JP2002348441A - Embedding resin and wiring board using the same - Google Patents

Embedding resin and wiring board using the same

Info

Publication number
JP2002348441A
JP2002348441A JP2001352505A JP2001352505A JP2002348441A JP 2002348441 A JP2002348441 A JP 2002348441A JP 2001352505 A JP2001352505 A JP 2001352505A JP 2001352505 A JP2001352505 A JP 2001352505A JP 2002348441 A JP2002348441 A JP 2002348441A
Authority
JP
Japan
Prior art keywords
resin
embedding
wiring board
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001352505A
Other languages
Japanese (ja)
Other versions
JP3959261B2 (en
Inventor
Hirotaka Takeuchi
裕貴 竹内
Toshifumi Kojima
敏文 小嶋
Kazue Obayashi
和重 大林
Hisato Kashima
壽人 加島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2001352505A priority Critical patent/JP3959261B2/en
Publication of JP2002348441A publication Critical patent/JP2002348441A/en
Application granted granted Critical
Publication of JP3959261B2 publication Critical patent/JP3959261B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor

Abstract

PROBLEM TO BE SOLVED: To provide an embedding resin capable of increasing packaging density of a wiring board for mounting electronic components and obtaining high reliability in the reliability test for heat resistance, water resistance and the like, and to provide a wiring board using the same. SOLUTION: The wiring board is obtained by embedding the electronic components disposed in an opening (a recess such as a through-hole or a cavity) provided on an insulating board using an embedding resin having a peel strength of a cupper layer after a pressure cooker test (121 deg.C × humidity 100 mass% ×2.1 atoms × 168 hours) of 588 N/m (0.6 kg/cm) or above, and by forming a buildup layer thereon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、チップコンデンサ、チ
ップインダクタ、チップ抵抗等の電子部品を基板内部に
埋め込むための埋め込み樹脂および電子部品を基板内部
に埋め込んだ配線基板に関する。特には、埋め込み樹脂
上に幅150μm以下の微細配線層を形成した多層配線
基板、半導体素子収納用パッケージ等に好適なものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an embedding resin for embedding electronic components such as a chip capacitor, a chip inductor, and a chip resistor in a substrate, and a wiring board in which electronic components are embedded in the substrate. In particular, it is suitable for a multilayer wiring board in which a fine wiring layer having a width of 150 μm or less is formed on an embedded resin, a package for housing a semiconductor element, and the like.

【0002】[0002]

【従来の技術】近年、ビルドアップ配線基板に多数の半
導体素子を搭載したマルチチップモジュール(MCM)
が検討されている。チップコンデンサ、チップインダク
タ、チップ抵抗等の電子部品を実装する場合には、配線
基板の表面に形成された実装用配線層上に半田を用いて
表面実装するのが一般的である。
2. Description of the Related Art Recently, a multi-chip module (MCM) in which a large number of semiconductor elements are mounted on a build-up wiring board.
Is being considered. When electronic components such as a chip capacitor, a chip inductor, and a chip resistor are mounted, they are generally surface-mounted using solder on a mounting wiring layer formed on the surface of a wiring board.

【0003】しかし、ビルドアップ配線基板の表面に電
子部品を表面実装すると、個々の電子部品に対応する所
定の実装面積が必要なため、小型化にはおのずと限界が
ある。また、表面実装する際の配線の取り回しによっ
て、特性上好ましくない寄生インダクタンスが大きくな
り、電子機器の高周波化に対応が難しくなるという問題
がある。
However, when electronic components are surface-mounted on the surface of the build-up wiring board, a predetermined mounting area corresponding to each electronic component is required, so that there is naturally a limit to miniaturization. In addition, there is a problem in that the routing of the wiring at the time of surface mounting increases the parasitic inductance, which is unfavorable in characteristics, and makes it difficult to cope with a higher frequency of the electronic device.

【0004】これら諸問題を解決するために、基板内部
に電子部品を埋め込む方法が種々検討されている。特開
平11−126978では、電子部品を予め金属箔から
なる転写シート付き配線基板に半田実装してから転写す
る方法が開示されているが、実装での位置精度等で課題
が残る。特開2000−124352には、コア基板内
部に埋め込んだ電子部品上に絶縁層をビルドアップした
多層配線基板が開示されている。
In order to solve these problems, various methods for embedding electronic components in a substrate have been studied. Japanese Patent Application Laid-Open No. H11-126978 discloses a method of transferring an electronic component by soldering it to a wiring board with a transfer sheet made of a metal foil in advance and then transferring the electronic component. Japanese Patent Application Laid-Open No. 2000-124352 discloses a multilayer wiring board in which an insulating layer is built up on an electronic component embedded in a core substrate.

【0005】[0005]

【発明が解決しようとする課題】配線基板内に配置した
電子部品を基板内部に埋め込むには、コア基板と電子部
品の隙間を樹脂で埋め、電子部品の電極と絶縁層上に形
成した配線とを無電解メッキ等により電気的に接続する
必要がある。この場合、通常の埋め込み樹脂では、配線
となるメッキ層との密着性が充分には確保できず、信頼
性試験におけるメッキフクレ等が発生して問題となる。
例えば、初期状態では588N/mを超えるピール強度
を有していても、使用環境の熱や水分の影響によって劣
化して、ピール強度が588N/m以下になってしまう
ため問題となる。特に、埋め込み樹脂上に幅150μm
以下の微細配線層を形成した場合や、電源層のように大
電流を流す配線層を形成した場合に顕著に問題となる。
In order to embed an electronic component arranged in a wiring board into a substrate, a gap between the core substrate and the electronic component is filled with a resin, and an electrode of the electronic component and a wiring formed on an insulating layer are formed. Must be electrically connected by electroless plating or the like. In this case, with the usual filling resin, it is not possible to sufficiently secure the adhesion to the plating layer to be a wiring, and there is a problem that plating blisters and the like occur in a reliability test.
For example, even in the initial state, even if it has a peel strength exceeding 588 N / m, it is deteriorated by the influence of heat or moisture in the use environment, and the peel strength becomes 588 N / m or less, which is a problem. In particular, 150 μm width on embedded resin
This becomes a significant problem when the following fine wiring layer is formed, or when a wiring layer that flows a large current such as a power supply layer is formed.

【0006】埋め込み樹脂とメッキ層との密着性を向上
するには、まず埋め込み樹脂を用いて埋め込み、次いで
その埋め込み樹脂の表面を例えば過マンガン酸、クロム
酸等の酸化剤により粗化してからメッキにより配線層を
形成して、ビルドアップ(多層化)していく方法が考え
られる。粗化面の凹凸のアンカー効果によりメッキ配線
層との密着力が高まるからである。これはビルドアップ
配線基板の配線層と絶縁層との密着性を向上する方法と
して知られている。しかし、埋め込み樹脂は通常、粗化
のし易さがまったく考慮されておらず、上記方法では密
着性の飛躍的向上は期待し難い。
In order to improve the adhesion between the embedded resin and the plating layer, first, the embedded resin is embedded, and then the surface of the embedded resin is roughened with an oxidizing agent such as permanganic acid or chromic acid, and then plated. In this case, a method of forming a wiring layer and performing build-up (multi-layering) can be considered. This is because the adhesion to the plating wiring layer is increased by the anchor effect of the irregularities on the roughened surface. This is known as a method for improving the adhesion between a wiring layer and an insulating layer of a build-up wiring board. However, the embedding resin usually does not consider the easiness of roughening at all, and it is difficult to expect a dramatic improvement in adhesion by the above method.

【0007】本発明は、電子部品を搭載する配線基板の
実装密度を高め、かつ、耐熱性、耐水性等の信頼性試験
において高い信頼性が得られる埋め込み樹脂及びそれを
用いた配線基板を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention provides an embedded resin capable of increasing the mounting density of a wiring board on which electronic components are mounted and obtaining high reliability in reliability tests such as heat resistance and water resistance, and a wiring board using the same. The task is to

【0008】[0008]

【課題を解決するための手段】本発明の埋め込み樹脂
は、基板に設けた開口部(貫通孔やキャビティ等の凹
部)内に配置した電子部品を埋め込むための埋め込み樹
脂であって、この埋め込み樹脂の硬化物の上に銅層を形
成した基板のプレッシャークッカー試験(121℃×湿
度100質量%×2.1気圧×168時間)後における
銅層のピール強度が、588N/m(0.6kg/c
m)以上であることを特徴とする。このピール強度は、
プレッシャークッカー試験(121℃×湿度100質量
%×2.1気圧×168時間)後のピール強度にて70
0N/m(0.71kg/cm)以上であることが更に
好ましい。かかる条件を経てもなお、ピール強度が58
8N/m(0.6kg/cm)以上確保することで、埋
め込み樹脂上に幅150μm以下の微細配線層を形成し
た場合や、電源層のように大電流を流す配線層を形成し
た場合においても、高い密着信頼性を確保することがで
きる。特には、電源供給機能を有するコンデンサ等の電
子部品に接続された電源層用の配線層を形成した場合に
おいても、高い密着信頼性を確保することができる。
尚、前記電子部品には、チップコンデンサ、チップイン
ダクタ、チップ抵抗、フィルタ等の受動電子部品、トラ
ンジスタ、半導体素子、FET、ローノイズアンプ(L
NA)等の能動電子部品、あるいはSAWフィルタ、L
Cフィルタ、アンテナスイッチモジュール、カプラ、ダ
イプレクサ等の電子部品が含まれる。
An embedding resin according to the present invention is an embedding resin for embedding an electronic component disposed in an opening (a recess such as a through hole or a cavity) provided in a substrate. The peel strength of the copper layer of the substrate having the copper layer formed on the cured product after the pressure cooker test (121 ° C. × 100% by humidity × 2.1 atm × 168 hours) was 588 N / m (0.6 kg / c
m) or more. This peel strength
70 at peel strength after pressure cooker test (121 ° C x 100% by humidity x 2.1 atm x 168 hours)
More preferably, it is 0 N / m (0.71 kg / cm) or more. Under these conditions, the peel strength is still 58%.
By securing 8 N / m (0.6 kg / cm) or more, even when a fine wiring layer having a width of 150 μm or less is formed on the embedded resin, or when a wiring layer that flows a large current such as a power supply layer is formed. , High adhesion reliability can be ensured. In particular, even when a wiring layer for a power supply layer connected to an electronic component such as a capacitor having a power supply function is formed, high adhesion reliability can be ensured.
The electronic components include passive electronic components such as a chip capacitor, a chip inductor, a chip resistor, and a filter, a transistor, a semiconductor element, a FET, a low noise amplifier (L
NA) and other active electronic components, or SAW filters, L
Electronic components such as a C filter, an antenna switch module, a coupler, and a diplexer are included.

【0009】また、本発明の埋め込み樹脂は、この埋め
込み樹脂の硬化物の上に銅層を形成した基板のプレッシ
ャークッカー試験(121℃×湿度100質量%×2.
1気圧×336時間)後における銅層のピール強度が、
600N/m(0.61kg/cm)以上であるとよ
い。かかるより過酷な条件を経てもなお、ピール強度が
600N/m(0.61kg/cm)以上確保すること
で、電源供給機能を有するコンデンサ等の電子部品に接
続された電源層用の配線層を形成した場合においても、
より一層高い密着信頼性を確保することができる。
Further, the embedding resin of the present invention is a pressure cooker test (121 ° C. × 100% by mass of humidity × 2.10%) of a substrate having a copper layer formed on a cured product of the embedding resin.
The peel strength of the copper layer after 1 atm x 336 hours)
It is good to be more than 600N / m (0.61kg / cm). Even after passing through such more severe conditions, by securing the peel strength of 600 N / m (0.61 kg / cm) or more, the wiring layer for the power supply layer connected to the electronic component such as the capacitor having the power supply function can be formed. Even if formed,
Even higher adhesion reliability can be ensured.

【0010】ピール強度の測定方法はJIS C 50
12に準拠するが、銅層の幅は10mmとする。この銅
層を、引張速度を50mm/分にて埋め込み樹脂面から
90度(垂直方向)に引き剥がす時のピール強度を測定
する。本発明の埋め込み樹脂は、プレッシャークッカー
試験(121℃×湿度100質量%×2.1気圧×16
8時間)後における銅層のピール強度を588N/m
(0.6kg/cm)以上に保ちつつ黒色系に着色する
ために、カーボンブラックを0.5質量%以下、好まし
くは0.3質量%以下添加するとよい。高温高湿下での
配線層の密着信頼性と絶縁性の指標である体積抵抗とを
損なうことなく黒色系に着色することができるからであ
る。
The method for measuring the peel strength is JIS C50.
12, but the width of the copper layer is 10 mm. The peel strength at the time of peeling the copper layer at 90 degrees (vertical direction) from the embedded resin surface at a tensile speed of 50 mm / min is measured. The embedding resin of the present invention was subjected to a pressure cooker test (121 ° C. × 100% by humidity × 2.1 atm × 16).
8 hours), the peel strength of the copper layer was 588 N / m.
(0.6 kg / cm) or more, carbon black may be added in an amount of 0.5% by mass or less, preferably 0.3% by mass or less, in order to maintain a color of black. This is because the wiring layer can be colored black without deteriorating the adhesion reliability of the wiring layer under high temperature and high humidity and the volume resistance which is an index of insulating property.

【0011】また、本発明の埋め込み樹脂は、プレッシ
ャークッカー試験(121℃×湿度100質量%×2.
1気圧×336時間)後における銅層のピール強度を6
00N/m(0.61kg/cm)以上に保ちつつ黒色
系に着色するために、カーボンブラックを0.4質量%
以下、好ましくは0.3質量%以下、特には0.2質量
%添加するとよい。高温高湿下での配線層の密着性を高
めることで、配線基板製造過程におけるフクレ等の不良
の原因を未然に防ぎ、歩留まりの向上、絶縁信頼性の向
上が図れるからである。
The embedding resin of the present invention is subjected to a pressure cooker test (121 ° C. × 100% by mass of humidity × 2.
(1 atm x 336 hours)
0.4% by mass of carbon black in order to color black while maintaining the value at 00 N / m (0.61 kg / cm) or more.
Below, preferably 0.3% by mass or less, particularly preferably 0.2% by mass. This is because, by increasing the adhesion of the wiring layer under high temperature and high humidity, the cause of defects such as blisters in the wiring board manufacturing process can be prevented beforehand, and the yield and the insulation reliability can be improved.

【0012】埋め込み樹脂は、配線パターンをきる時の
露光の際、乱反射を抑えるためや、硬化時の色むらの発
生を防止するために黒く樹脂を着色するのがよい。しか
し、黒色系に着色するためにカーボンブラックを一定量
以上配合すると、樹脂の耐熱・耐湿性が低下し、銅との
密着力が低下する。
The resin to be embedded is preferably colored black so as to suppress irregular reflection during exposure when the wiring pattern is cut or to prevent the occurrence of color unevenness during curing. However, when carbon black is blended in a certain amount or more for coloring black, the heat resistance and moisture resistance of the resin are reduced, and the adhesion to copper is reduced.

【0013】本発明の埋め込み樹脂は、樹脂成分と少な
くとも一種類の無機フィラーからなる。無機フィラーを
入れるのは、熱膨張係数の調整以外に、エポキシ樹脂の
硬化後の3次元構造の骨格や、無機フィラーが奏する骨
材としての効果によって、粗化処理後の埋め込み樹脂の
形状が必要以上に崩れることがないからである。
The embedding resin of the present invention comprises a resin component and at least one kind of inorganic filler. In addition to adjusting the coefficient of thermal expansion, the inorganic filler requires the three-dimensional structure of the epoxy resin after curing and the shape of the embedded resin after roughening due to the effect of the inorganic filler as an aggregate. This is because there is no further collapse.

【0014】用いる無機フィラーに特に制限はないが、
結晶性シリカ、溶融シリカ、アルミナ、窒化ケイ素等が
よい。埋め込み樹脂の熱膨張係数を効果的に下げること
ができるため、熱応力に対する樹脂剥離を防止して信頼
性を向上できる。
The inorganic filler used is not particularly limited,
Crystalline silica, fused silica, alumina, silicon nitride and the like are preferred. Since the thermal expansion coefficient of the embedded resin can be effectively reduced, the resin can be prevented from peeling off due to thermal stress, and the reliability can be improved.

【0015】無機フィラーのフィラー径は、埋め込み樹
脂が電子部品の電極間の隙間にも容易に流れ込む必要が
あるため、粒径50μm以下のフィラーを使用するとよ
い。50μmを越えると、電子部品の電極間の隙間にフ
ィラーが詰まりやすくなり、埋め込み樹脂の充填不良に
より局所的に熱膨張係数の極端に異なる部分が発生す
る。フィラー径の下限値としては、0.1μm以上がよ
い。これよりも細かいと、埋め込み樹脂の流動性が確保
しにくくなる。好ましくは0.3μm以上、更に好まし
くは0.5μm以上がよい。埋め込み樹脂の低粘度、高
充填化を達成するためには、粒度分布を広くするとよ
い。
Regarding the filler diameter of the inorganic filler, it is preferable to use a filler having a particle diameter of 50 μm or less because the embedded resin must easily flow into the gap between the electrodes of the electronic component. If it exceeds 50 μm, the gap between the electrodes of the electronic component is liable to be clogged with the filler, and a portion having an extremely different coefficient of thermal expansion locally occurs due to insufficient filling of the embedded resin. The lower limit of the filler diameter is preferably 0.1 μm or more. If it is smaller than this, it becomes difficult to secure the fluidity of the embedded resin. It is preferably at least 0.3 μm, more preferably at least 0.5 μm. To achieve low viscosity and high filling of the embedded resin, the particle size distribution should be widened.

【0016】無機フィラーの形状は、埋め込み樹脂の流
動性と充填率とを高くするために、略球状であるとよ
い。特にシリカ系の無機フィラーは、容易に球状のもの
が得られるためよい。
The shape of the inorganic filler is preferably substantially spherical in order to increase the fluidity and the filling rate of the filling resin. In particular, a silica-based inorganic filler is preferable because a spherical one can be easily obtained.

【0017】無機フィラーの表面は、必要に応じてカッ
プリング剤にて表面処理するとよい。無機フィラーの樹
脂成分との濡れ性が良好になり、埋め込み樹脂の流動性
を良好にできるからである。カップリング剤の種類とし
ては、シラン系、チタネート系、アルミネート系等が用
いられる。
The surface of the inorganic filler may be subjected to a surface treatment with a coupling agent, if necessary. This is because the wettability of the inorganic filler with the resin component is improved, and the fluidity of the embedded resin can be improved. As the type of the coupling agent, a silane type, a titanate type, an aluminate type or the like is used.

【0018】本発明の埋め込み樹脂は、その流動性を考
慮して、液状エポキシ樹脂であるビスフェノールエポキ
シ樹脂又はナフタレン型エポキシ樹脂、フェノールノボ
ラック型エポキシ樹脂、クレゾールノボラック型エポキ
シ樹脂のうち少なくとも1成分を必須の樹脂成分として
用いると良い。埋め込み樹脂の流動性が悪いと電子部品
の電極間の隙間に充填不良が起こりやすくなり、局所的
に熱膨張係数の極端に異なる部分が発生する。特には、
耐熱性、耐湿性を考慮した場合、ナフタレン型エポキシ
樹脂が優れている。
The embedding resin of the present invention contains at least one component of a liquid epoxy resin, bisphenol epoxy resin or naphthalene type epoxy resin, phenol novolak type epoxy resin or cresol novolak type epoxy resin, in consideration of its fluidity. It is good to use as a resin component. If the fluidity of the embedded resin is poor, poor filling is likely to occur in the gap between the electrodes of the electronic component, and a portion having an extremely different coefficient of thermal expansion locally occurs. in particular,
In consideration of heat resistance and moisture resistance, naphthalene type epoxy resin is superior.

【0019】本発明の埋め込み樹脂を用いて電子部品を
埋め込んだ配線基板は、使用環境の熱や水分の影響によ
って埋め込み樹脂上に形成した配線層のピール強度が劣
化し難い利点がある。特に、埋め込み樹脂上に幅150
μm以下の微細配線層を形成した場合や、電源層のよう
に大電流を流す配線層を形成した場合に好適である。特
に、電源層となる配線層の埋め込み樹脂への密着性を良
好にすることで、電源供給用のコンデンサからの大電流
を流しても、配線層がふくれたりピール強度が劣化する
のを効果的に防止できる。ここにいう「電子部品を埋め
込む」とは、コア基板等の基板やビルドアップした絶縁
層に設けた開口部(貫通穴(例えば図1)やキャビティ
等の凹部(例えば図10)等)の中に電子部品を配置し
た後、電子部品と開口部との間に生じた隙間に埋め込み
樹脂を充填することをいう。特に、厚みが400μm以
下の薄いコア基板を用いる場合には、ビルドアップ層に
設けたキャビティ内に電子部品を配置するのがよい。開
口部は、基板を打ち抜いて形成した貫通孔または多層化
技術により形成したキャビティ等を利用するとよい。本
発明に用いる基板としては、FR−4、FR−5、BT
等のいわゆるコア基板を用いるのがよいが、PTFE等
の熱可塑性樹脂シートに厚み35μm程度の厚手の銅箔
を挟み込んでコア基板としたものに開口部を形成したも
のを用いてもよい。また、コア基板の少なくとも一面
に、絶縁層及び配線層を交互に積層したビルドアップ層
を形成するとともに、開口部をコア基板及びビルドアッ
プ層を貫通するように形成したものを用いることができ
る。この場合、図11に示すようなコンデンサ内蔵型の
多層配線基板であっても、いわゆるガラス−エポキシ複
合材料(絶縁基板)の厚みを400μm程度と、通常品
の800μmの半分にまで薄くして低背化を図ることが
できる利点がある。他の例としては、電子部品をコア基
板内部に埋め込んだ配線基板(例えば、図1)やビルド
アップ層の内部に埋め込んだ配線基板(例えば、図1
0)を形成できる。
A wiring board in which an electronic component is embedded using the embedded resin of the present invention has an advantage that the peel strength of a wiring layer formed on the embedded resin is unlikely to be deteriorated by the influence of heat or moisture in a use environment. In particular, a width of 150
It is suitable when a fine wiring layer of μm or less is formed, or when a wiring layer that flows a large current such as a power supply layer is formed. In particular, by improving the adhesion of the wiring layer, which is the power supply layer, to the embedded resin, it is possible to effectively prevent the wiring layer from bulging and degrading the peel strength even when a large current flows from the power supply capacitor. Can be prevented. The term “embed an electronic component” as used herein refers to an opening (such as a through hole (for example, FIG. 1) or a concave portion (for example, FIG. 10) such as a cavity) provided in a substrate such as a core substrate or a built-up insulating layer. After the electronic component is placed in the opening, filling the gap created between the electronic component and the opening with an embedding resin. In particular, when a thin core substrate having a thickness of 400 μm or less is used, it is preferable to dispose the electronic component in a cavity provided in the build-up layer. As the opening, a through hole formed by punching a substrate, a cavity formed by a multilayer technique, or the like may be used. Substrates used in the present invention include FR-4, FR-5, BT
It is preferable to use a so-called core substrate such as PTFE. Alternatively, a core substrate in which a thick copper foil having a thickness of about 35 μm is sandwiched between thermoplastic resin sheets such as PTFE and an opening may be formed. In addition, a structure may be used in which a build-up layer in which insulating layers and wiring layers are alternately laminated is formed on at least one surface of the core substrate, and an opening is formed to penetrate the core substrate and the build-up layer. In this case, even with a multilayer wiring board with a built-in capacitor as shown in FIG. 11, the thickness of the so-called glass-epoxy composite material (insulating board) is reduced to about 400 μm, which is half of 800 μm of a normal product. There is an advantage that the height can be reduced. As another example, a wiring board (for example, FIG. 1) in which an electronic component is embedded inside a core substrate or a wiring board (for example, FIG.
0) can be formed.

【0020】電子部品を埋め込む基板の厚みは、埋め込
む電子部品の厚みに近い程よい。特には、電子部品の端
子電極の表面から基板上に積層形成したビルドアップ層
の配線層までの距離は、100μm以下(好ましくは5
0μm以下、より好ましくは30μm以下)になるよう
に電子部品の高さと基板の厚みの関係を設定するのがよ
い。電子部品と基板上に積層形成したビルドアップ層と
の距離を極力近づけることで、不要な寄生容量(インダ
クタンス等)の発生を防止できるからである。
The thickness of the substrate on which the electronic component is embedded is preferably as close as possible to the thickness of the electronic component to be embedded. In particular, the distance from the surface of the terminal electrode of the electronic component to the wiring layer of the build-up layer laminated on the substrate is 100 μm or less (preferably 5 μm).
The relationship between the height of the electronic component and the thickness of the substrate is preferably set so as to be 0 μm or less, more preferably 30 μm or less. By making the distance between the electronic component and the build-up layer laminated on the substrate as close as possible, generation of unnecessary parasitic capacitance (inductance or the like) can be prevented.

【0021】コア基板の少なくとも一面に、絶縁層及び
配線層を交互に積層したビルドアップ層を形成するとと
もに、開口部をコア基板及びビルドアップ層の少なくと
も一方を貫通するように形成した基板を用いた多層配線
基板は、例えば以下のように製造するとよい(図11〜
図25)。
On at least one surface of the core substrate, a build-up layer in which insulating layers and wiring layers are alternately laminated is formed, and a substrate having an opening formed to penetrate at least one of the core substrate and the build-up layer is used. The multilayer wiring board that has been manufactured may be manufactured, for example, as follows (FIGS. 11 to 11).
(FIG. 25).

【0022】[0022]

【発明の実施の形態】ここでは、図11に示すいわゆる
「FC−PGA」構造の実施例を用いて以下に説明す
る。図12に示すような、厚み0.4mmの絶縁基板
(100)に厚み18μmの銅箔(200)を貼り付け
たFR−5製両面銅張りコア基板を用意する。ここで用
いるコア基板の特性は、TMAによるTg(ガラス転移
点)が175℃、基板面方向のCTE(熱膨張係数)が
16ppm/℃、基板面垂直方向のCTE(熱膨張係
数)が50ppm/℃、1MHzにおける誘電率εが
4.7、1MHzにおけるtanδが0.018であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Here, an embodiment of a so-called "FC-PGA" structure shown in FIG. 11 will be described below. As shown in FIG. 12, an FR-5 double-sided copper-clad core substrate in which an 18 μm-thick copper foil (200) is attached to a 0.4-mm-thick insulating substrate (100) is prepared. The characteristics of the core substrate used here are as follows: Tg (glass transition point) by TMA is 175 ° C., CTE (thermal expansion coefficient) in the substrate surface direction is 16 ppm / ° C., CTE (thermal expansion coefficient) in the direction perpendicular to the substrate surface is 50 ppm / The dielectric constant ε at 1 ° C. and 1 MHz is 4.7, and the tan δ at 1 MHz is 0.018.

【0023】コア基板上にフォトレジストフィルムを貼
り付けて露光現像を行い、直径600μmの開口部及び
所定の配線形状に対応する開口部(図示せず)を設け
る。フォトレジストフィルムの開口部に露出した銅箔を
亜硫酸ナトリウムと硫酸を含むエッチング液を用いてエ
ッチング除去する。フォトレジストフィルムを剥離除去
して、図13に示すような露出部(300)及び所定の
配線形状に対応する露出部(図示せず)が形成されたコ
ア基板を得る。
A photoresist film is attached to the core substrate and exposed and developed to provide an opening having a diameter of 600 μm and an opening (not shown) corresponding to a predetermined wiring shape. The copper foil exposed at the opening of the photoresist film is removed by etching using an etching solution containing sodium sulfite and sulfuric acid. The photoresist film is peeled off to obtain a core substrate having an exposed portion (300) as shown in FIG. 13 and an exposed portion (not shown) corresponding to a predetermined wiring shape.

【0024】市販のエッチング処理装置(メック社製
CZ処理装置)によってエッチング処理を施して銅箔の
表面粗化をした後、エポキシ樹脂を主体とする厚み35
μmの絶縁フィルムをコア基板の両面に貼り付ける。そ
して、170℃×1.5時間の条件にてキュアして絶縁
層(400)を形成する。このキュア後の絶縁層の特性
は、TMAによるTg(ガラス転移点)が155℃、D
MAによるTg(ガラス転移点)が204℃、CTE
(熱膨張係数)が66ppm/℃、1MHzにおける誘
電率εが3.7、1MHzにおけるtanδが0.03
3、300℃での重量減が−0.1%、吸水率が0.8
%、吸湿率が1%、ヤング率が3GHz、引っ張り強度
が63MPa、伸び率が4.6%である。
A commercially available etching apparatus (manufactured by MEC)
After the surface of the copper foil is roughened by performing an etching process using a CZ processing device), a thickness of 35 mainly composed of epoxy resin is obtained.
A μm insulating film is attached to both sides of the core substrate. Then, curing is performed under the condition of 170 ° C. × 1.5 hours to form an insulating layer (400). The properties of the insulating layer after this curing are as follows: Tg (glass transition point) by TMA is 155 ° C .;
Tg (glass transition point) by MA is 204 ° C, CTE
(Thermal expansion coefficient) is 66 ppm / ° C., dielectric constant ε at 1 MHz is 3.7, and tan δ at 1 MHz is 0.03.
3. Weight loss at -300 ° C is -0.1%, water absorption is 0.8
%, The moisture absorption rate is 1%, the Young's modulus is 3 GHz, the tensile strength is 63 MPa, and the elongation rate is 4.6%.

【0025】図14に示すように、炭酸ガスレーザを用
いて絶縁層(400)に層間接続用のビアホール(50
0)を形成する。ビアホールの形態は、表層部の直径は
120μm、底部の直径は60μmのすりばち状であ
る。更に炭酸ガスレーザの出力を上げて、絶縁層(40
0)とコア基板を貫通するように直径300μmのスル
ーホール(600)を形成する。スルーホールの内壁面
はレーザ加工に特有のうねり(図示せず)を有する。そ
して、基板を塩化パラジウムを含む触媒活性化液に浸漬
した後、全面に無電解銅メッキを施す(図示せず)。
As shown in FIG. 14, via holes (50) for interlayer connection are formed in the insulating layer (400) using a carbon dioxide laser.
0) is formed. The form of the via hole is in the shape of a horn having a surface layer portion diameter of 120 μm and a bottom portion diameter of 60 μm. Further, the output of the carbon dioxide laser was increased, and the insulating layer (40
0) and a through hole (600) having a diameter of 300 μm is formed so as to penetrate the core substrate. The inner wall surface of the through hole has undulations (not shown) peculiar to laser processing. Then, after immersing the substrate in a catalyst activating solution containing palladium chloride, electroless copper plating is performed on the entire surface (not shown).

【0026】次いで、基板の全面に厚み18μmの銅パ
ネルメッキ(700)をかける。ここで、ビアホール
(500)には、層間を電気的に接続するビアホール導
体(800)が形成される。またスルーホール(60
0)には、基板の表裏面を電気的に接続するスルーホー
ル導体(900)が形成される。市販のエッチング処理
装置(メック社製 CZ処理装置)によってエッチング
処理を施して銅メッキの表面粗化する。その後、同社の
防錆剤によって防錆処理(商標名:CZ処理)を施して
疎水化面を形成して、疎水化処理を完了する。疎水化処
理を施した導体層表面の水に対する接触角2θを、接触
角測定器(商品名:CA−A、協和科学製)により液適
法で測定したところ、接触角2θは101度であった。
Next, an 18 μm thick copper panel plating (700) is applied to the entire surface of the substrate. Here, a via hole conductor (800) for electrically connecting the layers is formed in the via hole (500). In addition, through holes (60
In 0), a through-hole conductor (900) for electrically connecting the front and back surfaces of the substrate is formed. An etching treatment is performed by a commercially available etching treatment device (CZ treatment device manufactured by MEC) to roughen the surface of the copper plating. Thereafter, a rust preventive treatment (trade name: CZ treatment) is performed with a rust preventive agent of the company to form a hydrophobic surface, and the hydrophobic treatment is completed. The contact angle 2θ of water on the surface of the conductor layer subjected to the hydrophobization treatment was measured with a contact angle measuring device (trade name: CA-A, manufactured by Kyowa Kagaku) by a liquid method, and the contact angle 2θ was 101 °. .

【0027】真空吸引装置の付いた台座の上に不繊紙を
設置し、上記基板を、台座の上に配置する。その上にス
ルーホール(600)の位置に対応するように貫通孔を
有するステンレス製の穴埋めマスクを設置する。次い
で、銅フィラーを含むスルーホール充填用ペーストを載
せ、ローラー式スキージを加圧しながら穴埋め充填を行
う。
The nonwoven paper is placed on a pedestal equipped with a vacuum suction device, and the substrate is placed on the pedestal. A stainless steel filling mask having a through-hole is set thereon so as to correspond to the position of the through-hole (600). Next, a paste for filling through holes containing a copper filler is placed, and filling and filling are performed while pressing a roller squeegee.

【0028】図15に示すように、スルーホール(60
0)内に充填したスルーホール充填用ペースト(100
0)を、120℃×20分の条件下で仮キュアさせる。
次いで、図16に示すように、ベルトサンダーを用いて
基板の表面を研磨(粗研磨)した後、バフ研磨(仕上げ
研磨)して平坦化し、150℃×5時間の条件下でキュ
アさせて、穴埋め工程を完了する。尚、この穴埋め工程
を完了した基板の一部は、穴埋め性の評価試験に用い
る。
As shown in FIG. 15, through holes (60
0), the paste for filling through holes (100
0) is temporarily cured at 120 ° C. for 20 minutes.
Next, as shown in FIG. 16, the surface of the substrate was polished (coarse polished) using a belt sander, and then flattened by buff polishing (final polishing), and cured at 150 ° C. × 5 hours. Complete the filling process. A part of the substrate which has completed the filling process is used for an evaluation test for filling properties.

【0029】図17に示すように、金型(図示せず)を
用いて□8mmの貫通孔(開口部:110)を形成す
る。図18に示すように、基板の一面にマスキングテー
プ(120)を貼り付ける。そして、図19に示すよう
に、貫通孔(110)に露出したマスキングテープ上に
積層チップコンデンサ(130)をチップマウンタを用
いて8個配置する。この積層チップコンデンサは1.2
mm×0.6mm×0.4mmの積層体(150)から
なり、電極(140)が積層体から70μm突出してい
る。
As shown in FIG. 17, a through hole (opening: 110) of 8 mm square is formed using a mold (not shown). As shown in FIG. 18, a masking tape (120) is attached to one surface of the substrate. Then, as shown in FIG. 19, eight laminated chip capacitors (130) are arranged on the masking tape exposed in the through holes (110) by using a chip mounter. This multilayer chip capacitor has 1.2
It consists of a laminate (150) of mm × 0.6 mm × 0.4 mm, and the electrode (140) protrudes 70 μm from the laminate.

【0030】図20に示すように、積層チップコンデン
サ(130)を配置した貫通孔(110)の中に、本発
明の埋め込み樹脂(160)をディスペンサ(図示せ
ず)を用いて充填する。埋め込み樹脂を、1次加熱工程
を80℃×3時間、2次加熱工程を170℃×6時間の
条件により脱泡および熱硬化する。
As shown in FIG. 20, a filling resin (160) of the present invention is filled into a through hole (110) in which a multilayer chip capacitor (130) is arranged, using a dispenser (not shown). The embedded resin is defoamed and thermally cured under the conditions of a primary heating step of 80 ° C. × 3 hours and a secondary heating step of 170 ° C. × 6 hours.

【0031】図21に示すように、硬化した埋め込み樹
脂(160)の表面を、ベルトサンダーを用いて粗研磨
した後、ラップ研磨にて仕上げ研磨する。研磨面には、
チップコンデンサ(130)の電極(140)の端面が
露出している。次いで、仮キュアした埋め込み樹脂(1
60)を150℃×5時間の条件下で硬化させる。
As shown in FIG. 21, the surface of the hardened embedded resin (160) is roughly polished by using a belt sander, and then finish polished by lap polishing. On the polished surface,
The end surface of the electrode (140) of the chip capacitor (130) is exposed. Then, the temporarily cured embedded resin (1
60) is cured at 150 ° C. for 5 hours.

【0032】その後、膨潤液とKMnO4溶液を用い
て、埋め込み樹脂(160)の研磨面を粗化する。粗化
面をPd触媒活性化した後、無電解メッキ、電解メッキ
の順番で銅メッキを施す。図22に示すように、埋め込
み樹脂(160)の上に形成されたメッキ層(170)
は、チップコンデンサ(130)の電極(140)の端
面と電気的に接続されている。メッキ面の上にレジスト
(図示せず)を形成し、所定の配線パターンをパターニ
ングする。不要な銅をNa228/濃硫酸を用いてエ
ッチング除去する。レジストを剥離して、図23に示す
ように、配線の形成を完了する。市販のエッチング処理
装置(メック社製 CZ処理装置)によってエッチング
処理を施して配線の銅メッキの表面粗化する。
Thereafter, the polished surface of the embedding resin (160) is roughened using a swelling solution and a KMnO 4 solution. After activating the roughened surface with a Pd catalyst, copper plating is performed in the order of electroless plating and electrolytic plating. As shown in FIG. 22, a plating layer (170) formed on the embedding resin (160)
Is electrically connected to the end face of the electrode (140) of the chip capacitor (130). A resist (not shown) is formed on the plating surface, and a predetermined wiring pattern is patterned. Unnecessary copper is removed by etching using Na 2 S 2 O 8 / concentrated sulfuric acid. The resist is peeled off to complete the formation of the wiring as shown in FIG. An etching treatment is performed by a commercially available etching treatment device (CZ treatment device manufactured by MEC Corporation) to roughen the surface of the copper plating of the wiring.

【0033】その上に絶縁層となるフィルム(190)
をラミネートして熱硬化した後、炭酸ガスレーザーを照
射して層間接続用のビアホールを形成する。絶縁層の表
面を上記と同じ酸化剤を用いて粗化し、同様の手法で所
定の配線(201)を形成する。配線基板の最表面にソ
ルダーレジスト層となるドライフィルムをラミネートし
て、半導体素子の実装パターンを露光、現像して形成し
て、ソルダーレジスト層(210)の形成を完了する。
実装用のピン付けを行う裏面側についても同様の方法に
より、所定の配線(230)とソルダーレジスト層(2
40)を形成して、図24に示すように、ピン付け前の
多層プリント配線基板を得る。
A film (190) to be an insulating layer thereon
Is laminated and thermally cured, and then irradiated with a carbon dioxide laser to form via holes for interlayer connection. The surface of the insulating layer is roughened using the same oxidizing agent as described above, and a predetermined wiring (201) is formed in the same manner. A dry film to be a solder resist layer is laminated on the outermost surface of the wiring board, and a mounting pattern of the semiconductor element is formed by exposing and developing, thereby completing the formation of the solder resist layer (210).
The same method is applied to the back side on which the mounting pins are attached, and the predetermined wiring (230) and the solder resist layer (2) are formed.
40) to form a multilayer printed wiring board before pinning as shown in FIG.

【0034】半導体素子を実装する端子電極(201)
には、Niメッキ、Auメッキの順番でメッキを施す
(図示せず)。その上に低融点ハンダからなるハンダペ
ーストを印刷した後、ハンダリフロー炉を通して半導体
素子を実装するためのハンダバンプ(220)を形成す
る。
Terminal electrode (201) for mounting a semiconductor element
Is plated in the order of Ni plating and Au plating (not shown). After printing a solder paste made of low melting point solder thereon, a solder bump (220) for mounting a semiconductor element is formed through a solder reflow furnace.

【0035】一方、半導体素子実装面の反対側には、高
融点ハンダからなるハンダペーストを印刷した後、ハン
ダリフロー炉を通してピン付けするためのハンダバンプ
(260)を形成する。治具(図示せず)にピン(25
0)をセットした上に基板を配置した状態で、ハンダリ
フロー炉を通してピン付けを行い(図示せず)、図25
に示すように、半導体素子を実装する前のFC−PGA
型の多層プリント配線基板を得る。投影機を用いて埋め
込み樹脂(160)で埋め込んだ開口部(110)に対
応する領域に付けられたピン(250)の先端の所定位
置からの位置ずれ量を測定したところ、0.1mm以下
と良好な結果が得られた。
On the other hand, a solder bump (260) for pinning through a solder reflow furnace is formed after printing a solder paste made of high melting point solder on the side opposite to the semiconductor element mounting surface. A pin (25) is attached to a jig (not shown).
In the state where the substrate is placed on top of (0), pinning is performed through a solder reflow furnace (not shown), and FIG.
As shown in the figure, FC-PGA before mounting the semiconductor element
Mold multilayer printed wiring board is obtained. Using a projector, the positional deviation of the tip of the pin (250) from the predetermined position, which was attached to the area corresponding to the opening (110) embedded with the embedded resin (160), was measured to be 0.1 mm or less. Good results were obtained.

【0036】半導体素子実装面上に半導体素子(27
0)を実装可能な位置に配置して、低融点ハンダ(22
0)のみが溶解する温度条件にてハンダリフロー炉を通
して、半導体素子(270)を実装する。実装部にアン
ダーフィル材(300)をディスペンサーで充填した
後、熱硬化して、図11に示すような半導体素子を表面
に実装したFC−PGA型の多層プリント配線基板を用
いた半導体装置を得る。
The semiconductor element (27) is mounted on the semiconductor element mounting surface.
0) is placed at a position where it can be mounted, and the low melting point solder (22)
The semiconductor element (270) is mounted through a solder reflow furnace under a temperature condition in which only 0) melts. After filling the mounting portion with an underfill material (300) with a dispenser, it is thermally cured to obtain a semiconductor device using an FC-PGA type multilayer printed wiring board having a semiconductor element mounted on the surface as shown in FIG. .

【0037】図1を例にして、本発明の異なる配線基板
を詳細に説明する。これは以下のような工程により製造
できる。図2に示すように、このコア基板(1)に金型
を用いて所定の大きさの貫通孔(開口部:2)を設け、
このコア基板の一面にバックテープ(3)を貼り付けた
後、バックテープを貼り付けた面を下側にして置く。
A different wiring board of the present invention will be described in detail with reference to FIG. This can be manufactured by the following steps. As shown in FIG. 2, through holes (openings: 2) of a predetermined size are provided in the core substrate (1) using a mold,
After attaching the back tape (3) to one surface of the core substrate, the core substrate is placed with the surface to which the back tape is attached facing downward.

【0038】図3に示すように、他方の面から開口部
(2)内のパックテープ(3)の粘着面上の所定の位置
に、チップコンデンサ(4)をチップマウンタを用いて
配置する。ここで用いるチップコンデンサとしては、埋
め込み樹脂の回り込みが良いように、コンデンサ本体か
ら突出した電極(5)を有するものを用いるのがよい。
図4に示すように、開口部(2)内に配置されたチップ
コンデンサ(4)と開口部内の隙間に本発明の埋め込み
樹脂(6)をディスペンサを用いて流し込む。
As shown in FIG. 3, a chip capacitor (4) is arranged at a predetermined position on the adhesive surface of the pack tape (3) in the opening (2) from the other surface using a chip mounter. As the chip capacitor used here, it is preferable to use a chip capacitor having an electrode (5) protruding from the capacitor body so that the embedded resin can easily move around.
As shown in FIG. 4, the embedded resin (6) of the present invention is poured into the gap in the opening with the chip capacitor (4) arranged in the opening (2) using a dispenser.

【0039】埋め込み樹脂(6)を、100℃×80分
→120℃×60分→160℃×10分の条件により脱
泡および熱硬化する。硬化した埋め込み樹脂(6)の表
面を、ベルトサンダーを用いて粗研磨した後、ラップ研
磨にて仕上げ研磨する。研磨後における埋め込み樹脂
(6)の表面(60)を図5に示す。次いで、図6に示
すように、炭酸ガスレーザーを用いてビアホール(7)
を穴あけ加工して、チップコンデンサ(4)の電極
(5)を露出させる。
The embedded resin (6) is defoamed and thermally cured under the conditions of 100 ° C. × 80 minutes → 120 ° C. × 60 minutes → 160 ° C. × 10 minutes. The surface of the cured embedded resin (6) is roughly polished by using a belt sander, and then is polished by lap polishing. FIG. 5 shows the surface (60) of the embedded resin (6) after polishing. Next, as shown in FIG. 6, a via hole (7) is formed using a carbon dioxide laser.
Is drilled to expose the electrode (5) of the chip capacitor (4).

【0040】その後、膨潤液とKMnO4溶液を用い
て、埋め込み樹脂(6)の露出面(61)を粗化する。
粗化面をPd触媒活性化した後、無電解メッキ、電解メ
ッキの順番で銅メッキ(9)を施す。銅メッキ後の状態
を図7に示す。メッキ面の上にレジスト(図示せず)を
形成し、所定の配線パターンをパターニングする。不要
な銅をNa228/濃硫酸を用いてエッチング除去す
る。レジストを剥離して、電源層となる配線(90)の
形成を完了する。電源層となる配線形成後の状態を図8
に示す。この電源層となる配線層(90)の埋め込み樹
脂(6)への密着性を良好にすることで、電源供給用の
コンデンサ(4)からの大電流を流しても、配線層(9
0)がふくれたりピール強度が劣化するのを効果的に防
止できる。
Thereafter, the exposed surface (61) of the embedding resin (6) is roughened using a swelling solution and a KMnO 4 solution.
After activating the roughened surface with a Pd catalyst, copper plating (9) is performed in the order of electroless plating and electrolytic plating. FIG. 7 shows the state after copper plating. A resist (not shown) is formed on the plating surface, and a predetermined wiring pattern is patterned. Unnecessary copper is removed by etching using Na 2 S 2 O 8 / concentrated sulfuric acid. The resist is stripped to complete the formation of the wiring (90) to be the power supply layer. FIG. 8 shows the state after forming the wiring to be the power supply layer.
Shown in By improving the adhesion of the wiring layer (90) serving as the power supply layer to the embedded resin (6), even if a large current flows from the power supply capacitor (4), the wiring layer (9
0) can be effectively prevented from bulging and the peel strength from deteriorating.

【0041】その上に絶縁層となるフィルム(14,1
5)をラミネートして熱硬化した後、レーザーを照射し
て層間接続用のビアホールを形成する。絶縁層の表面を
同じ酸化剤を用いて粗化し、同様の手法で所定の配線パ
ターンを形成する。配線基板の最表面にソルダーレジス
ト層となるドライフィルムをラミネートして、半導体素
子の実装パターンを露光、現像して形成して、ソルダー
レジスト層(12)を形成する。その状態を図9に示
す。半導体素子を実装する端子電極(13)には、Ni
メッキ、Auメッキの順番でメッキを施す。その後、ハ
ンダリフロー炉を通して半導体素子(18)を実装す
る。基板実装を行う電極には、低融点ハンダを用いてハ
ンダボール(17)を形成する。実装部にアンダーフィ
ル材(21)をディスペンサーで充填した後、熱硬化し
て、図1に示すような、目的とする配線基板の作製を完
了する。
A film (14, 1) serving as an insulating layer is formed thereon.
After laminating 5) and thermally curing, laser irradiation is performed to form via holes for interlayer connection. The surface of the insulating layer is roughened using the same oxidizing agent, and a predetermined wiring pattern is formed by the same method. A dry film to be a solder resist layer is laminated on the outermost surface of the wiring board, and the mounting pattern of the semiconductor element is formed by exposing and developing to form a solder resist layer (12). FIG. 9 shows this state. The terminal electrode (13) for mounting the semiconductor element has Ni
Plating is performed in the order of plating and Au plating. Thereafter, the semiconductor element (18) is mounted through a solder reflow furnace. Solder balls (17) are formed on the electrodes to be mounted on the substrate by using low melting point solder. After the mounting portion is filled with an underfill material (21) with a dispenser, it is thermally cured to complete the production of the target wiring substrate as shown in FIG.

【0042】[0042]

【実施例】以下に本発明の配線基板が奏する効果を、基
板を用いた実施例により説明する。埋め込み樹脂は表1
に示す組成になるように各成分を秤量混合し、3本ロー
ルミルにて混練して作製する。ここで、表1中の記載事
項の詳細は以下のようである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The effects of the wiring board of the present invention will be described below with reference to an embodiment using a board. Table 1 for embedded resin
Each component is weighed and mixed so as to have the composition shown in Table 2, and kneaded with a three-roll mill. Here, the details of the items described in Table 1 are as follows.

【0043】[0043]

【表1】 [Table 1]

【0044】エポキシ樹脂 ・「HP−4032D」:高純度ナフタレン型エポキシ
樹脂(大日本インキ製) ・「E―807」:ビスフェノールF型エポキシ樹脂
(油化シェル製) ・「YL−980」:ビスフェノールA型エポキシ樹脂
(油化シェル製)・「N−740」:フェノールノボラ
ック型エポキシ樹脂(大日本インキ製)
Epoxy resin "HP-4032D": high-purity naphthalene type epoxy resin (manufactured by Dainippon Ink) "E-807": bisphenol F type epoxy resin (manufactured by Yuka Shell) "YL-980": bisphenol A type epoxy resin (made by Yuka Shell) "N-740": phenol novolak type epoxy resin (made by Dainippon Ink)

【0045】硬化剤 ・「QH−200」:酸無水物系硬化剤(日本ゼオン
製) ・「B−570」:酸無水物系硬化剤(DIC製) ・「B−650」:酸無水物系硬化剤(DIC製) ・「YH−306」:酸無水物系硬化剤(油化シェルエ
ポキシ製) ・「YH−300」:酸無水物系硬化剤(油化シェルエ
ポキシ製)
Curing agent "QH-200": acid anhydride curing agent (manufactured by Zeon Corporation) "B-570": acid anhydride curing agent (manufactured by DIC) "B-650": acid anhydride -Based curing agent (manufactured by DIC)-"YH-306": acid anhydride-based curing agent (manufactured by oil-based shell epoxy)-"YH-300": acid anhydride-based curing agent (manufactured by oil-based shell epoxy)

【0046】促進剤(硬化促進剤) ・「2P4MHZ」:イミダゾール系硬化剤(四国化成
工業製)
Accelerator (curing accelerator) "2P4MHZ": imidazole-based curing agent (manufactured by Shikoku Chemicals)

【0047】無機フィラー ・「FB−5SDX」:球状シリカフィラー(電気化学
工業製) シランカップリング処理済
Inorganic filler "FB-5SDX": spherical silica filler (manufactured by Denki Kagaku Kogyo) Silane-coupling treated

【0048】カーボンブラック ・「#4400」:東海カーボン社製Carbon black "# 4400": manufactured by Tokai Carbon Co., Ltd.

【0049】「フィラー含有率」及び「カーボン含有
率」は、エポキシ樹脂と硬化剤とフィラーの合計を10
0質量%としたときのそれぞれの含有率を示す値であ
る。「促進剤」は、エポキシ+硬化剤+フィラーを10
0質量%としたとき0.1質量%とする。エポキシ樹脂
と硬化剤の割合は、官能基比で100/95とする。こ
れらの組成物に対して以下の信頼性評価を行う。
The “filler content” and “carbon content” are defined as the total of epoxy resin, curing agent and filler being 10
It is a value showing each content rate when it is set to 0% by mass. "Accelerator" means epoxy + curing agent + filler
When it is 0% by mass, it is 0.1% by mass. The ratio between the epoxy resin and the curing agent is 100/95 in terms of the functional group ratio. The following reliability evaluation is performed on these compositions.

【0050】(信頼性評価)コア基板は、厚み0.8m
mのBT基板を用いる。このコア基板に金型を用いて所
定の大きさの貫通孔を打ち抜いて形成する。図2に示す
ように、コア基板(1)の一面にバックテープ(3)を
貼り付けた後、バックテープ(3)を貼り付けた面を下
側にして置く。次いで図3に示すように、他方の面から
開口部(2)内のパックテープ(3)の粘着面上の所定
の位置に、チップコンデンサ(4)をチップマウンタを
用いて配置する。図4に示すように、開口部(2)内に
配置されたチップコンデンサ(4)と開口部(2)内の
隙間に表1に示す埋め込み樹脂(6)をディスペンサを
用いて流し込む。
(Evaluation of Reliability) The core substrate has a thickness of 0.8 m.
m BT substrate is used. The core substrate is formed by punching a through hole having a predetermined size using a mold. As shown in FIG. 2, after the back tape (3) is attached to one surface of the core substrate (1), the back tape (3) is placed on the lower side. Next, as shown in FIG. 3, a chip capacitor (4) is arranged at a predetermined position on the adhesive surface of the pack tape (3) in the opening (2) from the other surface using a chip mounter. As shown in FIG. 4, an embedded resin (6) shown in Table 1 is poured into a gap between the chip capacitor (4) disposed in the opening (2) and the opening (2) using a dispenser.

【0051】埋め込み樹脂(6)を、100℃×80分
→120℃×60分→160℃×10分の3段階の条件
により脱泡および熱硬化する。図5に示すように、硬化
した埋め込み樹脂(6)の表面(60)を、ベルトサン
ダーを用いて粗研磨した後、ラップ研磨にて仕上げ研磨
する。次いで、図6に示すように、平坦化面(60)に
炭酸ガスレーザーを用いてビアホール(7)を穴あけ加
工して、チップコンデンサ(4)の電極(5)を露出さ
せる。
The embedded resin (6) is defoamed and thermally cured under the conditions of 100 ° C. × 80 minutes → 120 ° C. × 60 minutes → 160 ° C. × 10 minutes. As shown in FIG. 5, the surface (60) of the cured embedded resin (6) is roughly polished by using a belt sander, and then finish-polished by lap polishing. Next, as shown in FIG. 6, a via hole (7) is drilled in the flattened surface (60) using a carbon dioxide laser to expose the electrode (5) of the chip capacitor (4).

【0052】その後、膨潤液とKMnO4溶液を用い
て、埋め込み樹脂(6)の露出面を粗化する。得られた
粗化面(61)をPd触媒活性化した後、図7に示すよ
うに、無電解メッキ、電解メッキの順番で銅メッキ
(9)を施す。このサンプルを所定の条件によるプレッ
シャークッカー試験(条件は、121℃、湿度100質
量%、2.1atm)を用いて、表2に示す時間にて耐湿
試験を行った。各時間を経過したサンプルの埋め込み樹
脂上の銅メッキ(9)に幅10mmで切り込みを入れ
る。その銅メッキ層(9)を、JIS C 5012に
準拠するように基板に対して垂直方向に引っ張りながら
引き剥がす。このときの引き剥がしに要した強度をピー
ル強度とする。ピール強度は、588N/m(0.6Kg/
cm)以上あるのが好ましい。表2に測定結果を示す。
Thereafter, the exposed surface of the embedded resin (6) is roughened using a swelling solution and a KMnO 4 solution. After the obtained roughened surface (61) is activated with a Pd catalyst, as shown in FIG. 7, copper plating (9) is applied in the order of electroless plating and electrolytic plating. This sample was subjected to a moisture resistance test at a time shown in Table 2 using a pressure cooker test under predetermined conditions (conditions: 121 ° C., humidity 100% by mass, 2.1 atm). A 10 mm wide cut is made in the copper plating (9) on the embedded resin of the sample after each time. The copper plating layer (9) is peeled off while being pulled in a direction perpendicular to the substrate according to JIS C 5012. The strength required for the peeling at this time is defined as the peel strength. Peel strength is 588 N / m (0.6 kg /
cm) or more. Table 2 shows the measurement results.

【0053】[0053]

【表2】 [Table 2]

【0054】結果より、本発明の実施例である試料番号
1〜5の埋め込み樹脂及びそれを用いた配線基板は、所
定の条件によるプレッシャークッカー試験後においても
良好なピール強度を維持できることがわかる。特に、カ
ーボンブラックの添加量を所定の範囲に調整すること
で、絶縁性も併せて良好にできることがわかる。逆に、
比較例である試料番号6〜9のように、カーボンブラッ
クの添加量が多すぎると、絶縁抵抗の低下のみならず、
ピール強度の信頼性も低下することがわかる。
The results show that the embedded resins of Sample Nos. 1 to 5 and the wiring boards using the same, which are examples of the present invention, can maintain good peel strength even after the pressure cooker test under predetermined conditions. In particular, it can be seen that by adjusting the amount of carbon black added to a predetermined range, the insulating property can be improved satisfactorily. vice versa,
When the addition amount of carbon black is too large as in Comparative Examples Sample Nos. 6 to 9, not only is the insulation resistance lowered,
It can be seen that the reliability of the peel strength also decreases.

【0055】[0055]

【発明の効果】本発明によれば、基板に設けた開口部
(貫通孔やキャビティ等の凹部)内に配置した電子部品
を埋め込み樹脂を用いて埋め込んだ場合において、所定
の条件ののプレッシャークッカー試験を経てもなお、ピ
ール強度の高い密着信頼性を確保することができる。埋
め込み樹脂上に幅150μm以下の微細配線層を形成し
た場合や、電源層のように大電流を流す配線層を形成し
た場合において顕著な効果が得られる。特には、電源供
給機能を有するコンデンサ等の電子部品に接続された電
源層用の配線層を形成した場合において、高い密着信頼
性を確保することができる。
According to the present invention, when an electronic component arranged in an opening (recess such as a through hole or a cavity) provided in a substrate is embedded using an embedding resin, a pressure cooker under a predetermined condition is used. Even after the test, high adhesion reliability with high peel strength can be ensured. A remarkable effect can be obtained when a fine wiring layer having a width of 150 μm or less is formed on the embedded resin, or when a wiring layer that flows a large current such as a power supply layer is formed. In particular, when a wiring layer for a power supply layer connected to an electronic component such as a capacitor having a power supply function is formed, high adhesion reliability can be ensured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の配線基板をBGA基板に適用した例を
示す説明図である。
FIG. 1 is an explanatory diagram showing an example in which a wiring board of the present invention is applied to a BGA board.

【図2】本発明の配線基板の製造方法の一態様を示す説
明図である。
FIG. 2 is an explanatory view showing one embodiment of a method of manufacturing a wiring board according to the present invention.

【図3】本発明の配線基板の製造方法の一態様を示す説
明図である。
FIG. 3 is an explanatory view showing one embodiment of a method for manufacturing a wiring board of the present invention.

【図4】本発明の配線基板の製造方法の一態様を示す説
明図である。
FIG. 4 is an explanatory view showing one embodiment of a method for manufacturing a wiring board of the present invention.

【図5】本発明の配線基板の製造方法の一態様を示す説
明図である。
FIG. 5 is an explanatory view showing one embodiment of a method for manufacturing a wiring board of the present invention.

【図6】本発明の配線基板の製造方法の一態様を示す説
明図である。
FIG. 6 is an explanatory view illustrating one embodiment of a method for manufacturing a wiring board of the present invention.

【図7】本発明の配線基板の製造方法の一態様を示す説
明図である。
FIG. 7 is an explanatory view illustrating one embodiment of a method for manufacturing a wiring board of the present invention.

【図8】本発明の配線基板の製造方法の一態様を示す説
明図である。
FIG. 8 is an explanatory view showing one embodiment of a method for manufacturing a wiring board of the present invention.

【図9】本発明の配線基板の製造方法の一態様を示す説
明図である。
FIG. 9 is an explanatory view illustrating one embodiment of a method for manufacturing a wiring board of the present invention.

【図10】本発明の配線基板をBGA基板に適用した例
を示す説明図である。
FIG. 10 is an explanatory diagram showing an example in which the wiring board of the present invention is applied to a BGA board.

【図11】本発明の一態様であるFC−PGA型の多層
プリント配線基板を用いた半導体装置の説明図。
FIG. 11 is an explanatory diagram of a semiconductor device using an FC-PGA type multilayer printed wiring board which is one embodiment of the present invention.

【図12】厚み400μmの銅張りコア基板の概略図。FIG. 12 is a schematic view of a copper-clad core substrate having a thickness of 400 μm.

【図13】厚み400μmの銅張りコア基板のパターニ
ング後の状態を示す説明図。
FIG. 13 is an explanatory view showing a state after patterning of a copper-clad core substrate having a thickness of 400 μm.

【図14】コア基板の両面に絶縁層を形成した基板にビ
アホールとスルーホールを形成した状態を示す説明図。
FIG. 14 is an explanatory diagram showing a state in which via holes and through holes are formed in a substrate in which insulating layers are formed on both surfaces of a core substrate.

【図15】コア基板の両面に絶縁層を形成した基板にパ
ネルメッキをかけた後の状態を示す説明図。
FIG. 15 is an explanatory diagram showing a state after panel plating is applied to a substrate having an insulating layer formed on both surfaces of a core substrate.

【図16】スルーホールを穴埋め充填した基板の説明
図。
FIG. 16 is an explanatory view of a substrate in which through holes are filled and filled.

【図17】貫通孔を打ち抜き形成した基板を示す説明
図。
FIG. 17 is an explanatory view showing a substrate formed by punching through holes.

【図18】貫通孔を打ち抜き形成した基板の一面にマス
キングテープを貼り付けた状態を示す説明図。
FIG. 18 is an explanatory view showing a state in which a masking tape is attached to one surface of a substrate on which a through hole is punched and formed.

【図19】貫通孔内に露出したマスキングテープ上に積
層チップコンデンサを配置した状態を示す説明図。
FIG. 19 is an explanatory view showing a state in which a multilayer chip capacitor is arranged on a masking tape exposed in a through hole.

【図20】貫通孔内に埋め込み樹脂を充填した状態を示
す説明図。
FIG. 20 is an explanatory view showing a state in which a filling resin is filled in a through hole.

【図21】基板面を研磨して平坦化した状態を示す説明
図。
FIG. 21 is an explanatory view showing a state where a substrate surface is polished and flattened.

【図22】基板の研磨面にパネルメッキをかけた状態を
示す説明図。
FIG. 22 is an explanatory view showing a state where a polished surface of a substrate is subjected to panel plating.

【図23】配線をパターニングした状態を示す説明図。FIG. 23 is an explanatory view showing a state in which wiring is patterned.

【図24】基板上にビルドアップ層及びソルダーレジス
ト層を形成した状態を示す説明図。
FIG. 24 is an explanatory view showing a state in which a build-up layer and a solder resist layer are formed on a substrate.

【図25】本発明の一態様であるFC−PGA型の多層
プリント配線基板の説明図。
FIG. 25 is an explanatory diagram of an FC-PGA type multilayer printed wiring board which is one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 コア基板 2 貫通孔(開口部) 3 バックテープ 4 電子部品 5 電子部品の電極 6 埋め込み樹脂 60 平坦化面 61 粗化面 DESCRIPTION OF SYMBOLS 1 Core board 2 Through-hole (opening) 3 Back tape 4 Electronic component 5 Electrode of electronic component 6 Embedded resin 60 Flat surface 61 Rough surface

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 1/18 H05K 3/28 C 3/28 3/46 B 3/46 Q T H01L 23/12 B (72)発明者 大林 和重 愛知県名古屋市瑞穂区高辻町14番18号 日 本特殊陶業株式会社内 (72)発明者 加島 壽人 愛知県名古屋市瑞穂区高辻町14番18号 日 本特殊陶業株式会社内 Fターム(参考) 4F100 AA37A AB17B AK01A AK53A BA02 CA23A GB43 JB12A JB13A JK06 YY00A 4J002 AA021 CD001 CD041 CD051 CD061 DA036 DE147 DJ007 DJ027 FD017 FD096 GF00 GQ00 GQ01 5E314 AA25 AA32 AA42 AA47 BB05 BB13 CC03 DD02 DD06 DD08 FF05 FF17 FF21 GG01 GG08 GG12 5E336 AA08 BB03 BB15 BC26 BC31 CC31 CC51 GG01 GG12 GG14 5E346 AA04 AA06 AA12 AA15 AA42 AA43 AA60 BB01 CC02 CC08 CC31 DD02 DD22 EE31 FF04 GG15 GG27 GG28 GG40 HH08 HH11 HH18 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H05K 1/18 H05K 3/28 C 3/28 3/46 B 3/46 Q T H01L 23/12 B ( 72) Inventor Kazushige Obayashi 14-18, Takatsuji-cho, Mizuho-ku, Nagoya-shi, Aichi Japan Inside (72) Inventor Hisato Kashima 14-18 Takatsuji-cho, Mizuho-ku, Nagoya-shi, Aichi Japan In-house F term (reference) 4F100 AA37A AB17B AK01A AK53A BA02 CA23A GB43 JB12A JB13A JK06 YY00A 4J002 AA021 CD001 CD041 CD051 CD061 DA036 DE147 DJ007 DJ027 FD017 FD096 GF00 GQ00 GQ01A03A03A03A03DD GG08 GG12 5E336 AA08 BB03 BB15 BC26 BC31 CC31 CC51 GG01 GG12 GG14 5E346 AA04 AA06 AA12 AA15 AA42 AA43 AA60 BB01 CC02 CC08 CC31 DD02 DD22 EE31 FF04 GG15 GG27 GG28 GG40 HH08 H H11 HH18

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 電子部品を埋め込むための埋め込み樹脂
であって、 該埋め込み樹脂の硬化物の上に銅層を形成した基板のプ
レッシャークッカー試験後における該銅層のピール強度
が、588N/m(0.6kg/cm)以上であること
を特徴とする埋め込み樹脂。ただし、該プレッシャーク
ッカー試験の条件は、121℃×湿度100質量%×
2.1気圧×168時間である。また、該ピール強度の
測定方法はJIS C 5012に準拠し、該銅層の幅
は10mmとする。
An embedded resin for embedding an electronic component, wherein a peel strength of the copper layer after a pressure cooker test of a substrate having a copper layer formed on a cured product of the embedded resin is 588 N / m ( 0.6 kg / cm) or more. However, the conditions of the pressure cooker test were 121 ° C. × 100% by mass of humidity ×
2. Atmospheric pressure x 168 hours. The peel strength is measured according to JIS C 5012, and the width of the copper layer is 10 mm.
【請求項2】 電子部品を埋め込むための埋め込み樹脂
であって、 該埋め込み樹脂の硬化物の上に銅層を形成した基板のプ
レッシャークッカー試験後における該銅層のピール強度
が、600N/m(0.61kg/cm)以上であるこ
とを特徴とする埋め込み樹脂。ただし、該プレッシャー
クッカー試験の条件は、121℃×湿度100質量%×
2.1気圧×336時間である。また、該ピール強度の
測定方法はJIS C 5012に準拠し、該銅層の幅
は10mmとする。
2. An embedding resin for embedding an electronic component, wherein the substrate having a copper layer formed on a cured product of the embedding resin has a peel strength of 600 N / m after a pressure cooker test. 0.61 kg / cm) or more. However, the conditions of the pressure cooker test were 121 ° C. × 100% by mass of humidity ×
2. Atmospheric pressure x 336 hours. The peel strength is measured according to JIS C 5012, and the width of the copper layer is 10 mm.
【請求項3】 カーボンブラックの含有量が0.5質量
質量%以下であることを特徴とする請求項1に記載の埋
め込み樹脂。
3. The embedding resin according to claim 1, wherein the content of carbon black is 0.5% by mass or less.
【請求項4】 カーボンブラックの含有量が0.4質量
質量%以下であることを特徴とする請求項2に記載の埋
め込み樹脂。
4. The embedding resin according to claim 2, wherein the content of carbon black is 0.4% by mass or less.
【請求項5】 前記埋め込み樹脂の樹脂成分は少なくと
も熱硬化性樹脂を含み、かつ少なくとも一種類以上の無
機フィラーを含むことを特徴とする請求項1乃至請求項
4のいずれかに記載の埋め込み樹脂。
5. The embedding resin according to claim 1, wherein the resin component of the embedding resin includes at least a thermosetting resin and at least one or more inorganic fillers. .
【請求項6】 前記熱硬化性樹脂がビスフェノールエポ
キシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボ
ラック型エポキシ樹脂及びクレゾールノボラック型エポ
キシ樹脂から選ばれる少なくとも一種であることを特徴
とする請求項5に記載の埋め込み樹脂。
6. The embedding according to claim 5, wherein the thermosetting resin is at least one selected from a bisphenol epoxy resin, a naphthalene type epoxy resin, a phenol novolak type epoxy resin and a cresol novolak type epoxy resin. resin.
【請求項7】 請求項1乃至請求項6のいずれかに記載
の埋め込み樹脂を用いて電子部品を埋め込んだことを特
徴とする配線基板。
7. A wiring board, wherein an electronic component is embedded using the embedding resin according to any one of claims 1 to 6.
【請求項8】 コア基板の少なくとも一面に、絶縁層及
び配線層を交互に積層したビルドアップ層を形成し、該
コア基板及び該ビルドアップ層の少なくとも一方を貫通
するように開口部を形成した基板を用いるとともに、該
開口部内に配置した電子部品を、請求項1乃至請求項6
のいずれかに記載の埋め込み樹脂を用いて埋め込んだこ
とを特徴とする配線基板。
8. A build-up layer in which insulating layers and wiring layers are alternately laminated on at least one surface of a core substrate, and an opening is formed to penetrate at least one of the core substrate and the build-up layer. 7. An electronic component using a substrate and disposed in the opening, the electronic component being disposed in the opening.
A wiring board, wherein the wiring board is embedded using the embedding resin according to any one of the above.
JP2001352505A 2000-12-26 2001-11-19 Wiring board Expired - Lifetime JP3959261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001352505A JP3959261B2 (en) 2000-12-26 2001-11-19 Wiring board

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000395627 2000-12-26
JP2001083984 2001-03-23
JP2000-395627 2001-03-23
JP2001-83984 2001-03-23
JP2001352505A JP3959261B2 (en) 2000-12-26 2001-11-19 Wiring board

Publications (2)

Publication Number Publication Date
JP2002348441A true JP2002348441A (en) 2002-12-04
JP3959261B2 JP3959261B2 (en) 2007-08-15

Family

ID=27345551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001352505A Expired - Lifetime JP3959261B2 (en) 2000-12-26 2001-11-19 Wiring board

Country Status (1)

Country Link
JP (1) JP3959261B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129899A (en) * 2003-08-28 2005-05-19 Kyocera Corp Wiring board and semiconductor device
JP2008130577A (en) * 2006-11-16 2008-06-05 Seiko Epson Corp Process for producing electronic substrate
JP2008130578A (en) * 2006-11-16 2008-06-05 Seiko Epson Corp Process for producing electronic substrate
JP2008160160A (en) * 2003-08-28 2008-07-10 Kyocera Corp Wiring board and semiconductor device
JP2008211201A (en) * 2007-02-01 2008-09-11 Ngk Spark Plug Co Ltd Wiring board and semiconductor package
US7683268B2 (en) 2004-06-08 2010-03-23 Sanyo Electric Co., Ltd. Semiconductor module with high process accuracy, manufacturing method thereof, and semiconductor device therewith
JP2011187919A (en) * 2010-03-05 2011-09-22 Samsung Electro-Mechanics Co Ltd Electronic element built-in printed circuit board and method of manufacturing the same
JP2013144438A (en) * 2011-12-15 2013-07-25 Fujifilm Corp Resin composition for laser engraving, flexographic printing plate precursor and process for producing same, and flexographic printing plate and process for making same
CN114938587A (en) * 2022-03-28 2022-08-23 东莞森玛仕格里菲电路有限公司 Novel PCB (printed circuit board) copper-embedded block manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101952865B1 (en) 2016-10-10 2019-02-27 삼성전기주식회사 Fan-out semiconductor package and photosensitive resin composition

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129899A (en) * 2003-08-28 2005-05-19 Kyocera Corp Wiring board and semiconductor device
JP2008160160A (en) * 2003-08-28 2008-07-10 Kyocera Corp Wiring board and semiconductor device
US7683268B2 (en) 2004-06-08 2010-03-23 Sanyo Electric Co., Ltd. Semiconductor module with high process accuracy, manufacturing method thereof, and semiconductor device therewith
JP2008130577A (en) * 2006-11-16 2008-06-05 Seiko Epson Corp Process for producing electronic substrate
JP2008130578A (en) * 2006-11-16 2008-06-05 Seiko Epson Corp Process for producing electronic substrate
JP2008211201A (en) * 2007-02-01 2008-09-11 Ngk Spark Plug Co Ltd Wiring board and semiconductor package
JP2011187919A (en) * 2010-03-05 2011-09-22 Samsung Electro-Mechanics Co Ltd Electronic element built-in printed circuit board and method of manufacturing the same
US8284562B2 (en) 2010-03-05 2012-10-09 Samsung Electro-Mechanics Co., Ltd. Electro device embedded printed circuit board and manufacturing method thereof
JP2013144438A (en) * 2011-12-15 2013-07-25 Fujifilm Corp Resin composition for laser engraving, flexographic printing plate precursor and process for producing same, and flexographic printing plate and process for making same
CN114938587A (en) * 2022-03-28 2022-08-23 东莞森玛仕格里菲电路有限公司 Novel PCB (printed circuit board) copper-embedded block manufacturing method

Also Published As

Publication number Publication date
JP3959261B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
US6822170B2 (en) Embedding resin and wiring substrate using the same
US6876091B2 (en) Wiring board
US6740411B2 (en) Embedding resin, wiring substrate using same and process for producing wiring substrate using same
JP3926141B2 (en) Wiring board
US6512182B2 (en) Wiring circuit board and method for producing same
JP3375555B2 (en) Circuit component built-in module and method of manufacturing the same
JP4279893B2 (en) Manufacturing method of circuit component built-in module
US8673744B2 (en) Wiring substrate, manufacturing method thereof, and semiconductor package
EP1304742B1 (en) Method for producing a component built-in module
US6770965B2 (en) Wiring substrate using embedding resin
JP2001028483A (en) Wiring board, multilayer wiring board, circuit component package, and manufacturing method of wiring board
JP4038363B2 (en) Wiring board
JP3619421B2 (en) Manufacturing method of multilayer wiring board
JP4606685B2 (en) Module with built-in circuit components
JP2010278414A (en) Material for wiring board, laminated board, multilayer board, and wiring board
JP3959261B2 (en) Wiring board
JP2002158450A (en) Wiring board
JP2003069229A (en) Multilayer printed wiring board
JP4326710B2 (en) Wiring board using embedded resin
JP3631682B2 (en) Multilayer wiring board and manufacturing method thereof
JP2002319765A (en) Burying resin
JP2005123547A (en) Interposer and multilayer printed wiring board
JP3895156B2 (en) Wiring board
JP4632514B2 (en) Wiring board and manufacturing method thereof
JP2002252465A (en) Multilayer wiring board and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061031

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070514

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3959261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term