキシ樹脂は、住友化学工業株式会社から、ESCN−190、ESCN−195という商品名で市販されている。また、前記日本化薬株式会社から、EOCN1012、EOCN1025、EOCN1027という商品名で市販されている。さらに、前記東都化成株式会社から、YDCN701、YDCN702、YDCN703、YDCN704という商品名で市販されている。
【0022】
エポキシ樹脂の硬化剤としては、通常用いられているものを使用することでき、特に限定されないが、例えば、アミン、ポリアミド、酸無水物、ポリスルフィッド、三弗化硼素及びフェノール性水酸基を1分子中に2個以上有する化合物であるビスフェノールA、ビスフェノールF、ビスフェノールS等が挙げられる。特に吸湿時の耐電食性に優れるためフェノール樹脂であるフェノールノボラック樹脂、ビスフェノールノボラック樹脂またはクレゾールノボラック樹脂等を用いるのが好ましい。好ましいとした硬化剤は、大日本インキ化学工業株式会社から、プライオーフェンLF2882、フェノライトTD−2090、フェノライトTD−2149、フェノライトVH4150、フェノライトVH4170という商品名で市販されている。
【0023】
さらに、硬化剤とともに従来公知の硬化促進剤を用いることができ、該硬化促進剤としては、各種イミダゾール類を用いることが好ましい。イミダゾールとしては、例えば、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾリウムトリメリテート等が挙げられる。このようなイミダゾール類は、四国化成工業株式会社から、2E4MZ、2PZ−CN、2PZ−CNSという商品名で市販されている。
【0024】
高誘電率充填材としては、例えば、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸鉛、二酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウム、ジルコン酸鉛等を挙げることができ、これらは単独でも二種以上同時に用いてもよい。特に比誘電率が50以上のものを用いることが好ましい。また、上記のような高誘電率充填材の一種以上を重量比で絶縁樹脂100に対して300〜3000配合することが好ましい。
【0025】
また、本発明で用いる高誘電率材料の取り扱い性を向上させるために、エポキシ基、アミド基、カルボキシル基、シアネート基、ヒドロキシ基等の少なくとも一種類の官能基を有する重量平均分子量が1万〜80万である高分子量樹脂を配合することが好ましい。重量平均分子量が1万以上であるとBステージにおける高誘電率材料のタック性の低減や硬化時の可撓性を向上させることができる。また、重量平均分子量が80万を超えると高誘電率充填材を均一に分散することが困難となる。このような高分子量樹脂としては、例えば、フェノキシ樹脂、高分子量エポキシ樹脂、超高分子量エポキシ樹脂、ポリアミドイミド樹脂、官能基含有反応性ゴムなどが挙げられる。上記フェノキシ樹脂は、東都化成株式会社から、フェノトートYP−40、フェノトートYP−50という商品名で市販されている。また、フェノキシアソシエート社から、PKHC、PKHH、PKHJいう商品名で市販されている。上記高分子量エポキシ樹脂は、重量平均分子量が3万〜8万の高分子量エポキシ樹脂、さらには、重量平均分子量が8万を超える超高分子量エポキシ樹脂(特公平7−59617号、特公平7−59618号、特公平7−59619号、特公平7−59620号、特公平7−64911号、特公平7−68327号公報参照)があり、何れも日立化成工業株式会社で製造している。上記ポリアミドイミド樹脂は、日立化成工業株式会社からKS9000シリーズという商品名で市販されている。上記官能基含有反応性ゴムとしては、カルボキシル基含有アクリルゴムが帝国化学産業株式会社から、HTR−860Pという商品名で、エポキシ基含有アクリルゴムがHTR−860P−3という商品名で市販されている。
【0026】
さらに、本発明で用いる高誘電率材料に分散剤を加えても良い。用いることのできる分散剤としては、市販されている非シリコーン系の分散剤など従来公知のものであればよく、特に限定されない。また、その配合量は、実験により適宜決定すればよい。
【0027】
上記のような組成よりなる高誘電率材料は、メチルエチルケトン等の有機溶剤と混合してワニス状とし、これを金属箔に塗布、乾燥し、Bステージ状態のシート状にして使用に供することが好ましい。ここで用いられる金属箔としては、例えば、銅、アルミなどが挙げられ、その厚さは1〜35μmであることが好ましく、1〜12μmであることがより好ましい。また、該金属箔に金属めっきを施さないことにより、金属箔厚みの増加を抑制することが可能となる。また、上記高誘電率材料硬化物の25℃、1MHzにおける比誘電率は20〜100であることが好ましく、さらに、高誘電率材料からなる絶縁層の厚みとしては、0.1μm〜30μmであることが好ましい。
【0028】
また、上記高誘電率材料のBステージ状態の120℃における溶融粘度は100〜200Pa・Sであることが好ましい。最低溶融粘度が100Pa・Sよりも低い場合にはフローが大きいため厚みのばらつきが大きくなり、200Pa・Sよりも高い場合には接着性が低下する。
【0029】
また、本発明において、上記高誘電率材料からなる絶縁層以外の箇所の絶縁層に用いる絶縁樹脂としては、特に制限されないが、高誘電率材料と異なる絶縁樹脂を用いることが好ましく、さらにはガラス基材で補強され、かつ樹脂中に無機フィラーが添加されているものが好ましい。ガラス基材で補強されることにより、絶縁層の厚みが150μm以上であっても、ガラス基材がない場合に比べて、その厚み制御が容易である。また、無機フィラーが添加されることにより、ガラス基材の影響による表面のうねりが低減され、高周波特性に優れた平滑な表面を有する多層配線板を得ることができる。ガラス基材で補強され、かつ無機フィラーが添加された樹脂としては、市販のものとして、MCL−E−679F、MCL−BE−67G(H)(以上、日立化成工業株式会社製、商品名)やCS−3355S、CS−3357S(以上、利昌工業株式会社製、商品名)などの銅張積層板やGEA−679F、GEA−67BE(H)(以上、日立化成工業株式会社製、商品名)、ES−3305S(利昌工業株式会社製、商品名)などの層間接着絶縁材料を使用できる。
【0030】
また、本発明の多層配線板は、コンデンサと併せてインダクタをも有しうる。インダクタは導体層をエッチング処理して形成され、好ましくはコンデンサの電極を含む導体パターンに形成される。また、該インダクタは導体パターンのライン幅が細い方がインダクタンス密度が高くなるため、他の導体層よりも厚みが薄く、かつその厚みが1〜12μmであることが好ましい。
【0031】
また、本発明の多層配線板は、その中心部の絶縁層であるコア層を除く任意の層にコンデンサを有し、かつコンデンサの容量ばらつきが±5%未満であることが好ましい。
【0032】
また、これまでは、コアとなる基板に対し、対称に基板材料を積層した場合には反りが小さいが、非対称に積層した場合には反りが大きいという問題があったが、本発明では、高誘電率材料を薄く、かつ厚み精度良く設けることが可能となったため、多層配線板の層構成の対称、非対称に関わらず反りが低減され、コンデンサの設計自由度の大きな改善を図ることが可能となる。したがって、本発明の多層配線板において、その反りは1mm以下であることが好ましい。
【0033】
また、本発明の多層配線板は、上記高誘電率材料からなる少なくとも1つの絶縁層とこれに隣接する絶縁層とを同時に貫く非貫通穴を有していてもよい。
【0034】
また、本発明の多層配線板は、300μm以上のライン幅を有する導体パターンを最外層導体層に備え、さらに該最外導体層に隣接する絶縁層の厚みが150μm以上であることが好ましい。ライン幅を300μm以上にすることにより高周波回路において信号減衰を抑制することができ、かつ絶縁層の厚みを150μm以上にすることにより特性インピーダンス低下を抑制することができる。
【0035】
本発明の多層配線板の製造方法としては、コンデンサの電極の一方を含む導体パターンを形成する工程と、該導体パターン間の凹部に高誘電率材料と異なる絶縁材料を充填、硬化する工程と、研磨により導体パターンの表面および該導体パターン間に充填、硬化された絶縁材料の表面を平坦にする工程と、半硬化状態の高誘電率材料を備えた金属箔を加熱積層する工程と、を少なくとも含むことを特徴としている。
【0036】
また、上記金属箔をエッチングして、コンデンサの電極の他方を含む導体パターンを形成する工程、さらに、少なくとも1つの導体層にインダクタを形成する工程を含みうる。
【0037】
上記本発明の製造方法によれば、導体パターン間の凹部に絶縁材料を充填して基板平面を平坦化することにより、積層時に高誘電率材料が平坦な面で挟まれて成型されるので、厚みのばらつきの小さな高誘電率材料層が得られ、容量ばらつきの小さなコンデンサを設けることができる。さらには、インダクタンス密度の高い微細なインダクタパターンを得ることができる。
【0038】
本発明は、これまで述べてきた多層配線板に半導体チップを搭載した半導体装置をさらに提供する。容量ばらつきの小さなコンデンサ、または容量ばらつきの小さなコンデンサとインダクタンス密度の高いインダクタを基板内に有する多層配線板を用いることにより、小型化と軽量化を同時に達成した半導体装置を得ることができる。また、300μm以上のライン幅を有する導体パターンを最外層導体層に備え、さらに該最外導体層に隣接する絶縁層の厚みが150μm以上である多層配線板を用いることにより、高周波減衰が小さく、特性インピーダンス不整合による反射ノイズも小さい半導体装置を得られる。
【0039】
本発明は、前述の半導体装置を搭載した無線電子装置をさらに提供する。小型軽量な半導体装置を用いることにより、無線電子装置の小型軽量化が図られる。また、高周波特性に優れた無線電子装置を得ることも可能となる。
【0040】
以下、本発明の多層配線板およびその製造方法について、実施例を用いてより詳細に説明するが、本発明はこれに限定されるものではない。
【0041】
【実施例】
高誘電率材料シート1
エポキシ樹脂としてビスフェノールA型エポキシ樹脂(東都化成株式会社製のYD−8125を使用)66重量部、クレゾールノボラック型エポキシ樹脂(東都化成株式会社製のYDCN−703を使用)34重量部、エポキシ樹脂の硬化剤としてフェノールノボラック樹脂(大日本インキ化学工業株式会社製のプライオーフェンLF2882を使用)63重量部、高分子量樹脂としてフェノキシ樹脂(重量平均分子量5万、東都化成株式会社製のフェノトートYP−50を使用)24重量部、硬化促進剤として硬化促進剤1−シアノエチル−2−フェニルイミダゾール(キュアゾール2PZ−CNを使用)0.6重量部、高誘電率充填材として平均粒径1.5μmのチタン酸バリウムフィラー(富士チタン工業株式会社製のBT−100PRを使用)860重量部、分散剤として非シリコーン系分散剤(ビックケミー・ジャパン株式会社製のBYK−W9010を使用)5.4重量部からなる組成物に、メチルエチルケトンを加えてビーズミルを用いて1000回転/分で1時間撹拌混合し、200メッシュのナイロン布でろ過した後に真空脱気した。この樹脂ワニスを、厚さ12μmの電解銅箔(古河サーキットフォイル株式会社製のGTS−12を使用)上に塗布し、140℃で5分間加熱乾燥して、膜厚が5μmのBステージ状態の塗膜を形成し、銅箔を備えた高誘電率材料シート1を作製した。
【0042】
このBステージ状態の高誘電率材料シート1の120℃の溶融粘度を島津フローテスターCFТ−100型(株式会社島津製作所、商品名)を用い、2mmφのノズル径の治具で測定したところ、100Pa・Sであった。また、170℃で1時間硬化させた硬化物について、LCRメータYHP4275A(横河ヒューレットパッカード株式会社、商品名)を用い、25℃、1MHzにおけるインピーダンス特性から誘電率を算出した結果、20であった。
【0043】
高誘電率材料シート2
エポキシ樹脂としてビスフェノールA型エポキシ樹脂(東都化成株式会社製のYD−8125を使用)66重量部、クレゾールノボラック型エポキシ樹脂(東都化成株式会社製のYDCN−703を使用)34重量部、エポキシ樹脂の硬化剤としてフェノールノボラック樹脂(大日本インキ化学工業株式会社製のプライオーフェンLF2882を使用)63重量部、高分子量樹脂として下記一般式に示されるポリアミドイミド樹脂(重量平均分子量7万)24重量部、
【化1】

Figure 2004103617
硬化促進剤として硬化促進剤1−シアノエチル−2−フェニルイミダゾール(キュアゾール2PZ−CNを使用)0.6重量部、高誘電率充填材として平均粒径1.5μmのチタン酸バリウムフィラー(富士チタン工業株式会社製のBT−100PRを使用)1300重量部および平均粒径0.6μmのチタン酸バリウムフィラー(富士チタン工業株式会社製のHPBT−1を使用)400重量部、分散剤として非シリコーン系分散剤(ビックケミー・ジャパン株式会社製のBYK−W9010を使用)11.2重量部からなる組成物に、メチルエチルケトンを加えて小型攪拌脱泡装置を用いて10分攪拌脱泡した後に200メッシュのナイロン布でろ過した。この樹脂ワニスを、厚さ12μmの電解銅箔(古河サーキットフォイル株式会社製のGTS−12を使用)上に塗布し、140℃で5分間加熱乾燥して、膜厚が10μmのBステージ状態の塗膜を形成し、銅箔を備えた高誘電率材料シート2を作製した。
【0044】
このBステージ状態の高誘電率材料シート2の120℃の溶融粘度を島津フローテスターCFТ−100型(株式会社島津製作所、商品名)を用い、2mmφのノズル径の治具で測定したところ、200Pa・Sであった。また、170℃で1時間硬化させた硬化物について、LCRメータYHP4275A(横河ヒューレットパッカード株式会社、商品名)を用い、25℃、1MHzにおけるインピーダンス特性から誘電率を算出した結果、45であった。
【0045】
高誘電率材料シート3
エポキシ樹脂としてビスフェノールA型エポキシ樹脂(東都化成株式会社製のYD−8125を使用)66重量部、クレゾールノボラック型エポキシ樹脂(東都化成株式会社製のYDCN−703を使用)34重量部、エポキシ樹脂の硬化剤としてフェノールノボラック樹脂(大日本インキ化学工業株式会社製のプライオーフェンLF2882を使用)63重量部、高分子量樹脂としてフェノキシ樹脂(重量平均分子量5万、東都化成株式会社製のフェノトートYP−50を使用)24重量部、硬化促進剤として硬化促進剤1−シアノエチル−2−フェニルイミダゾール(キュアゾール2PZ−CNを使用)0.6重量部、高誘電率充填材として平均粒径1.5μmのチタン酸バリウムフィラー(富士チタン工業株式会社製のBT−100PRを使用)1300重量部および平均粒径0.6μmのチタン酸バリウムフィラー(富士チタン工業株式会社製のHPBT−1を使用)400重量部、分散剤として非シリコーン系分散剤(ビックケミー・ジャパン株式会社製のBYK−W9010を使用)11.2重量部からなる組成物に、メチルエチルケトンを加えてビーズミルを用いて1000回転/分で1時間撹拌混合し、200メッシュのナイロン布でろ過した後に真空脱気した。この樹脂ワニスを、厚さ12μmの電解銅箔(古河サーキットフォイル株式会社製のGTS−12を使用)上に塗布し、140℃で5分間加熱乾燥して、膜厚が10μmのBステージ状態の塗膜を形成し、銅箔を備えた高誘電率材料シート3を作製した。
【0046】
このBステージ状態の高誘電率材料シート3の120℃の溶融粘度を島津フローテスターCFТ−100型(株式会社島津製作所、商品名)を用い、2mmφのノズル径の治具で測定したところ、150Pa・Sであった。また、170℃で1時間硬化させた硬化物について、LCRメータYHP4275A(横河ヒューレットパッカード株式会社、商品名)を用い、25℃、1MHzにおけるインピーダンス特性から誘電率を算出した結果、45であった。
【0047】
高誘電率材料シート4
エポキシ樹脂としてビスフェノールA型エポキシ樹脂(東都化成株式会社製のYD−8125を使用)66重量部、クレゾールノボラック型エポキシ樹脂(東都化成株式会社製のYDCN−703を使用)34重量部、エポキシ樹脂の硬化剤としてフェノールノボラック樹脂(大日本インキ化学工業株式会社製のプライオーフェンLF2882を使用)63重量部、高分子量樹脂としてフェノキシ樹脂(重量平均分子量5万、東都化成株式会社製のフェノトートYP−50を使用)24重量部、硬化促進剤として硬化促進剤1−シアノエチル−2−フェニルイミダゾール(キュアゾール2PZ−CNを使用)0.6重量部、高誘電率充填材として平均粒径1.5μmのチタン酸バリウムフィラー(富士チタン工業株式会社製のBT−100PRを使用)1900重量部および平均粒径0.6μmのチタン酸バリウムフィラー(富士チタン工業株式会社製のHPBT−1を使用)550重量部、分散剤として非シリコーン系分散剤(ビックケミー・ジャパン株式会社製のBYK−W9010を使用)15.9重量部からなる組成物に、メチルエチルケトンを加えてビーズミルを用いて1000回転/分で1時間撹拌混合し、200メッシュのナイロン布でろ過した後に真空脱気した。この樹脂ワニスを、厚さ12μmの電解銅箔(古河サーキットフォイル株式会社製のGTS−12を使用)上に塗布し、140℃で5分間加熱乾燥して、膜厚が25μmのBステージ状態の塗膜を形成し、銅箔を備えた高誘電率材料シート4を作製した。
【0048】
このBステージ状態の高誘電率材料シート4の120℃の溶融粘度を島津フローテスターCFТ−100型(株式会社島津製作所、商品名)を用い、2mmφのノズル径の治具で測定したところ、200Pa・Sであった。また、170℃で1時間硬化させた硬化物について、LCRメータYHP4275A(横河ヒューレットパッカード株式会社、商品名)を用い、25℃、1MHzにおけるインピーダンス特性から誘電率を算出した結果、70であった。
【0049】
高誘電率材料シート5
エポキシ樹脂としてビスフェノールA型エポキシ樹脂(東都化成株式会社製のYD−8125を使用)66重量部、クレゾールノボラック型エポキシ樹脂(東都化成株式会社製のYDCN−703を使用)34重量部、エポキシ樹脂の硬化剤としてフェノールノボラック樹脂(大日本インキ化学工業株式会社製のプライオーフェンLF2882を使用)63重量部、高分子量樹脂としてフェノキシ樹脂(重量平均分子量5万、東都化成株式会社製のフェノトートYP−50を使用)24重量部、硬化促進剤として硬化促進剤1−シアノエチル−2−フェニルイミダゾール(キュアゾール2PZ−CNを使用)0.6重量部、高誘電率充填材として平均粒径1.5μmのチタン酸バリウムフィラー(富士チタン工業株式会社製のBT−100PRを使用)860重量部、分散剤として非シリコーン系分散剤(ビックケミー・ジャパン株式会社製のBYK−W9010を使用)5.4重量部からなる組成物に、メチルエチルケトンを加えてビーズミルを用いて1000回転/分で1時間撹拌混合し、200メッシュのナイロン布でろ過した後に真空脱気した。この樹脂ワニスを、厚さ12μmの電解銅箔(古河サーキットフォイル株式会社製のGTS−12を使用)上に塗布し、140℃で5分間加熱乾燥して、膜厚が30μmのBステージ状態の塗膜を形成し、銅箔を備えた高誘電率材料シート5を作製した。
【0050】
このBステージ状態の高誘電率材料シート5の120℃の溶融粘度を島津フローテスターCFТ−100型(株式会社島津製作所、商品名)を用い、2mmφのノズル径の治具で測定したところ、100Pa・Sであった。また、170℃で1時間硬化させた硬化物について、LCRメータYHP4275A(横河ヒューレットパッカード株式会社、商品名)を用い、25℃、1MHzにおけるインピーダンス特性から誘電率を算出した結果、20であった。
【0051】
実施例1
図2(a)に示すような銅箔厚3μm、板厚0.2mmの両面銅箔張ガラスエポキシ積層板MCL−E−679F(日立化成工業株式会社製、商品名)に所望のドリル穴明けを行った(図2(b))。超音波洗浄とアルカリ過マンガン酸液で炭化した樹脂カスを除去後、この基板に触媒を付与して、密着促進化後無電解銅めっきを行い、ドリル穴内壁と銅箔表面に約15μmの無電解銅めっき層を形成した(図2(c))。この基板表面に次亜塩素酸ナトリウムを主成分とする黒化処理と、ジメチルアミノボランを主成分とする還元処理によって、粗化処理を行った。この基板のドリル穴内にスクリーン印刷によりペーストタイプの熱硬化型絶縁材料HRP−700BA(太陽インキ製造株式会社、商品名)を充填し、170℃で60分間の熱処理により硬化させた(図2(d))。基板表面をバフブラシにより研磨し、余分な絶縁材料を除去した後、この基板に触媒付与、密着促進化後無電解銅めっきを行い、基板表面に約15μmの無電解銅めっき層を形成した(図2(e))。ついで、この基板表面に所望のエッチングレジストを形成し、不要な銅を塩化第2鉄水溶液を用いてエッチング除去して、コンデンサの電極の一方を含む導体パターンを有する内層回路板を作製した(図2(f))。
【0052】
次に、この内層回路板表面にロールコータを用いてペーストタイプの熱硬化型絶縁材料HRP−700BA(太陽インキ製造株式会社、商品名)を基板絶縁層表面から約40μm、導体パターン表面から約5μm塗布し、170℃で60分間の熱処理により硬化させた。この基板をバフブラシにより導体パターン表面が現れるまで研磨し、余分な絶縁材料を除去して内層回路板の平坦化を行った(図2(g))。内層回路板表面の凹凸は3μm以下であった。その後、この回路板の回路表面に次亜塩素酸ナトリウムを主成分とする黒化処理と、ジメチルアミノボランを主成分とする還元処理によって、粗化処理を行った。
【0053】
次に、この回路板の片面に前述の高誘電率材料シート1を温度170℃、圧力1.5MPa、加熱加圧時間60分のプレス条件で積層一体化した(図2(h))。ついで、高誘電率材料シート1の銅箔上に所望のエッチングレジストを形成し、不要な銅箔を塩化第2鉄水溶液を用いてエッチング除去して、コンデンサの電極の他方を含む導体パターンを形成した(図2(i))。
【0054】
次に、この回路板の回路表面に、次亜塩素酸ナトリウムを主成分とする黒化処理と、ジメチルアミノボランを主成分とする還元処理によって、粗化処理を行い、(1)35μmキャリア銅箔付き厚み3μmの銅箔MT35S3(三井金属鉱業株式会社製、商品名)、(2)厚み80μmのフィラー入りガラスエポキシプリプレグGEA−679F(日立化成工業株式会社製、商品名)を2枚、(3)図2(i)の回路板、(4)厚み80μmのフィラー入りガラスエポキシプリプレグGEA−679Fを2枚、(5)35μmキャリア銅箔付き厚み3μmの銅箔MT35S3(三井金属鉱業株式会社製、商品名)の順に重ね、温度170℃、圧力1.5MPa、加熱加圧時間60分のプレス条件で積層一体化した(図2(j))。キャリア銅箔を剥がし、不要な基板端部を切断後、この基板の表面に所望のエッチングレジストを形成し、不要な銅箔を塩化第2鉄水溶液を用いてエッチング除去して、所望の箇所にφ0.15mmの窓穴を形成した。
【0055】
この基板表面に設けた窓穴の箇所に三菱電機株式会社製ML505GT型炭酸ガスレーザを用いて、出力パワー26mJ、パルス幅100μs、ショット数6回の条件でレーザ穴あけを行った(図2(k))。超音波洗浄とアルカリ過マンガン酸液で炭化した樹脂カスを除去後、洗浄、触媒付与、密着促進化後、CUST−3000(日立化成工業(株)製、商品名)を用いて無電解銅めっきを行い、レーザ穴内壁と銅箔表面に約20μmの無電解銅めっき層を形成した(図2(l))。この基板表面のパッドや回路パターンなど必要な箇所にエッチングレジストを形成し、不要な銅を塩化第2鉄水溶液を用いてエッチング除去して、外層回路を形成した(図2(m))。
【0056】
この基板表面にソルダーレジストPSR−4000AUS5(太陽インキ製造株式会社、商品名)をロールコータで30μm塗布、乾燥後に露光・現像して所望の箇所にソルダーレジストを形成した。その後、NIPS100(日立化成工業(株)製、商品名)を用いて3μmの無電解ニッケルめっき層とHGS2000(日立化成工業(株)製、商品名)を用いて0.1μmの無電解金めっき層を外層回路パターン露出部表面層に形成して、図1に示すような5層構造の多層配線板を得た。
【0057】
実施例2
高誘電率材料シート1に替えて高誘電率材料シート2を用いた以外は実施例1と同様な工程により多層配線板を得た。
【0058】
実施例3
高誘電率材料シート1に替えて高誘電率材料シート3を用いた以外は実施例1と同様な工程により多層配線板を得た。
【0059】
実施例4
高誘電率材料シート1に替えて高誘電率材料シート4を用いた以外は実施例1と同様な工程により多層配線板を得た。
【0060】
比較例1
図2(g)に示されるような樹脂充填による内層回路板の平坦化を行わず、また、高誘電率材料シート1に替えて高誘電率材料シート3を用いた以外は実施例1と同様な工程により多層配線板を得た。
【0061】
比較例2
高誘電率材料シート3に替えて高誘電率材料シート5を用いた以外は比較例1と同様な工程により多層配線板を得た。
【0062】
試験方法は以下の通りである。
【0063】
(コンデンサ容量)
コンデンサ容量の測定には、インピーダンスアナライザ4291B(アジレントテクノロジー株式会社製、商品名)に50Ω同軸ケーブルSUCOFLEX104/100(SUHNER社製、商品名)を介して高周波信号測定プローブMICROPRPBE ACP50(GSG250型、Cascade社、商品名)に接続した測定システムを用いた。コンデンサの電極サイズは1mm×1mmとし1GHzの容量を測定した。測定は基板の四隅と中央部の5カ所に設けたコンデンサの容量を測定した。
【0064】
(成型性)
成型性は、作製した多層配線板を10mm×30mmに切断後、エポキシ樹脂で注型し、基板断面を研磨して、多層配線板の中にボイド等があるかを評価した。ボイド等がない場合を良好、ボイド等がある場合を不良とした。
【0065】
【表1】
Figure 2004103617
実施例1〜4は、いずれもコンデンサ電極間の凹部に基板材料と高誘電率材料とは異なる第3の熱硬化型絶縁材料が充填され、平坦化されていることを特徴としている。これらの多層配線板に設けたコンデンサ容量のばらつきは±5%未満と小さく、成型性も良好であった。
【0066】
一方、比較例1は、コンデンサ電極の間にボイドがあったため成型性が不良であった。比較例2は、コンデンサの容量のばらつきが10%を超えていた。断面観察の結果から、その原因は高誘電率材料からなる絶縁層の厚みが3〜6μmと大きくばらついていたためであることがわかった。
【0067】
【発明の効果】
以上説明したように、本発明によれば、高誘電率材料の厚みが薄く、容量ばらつきの小さなコンデンサを有し、かつ成型性に問題のない多層配線板およびその製造方法、ならびに半導体装置および無線電子装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の多層配線板の一形態を示す断面図である。
【図2】本発明の多層配線板の製造方法の一例を示す断面図である。
【符号の説明】
1 基材
2 銅箔
3 めっき銅
4 穴埋め用絶縁樹脂
5 めっき銅
6 平坦化用絶縁樹脂
7 銅箔
8 高誘電率材料
9 銅箔
10 基材(プリプレグ)
11 めっき銅
12 コンデンサ
13 ニッケルめっき層
14 金めっき層
15 レジスト[0001]
[Industrial applications]
The present invention relates to a multilayer wiring board having a capacitor, a method for manufacturing the same, a semiconductor device, and a wireless electronic device.
[0002]
[Prior art]
2. Description of the Related Art In recent years, with the development of electronic devices, demands for downsizing and weight reduction in addition to higher performance of electronic components have become more and more severe. Particularly in portable wireless electronic devices represented by portable telephones, the demand is remarkable from the pursuit of convenience. Against this background, multilayer wiring boards have been used to efficiently mount semiconductor chips and passive elements. Until now, high-density wiring, such as thinning of the wiring line width, has been the mainstream. However, in order to reduce the number of components to be mounted, passive components such as capacitors have been required.
[0003]
Technologies for incorporating capacitors in multilayer wiring boards include technology for forming a dielectric layer by firing high-dielectric-constant inorganic materials, and technology for forming dielectric layers by combining high-dielectric-constant inorganic materials and resin materials. A technique of forming a thin dielectric layer using a process such as sputtering is known.
[0004]
As a technique of firing a high dielectric constant inorganic material to form a dielectric layer, there is an example of using a high dielectric constant material suitable for simultaneous firing with a substrate insulating material (see Patent Document 1 and Non-Patent Document 1). As a technique for forming a thin dielectric layer, there is an example in which a capacitor is built in a resin substrate by applying a semiconductor sputtering technique (see Non-Patent Document 2).
[0005]
A multilayer wiring board using a technique of forming a dielectric layer by combining a high dielectric constant inorganic material and a resin material does not have a high-temperature sintering step or a sputtering step, and is economically excellent. Many composite materials of a high dielectric constant inorganic material and a resin have been proposed for use in a multilayer wiring board using a resin (for example, see Non-Patent Document 3). The method of manufacturing a capacitor in a multilayer wiring board differs depending on the form of the material used. For example, a conventional method of manufacturing a multilayer wiring board (see Non-Patent Document 4) or a method of manufacturing a photosensitive high dielectric constant material is used. A method for manufacturing a multilayer wiring board used (see Non-Patent Document 5).
[0006]
[Patent Document 1] Japanese Patent Application Laid-Open No. 5-55079 [Non-Patent Document 1] Journal of the Japan Institute of Electronics Packaging Vol. 4, No. 2, pp. 145-149 [Non-Patent Document 2] Journal of the Japan Institute of Electronics Packaging Vol. 4, No. 7, 590 596 [Non-Patent Document 3] Journal of Materials Science: Materials in Electronics Vol. 11 pp. 253 to 268 [Non-Patent Document 4] Embedded Decoupling Capacitance Foreign-Corporate Foreign-Company-Related Transactions
[Non-Patent Document 5] "Integration of Thin Film Passive Circuits Using High / Low Electric Constant Materials", Electronic Components and Technology.
[Problems to be solved by the invention]
The capacitance, which is an important characteristic of a capacitor, is proportional to the relative permittivity of the dielectric of the capacitor and inversely proportional to the thickness of the dielectric. That is, in order to increase the capacitance of the capacitor using the same material, it is necessary to reduce the thickness of the high dielectric constant material. In the conventional method as disclosed in Non-Patent Document 4, when the high dielectric constant material is made thin, the handleability is reduced, and the production yield is poor. There is also a method of casting a high dielectric constant material on copper foil, such as copper foil with adhesive, which is a build-up board material, but the filling of the inner layer circuit pattern when laminating and integrating with the inner layer circuit board is also possible. And thickness control was a big problem.
[0008]
In addition, in a multilayer wiring board for a high-frequency circuit that uses many passive elements, a technique for efficiently incorporating an inductor in a substrate as a passive element other than a capacitor is also required. Furthermore, in a multilayer wiring board for a high-frequency circuit, reduction of transmission loss is also required.
[0009]
In view of the above, the present invention provides a multilayer wiring board having a capacitor having a small thickness of a high dielectric constant material, a small variation in capacitance, and excellent moldability, a method of manufacturing the same, and a semiconductor chip mounted on the multilayer wiring board. It is an object of the present invention to provide a semiconductor device equipped with the semiconductor device and a wireless electronic device equipped with the semiconductor device.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a plurality of insulating layers, a plurality of conductor layers, a non-through hole that is a conductor that electrically connects the plurality of conductor layers, and at least one made of a high dielectric constant material. A capacitor having electrodes formed on the upper and lower surfaces of one insulating layer, wherein a recess between conductive patterns including electrodes is filled with an insulating material different from a high dielectric constant material, Provided is a multilayer wiring board characterized in that the surface and the surface of the filled insulating material are flattened.
[0011]
In addition, the present invention provides a method for manufacturing a semiconductor device, comprising: a plurality of insulating layers; a plurality of conductive layers; a non-through hole made into a conductor for electrically connecting the plurality of conductive layers; and at least one insulating layer made of a high dielectric constant material. A method of manufacturing a multilayer wiring board having a capacitor having an electrode formed on a lower surface thereof, wherein a step of forming a conductor pattern including one of the electrodes and an insulating material different from the high-permittivity material is formed in a recess between the conductor patterns. A step of filling and hardening, a step of flattening the surface of the conductor pattern and the surface of the insulating material that has been filled and cured by polishing and a recess between the conductor patterns, and a metal foil including a semi-cured high dielectric material And a step of heating and laminating the multilayer wiring boards.
[0012]
The present invention also provides a semiconductor device in which a semiconductor chip is mounted on a multilayer wiring board having the above characteristics.
[0013]
The present invention also provides a wireless electronic device having the above-described semiconductor device mounted thereon.
[0014]
According to the present invention as described above, a multilayer wiring board having a capacitor having a small thickness of a high dielectric constant material, a small variation in capacitance, and excellent moldability, a method of manufacturing the same, a semiconductor device and a wireless electronic device Can be provided.
[0015]
Hereinafter, embodiments of the present invention will be described in detail.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The multilayer wiring board according to the present invention includes a plurality of insulating layers, a plurality of conductive layers, a non-through hole that is a conductor that electrically connects the plurality of conductive layers, and at least one insulating layer made of a high dielectric constant material. A capacitor having electrodes formed on the upper and lower surfaces thereof, and a concave portion between the conductor patterns including the electrodes is filled with an insulating material different from the high dielectric constant material, and is filled with the surface of the conductor patterns. A multilayer wiring board characterized in that the surface of the insulating material is flattened.
[0017]
In the conventional multilayer wiring board with a built-in capacitor, since the insulating resin is not filled in the concave portions between the conductor patterns, the thickness of the highly elastic high dielectric material layer becomes thick, and as a result, the capacitance variation of the capacitor tends to increase. On the other hand, in the present invention, as described above, the concave portions between the conductor patterns are filled with an insulating resin in advance, and the surface of the substrate on which the high dielectric material layer is formed is flattened. The thin film can be provided with high thickness accuracy, and furthermore, it is possible to reduce the variation in capacitance of the capacitor.
[0018]
Further, by using a third insulating material different from the insulating resin used for the insulating layer of the substrate and the high dielectric constant material as the insulating material to be filled between the conductor patterns, a more excellent capacitor can be obtained.
[0019]
The high dielectric constant material used for the capacitor of the multilayer wiring board of the present invention is a resin composition containing at least an insulating resin and a high dielectric constant filler. The insulating resin is not particularly limited, but an epoxy resin and a curing agent which can be used in a semi-cured state and can provide a high dielectric material having excellent insulating properties after curing can be used. Is preferred.
[0020]
Any epoxy resin may be used as long as it cures and exhibits an adhesive action, but is preferably a bifunctional or higher epoxy resin having a molecular weight of less than 5,000, more preferably less than 3,000. Examples of the bifunctional epoxy resin include a bisphenol A type or bisphenol F type resin. The bisphenol A type or bisphenol F type liquid resin is commercially available from Yuka Shell Epoxy Co., Ltd. under the trade names of Epikote 807, Epikote 827 and Epikote 828. In addition, Dow Chemical Japan Co., Ltd. E. FIG. R. 330, D.A. E. FIG. R. 331; E. FIG. R. 361. Further, they are commercially available from Toto Kasei Co., Ltd. under the trade names YD8125 and YDF8170.
[0021]
Further, a polyfunctional epoxy resin may be added for the purpose of increasing Tg, and examples thereof include a phenol novolak type epoxy resin and a cresol novolak type epoxy resin. Phenol novolak type epoxy resin is commercially available from Nippon Kayaku Co., Ltd. under the trade name EPPN-201. Cresol novolak type epoxy resin is commercially available from Sumitomo Chemical Co., Ltd. under the trade names ESCN-190 and ESCN-195. It is also commercially available from Nippon Kayaku Co., Ltd. under the trade names EOCN1012, EOCN1025, and EOCN1027. Further, it is commercially available from Toto Kasei Co., Ltd. under the trade names of YDCN701, YDCN702, YDCN703, and YDCN704.
[0022]
As the curing agent for the epoxy resin, a commonly used curing agent can be used, and is not particularly limited. For example, amine, polyamide, acid anhydride, polysulfide, boron trifluoride, and phenolic hydroxyl group are contained in one molecule. Bisphenol A, bisphenol F, and bisphenol S, which are compounds having two or more, are exemplified. In particular, it is preferable to use a phenol resin such as a phenol novolak resin, a bisphenol novolak resin or a cresol novolak resin because of its excellent electric corrosion resistance when absorbing moisture. Preferred curing agents are commercially available from Dainippon Ink and Chemicals, Inc. under the trade names Plyofen LF2882, Phenolite TD-2090, Phenolite TD-2149, Phenolite VH4150, and Phenolite VH4170.
[0023]
Further, a conventionally known curing accelerator can be used together with the curing agent, and it is preferable to use various imidazoles as the curing accelerator. Examples of the imidazole include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, and the like. Such imidazoles are commercially available from Shikoku Chemicals Corporation under the trade names 2E4MZ, 2PZ-CN, and 2PZ-CNS.
[0024]
Examples of the high dielectric constant filler include barium titanate, strontium titanate, calcium titanate, magnesium titanate, lead titanate, titanium dioxide, barium zirconate, calcium zirconate, lead zirconate, and the like. These may be used alone or in combination of two or more. It is particularly preferable to use one having a relative dielectric constant of 50 or more. In addition, it is preferable that one or more of the above-mentioned high dielectric constant fillers are mixed in a weight ratio of 300 to 3000 with respect to the insulating resin 100.
[0025]
Further, in order to improve the handleability of the high dielectric constant material used in the present invention, the weight average molecular weight having at least one functional group such as an epoxy group, an amide group, a carboxyl group, a cyanate group, and a hydroxy group is 10,000 to It is preferable to blend a high molecular weight resin of 800,000. When the weight average molecular weight is 10,000 or more, the tackiness of the high dielectric constant material in the B stage can be reduced and the flexibility at the time of curing can be improved. When the weight average molecular weight exceeds 800,000, it becomes difficult to uniformly disperse the high dielectric constant filler. Examples of such a high molecular weight resin include a phenoxy resin, a high molecular weight epoxy resin, an ultrahigh molecular weight epoxy resin, a polyamideimide resin, and a functional group-containing reactive rubber. The phenoxy resin is commercially available from Toto Kasei Co., Ltd. under the trade names Phenotote YP-40 and Phenotote YP-50. It is also commercially available from Phenoxy Associates under the trade names PKHC, PKHH, and PKHJ. The high-molecular-weight epoxy resin is a high-molecular-weight epoxy resin having a weight-average molecular weight of 30,000 to 80,000, and an ultra-high-molecular-weight epoxy resin having a weight-average molecular weight exceeding 80,000 (Japanese Patent Publication No. 7-59617, Japanese Patent Publication No. No. 59618, Japanese Patent Publication No. 7-59619, Japanese Patent Publication No. 7-59620, Japanese Patent Publication No. 7-64911 and Japanese Patent Publication No. 7-68327), all of which are manufactured by Hitachi Chemical Co., Ltd. The polyamide imide resin is commercially available from Hitachi Chemical Co., Ltd. under the trade name of KS9000 series. As the functional group-containing reactive rubber, carboxyl group-containing acrylic rubber is commercially available from Teikoku Chemical Industry Co., Ltd. under the trade name of HTR-860P, and epoxy group-containing acrylic rubber is commercially available under the trade name of HTR-860P-3. .
[0026]
Further, a dispersant may be added to the high dielectric constant material used in the present invention. The dispersant that can be used may be any conventionally known one such as a commercially available non-silicone dispersant, and is not particularly limited. In addition, the amount may be appropriately determined by experiment.
[0027]
The high dielectric constant material having the above composition is preferably mixed with an organic solvent such as methyl ethyl ketone to form a varnish, applied to a metal foil, dried, and used in a B-stage state sheet for use. . Examples of the metal foil used here include copper, aluminum, and the like, and the thickness thereof is preferably 1 to 35 μm, and more preferably 1 to 12 μm. Further, by not performing metal plating on the metal foil, it is possible to suppress an increase in the metal foil thickness. Further, the relative permittivity of the cured product of the high dielectric constant material at 25 ° C. and 1 MHz is preferably 20 to 100, and the thickness of the insulating layer made of the high dielectric constant material is 0.1 μm to 30 μm. Is preferred.
[0028]
Further, the melt viscosity at 120 ° C. in the B-stage state of the high dielectric constant material is preferably 100 to 200 Pa · S. When the minimum melt viscosity is lower than 100 Pa · S, the flow is large and the thickness variation becomes large, and when the minimum melt viscosity is higher than 200 Pa · S, the adhesiveness decreases.
[0029]
In the present invention, the insulating resin used for the insulating layer other than the insulating layer made of the high dielectric constant material is not particularly limited, but it is preferable to use an insulating resin different from the high dielectric constant material, A resin reinforced with a base material and having an inorganic filler added to a resin is preferable. By reinforcing with a glass substrate, even if the thickness of the insulating layer is 150 μm or more, it is easier to control the thickness as compared to a case where there is no glass substrate. Further, by adding the inorganic filler, the undulation of the surface due to the influence of the glass substrate is reduced, and a multilayer wiring board having a smooth surface excellent in high-frequency characteristics can be obtained. Commercially available resins reinforced with a glass substrate and added with an inorganic filler include MCL-E-679F and MCL-BE-67G (H) (all trade names, manufactured by Hitachi Chemical Co., Ltd.). And CS-3355S, CS-3357S (trade name, manufactured by Risho Kogyo Co., Ltd.) and GEA-679F, GEA-67BE (H) (trade name, manufactured by Hitachi Chemical Co., Ltd.) And an interlayer adhesive insulating material such as ES-3305S (trade name, manufactured by Risho Kogyo Co., Ltd.).
[0030]
Further, the multilayer wiring board of the present invention may have an inductor in addition to the capacitor. The inductor is formed by etching a conductor layer, and is preferably formed in a conductor pattern including electrodes of a capacitor. Also, since the inductor density becomes higher when the line width of the conductor pattern is thinner, it is preferable that the inductor be thinner than the other conductor layers and have a thickness of 1 to 12 μm.
[0031]
Further, the multilayer wiring board of the present invention preferably has a capacitor in an arbitrary layer except for a core layer which is an insulating layer at the center thereof, and the capacitance variation of the capacitor is preferably less than ± 5%.
[0032]
In the past, there was a problem that the warpage was small when the substrate material was symmetrically laminated with respect to the substrate serving as the core, but the warpage was large when the substrate material was asymmetrically laminated. Since the dielectric material can be provided thinly and with high thickness accuracy, warpage is reduced regardless of the symmetrical or asymmetrical layer configuration of the multilayer wiring board, and it is possible to greatly improve the design flexibility of the capacitor. Become. Therefore, in the multilayer wiring board of the present invention, the warpage is preferably 1 mm or less.
[0033]
Further, the multilayer wiring board of the present invention may have a non-through hole penetrating at least one insulating layer made of the high dielectric constant material and an insulating layer adjacent thereto at the same time.
[0034]
Further, the multilayer wiring board of the present invention is preferably provided with a conductor pattern having a line width of 300 μm or more on the outermost conductor layer, and the thickness of the insulating layer adjacent to the outermost conductor layer is preferably 150 μm or more. By setting the line width to 300 μm or more, signal attenuation in a high-frequency circuit can be suppressed, and by setting the thickness of the insulating layer to 150 μm or more, a decrease in characteristic impedance can be suppressed.
[0035]
As a method of manufacturing the multilayer wiring board of the present invention, a step of forming a conductor pattern including one of the electrodes of the capacitor, filling a recess between the conductor patterns with an insulating material different from a high dielectric constant material, curing, At least a step of flattening the surface of the conductive pattern and the surface of the cured insulating material filled between the conductive patterns by polishing, and a step of heating and laminating a metal foil provided with a semi-cured high dielectric constant material. It is characterized by including.
[0036]
The method may further include a step of forming a conductor pattern including the other electrode of the capacitor by etching the metal foil, and a step of forming an inductor in at least one conductor layer.
[0037]
According to the manufacturing method of the present invention, the insulating material is filled in the recesses between the conductor patterns to flatten the substrate plane, so that the high dielectric constant material is sandwiched between the flat surfaces during the lamination, and is molded. A high dielectric constant material layer with small thickness variation can be obtained, and a capacitor with small capacitance variation can be provided. Further, a fine inductor pattern having a high inductance density can be obtained.
[0038]
The present invention further provides a semiconductor device in which a semiconductor chip is mounted on the multilayer wiring board described above. By using a capacitor with small capacitance variation or a multilayer wiring board having a capacitor with small capacitance variation and an inductor with high inductance density in a substrate, a semiconductor device that has achieved both miniaturization and weight reduction can be obtained. Further, by providing a conductor pattern having a line width of 300 μm or more in the outermost conductor layer, and further using a multilayer wiring board in which the thickness of the insulating layer adjacent to the outermost conductor layer is 150 μm or more, high-frequency attenuation is small, A semiconductor device in which reflected noise due to characteristic impedance mismatch is small can be obtained.
[0039]
The present invention further provides a wireless electronic device equipped with the above-described semiconductor device. By using a small and lightweight semiconductor device, the wireless electronic device can be reduced in size and weight. Further, it is possible to obtain a wireless electronic device having excellent high frequency characteristics.
[0040]
Hereinafter, the multilayer wiring board of the present invention and the method of manufacturing the same will be described in more detail with reference to examples, but the present invention is not limited thereto.
[0041]
【Example】
High dielectric constant material sheet 1
66 parts by weight of a bisphenol A type epoxy resin (using YD-8125 manufactured by Toto Kasei Co., Ltd.), 34 parts by weight of cresol novolac type epoxy resin (using YDCN-703 manufactured by Toto Kasei Co., Ltd.) 63 parts by weight of a phenol novolak resin (Plyofen LF2882 manufactured by Dainippon Ink and Chemicals, Inc.) as a curing agent, and a phenoxy resin (weight average molecular weight: 50,000, phenothoto YP-50 manufactured by Toto Kasei Co., Ltd.) as a high molecular weight resin 24 parts by weight, 0.6 parts by weight of a curing accelerator 1-cyanoethyl-2-phenylimidazole (using Curezol 2PZ-CN) as a curing accelerator, and titanium having an average particle diameter of 1.5 μm as a high dielectric constant filler. Barium acid filler (BT-100P manufactured by Fuji Titanium Industry Co., Ltd.) To the composition consisting of 860 parts by weight and 5.4 parts by weight of a non-silicone dispersant (BYK-W9010 manufactured by BYK Japan KK) as a dispersant, methyl ethyl ketone was added, and the mixture was rotated at 1000 rpm using a bead mill. The mixture was stirred and mixed at 1 / min for 1 hour, filtered through a 200-mesh nylon cloth, and then degassed under vacuum. This resin varnish was applied on a 12 μm-thick electrolytic copper foil (using GTS-12 manufactured by Furukawa Circuit Foil Co., Ltd.), and dried by heating at 140 ° C. for 5 minutes. A coating film was formed, and a high dielectric constant material sheet 1 provided with a copper foil was produced.
[0042]
The melt viscosity at 120 ° C. of the high-dielectric-constant material sheet 1 in the B-stage state was measured with a jig having a nozzle diameter of 2 mmφ using a Shimadzu flow tester CF # -100 (Shimadzu Corporation, trade name). -It was S. The dielectric constant of the cured product cured at 170 ° C. for 1 hour was calculated from the impedance characteristics at 25 ° C. and 1 MHz using an LCR meter YHP4275A (trade name, Yokogawa Hewlett-Packard Co., Ltd.). .
[0043]
High dielectric constant material sheet 2
66 parts by weight of a bisphenol A type epoxy resin (YD-8125 manufactured by Toto Kasei Co., Ltd.), 34 parts by weight of cresol novolac type epoxy resin (YDCN-703 manufactured by Toto Kasei Co., Ltd.) 63 parts by weight of a phenol novolak resin (Plyofen LF2882 manufactured by Dainippon Ink and Chemicals, Inc.) as a curing agent, 24 parts by weight of a polyamideimide resin (weight average molecular weight of 70,000) represented by the following general formula as a high molecular weight resin,
Embedded image
Figure 2004103617
0.6 parts by weight of a curing accelerator 1-cyanoethyl-2-phenylimidazole (using Curazole 2PZ-CN) as a curing accelerator, and a barium titanate filler having an average particle size of 1.5 μm as a high dielectric constant filler (Fuji Titanium Industry Co., Ltd.) 1300 parts by weight of BT-100PR manufactured by Co., Ltd.) and 400 parts by weight of barium titanate filler having an average particle diameter of 0.6 μm (using HPBT-1 manufactured by Fuji Titanium Industry Co., Ltd.), non-silicone dispersion as a dispersant To a composition consisting of 11.2 parts by weight of an agent (BYK-W9010 manufactured by BYK Japan KK), methyl ethyl ketone was added, and the mixture was stirred and defoamed for 10 minutes using a small stirring and defoaming apparatus, and then a 200-mesh nylon cloth was used. And filtered. This resin varnish was applied on a 12 μm-thick electrolytic copper foil (using GTS-12 manufactured by Furukawa Circuit Foil Co., Ltd.), and dried by heating at 140 ° C. for 5 minutes. A coating film was formed, and a high dielectric constant material sheet 2 provided with a copper foil was produced.
[0044]
The melt viscosity at 120 ° C. of the high-permittivity material sheet 2 in the B-stage state was measured with a jig having a nozzle diameter of 2 mmφ using a Shimadzu flow tester CF # -100 (Shimadzu Corporation, trade name). -It was S. The dielectric constant of the cured product cured at 170 ° C. for 1 hour using an LCR meter YHP4275A (trade name of Yokogawa Hewlett Packard Co., Ltd.) from the impedance characteristics at 25 ° C. and 1 MHz was 45. .
[0045]
High dielectric constant material sheet 3
66 parts by weight of a bisphenol A type epoxy resin (using YD-8125 manufactured by Toto Kasei Co., Ltd.), 34 parts by weight of cresol novolac type epoxy resin (using YDCN-703 manufactured by Toto Kasei Co., Ltd.) 63 parts by weight of a phenol novolak resin (Plyofen LF2882 manufactured by Dainippon Ink and Chemicals, Inc.) as a curing agent, and a phenoxy resin (weight average molecular weight: 50,000, phenothoto YP-50 manufactured by Toto Kasei Co., Ltd.) as a high molecular weight resin 24 parts by weight, 0.6 parts by weight of a curing accelerator 1-cyanoethyl-2-phenylimidazole (using Curezol 2PZ-CN) as a curing accelerator, and titanium having an average particle diameter of 1.5 μm as a high dielectric constant filler. Barium acid filler (BT-100P manufactured by Fuji Titanium Industry Co., Ltd.) 1300 parts by weight and 400 parts by weight of a barium titanate filler having an average particle diameter of 0.6 μm (using HPBT-1 manufactured by Fuji Titanium Industry Co., Ltd.), and a non-silicone dispersant (BIC Chemie Japan K.K.) Methyl ethyl ketone was added to a composition consisting of 11.2 parts by weight, and the mixture was stirred and mixed at 1,000 rpm for 1 hour using a bead mill, filtered through a 200-mesh nylon cloth, and then vacuum degassed. did. This resin varnish was applied on a 12 μm-thick electrolytic copper foil (using GTS-12 manufactured by Furukawa Circuit Foil Co., Ltd.), and dried by heating at 140 ° C. for 5 minutes. A coating film was formed, and a high dielectric constant material sheet 3 provided with a copper foil was produced.
[0046]
The melt viscosity at 120 ° C. of the high-permittivity material sheet 3 in the B-stage state was measured with a jig having a nozzle diameter of 2 mmφ using a Shimadzu flow tester CF # -100 (Shimadzu Corporation, trade name) to be 150 Pa. -It was S. The dielectric constant of the cured product cured at 170 ° C. for 1 hour using an LCR meter YHP4275A (trade name of Yokogawa Hewlett Packard Co., Ltd.) from the impedance characteristics at 25 ° C. and 1 MHz was 45. .
[0047]
High dielectric constant material sheet 4
66 parts by weight of a bisphenol A type epoxy resin (using YD-8125 manufactured by Toto Kasei Co., Ltd.), 34 parts by weight of cresol novolac type epoxy resin (using YDCN-703 manufactured by Toto Kasei Co., Ltd.) 63 parts by weight of a phenol novolak resin (Plyofen LF2882 manufactured by Dainippon Ink and Chemicals, Inc.) as a curing agent, and a phenoxy resin (weight average molecular weight: 50,000, phenothoto YP-50 manufactured by Toto Kasei Co., Ltd.) as a high molecular weight resin 24 parts by weight, 0.6 parts by weight of a curing accelerator 1-cyanoethyl-2-phenylimidazole (using Curezol 2PZ-CN) as a curing accelerator, and titanium having an average particle diameter of 1.5 μm as a high dielectric constant filler. Barium acid filler (BT-100P manufactured by Fuji Titanium Industry Co., Ltd.) ) 1900 parts by weight and 550 parts by weight of a barium titanate filler having an average particle size of 0.6 μm (using HPBT-1 manufactured by Fuji Titanium Industry Co., Ltd.), and a non-silicone dispersant (BIC Chemie Japan KK) as a dispersant To the composition consisting of 15.9 parts by weight, methyl ethyl ketone was added, and the mixture was stirred and mixed at 1,000 rpm using a bead mill for 1 hour, filtered through a 200-mesh nylon cloth, and then vacuum degassed. did. This resin varnish was applied on a 12 μm-thick electrolytic copper foil (using GTS-12 manufactured by Furukawa Circuit Foil Co., Ltd.), and dried by heating at 140 ° C. for 5 minutes. A coating film was formed, and a high dielectric constant material sheet 4 provided with a copper foil was produced.
[0048]
The melt viscosity at 120 ° C. of the high-permittivity material sheet 4 in the B-stage state was measured with a jig having a nozzle diameter of 2 mmφ using a Shimadzu flow tester CF # -100 (Shimadzu Corporation, trade name). -It was S. The dielectric constant of the cured product cured at 170 ° C. for 1 hour was calculated from the impedance characteristics at 25 ° C. and 1 MHz using an LCR meter YHP4275A (trade name, Yokogawa Hewlett-Packard Co., Ltd.). .
[0049]
High dielectric constant material sheet 5
66 parts by weight of a bisphenol A type epoxy resin (using YD-8125 manufactured by Toto Kasei Co., Ltd.), 34 parts by weight of cresol novolac type epoxy resin (using YDCN-703 manufactured by Toto Kasei Co., Ltd.) 63 parts by weight of a phenol novolak resin (Plyofen LF2882 manufactured by Dainippon Ink and Chemicals, Inc.) as a curing agent, and a phenoxy resin (weight average molecular weight: 50,000, phenothoto YP-50 manufactured by Toto Kasei Co., Ltd.) as a high molecular weight resin 24 parts by weight, 0.6 parts by weight of a curing accelerator 1-cyanoethyl-2-phenylimidazole (using Curezol 2PZ-CN) as a curing accelerator, and titanium having an average particle diameter of 1.5 μm as a high dielectric constant filler. Barium acid filler (BT-100P manufactured by Fuji Titanium Industry Co., Ltd.) To the composition consisting of 860 parts by weight and 5.4 parts by weight of a non-silicone dispersant (BYK-W9010 manufactured by BYK Japan KK) as a dispersant, methyl ethyl ketone was added, and the mixture was rotated at 1000 rpm using a bead mill. The mixture was stirred and mixed at 1 / min for 1 hour, filtered through a 200-mesh nylon cloth, and then degassed under vacuum. This resin varnish was applied on a 12 μm-thick electrolytic copper foil (using GTS-12 manufactured by Furukawa Circuit Foil Co., Ltd.), and dried by heating at 140 ° C. for 5 minutes. A coating film was formed, and a high dielectric constant material sheet 5 provided with a copper foil was produced.
[0050]
The melt viscosity at 120 ° C. of the high-permittivity material sheet 5 in the B-stage state was measured with a jig having a nozzle diameter of 2 mmφ using a Shimadzu flow tester CF # -100 (Shimadzu Corporation, trade name). -It was S. The dielectric constant of the cured product cured at 170 ° C. for 1 hour was calculated from the impedance characteristics at 25 ° C. and 1 MHz using an LCR meter YHP4275A (trade name, Yokogawa Hewlett-Packard Co., Ltd.). .
[0051]
Example 1
As shown in FIG. 2A, a desired drill hole is formed in a double-sided copper foil-clad glass epoxy laminate MCL-E-679F (trade name, manufactured by Hitachi Chemical Co., Ltd.) having a copper foil thickness of 3 μm and a plate thickness of 0.2 mm. (FIG. 2B). After ultrasonic cleaning and removal of the resin residue carbonized with an alkali permanganate solution, a catalyst is applied to this substrate, and after promoting adhesion, electroless copper plating is performed. An electrolytic copper plating layer was formed (FIG. 2C). The surface of the substrate was subjected to a roughening treatment by a blackening treatment mainly containing sodium hypochlorite and a reduction treatment mainly containing dimethylaminoborane. The paste-type thermosetting insulating material HRP-700BA (Taiyo Ink Manufacturing Co., Ltd., trade name) was filled into the drill holes of the substrate by screen printing, and cured by heat treatment at 170 ° C. for 60 minutes (FIG. 2 (d)). )). After the surface of the substrate was polished with a buff brush to remove excess insulating material, a catalyst was applied to the substrate, electroless copper plating was performed after promoting adhesion, and an electroless copper plating layer of about 15 μm was formed on the substrate surface (FIG. 2 (e)). Then, a desired etching resist was formed on the surface of the substrate, and unnecessary copper was removed by etching using an aqueous ferric chloride solution, thereby producing an inner circuit board having a conductor pattern including one of the electrodes of the capacitor (FIG. 2 (f)).
[0052]
Next, a paste-type thermosetting insulating material HRP-700BA (Taiyo Ink Manufacturing Co., Ltd., trade name) is applied to the surface of the inner layer circuit board using a roll coater at about 40 μm from the substrate insulating layer surface and about 5 μm from the conductor pattern surface. It was applied and cured by heat treatment at 170 ° C. for 60 minutes. This substrate was polished with a buff brush until the surface of the conductor pattern appeared, and excess insulating material was removed to flatten the inner circuit board (FIG. 2 (g)). The irregularities on the surface of the inner circuit board were 3 μm or less. Thereafter, the circuit surface of this circuit board was subjected to a roughening treatment by a blackening treatment mainly containing sodium hypochlorite and a reduction treatment mainly containing dimethylaminoborane.
[0053]
Next, the above-mentioned high dielectric constant material sheet 1 was laminated and integrated on one side of this circuit board under the pressing conditions of a temperature of 170 ° C., a pressure of 1.5 MPa, and a heating and pressing time of 60 minutes (FIG. 2 (h)). Next, a desired etching resist is formed on the copper foil of the high dielectric material sheet 1, and unnecessary copper foil is removed by etching using an aqueous ferric chloride solution to form a conductor pattern including the other electrode of the capacitor. (FIG. 2 (i)).
[0054]
Next, the circuit surface of this circuit board was subjected to a roughening treatment by a blackening treatment mainly containing sodium hypochlorite and a reduction treatment mainly containing dimethylaminoborane, and (1) a carrier having a thickness of 35 μm carrier copper. (2) Two pieces of glass epoxy prepreg GEA-679F (trade name, manufactured by Hitachi Chemical Co., Ltd.) with a thickness of 80 μm and a copper foil MT35S3 (trade name, manufactured by Mitsui Kinzoku Mining Co., Ltd.) with a thickness of 3 μm, 3) The circuit board of FIG. 2 (i), (4) two 80 μm-thick glass epoxy prepregs GEA-679F with a filler, and (5) a 35 μm copper foil MT35S3 with a 35 μm carrier copper foil (manufactured by Mitsui Mining & Smelting Co., Ltd.) , And product names), and were laminated and integrated under pressing conditions of a temperature of 170 ° C., a pressure of 1.5 MPa, and a heating and pressing time of 60 minutes (FIG. 2 (j)). After peeling off the carrier copper foil and cutting the unnecessary edge of the substrate, a desired etching resist is formed on the surface of the substrate, and the unnecessary copper foil is removed by etching using a ferric chloride aqueous solution to a desired portion. A window hole of φ0.15 mm was formed.
[0055]
Using a ML505GT carbon dioxide laser manufactured by Mitsubishi Electric Corporation, laser drilling was performed at the position of the window hole provided on the substrate surface under the conditions of an output power of 26 mJ, a pulse width of 100 μs, and six shots (FIG. 2 (k)). ). After removing the resin residue carbonized by ultrasonic cleaning and alkali permanganate solution, cleaning, applying a catalyst, and promoting adhesion, electroless copper plating using CUST-3000 (trade name, manufactured by Hitachi Chemical Co., Ltd.) Then, an electroless copper plating layer of about 20 μm was formed on the inner wall of the laser hole and the surface of the copper foil (FIG. 2 (l)). An etching resist was formed in necessary places such as pads and circuit patterns on the substrate surface, and unnecessary copper was removed by etching using an aqueous ferric chloride solution to form an outer layer circuit (FIG. 2 (m)).
[0056]
A solder resist PSR-4000AUS5 (Taiyo Ink Manufacturing Co., Ltd., trade name) was applied to the surface of the substrate by a roll coater at 30 μm, dried, exposed and developed to form a solder resist at a desired position. Then, a 3 μm electroless nickel plating layer using NIPS100 (trade name, manufactured by Hitachi Chemical Co., Ltd.) and a 0.1 μm electroless gold plating layer using HGS2000 (trade name, manufactured by Hitachi Chemical Co., Ltd.) The layers were formed on the outer layer circuit pattern exposed portion surface layer to obtain a multilayer wiring board having a five-layer structure as shown in FIG.
[0057]
Example 2
A multilayer wiring board was obtained by the same process as in Example 1 except that the high dielectric constant material sheet 2 was used instead of the high dielectric constant material sheet 1.
[0058]
Example 3
A multilayer wiring board was obtained by the same process as in Example 1 except that the high dielectric material sheet 3 was used instead of the high dielectric material sheet 1.
[0059]
Example 4
A multilayer wiring board was obtained by the same steps as in Example 1 except that the high dielectric constant material sheet 4 was used instead of the high dielectric constant material sheet 1.
[0060]
Comparative Example 1
Same as Example 1 except that the inner circuit board was not flattened by resin filling as shown in FIG. 2 (g), and a high dielectric material sheet 3 was used instead of the high dielectric material sheet 1. The multilayer wiring board was obtained by the following steps.
[0061]
Comparative Example 2
A multilayer wiring board was obtained by the same process as in Comparative Example 1 except that the high dielectric constant material sheet 5 was used instead of the high dielectric constant material sheet 3.
[0062]
The test method is as follows.
[0063]
(Capacitor capacity)
To measure the capacitance of the capacitor, a high frequency signal measurement probe MICROPRPBE ACP50 (Model GSG250, Cascade) is connected to an impedance analyzer 4291B (Agilent Technology Co., Ltd., trade name) via a 50Ω coaxial cable SUCOFLEX104 / 100 (SUHNER, trade name). , A trade name). The electrode size of the capacitor was 1 mm × 1 mm, and the capacitance at 1 GHz was measured. For the measurement, the capacitance of the capacitors provided at the four corners and at the center of the substrate was measured.
[0064]
(Moldability)
The moldability was determined by cutting the prepared multilayer wiring board to 10 mm × 30 mm, casting it with an epoxy resin, polishing the cross section of the substrate, and checking for voids or the like in the multilayer wiring board. The case where there was no void was evaluated as good, and the case where there was void was evaluated as poor.
[0065]
[Table 1]
Figure 2004103617
Embodiments 1 to 4 are characterized in that the recess between the capacitor electrodes is filled with a third thermosetting insulating material different from the substrate material and the high dielectric constant material, and is flattened. The variation in the capacitance of the capacitors provided on these multilayer wiring boards was as small as less than ± 5%, and the moldability was good.
[0066]
On the other hand, Comparative Example 1 was poor in moldability due to voids between the capacitor electrodes. In Comparative Example 2, the variation in the capacitance of the capacitor exceeded 10%. From the results of the cross-sectional observation, it was found that the cause was that the thickness of the insulating layer made of a high dielectric constant material was widely varied as 3 to 6 μm.
[0067]
【The invention's effect】
INDUSTRIAL APPLICABILITY As described above, according to the present invention, a multilayer wiring board having a thinner high dielectric constant material, a capacitor with small capacitance variation, and having no problem in moldability, a method of manufacturing the same, a semiconductor device, and a wireless device An electronic device can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing one embodiment of a multilayer wiring board of the present invention.
FIG. 2 is a cross-sectional view illustrating an example of the method for manufacturing a multilayer wiring board of the present invention.
[Explanation of symbols]
Reference Signs List 1 base material 2 copper foil 3 plated copper 4 insulating resin for filling holes 5 plated copper 6 insulating resin for flattening 7 copper foil 8 high dielectric constant material 9 copper foil 10 base material (prepreg)
11 plated copper 12 capacitor 13 nickel plated layer 14 gold plated layer 15 resist

Claims (19)

複数の絶縁層と、複数の導体層と、前記複数の導体層を電気的に接続する導体化された非貫通穴と、高誘電率材料からなる少なくとも1つの前記絶縁層の上下面に電極を形成してなるコンデンサと、を有する多層配線板であって、前記電極を含む導体パターン間の凹部に前記高誘電率材料と異なる絶縁材料が充填され、該導体パターン表面と充填された絶縁材料表面とが平坦化されていることを特徴とする多層配線板。A plurality of insulating layers, a plurality of conductive layers, a non-through hole made conductive which electrically connects the plurality of conductive layers, and electrodes on upper and lower surfaces of at least one of the insulating layers made of a high dielectric constant material; And a capacitor formed, wherein a recess between the conductor patterns including the electrodes is filled with an insulating material different from the high dielectric constant material, and the surface of the conductor pattern and the filled insulating material Characterized in that the multilayer wiring board is flattened. 少なくとも1つの前記電極を含む導体パターンが前記高誘電率材料を含む3種類の異なる絶縁材料に接していることを特徴とする請求項1に記載の多層配線板。2. The multilayer wiring board according to claim 1, wherein the conductor pattern including at least one of the electrodes is in contact with three different insulating materials including the high dielectric constant material. 少なくとも1つの導体層をパターン形成してなるインダクタを有することを特徴とする請求項1または2のいずれかに記載の多層配線板。3. The multilayer wiring board according to claim 1, further comprising an inductor formed by patterning at least one conductor layer. 前記インダクタを形成した導体層の厚みが他の導体層の厚みよりも薄く、かつその厚みが1〜12μmであることを特徴とする請求項3に記載の多層配線板。The multilayer wiring board according to claim 3, wherein the thickness of the conductor layer on which the inductor is formed is smaller than the thickness of the other conductor layers, and the thickness is 1 to 12 m. 前記インダクタは、前記絶縁層の上下面に形成された前記電極のうち、いずれか一方に作製されることを特徴とする請求項3または4に記載の多層配線板。5. The multilayer wiring board according to claim 3, wherein the inductor is formed on one of the electrodes formed on upper and lower surfaces of the insulating layer. 6. コア層を除く任意の層に前記コンデンサを有し、かつコンデンサの容量ばらつきが±5%未満であることを特徴とする請求項1〜5のいずれかに記載の多層配線板。The multilayer wiring board according to any one of claims 1 to 5, wherein the capacitor is provided in any layer other than the core layer, and the capacitance variation of the capacitor is less than ± 5%. 前記高誘電率材料からなる少なくとも1つの前記絶縁層とこれに隣接する絶縁層とを同時に貫く非貫通穴を有することを特徴とする請求項1〜6のいずれかに記載の多層配線板。The multilayer wiring board according to any one of claims 1 to 6, further comprising a non-through hole penetrating at least one of the insulating layers made of the high dielectric constant material and an insulating layer adjacent thereto. 前記高誘電率材料が、エポキシ樹脂、その硬化剤、および高誘電率充填材を含むことを特徴とする請求項1〜7のいずれかに記載の多層配線板。The multilayer wiring board according to any one of claims 1 to 7, wherein the high dielectric constant material includes an epoxy resin, a curing agent thereof, and a high dielectric constant filler. 前記高誘電率材料が、エポキシ樹脂、その硬化剤、高誘電率充填材、および少なくとも一種類の官能基を有する重量平均分子量が1万〜80万である高分子量樹脂を含むことを特徴とする請求項1〜8のいずれかに記載の多層配線板。The high dielectric constant material includes an epoxy resin, a curing agent thereof, a high dielectric constant filler, and a high molecular weight resin having a weight average molecular weight of 10,000 to 800,000 having at least one kind of functional group. The multilayer wiring board according to claim 1. 前記高誘電率材料のBステージ状態の120℃における溶融粘度が100〜200Pa・Sであることを特徴とする請求項1〜9のいずれかに記載の多層配線板。The multilayer wiring board according to any one of claims 1 to 9, wherein the high dielectric constant material has a melt viscosity at 120 ° C in a B-stage state of 100 to 200 Pa · S. 前記高誘電率充填材が、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸鉛、二酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウム、ジルコン酸鉛からなる群から選ばれる1種以上であることを特徴とする請求項8〜10のいずれかに記載の多層配線板。The high dielectric constant filler is one selected from the group consisting of barium titanate, strontium titanate, calcium titanate, magnesium titanate, lead titanate, titanium dioxide, barium zirconate, calcium zirconate, and lead zirconate. The multilayer wiring board according to claim 8, wherein: 前記高誘電率充填材が、重量比として、前記エポキシ樹脂100に対して300〜3000配合されることを特徴とする請求項8〜11のいずれかに記載の多層配線板。The multilayer wiring board according to any one of claims 8 to 11, wherein the high-permittivity filler is mixed in a weight ratio of 300 to 3000 with respect to the epoxy resin 100. 最外導体層として、300μm以上の幅を有する導体パターンが少なくとも1本形成され、さらに該最外導体層に隣接する絶縁層の厚みが150μm以上であることを特徴とする請求項1〜12のいずれかに記載の多層配線板。13. The method according to claim 1, wherein at least one conductor pattern having a width of 300 μm or more is formed as the outermost conductor layer, and the thickness of the insulating layer adjacent to the outermost conductor layer is 150 μm or more. The multilayer wiring board according to any one of the above. 前記高誘電率材料からなる少なくとも1つの前記絶縁層以外の絶縁層が、ガラス基材で補強され、かつ無機フィラーを含むことを特徴とする請求項1〜13のいずれかに記載の多層配線板。The multilayer wiring board according to claim 1, wherein at least one insulating layer made of the high dielectric constant material other than the insulating layer is reinforced with a glass base material and contains an inorganic filler. . 複数の絶縁層と、複数の導体層と、前記複数の導体層を電気的に接続する導体化された非貫通穴と、高誘電率材料からなる少なくとも1つの前記絶縁層の上下面に電極を形成してなるコンデンサとを有する多層配線板の製造方法であって、
前記電極の一方を含む導体パターンを形成する工程と、
前記導体パターン間の凹部に前記高誘電率材料と異なる絶縁材料を充填、硬化する工程と、
研磨により前記導体パターンの表面と該導体パターン間の凹部に充填、硬化された絶縁材料表面とを平坦にする工程と、
半硬化状態の前記高誘電率材料を備えた金属箔を加熱積層する工程と、
を少なくとも含むことを特徴とする多層配線板の製造方法。
A plurality of insulating layers, a plurality of conductor layers, a non-through hole that is made into a conductor that electrically connects the plurality of conductor layers, and electrodes on upper and lower surfaces of at least one of the insulating layers made of a high dielectric constant material. A method for manufacturing a multilayer wiring board having a capacitor formed and
Forming a conductor pattern including one of the electrodes,
Filling the recess between the conductor patterns with an insulating material different from the high dielectric constant material, and curing the same,
Filling the surface of the conductor pattern and the recesses between the conductor patterns by polishing, and flattening the cured insulating material surface,
A step of heating and laminating a metal foil comprising the high-permittivity material in a semi-cured state,
A method for manufacturing a multilayer wiring board, comprising:
さらに、前記金属箔をエッチングすることにより、前記電極の他方を含む導体パターンを形成する工程を含む請求項15に記載の多層配線板の製造方法。The method for manufacturing a multilayer wiring board according to claim 15, further comprising a step of forming a conductor pattern including the other of the electrodes by etching the metal foil. さらに、少なくとも1つの導体層にインダクタを形成する工程を含む請求項15または16に記載の多層配線板の製造方法。17. The method for manufacturing a multilayer wiring board according to claim 15, further comprising a step of forming an inductor on at least one conductor layer. 請求項1〜14のいずれかに記載の多層配線板、または請求項15〜17のいずれかに記載の製造方法により製造された多層配線板に半導体チップが搭載されていることを特徴とする半導体装置。A semiconductor, wherein a semiconductor chip is mounted on the multilayer wiring board according to any one of claims 1 to 14, or the multilayer wiring board manufactured by the manufacturing method according to any one of claims 15 to 17. apparatus. 請求項18の半導体装置が搭載されたことを特徴とする無線電子装置。A wireless electronic device comprising the semiconductor device according to claim 18.
JP2002259291A 2002-07-18 2002-09-04 Multilayer wiring board and manufacturing method thereof Expired - Fee Related JP4248827B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002259291A JP4248827B2 (en) 2002-07-18 2002-09-04 Multilayer wiring board and manufacturing method thereof
PCT/JP2003/006860 WO2004010751A1 (en) 2002-07-18 2003-05-30 Multilayer wiring board, method for producing the same, semiconductor device and radio electronic device
CNB038170728A CN100413383C (en) 2002-07-18 2003-05-30 Multilayer wiring board, method for producing the same, semiconductor device and radio electronic device
US10/521,470 US7239013B2 (en) 2002-07-18 2003-05-30 Multilayer wiring board, method for producing the same, semiconductor device and radio electronic device
AU2003242008A AU2003242008A1 (en) 2002-07-18 2003-05-30 Multilayer wiring board, method for producing the same, semiconductor device and radio electronic device
TW092114940A TWI225380B (en) 2002-07-18 2003-06-02 Multi-layered wiring board, its manufacturing method, semiconductor device and wireless electronic apparatus
US11/653,417 US7592250B2 (en) 2002-07-18 2007-01-16 Multilayer wiring board, manufacturing method thereof, semiconductor device, and wireless electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002209650 2002-07-18
JP2002259291A JP4248827B2 (en) 2002-07-18 2002-09-04 Multilayer wiring board and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006230550A Division JP2007019530A (en) 2002-07-18 2006-08-28 Semiconductor device and radio electronic device

Publications (2)

Publication Number Publication Date
JP2004103617A true JP2004103617A (en) 2004-04-02
JP4248827B2 JP4248827B2 (en) 2009-04-02

Family

ID=32300325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002259291A Expired - Fee Related JP4248827B2 (en) 2002-07-18 2002-09-04 Multilayer wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4248827B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128309A (en) * 2004-10-27 2006-05-18 Shinko Electric Ind Co Ltd Capacitor device and its manufacturing method
JP2006245588A (en) * 2005-03-02 2006-09-14 Samsung Electro Mech Co Ltd Built-in capacitor type printed circuit board and method of manufacturing same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53149673A (en) * 1977-06-01 1978-12-27 Matsushita Electric Ind Co Ltd Printed circuit board and method of producing same
JPH06232005A (en) * 1993-02-01 1994-08-19 Tdk Corp Lc composite component
JPH0722725A (en) * 1993-06-22 1995-01-24 Shinko Electric Ind Co Ltd Circuit board with thin-film capacitor and its manufacture
JPH11177244A (en) * 1997-12-08 1999-07-02 Sony Corp Manufacture of wiring board
JP2000030534A (en) * 1998-07-08 2000-01-28 Asahi Chem Res Lab Ltd Photosensitive high dielectric paste and manufacture of capacitor using same
JP2000133907A (en) * 1998-10-28 2000-05-12 Kyocera Corp Circuit board with capacitor element
JP2000133900A (en) * 1998-10-28 2000-05-12 Hitachi Chem Co Ltd Pre-preg for printed wiring board
JP2000269065A (en) * 1999-03-18 2000-09-29 Matsushita Electric Ind Co Ltd Capacitor-wiring substrate and its manufacturing method
JP2001068858A (en) * 1999-08-27 2001-03-16 Shinko Electric Ind Co Ltd Multilayer wiring board, manufacture thereof, and semiconductor device
JP2002009416A (en) * 2000-06-20 2002-01-11 Matsushita Electric Works Ltd Sheet for manufacturing printed wiring board, method for manufacturing printed wiring board using the sheet for manufacturing printed wiring board, and printed wiring board
JP2002097441A (en) * 2000-09-21 2002-04-02 Hitachi Chem Co Ltd Adhesive composition, circuit-connecting material, adhesive composition for connecting circuit, connected body, and semiconductor device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53149673A (en) * 1977-06-01 1978-12-27 Matsushita Electric Ind Co Ltd Printed circuit board and method of producing same
JPH06232005A (en) * 1993-02-01 1994-08-19 Tdk Corp Lc composite component
JPH0722725A (en) * 1993-06-22 1995-01-24 Shinko Electric Ind Co Ltd Circuit board with thin-film capacitor and its manufacture
JPH11177244A (en) * 1997-12-08 1999-07-02 Sony Corp Manufacture of wiring board
JP2000030534A (en) * 1998-07-08 2000-01-28 Asahi Chem Res Lab Ltd Photosensitive high dielectric paste and manufacture of capacitor using same
JP2000133907A (en) * 1998-10-28 2000-05-12 Kyocera Corp Circuit board with capacitor element
JP2000133900A (en) * 1998-10-28 2000-05-12 Hitachi Chem Co Ltd Pre-preg for printed wiring board
JP2000269065A (en) * 1999-03-18 2000-09-29 Matsushita Electric Ind Co Ltd Capacitor-wiring substrate and its manufacturing method
JP2001068858A (en) * 1999-08-27 2001-03-16 Shinko Electric Ind Co Ltd Multilayer wiring board, manufacture thereof, and semiconductor device
JP2002009416A (en) * 2000-06-20 2002-01-11 Matsushita Electric Works Ltd Sheet for manufacturing printed wiring board, method for manufacturing printed wiring board using the sheet for manufacturing printed wiring board, and printed wiring board
JP2002097441A (en) * 2000-09-21 2002-04-02 Hitachi Chem Co Ltd Adhesive composition, circuit-connecting material, adhesive composition for connecting circuit, connected body, and semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128309A (en) * 2004-10-27 2006-05-18 Shinko Electric Ind Co Ltd Capacitor device and its manufacturing method
JP2006245588A (en) * 2005-03-02 2006-09-14 Samsung Electro Mech Co Ltd Built-in capacitor type printed circuit board and method of manufacturing same
US7564116B2 (en) 2005-03-02 2009-07-21 Samsung Electro-Mechanics Co., Ltd. Printed circuit board with embedded capacitors therein and manufacturing process thereof

Also Published As

Publication number Publication date
JP4248827B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
US7592250B2 (en) Multilayer wiring board, manufacturing method thereof, semiconductor device, and wireless electronic device
JP4392157B2 (en) WIRING BOARD SHEET MATERIAL AND ITS MANUFACTURING METHOD, AND MULTILAYER BOARD AND ITS MANUFACTURING METHOD
WO2010004841A1 (en) Printed wiring board and method for manufacturing same
JP2008153693A (en) Manufacturing method of module incorporating circuit component therein
JP2001332437A (en) Capacitor and multilayered printed wiring board
JP4606685B2 (en) Module with built-in circuit components
JP4863563B2 (en) Printed wiring board and printed wiring board manufacturing method
JP4269746B2 (en) Printed wiring board manufacturing method, printed wiring board, and semiconductor package
JP2004349672A (en) Filler material, multilayer wiring substrate using the same, and method of manufacturing multilayer wiring substrate
JP2002348441A (en) Embedding resin and wiring board using the same
JP4248827B2 (en) Multilayer wiring board and manufacturing method thereof
JP3832406B2 (en) Multilayer wiring board, semiconductor device, and wireless electronic device
WO2004081952A1 (en) Polymer composite high-dielectric-constant material, multilayer printed circuit board and module board
JP4535598B2 (en) Multilayer printed wiring board and method for producing multilayer printed wiring board
JP2002118367A (en) Printed wiring board and manufacturing method thereof
JP4200802B2 (en) Device-embedded substrate and manufacturing method thereof
JP4605888B2 (en) Multilayer printed wiring board and method for producing multilayer printed wiring board
JP4055026B2 (en) Manufacturing method of build-up multilayer printed wiring board
JP4453325B2 (en) Manufacturing method of electronic component built-in substrate
JP4863561B2 (en) Method for manufacturing printed wiring board
JP2005064316A (en) Method for manufacturing printed wiring board equipped with passive element and wiring board to be obtained and semiconductor device
JP2002094211A (en) Embedding resin, wiring board using the same, and method of manufacturing wiring board
JP2002203734A (en) Capacitor, multilayered printed wiring board, and method of manufacturing the same
JP2007019530A (en) Semiconductor device and radio electronic device
JP2006123232A (en) Copper foil with resin layer containing dielectric filler and printed circuit board obtained by using the copper foil with resin layer containing dielectric filler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060727

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060904

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees