JP2004102204A - 投影観察装置 - Google Patents

投影観察装置 Download PDF

Info

Publication number
JP2004102204A
JP2004102204A JP2002304555A JP2002304555A JP2004102204A JP 2004102204 A JP2004102204 A JP 2004102204A JP 2002304555 A JP2002304555 A JP 2002304555A JP 2002304555 A JP2002304555 A JP 2002304555A JP 2004102204 A JP2004102204 A JP 2004102204A
Authority
JP
Japan
Prior art keywords
optical system
projection
diffusion plate
prism
hologram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002304555A
Other languages
English (en)
Other versions
JP4129976B2 (ja
JP2004102204A5 (ja
Inventor
Kokichi Kenno
研野 孝吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2002304555A priority Critical patent/JP4129976B2/ja
Priority to US10/612,092 priority patent/US7317565B2/en
Publication of JP2004102204A publication Critical patent/JP2004102204A/ja
Publication of JP2004102204A5 publication Critical patent/JP2004102204A5/ja
Application granted granted Critical
Publication of JP4129976B2 publication Critical patent/JP4129976B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • G02B17/086Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors wherein the system is made of a single block of optical material, e.g. solid catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Projection Apparatus (AREA)

Abstract

【課題】観察方向により異なる映像を1つの表示面に同時に少なくとも2つ観察可能に表示する簡単な構成で照明効率の良い投影観察装置。
【解決手段】1つの表示面に観察方向により異なる映像を同時に少なくとも2つ観察可能に表示する投影観察装置であり、少なくとも2つ表示素子11 、12 と、その表示素子11 、12 に表示された映像を異なる方向から拡大投影する少なくとも2つの投影光学系21 、22 と、その投影光学系21 、22 で投影された像近傍に配置された共通の拡散板4と、投影光学系21 、22 各々の射出瞳を観察者眼球E1 、E2 に投影する共通の接眼光学系3とを備えている投影観察装置。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は、投影観察装置に関し、特に、1つの投影面に投影された映像を同時に、異なる方向から観察可能にする投影観察装置に関すものである。
【0002】
【従来の技術】
従来、特許文献1には、ダブルレンチキュラースクリーンを使って観察方向により異なる画像の表示を同一のスクリーン上で行う方法が示されている。また、特許文献2には、回帰性スクリーンと2つのプロジェクターにより立体映像を表示するシステムが開示されている。
【0003】
【特許文献1】
特開平6−230738号公報
【0004】
【特許文献2】
特開平10−115878号公報
【0005】
【特許文献3】
米国特許第6,124,989号明細書
【0006】
【特許文献4】
特開2000−66105号公報
【0007】
【特許文献5】
特開平9−127312号公報
【0008】
【特許文献6】
特開2000−171618号公報
【0009】
【特許文献6】
特開2001−281583号公報
【0010】
【発明が解決しようとする課題】
しかし、ダブルレンチキュラースクリーンを用い方法は、2つのレンチキュラースクリーンの位置合わせを厳密にする必要がある。また、プロジェクターの光を効率的に観察者に向けることができない。そこで、明るい観察像を得るためには非常に高輝度の光源が必要になる。
【0011】
また、回帰性スクリーンを用いる方法では、プロジェクター(投影光学系)の射出瞳位置に光線が収束してしまうために、効率の良い明るい観察像を観察することができない。
【0012】
また、映像表示装置において、1つの表示面に見る角度により異なる映像を表示する技術として、レンチキュラーシートやパララックスバリア方式等が使われていたが、明るい観察像を解像度を下げることなく観察できるものはなかった。
【0013】
本発明は従来技術のこのような問題点に鑑みてなされたものであり、その目的は、映像を1つの投影面投影し、投影された映像を少なくとも2つの異なる方向から観察可能な投影観察装置を提供することである。また、その際、簡単な構成でありながら、明るい映像を観察可能にする。また、少ない照明光量で明るい映像を観察可能にする。
【0014】
【課題を解決するための手段】
上記目的を達成する本発明の投影観察装置は、少なくとも2つ表示素子と、前記少なくとも2つの表示素子に表示された映像を異なる方向から拡大投影する少なくとも2つの投影光学系と、前記少なくとも2つの投影光学系で投影された像近傍に配置された共通の拡散板と、前記投影光学系各々の射出瞳を観察者側に投影する共通の接眼光学系とを備えていることを特徴とするものである。
【0015】
本発明のもう1つの投影観察装置は、少なくとも2つ表示素子と、前記少なくとも2つの表示素子に表示された映像を異なる方向から拡大投影する少なくとも2つの投影光学系と、前記少なくとも2つの投影光学系で投影された像近傍に配置された共通の透過型ホログラムからなる拡散板と、前記投影光学系各々の射出瞳を観察者側に投影する共通の凹面鏡からなる接眼光学系とを備えていることを特徴とするものである。
【0016】
また、本発明の投影観察装置は、上記構成において、前記投影光学系の光軸の何れか一方が前記接眼光学系と交差し、交差する点における前記接眼光学系の垂線とその光軸とのなす角が10°以上であることを特徴とする。
【0017】
また、本発明の投影観察装置は、上記構成において、前記投影光学系の少なくとも1つは、屈折率(n)が1よりも大きい(n>1)媒質で形成された偏心プリズムを1個以上備えた偏心プリズム光学系からなり、前記偏心プリズムは、表示素子から射出された光束をプリズム内に入射する入射面と、その光束をプリズム内で反射する少なくとも1つの反射面と、光束をプリズム外に射出する射出面とを有し、その少なくとも1つの反射面が曲面形状を有し、その曲面形状が偏心によって発生する収差を補正する回転非対称な面形状にて構成されていることを特徴とする。
【0018】
【発明の実施の形態】
以下に、本発明において上記構成をとる理由とその作用について説明する。この説明において、観察方向が2つ以上ある場合に、特別な場合を除いて、それらの観察方向用の光学部材、素子、映像、射出瞳、観察者眼球等が共通でなく、別々のものである場合には、それらの部材等を示す符号の後に下付き数字“1”、“2”等を付加して、それぞれ対応する観察方向用のものであることを区別する。
【0019】
図1に、本発明の投影観察装置における光学系の概念図を示す。
【0020】
本発明の投影観察装置は、異なる方向から同時に、少なくとも2つの映像を観察可能にする投影観察装置である。そのため、本発明の投影観察装置では、少なくとも2つの表示素子11 、12 を備えていえる。この2つの表示素子11 、12 に異なる映像を表示すれば、少なくとも2人の観察者が、同時に異なる映像を見ることができる。なお、同一の映像を表示しても構わない。この少なくとも2つの表示素子11 、12 に表示された映像を観察者が見るためには、光学系が必要である。そこで、本発明の投影観察装置では、2つの投影光学系21 、22 が表示素子11 、12 に対応して配置されている。
これらの投影光学系21 、22 は、図1に示すように、投影像51 、52 を完全に重ねて接眼光学系3近傍に投影するか、図2に示すように、少なくとも一部が重なるように接眼光学系3近傍に投影する。この構成により、投影面(投影像51 、52 が投影される領域)が小さくなるので、接眼光学系3を小さくすることができる。
【0021】
そして接眼光学系3は、投影光学系21 、22 の射出瞳を観察者眼球E1 、E2 側に形成する働きを持っている。ここで、観察者眼球E1 、E2 側に形成された投影光学系21 、22 の射出瞳の像を61 、62 とする。このように、本発明は投影光学系21 、22 各々の射出瞳を、観察者眼球E1 、E2 側に投影する接眼光学系3を備えている。よって、観察者が、観察者眼球E1 、E2 を射出瞳61 、62 (投影光学系21 、22 の射出瞳像)に一致させることにより、投影光学系21 、22 を射出した投影光線を効率良く観察者眼球E1 、E2 に集めることが可能になる。この結果、低出力の光源を用いて表示素子11 、12 を照明しても、観察者は明るい観察像を観察することが可能となる。なお、本発明の投影観察装置は、投影光学系21 、22 の射出瞳を、観察者眼球E1 、E2 に投影しているいうこともできる。
【0022】
さらに、本発明の投影観察装置では、投影像51 、52 近傍に共通の単一の拡散板4を配置している。そして、拡散板4の拡散特性を利用して、図3に示すように、接眼光学系3で投影された投影光学系2の小さい射出瞳像6を、観察しやすい大きさの瞳径の射出瞳像60に拡大している。これにより、観察者の眼Eの位置が多少ずれても投影像51 、52 (図1、図2)を観察することが可能な、見やすい投影観察装置を提供することが可能となる。なお、拡散板4も投影面近傍に配置されるので、小型化ができる。
【0023】
なお、上述のように、接眼光学系3と拡散板4は、何れも投影光学系2、21 、22 により投影された投影像51 、52 の近傍に配置される。よって、接眼光学系3の少なくとも1面に、拡散作用をする拡散面を一体に設けてもよい。また、拡散板4を接眼光学系3とは別体のものとしてもよい。
【0024】
さて、以上のような本発明の投影観察装置においては、投影光学系21 、22 の光軸が接眼光学系3と交差する。そこで、何れか一方の光軸が交差する点における接眼光学系3の垂線とその光軸とのなす角が10°以上であることが望ましい。
【0025】
図4に示すように、投影光学系21 、22 から接眼光学系3が構成する投影面中心に伸びる光軸は、拡散板4と接眼光学系3の略中心を通過して観察者M1 、M2 の眼球位置に到達する。なお、ここでは拡散板4の拡散作用を考えないとしている。
【0026】
ところで、本発明の投影観察装置のように、1つの投影面に投影された映像を、少なくとも2人以上で観察する個人用ディスプレイとしての使用を考えると、投影面と観察者との距離は40cm〜1m程度になる。一方、2人以上の観察者、ここでは2人の観察者M1 、M2 が顔を寄せて合って観察することは余りないので、両者の顔の中心間の距離は40cm以上離れると思われる。この場合、投影光学系21の光軸と投影光学系22の光軸とのなす角度は、53°〜22.6°になる。このように、お互いの顔が近づくことによる心理的ファクターを考えると、点Pにおける接眼光学系3の垂線Nと投影光学系21 、22 の光軸の少なくとも何れか一方の光軸とのなす角αが10°以上であることが望ましい。ここで、点Pは、投影光学系21 、22 の光軸の少なくとも何れか一方が、接眼光学系3と交差する点である。また、接眼光学系3の垂線Nとは接眼光学系3の主面に対する垂線であり、接眼光学系3をフレネルレンズやフレネル反射鏡で構成する場合は、そのレンズや反射鏡に対する垂線となる。
【0027】
図4は2次元偏心的に投影光学系21 、22 を配置した場合であるが、3次元偏心的に配置する場合も同様のことがいえる。図5は、影光学系21 、22 を3次元偏心的に配置した時の模式図である。なお、図5では一方の投影光学系21 のみしか図示していない。また、投影光学系21 、22 の射出瞳をそれぞれ61 ’、62 ’で示し、それらの接眼光学系3による投影像である射出瞳像を61 、62 で示してある。図5に示すように、投影光学系21 、22 を3次元偏心的に配置する場合も、図4と同様に、点Pにおける垂線Nと投影光学系21の光軸とのなす角αを、10°以上にすることが望ましい。
【0028】
ところで、図4、図5に示す構成では、接眼光学系3に対して斜め方向から表示素子11 、12 の映像を投影する配置となっている。このような配置で、投影光学系2、21 、22 を回転対称な光学系で構成すると、投影された像はアオリ像となって像歪みを発生する。この像歪みは、図5に示すように、表示素子11 、12 の表示面と、投影光学系21 、22 の主面と、接眼光学系3の主面とを平行に配置し、投影光学系21 、22 を光軸に垂直にシフトした形態にすることにより補正できる。あるいは、シャイムフルクの法則を満たすようにこの三者を配置することにより、その像歪みを補正することができる。
【0029】
また、このような像歪みは、表示素子11 、12 に表示する像を、その像歪みをキャンセルするように予め歪ませておくことにより、電気的に補正することもできる。
【0030】
さらに、上記の光学的な補正方法と電気的な補正方法の両方を用いることも可能なことは言うまでもない。
【0031】
また、投影光学系2、21、22としては偏心光学系を使うことが望ましい。その場合、投影光学系2、21 、22 は回転非対称面を有することが望ましい。なお、回転非対称な曲面形状としては、限定的でないが、自由曲面を用いることが望ましい。自由曲面は、例えば特許文献3(特許文献4)の(a)式により定義される自由曲面であり、その定義式のZ軸が自由曲面の軸となる。
【0032】
また、投影光学系21 、22 の少なくとも1つは、屈折率(n)が1よりも大きい(n>1)媒質で形成された偏心プリズムを1個以上備えた偏心プリズム光学系から構成する。その偏心プリズムは、表示素子から射出された光束をプリズム内に入射する入射面と、その光束をプリズム内で反射する少なくとも1つの反射面と、光束をプリズム外に射出する射出面とを有する。そして、その少なくとも1つの反射面が、光束にパワーを与える曲面形状を有し、その曲面形状が偏心によって発生する収差を補正する回転非対称な面形状にて構成されているものとするのが好ましい。これにより、像歪補正能力が格段に向上する。特に、少なくとも2つの投影光学系21 、22 の光軸の相互になす角が30°以上の場合には好ましい。
【0033】
なお、本発明において投影光学系21 、22 として用いる偏心プリズム光学系は、偏心プリズムを1個又は複数個用いたものでもよい。あるいは、図6に模式的に示すように、回転対称なレンズ系と偏心プリズムを組み合わせたものを用いてもよい。
【0034】
偏心プリズムの1例としては、表示素子11 、12 からの光束をプリズム内に入射させる入射面と、その入射面からプリズム内に入射した光束をプリズム内で反射する第1反射面と、その第1反射面で反射された光束をプリズム内で反射する第2反射面と、その第2反射面で反射された光束をプリズム外に射出する射出面とを備え、その入射面から第1反射面へ向かう光束と第2反射面から射出面へ向かう光束とがプリズム内で交差する面配置を有し、入射面、第1反射面、第2反射面、射出面の少なくとも1面が非回転対称面からなる偏心プリズムがある。
【0035】
このような偏心プリズムを用いると、プリズム内の光路が交差光路になり、反射面(第1反射面と第2反射面)での入射角度が小さくなる。その結果、偏心収差の発生がを少なくすることができる。
【0036】
あるいは、投影光学系21 、22 に用いる偏心プリズムのもう1つの例としては、表示素子11 、12 からの光束をプリズム内に入射させる入射面と、その入射面からプリズム内に入射した光束をプリズム内で反射する第1反射面と、その第1反射面で反射された光束をプリズム内で反射する第2反射面と、その第2反射面で反射された光束をプリズム外に射出する射出面とを備え、その入射面と第2反射面とを1面で兼用した偏心プリズムがある。
【0037】
この第2反射面と入射面とを兼用するタイプの偏心プリズムは、第2反射面で光線を大きく屈曲させ、第1反射面は少ない屈曲角で光線を第2反射面へと反射するために、プリズム光学系の入射光線方向の厚さを薄くすることが可能なものである。
【0038】
さて、以上のように、投影光学系21 、22 を偏心プリズム光学系で構成すると、以下のような利点がある。それは、接眼光学系3に対て斜め方向から表示素子11 、12 の映像を投影する場合、偏心プリズム光学系を面対称形状に構成することにより、アオリ像の像歪みを補正することが容易になることである。すなわち、この斜め配置により発生する像歪みは、所定の方向から見た時に非対称な形状をしているが、偏心プリズム光学系によって発生する非対称な像歪みの発生方向と一致する。そのため、偏心プリズム光学系の偏心収差によりその像歪みを補正することが可能となり、収差補正が容易になる。なお、所定の方向とは、投影光学系21 、22 の光軸が接眼光学系3と交差する点Pとし、この点Pを含む偏心プリズム光学系の対称面方向のことである。
【0039】
もちろん、この場合も、このような像歪みは、表示素子11 、12 に表示する像をその像歪みをキャンセルするように予め歪ませて表示することにより、電気的に補正することもできる。さらに、上記の光学的な補正方法と電気的な補正方法の両方を用いることも可能なことは言うまでもない。
【0040】
ところで、このように投影光学系21 、22 を面対称形状の偏心プリズム光学系で構成して用いる場合においても、点Pにおける接眼光学系3の垂線と投影光学系21 、22 の光軸(少なくとも一方)とのなす角を、上記の通り10°以上とする必要がある。
【0041】
次に、偏心プリズム光学系と表示素子の好ましい配置を、図6を用いて説明する。図6において、点Pは偏心プリズム光学系21 の光軸と接眼光学系3との交点である。偏心プリズム光学系21 は対称面を有し、対称面が点Pを略含むように偏心プリズム光学系21 が配置されている。また、偏心プリズム光学系21 の入射面側(物体面側)には、表示素子11 が配置されている。そして、表示素子11 の表示画面が接眼光学系3近傍に投影されたときに、投影された表示画面の縦又は横方向が接眼光学系3の縦又は横方向と略一致するように、表示素子11 を光軸の周りで回転させて配置する。偏心プリズム光学系22 と表示素子12 についても同じように配置する。
【0042】
このような表示素子11 、12 の配置により、接眼光学系3に対する投影光学系21 、22 の斜め配置によって発生する回転非対称な像歪みを、面対称形状の偏心プリズム光学系で補正できる。それだけでなく、何れの投影光学系21 、22 の偏心プリズム光学系も、同一形状のものとして用意すればよい。よって、例えば相互に面対称な形状のように、左右の投影光学系21 、22 を異なる形状に構成する場合に比べて、投影光学系21 、22 の製造コストを大幅に下げることが可能となる。
【0043】
次に、拡散板について説明する。拡散板4の拡散角は、半値全幅で20°以下であることが好ましい。前述のように、異なる方向から映像を見ることができるように、本発明の投影観察装置は、投影光学系21 、22 が、接眼光学系3に対して所定の角度で配置されている。しかしながら、このように配置しても、拡散板4で拡散された光が広がりすぎると、一方の観察者の眼球に届くべき投影像の光が、弱いながらも他方の観察者の目に届く場合がある。そこで、拡散板4に上記条件の拡散特性を持たせることにより、観察者別に投影像51 、52 を観察させることが可能となる。
【0044】
この条件の上限の20°を上回ると、投影像21 、22 が異なる場合、投影像51 、52 がダブって見える「クロストーク」が発生してしまう。そのため、観察者は、表示内容を正しく観察することができなくなってしまう。なお、投影像51 、52 が同じものである場合は問題ない。また、拡散角が大きくなりすぎると、観察像の明るさが暗くなる。そのため、観察物体を照明する照明装置が大掛かりになってしまう。なお、拡散特性は、半値全幅から急に拡散光強度が低下することが好ましい。
【0045】
また、拡散板4は、10分の1全幅で拡散角が40°以下となる拡散特性を有することが好ましい。これは、10分の1全幅で少なくとも40°以上に拡散する光線は観察者に届かないので、上記条件を満足することにより、無駄な照明光が減り、照明光の利用効率が向上する。その結果、表示素子1、11 、12 を照明する光源として、小型で低出力のものを使うことが可能となる。よって、装置全体をコンパクトにすることができる。
【0046】
さらに、拡散板4は、10分の1全幅で拡散角が30°以下となる拡散特性を有することが好ましい。少なくとも30°以上に拡散する光線が観察者に届く割合は比較的少ないので、上記条件を満足することが更なる照明の効率的利用につながる。
【0047】
次に、上記のような拡散角を得るための拡散板4の表面粗さについて説明する。
【0048】
図7は拡散板4が透過型の場合である。透過型拡散板4から40cmの距離でφ63mmの大きさに光線を拡大しようとすると、光線の拡散角は半値幅で4.5°の拡散角を持つことが必要になる。拡散板4表面の微細な凹凸で光線を屈折させる場合、その凹凸の形状をsin波形状と仮定し、拡散面の屈折率を1.5とする。すると、図8に示すように、入射角をθ、屈折角をθ’とし、θ’−θ=4.5°とスネルの式から、入射角θは約8.86°の傾きを持つ必要があることが分かる。つまり、表面荒さの傾きの最大値は8.86°であることが必要である。ここで、面の形状は滑らかなsin波形状としていることから、その形状は、
y=a×sin(2πx/T)
で表される。ここで、aは振幅、Tは周期である。そして、その傾きは、
(傾き)=dy/dx=a×cos(2πx/T)×2π/T
となる。傾きが最大になるのは、x=2πm(mは整数)のときであるから、
(傾きの最大値)=a×2π/T
となり、これが8.86°になるときのa/Tを求めればよいことになる。
【0049】
(傾きの最大値)=a/T×2π=8.86/180×π=0.154
これからa/Tを求めると、
a/T=0.0246
となる。ここで、JIS B0601による算術平均荒さRaとaの関係は、形状が正弦波の場合は、
Ra/√2=a
となり、さらに凹凸の平均間隔Smと上記周期Tの関係は、
Sm=T
となる。これより、表面粗さに関しては以下の結果を得る。
【0050】
Sm=28.7Ra
の場合、拡散面の最大傾斜は8.83°となり、屈折率1.5の場合、光線の拡散半角4.5°、拡散全角で9°の拡散板が得られる。
【0051】
次に、図9は拡散板4が反射型の場合である。反射型拡散板4から40cmの距離でφ63mmの大きさに光線を拡大しようとすると、光線の拡散角は半値幅で4.5°の拡散角を持つことが必要になる。拡散板4表面の微細な凹凸で光線を反射させる場合、その凹凸の形状をsin波形状と仮定すると、図10に示すように、入射角、反射角をθとし、2θ=4.5°から、入射角θは4.5°の半分の約2.25°の傾きを持つ必要があることが分かる。つまり、表面荒さの傾きの最大値は2.25°であることが必要である。ここで、面の形状は滑らかなsin波形状としていることから、その形状は、
y=a×sin(2πx/T)
で表される。そして、その傾きは、
(傾き)=dy/dx=a×cos(2πx/T)×2π/T
となる。傾きが最大になるのは、x=2πm(mは整数)のときであるから、
(傾きの最大値)=a×2π/T
となり、これが2.25°になるときのa/Tを求めればよいことになる。
【0052】
(傾きの最大値)=a/T×2π=2.25/180×π=0.03927これからa/Tを求めると、
a/T=0.00625
となる。ここで、JIS B0601による算術平均荒さRaとaの関係は、形状が正弦波の場合は、
Ra/√2=a
となり、さらに凹凸の平均間隔Smと上記周期Tの関係は、
Sm=T
となる。これより、表面粗さに関しては以下の結果を得る。
【0053】
Sm=113.14Ra
の場合、拡散面の最大傾斜は2.25°となり、反射による拡散半角4.5°、拡散全角で9°の反射型拡散板4が得られる。
【0054】
これを、2回透過型拡散板、裏面鏡型拡散板についても検討すると、Sm/Raと拡散半角との関係は、拡散面の凹凸面をsin波形状に近似できる場合は、図11に示すようになる。
【0055】
以上のような知見から、拡散板4の表面粗さは、以下の条件を満足することが望ましい。
【0056】
5<(Sm/Ra)<1000             ・・・(1)
この条件は、拡散板4に好ましい拡散特性を持たせるために必要な条件であり、拡散特性を表面の微細な凹凸形状により与える場合である。光線を拡散させる方法に、拡散板4表面の微細な凹凸形状を用いると、拡散特性に波長依存性が非常に少なくなり好ましい。また、透過率も他の方法に比べて拡散板4表面でのフレネル反射のみになり、透過率の低下が少ない。さらに、AR(反射防止)コート等を行うことにより、さらに透過率を上げることが可能である。
【0057】
さらに好ましくは、
10<(Sm/Ra)<500           ・・・(1−1)
なる条件を満足することが好ましい。
【0058】
また、本発明の拡散板4の拡散面は、以下条件を満足するようなランダムな凹凸形状にするのがよい。これにより、広い射出瞳径で、ざらつき感のないクリアーで明るい観察像を得ることができる。
【0059】
1回透過型の拡散板では、
5<(Sm/Ra)×(Ep/400)<70      ・・・(2)
2回透過型の拡散板では、
10<(Sm/Ra)×(Ep/400)<80     ・・・(3)
表面反射型の拡散板では、
50<(Sm/Ra)×(Ep/400)<200    ・・・(4)
裏面反射型の拡散板では、
80<(Sm/Ra)×(Ep/400)<250    ・・・(5)
なる条件を満足することが好ましい。ここで、SmはJIS B0601による表面の凹凸の平均間隔(μm)、Raは表面の中心線平均粗さ(μm)、Epは拡散面から観察者の眼の位置までの距離(:アイポイント(mm))である。
【0060】
上記条件式(2)〜(5)の下限を下回ると、拡散角が小さくなりすぎ、広い瞳径を得るとこが難しくなる。また、上限を上回ると、拡散しすぎてしまい観察像が暗くなってしまう。
【0061】
なお、接眼光学系3にフレネルレンズを用いる場合には、拡散面の凹凸形状をランダムな配置にすることがより好ましい。凹凸形状に周期性があると、フレネルレンズのピッチと拡散面との間でモアレ縞が発生して観察像に重畳し、見にくい像となってしまう。
【0062】
上記条件式(2)〜(5)については、それぞれ以下のようにさらに限定することがより望ましい。
【0063】
1回透過型の拡散板では、
10<(Sm/Ra)×(Ep/400)<40   ・・・(2−1)
2回透過型の拡散板では、
15<(Sm/Ra)×(Ep/400)<60   ・・・(3−1)
表面反射型の拡散板では、
70<(Sm/Ra)×(Ep/400)<150  ・・・(4−1)
裏面反射型の拡散板では、
100<(Sm/Ra)×(Ep/400)<200 ・・・(5−1)
さらに好ましくは、拡散板の拡散面の表面の凹凸の平均間隔Smは、
Sm<200μm                   ・・・(6)
なる条件を満足することが好ましい。この条件(10)は、観察画面のザラザラ感に関係している。拡散面の凹凸が200μm以上だと、特に本発明のように投影光学系2、21 、22 からの光束が細い(NAが小さい)光線で拡散板4近傍に投影像を形成する投影観察装置においては、このSmが映像のザラザラ感(シンチレーション)に大きく影響する。そのため、条件(2)〜(9)を満足しながら、本条件(10)を満足するような拡散面であることが重要である。この条件(10)を満足しないで、Smが200μm以上になると、ひどいときは観察者の眼を移動した場合に画面全体が細かく瞬くように見えるシンチレーションが見えてしまう。また、そこまでひどくなくても、映像がすりガラスに投影された映像のように画像のクリア感がなくなり、鮮やかな映像を観察することができない。
【0064】
さらに好ましくは、
Sm<100μm                 ・・・(6−1)
なる条件を満足することが好ましい。
【0065】
さらに好ましくは、
Sm<50μm                  ・・・(6−2)
なる条件を満足することが望ましい。
【0066】
さて、以上のような条件を満足する本発明の拡散板4としては、本出願人による特願2001−370950の作製方法で作製した拡散板が使用可能である。その拡散板としては、以下のものがある。
(1)サンドブラスト法により粒径が制限された球形ビーズを吹き付けて形成されたランダム配置の凹面群あるいはその凹面群に相似的な凹面群、又は、これら凹面群に相補的な凸面群を有する拡散板。
(2)金属基板に球形ビーズを吹き付けて形成されたランダム配置の凹面群を型として透明基板に複製することにより作製された(1)の拡散板。
(3)金属基板上に形成した加工層に球形ビーズを吹き付けて形成されたランダム配置の凹面群を金属基板表面に相似的に転写して形成されたランダム配置の凹面群を型として透明基板に複製することにより作製された(1)の拡散板。
(4)前記球形ビーズの粒径が0.01mmから2mmのガラスビーズからなる(1)から(3)の拡散板。
(5)前記球形ビーズを吹き付ける空気圧が0.5〜3.0kg/cm2 である(4)の拡散板。
(6)前記金属基板が真鍮からなる(2)、(4)、(5)の拡散板。
(7)前記金属基板が前記球形ビーズより硬度の高い金属からなる(3)、(4)、(5)の拡散板。
(8)前記金属基板の表面に形成された凹面群を射出成形あるいはプレス成形により透明基板に複製した(2)〜(7)の拡散板。
(9)基板上に樹脂の液滴を噴霧して付着させることにより形成されたランダム配置の凸面群を基板表面に相似的に転写して形成されたランダム配置の凸面群、又は、その凸面群に相補的な凹面群を有する拡散板。
【0067】
さらに、特許文献5に記載されている拡散板を使うことができる。この拡散板は、透明基体の片面又は両面を粗面化して作製したものである。透明基体の片面又は両面を粗面化する方法としては、例えば以下の(1)〜(4)の方法がある。(1)透明基体の片面又は両面をエッチング処理する方法、(2)樹脂にフィラーを、必要に応じて、水や有機溶剤と共に分散した塗料又はインクをコーティングや印刷を行うことにより、透明基体の片面若しくは両面上に単層又は多層に分けて設ける方法、(3)樹脂やフィラー単体又はこの混合物からなる粉体を静電粉体コーティングや粉体電着コーティングにより、透明基体の片面又は両面に設ける方法、(4)有機又は無機のフィラーを樹脂と共に、熱と圧力を加えることにより溶融し、この溶融物を押し出し成形や射出成形等によりフィルム化して成形する方法。この場合に、この拡散板のHAZE値(JISK7105)が、10〜40の範囲にあることが好ましい。
【0068】
また、特許文献6で作製した拡散板を使うこともできる。この拡散板を作製する方法は、基体上に直接又は他の層を介して結着層を積層する工程と、フィラーを加圧媒体によって結着層に埋め込む工程と、その工程で得た積層体に付着した余剰フィラーを除去する工程とを具備している。
【0069】
また、接眼光学系3としては、前記したように、フレネルレンズやフレネル反射鏡のようにフレネル面により構成されていることが望ましい。これにより、接眼光学系3を薄く構成でき、投影観察装置を小型で折り畳みやすいものにすることができる。また、後記の実施例のように凹面鏡1枚から構成されていてもよい。
【0070】
また、接眼光学系3を反射光学系で構成することにより、接眼光学系3の瞳収差の発生が少なくなる。すなわち、観察者側に形成された投影光学系2の射出瞳の収差を小さくなる。その結果、拡散板4の拡散性を上げなくても、観察視域が広くとれる。また、不要な方向に拡散する光が少なくなる分、照明の光量を上げなくても明るい観察像を観察できる。特に、本発明のように、接眼光学系3の光軸が偏心している光学系においては偏心収差の発生が大きい。しかも、接眼光学系3がシンプルな場合は、この偏心収差を補正する面を他に設けることが難しい。このような点からも、元々偏心収差の発生が少ない反射光学系を使うことは好ましいといえる。
【0071】
また、フレネル面は略平面で構成することが可能であることから、接眼光学系3をフレネル面で構成すると接眼光学系3を薄くすることが可能である。また、反射型のフレネル面では、光学作用面である輪帯状の反射面の光軸に垂直な面に対してなす角度が小さくなることにより、フレネルレンズで問題となるフレネル端面(非作用面)でのゴースト光の発生が少なくなる。また、光線の透過効率も高くできる。また、投影光学系21 、22 のなす角度を、前記のように大きくとる場合には望ましいものとなる。
【0072】
ところで、以上の図1〜図6の構成の投影観察装置においては、拡散板4として、拡散特性に指向性のある微細な凹凸面又は粗面からなるものを主として想定していたが、拡散板4としてホログラムをそれぞれの投影観察装置に用いてもよい。ホログラムからなる拡散板としては、透過型ホログラムと反射型ホログラムとが考えられる。ここで、体積型感光材料中に記録されたホログラムの場合、透過型ホログラムは波長選択性が低く、反射型ホログラムは波長選択性が高い。カラー像を表示する投影観察装置に用いる場合には、R(赤色)、G(緑色)、B(青色)3波長の光を拡散させるめに3つのホログラム干渉縞を多重記録する必要があるため、ホログラムとしては波長選択性が比較的低い透過型ホログラムを用いる方が望ましい。そして、投影観察装置を小型に構成するには、接眼光学系として凹面鏡(フレネル凹面反射鏡を含む)を用いて透過型のホログラムからなる拡散板(以下、単にホログラム拡散板とする。)と組み合わせて構成することが望ましい。以下、ホログラム拡散板25と凹面鏡24からなる接眼光学系とを用いて構成する投影観察装置について説明するが、以後のこの構成の投影観察装置においては、表示素子、光源の図示は省く。しかしながら、図1〜図6と同様に、これらは投影光学系2の入射側に配置される。また、以後のこの構成の投影観察装置において、複数の観察方向に対応する複数の光学系の中、何れか1つだけを示し、他は省略して説明する。
【0073】
図12(a)に、本発明に基づき構成されたこのような投影観察装置の光学系の概念図を、また、図12(b)に、その投影観察装置の配置例を示す。なお、図12(b)において、凹面鏡24はフレネル凹面反射鏡で構成されている。上記のように、表示素子、光源は図示を省かれている。図12(b)では、表示素子に表示された映像は、投影光学系2で拡大投影される。そして、その投影像近傍にはホログラム拡散板25と、接眼光学系とが配置されている。接眼光学系は凹面鏡24からなり、投影光学系2の射出瞳を所定の位置に形成する。この所定の位置は、観察者Mの眼球と略一致している。投影光学系2の接眼光学系24により形成された射出瞳像6は、ホログラム拡散板25によって観察しやすい大きさの射出瞳像60に拡大される。これにより、観察者Mの眼Eの位置が射出瞳像6の位置から多少ずれても、投影像を観察像として観察することが可能になる。この結果、図1等の場合と同様に、観察しやすい投影観察装置が得られる。
【0074】
ここで、本発明における特徴は、図12(a)に示すように、ホログラム拡散板25は接眼光学系の凹面鏡24の入射側に配置される点である。そのため、投影光学系2から装置の射出瞳60の位置に至る光線は、ホログラム拡散板25を往復で計2回透過する。このような特徴を有するため、光はホログラム拡散板25で2度回折されることになる。このことを踏まえて、本発明では1回目(凹面鏡24に入射する前)のホログラム拡散板25を透過する角度と、2回目(凹面鏡24に入射した後)のホログラム拡散板25を透過する角度とを積極的に異ならせて、そのホログラムの角度選択性により何れか一方での回折を避けるようにしている。そのための配置については、後記する。
【0075】
そして、ホログラム拡散板25は上記の拡散板4と同様に、その拡散角が、同様の理由で半値全幅で20°以下であることが好ましい。また、ホログラム拡散板25は、10分の1全幅の拡散角が40°以下となる拡散特性を有することが好ましい。さらに、10分の1全幅で拡散角が30°以下となる拡散特性を有することが好ましい。
【0076】
次に、ホログラム拡散板25の屈曲作用と波長分散の関係、接眼光学系の凹面鏡24とホログラム拡散板25の配置関係について説明する。ホログラム拡散板25は、参照光と拡散光源(2次光源)からの物体光との干渉記録によって作製される。この時、参照光と物体光が同軸(インライン)配置での記録であると、図13(a)に示したように、投影光学系2からの軸上主光線26は、ホログラム拡散板25に1回目の入射をしてホログラム拡散板25で屈曲されずに直通する。そして、ホログラム拡散板25を直通した主光線は、凹面鏡24で反射されて方向を変え、ホログラム拡散板25を裏面側から入射してホログラム拡散板25を直通する。この際、1回目の入射の際に入射光の入射角度が、ホログラム拡散板25の再生光入射角度(回折効率がピーク近傍になる角度)を満足していれば、1回目の透過の際に直通する主光線の周りに回折による拡散光が分布し、2回目の透過の際にはその拡散光はほとんど直通する。一方、2回目の入射の際に入射光の入射角度が、再生光入射角度を満足していれば、1回目の透過の際には軸上主光線26は回折されずにほとんど直通し、2回目の透過の際に直通する主光線の周りに回折による拡散光が分布する。いずれの場合も、0次光270 と主光線271 は同じ方向に進む。図13(a)はこの様子を示したものであり、拡散光は図示していない。この図では、ホログラム拡散板25で回折されない0次光270 と回折された拡散光中の主光線(中心光線)271 のみを図示してあり、0次光270 と主光線271 は同じ方向に進み、装置の射出瞳60の中心に達する。したがって、図13(a)に示すように、ホログラム拡散板25が拡散作用のみで、光路の屈曲作用を持たない場合は、拡散光だけでなく回折により拡散されない0次光270 が射出瞳60に達する。その結果、観察される映像中心に0次光270 のスポットが見えることになり望ましくない。
【0077】
そこで、ホログラム拡散板25として、参照光と物体光が相互に同軸でないオフライン配置の関係で記録したものを用いる。このようなオフライン配置で記録したホログラム拡散板25は、再生光入射角度を満足して回折する場合に光線の屈曲と共に波長分散が生じる。その屈曲方向によって図13(b)、(c)のような光路と、図14(a)、(b)のような光路とをとる。ただし、図13(b)、(c)はホログラム拡散板25の再生光入射角度条件が1回目の入射の際に満足する場合であり、図14(a)、(b)は2回目の入射の際に満足する場合である。図13(b)、図14(a)は、ホログラム拡散板25の屈曲方向が法線に対する入射角に対して回折角が小さくなる方向の場合であり、図13(c)、図14(b)は、入射角に対して回折角が大きくなる方向の場合である。各図中、拡散光の図示は省き、ホログラム拡散板25で回折して屈曲されたR、G、Bの波長の主光線(中心光線)をそれぞれ27R 、27G 、27B で示してある。各図から明らかなように、ホログラム拡散板25のとして光線の屈曲作用を持つ透過型ホログラムを用いると、ホログラムで回折されない0次光270 を主光線27R 、27G 、27B から分離できる。その結果、装置の射出瞳60に入射しないように構成可能になる。具体的には、装置の射出瞳60の位置で、射出瞳60の中心からその瞳径の2分の1以上離れて0次光270 が入射するように構成することが望ましい。
【0078】
なお、透過型ホログラムでの屈曲角(偏角)を上記入射角と回折角の差の絶対値γで定義し、かつ、その屈曲角をd線(波長587.6nm)で測るとした場合、屈曲角γが小さすぎると、上記のように観察像中に0次光が入射する。逆に、大きすぎると、波長分散が大きくなりすぎて射出瞳60でR、G、Bの3波長が重なる範囲、すなわち色再現性良く観察できる射出瞳範囲が小さくなりすぎてしまう。
【0079】
したがって、ホログラム拡散板25のd線での屈曲角(偏角)γは、
γ>1°                       ・・・(7)
の関係を満たす必要がある。
【0080】
さらに好ましくは、
γ>2°                     ・・・(7−1)
なる条件を満足することが好ましい。
【0081】
また、
γ<45°                      ・・・(8)
の関係を満たす必要がある。
【0082】
さらに好ましくは、
γ<20°                    ・・・(8−1)
なる条件を満足することが好ましい。
【0083】
さらに、Rを700nmの波長の光、Bを400nmの波長の光としたとき、主光線27R と27B の間の回折角の差は、小さい程望ましい。具体的には、18°以下であることが、上記のように色再現性良く観察できる射出瞳範囲が小さくなりすぎないために必要である。また、装置の射出瞳60の位置では、Rを700nmの波長の光、Bを400nmの波長の光としたとき、主光線27R と27B の間の入射位置の差も小さい程望ましい。具体的には、射出瞳60の瞳径の2分の1以下であるように構成することが望ましい。
【0084】
ところで、図13、図14においては、投影光学系2からの軸上主光線26あるいは0次光270 は、凹面鏡24に斜め(凹面鏡24の入射位置での法線に対して角度βをなす。)に入射することを考えていた。ここで、軸上主光線26あるいは0次光270 が凹面鏡24に略直角(β≒0°)に入射すると、ホログラム拡散板25を2度通過した後にホログラム拡散板25から射出する主光線27R 、27G 、27B は軸上主光線26と略反対方向に向かう。そのため、装置の射出瞳60の位置と投影光学系2が干渉することになる。そこで、凹面鏡24に入射する投影光学系2からの軸上主光線26又はその0次光270 の凹面鏡24への入射角βは、
0°<β<45°                   ・・・(9)
の関係を満たすことが望ましい。
【0085】
また、図13、図14においては、投影光学系2からの軸上主光線26がホログラム拡散板25及びその裏面側の凹面鏡24に入射する位置は、それぞれの略中心とした。また、ホログラム拡散板25と凹面鏡24の間には偏心はないものとした。その場合、図13、図14から明らかなように、ホログラム拡散板25を2度通過した主光線27R 、27G 、27B はホログラム拡散板25に対して角度をなしている。そのため、装置の射出瞳60はホログラム拡散板25の正面には位置しない。その結果、観察者は斜め方向から投影された映像を見ることになり、観察される像はアオリ像となって像歪みが発生する。そこで、図15(a)〜(c)に示すように、凹面鏡24をホログラム拡散板25に対して偏心させて(何れの図も上方へ偏心させている。)、凹面鏡24で反射された主光線27R 、27G 、27B がホログラム拡散板25を2度目に通過してホログラム拡散板25に対して略直角をなすようにしている。なお、図15(a)〜(c)はそれぞれ図13(a)〜(c)に対応する場合である。
【0086】
なお、図15ではホログラム拡散板25上に斜め方向から投影像を入射させるので、ホログラム拡散板25上での投影像もアオリ像となって像歪みが発生する。そのため、投影光学系2はこのようなアオリ像の像歪みを補正する機能を持ったものを使用するのが望ましい。
【0087】
また、装置の射出瞳60をホログラム拡散板25の正面に位置するようにし、かつ、投影光学系2からの軸上主光線26あるいは0次光270 は凹面鏡24に斜めに入射するようにすることが好ましい。投影光学系2からの投影光がホログラム拡散板25に入射した際、投影光がその表面で反射してノイズ光になる場合がある。しかしながら、上記のように構成しておけば、表面正反射光を装置の射出瞳60に入射させないようにする効果も得られる。
【0088】
なお、上記の屈曲角(偏角)γと凹面鏡24への入射角βの比γ/βは、
0.01<γ/β<1000             ・・・(10)
の関係を満たすことが望ましい。
【0089】
ところで、ホログラム拡散板25を用いる場合は、表示素子1、11 、12 を照明する光源は、単色性の高いLEDやLDをRGB3色組み合わせてなる光源を用いることが望ましい。
【0090】
また、本発明の投影観察装置に用いる表示素子としては、液晶表示素子、DMD等の面型表示素子に限らず、特許文献7等に記載の、光源からの光束を2次元方向に走査するジンバル構造の走査ミラーと走査光学系とを組み合わせてなる表示素子を用いてもよい。この場合は、投影光学系は必ずしも必要なく、走査ミラーで2次元走査された光ビームを走査光学系で直接拡散板と接眼光学系位置近傍に集光させるようにしてもよい。あるいは、その走査面を投影光学系で拡散板と接眼光学系位置近傍に投影するようにしてもよい。
【0091】
以下に、本発明の投影観察装置の実施例について説明する。
【0092】
まず、接眼光学系3の実施例について説明する。本発明の投影観察装置に用いる接眼光学系の実施例は、実施例1乃至実施例3である。また、各実施例の光路図を、図16〜図18に示す。各実施例において、光線追跡を面11(物体面)から面12(像面)までの逆光線追跡で行っている。ここで、面11は観察者瞳位置に相当し、面12は投影光学系の射出瞳に相当する。なお、実際の投影観察装置では、接眼光学系近傍に拡散作用を有する拡散面、又は拡散作用を有する拡散板を配置してある。しかしながら、以下に示す実施例1〜3においては、拡散板あるいは拡散面はないものとしている。
【0093】
また、各面は接眼光学系3を基準とし、そこからの偏心量で表しており、拡散作用を持つ拡散面は接眼光学系3の面近傍に配置する。
【0094】
画面(接眼光学系)の大きさは、何れも162.56×121.92mmの大きさである。
【0095】
実施例1は、図16に示すように、アナモルフィック反射鏡31を接眼光学系3とて構成した例である。
【0096】
実施例2は、図17に示すように、自由曲面を反射面32として接眼光学系3を構成した例である。
【0097】
実施例3は、図18に示すように、入射面34を平面、裏面35をフレネル反射面としたフレネル裏面反射鏡33で接眼光学系3を構成した例である。
【0098】
なお、以上の実施例1〜3の構成パラメータは後記する。
【0099】
次に、投影光学系2の実施例について説明する。本発明の投影観察装置に用いる投影光学系の実施例は、実施例4乃至実施例6である。また、各実施例の光路図を、図19〜図21に示す。実施例4〜6においても、逆光線追跡により光線追跡を行っている。すなわち、観察する画像の投影面から表示素子1に向かう順に、光線追跡を行っている。なお、観察する画像の投影面は、接眼光学系3の近傍に仮想的に配置される映像面である。また、この投影面の近傍には拡散板が配置されている。
【0100】
光線追跡は、この投影面を物体面とし、表示素子1表面を像面とする。絞り面には、投影光学系2の射出瞳6’(図5)が相当する。また、投影面(物体面)中心と絞り面(投影光学系2の射出瞳面)中心を通る光線を軸上主光線10と定義する。軸上主光線10が投影面の垂線となす角は31.47°である。この値は、以下の実施例4〜6においては、それぞれ後記の数値データにおける偏心(1)にαとβから求めることができる。
【0101】
実施例4は、図19に示すように、投影光学系2は偏心プリズム21からなる。その偏心プリズム21は、第1面41から第4面44の4面を有している。実施例4では、表示素子1からの光束は第1面41を経てプリズム内に入射し、第2面42、第3面43の順で内部反射され、第4面44を経てプリズム外に射出し、図示しない接眼光学系3近傍に表示素子1に表示された映像を投影する。この偏心プリズム21内では、第1面41から第2面42へ向かう光束と第3面43から第4面44へ向かう光束とがプリズム内で交差する面配置となっている。この例の場合、第4面44は球面、第1面41から第3面43は自由曲面からなり、偏心プリズム21は対称面を持たない3次元偏心した偏心プリズムである。
【0102】
この実施例の逆光線追跡での物体高は、162.50×121.92mm、入射瞳径φ5.0mm、像高は8.94×6.76mmである。
【0103】
実施例5は、図20に示すように、投影光学系2は偏心プリズム21からなる。その偏心プリズム21は、第1面41から第4面44の4面を有している。第5実施例では、表示素子1からの光束は第1面41を経てプリズム内に入射し、第2面42、第3面43の順で内部反射され、第4面44を経てプリズム外に射出し、図示しない接眼光学系3近傍に表示素子1に表示された映像を投影する。この偏心プリズム21内では、第1面41から第2面42へ向かう光束と第3面43から第4面44へ向かう光束とがプリズム内で交差する面配置となっている。この例の場合、第1面41から第4面44は自由曲面からなり、偏心プリズム21は対称面を1つ持つ2次元偏心した偏心プリズムである。
【0104】
この実施例の逆光線追跡での物体高は、162.50×121.92mm、入射瞳径φ5.0mm、像高は8.94×6.76mmである。
【0105】
実施例6は、図21に示すように、投影光学系2は偏心プリズム22からなる。その偏心プリズム22は、第1面41から第3面43の3面を有している。第6実施例では、表示素子1からの光束は第1面41を経てプリズム内に入射し、第2面42で内部反射され、そこでの反射光は再び第1面41に入射して今度は全反射され、その反射光は第3面43を経てプリズム外に射出し、図示しない接眼光学系3近傍に表示素子1に表示された映像を投影する。この偏心プリズム22では、入射面と第2反射面とを第1面41が兼用している。この例の場合、第1面41から第3面43は自由曲面からなり、偏心プリズム22は対称面を1つ持つ2次元偏心した偏心プリズムである。
【0106】
この実施例の逆光線追跡での物体高は、162.50×121.92mm、入射瞳径φ5.0mm、像高は8.94×6.76mmである。
【0107】
次に、投影光学系2の射出瞳を拡大投影する凹面鏡24と透過型ホログラムからなる拡散板25の組み合わせ光学系の実施例7〜10について説明する。何れの実施例においても、凹面鏡24はフレネル凹面反射鏡24’から構成されている。また、各実施例において、光線追跡は、投影光学系2の射出瞳16(射出瞳6’(図5)が相当する。)を物体面とし、装置の射出瞳(射出瞳16の拡大された射出瞳像)60を像面とし、投影光学系2の射出瞳16の中心から装置の射出瞳60までの順光線追跡で行っている。
【0108】
実施例7のY−Z断面内の光路図を図24に示す。また、図25にこの実施例のホログラム拡散板25に用いる透過型ホログラムの撮影配置を示す。そして、図26にこの実施例における射出瞳60位置での波長400nm、波長586nm、波長700nmでの射出瞳像の重なり具合と、0次光及び表面反射光の入射位置を示す。なお、図25、図26中の数字はmm単位である。
【0109】
実施例7は、図13(b)に対応して再生光入射角度条件が1回目の入射の際に満足し、2回目には回折せず、かつ、ホログラム拡散板25の屈曲方向が法線に対する入射角に対して回折角が小さくなる方向の場合の例ある。また、フレネル凹面反射鏡24’はフレネル裏面鏡で構成されており、そのフレネル裏面鏡の偏心量をMY、軸上主光線10のホログラム拡散板25による偏角量をγ、フレネル凹面反射鏡24’への入射角をβとするとすると、
MY=89.27mm
γ=13.15°(屈折率1.49の硝材中で)
β=7.02°(屈折率1.49の硝材中で)
である。
【0110】
また、この実施例のホログラム拡散板25の露光条件は、図25中に示す通り、露光の際の座標系をホログラム拡散板25の面の軸上主光線10の入射点を原点にして、ホログラム面をX−Y面とし、投影光学系2の射出瞳16から離れる方向をZ軸とするとき、露光のための第1光源位置(X1,Y1,Z1)は以下の通りであり、点光源とする。
【0111】
(X1,Y1,Z1)=(0,297.11,−578.12)
また、第2光源位置(X2,Y2,Z2)は以下の通りであり、光源位置を中心にφ82mmの面積を持つ拡散面光源とする。
【0112】
(X2,Y2,Z2)=(0,235.57,−605.67)
以上の露光条件で作製した透過型ホログラムをホログラム拡散板25として使用することにより、ホログラム拡散板25により拡散された光束は、フレネル凹面反射鏡24’で反射された後、観察者瞳面でφ60の拡大瞳60となる。
【0113】
実施例8のY−Z断面内の光路図を図27に示す。また、図28にこの実施例のホログラム拡散板25に用いる透過型ホログラムの撮影配置を示す。そして、図29にこの実施例における射出瞳60位置での波長400nm、波長586nm、波長700nmでの射出瞳像の重なり具合と、0次光及び表面反射光の入射位置を示す。なお、図28、図29中の数字はmm単位である。
【0114】
実施例8は、図13(c)に対応して再生光入射角度条件が1回目の入射の際に満足し、2回目には回折せず、かつ、ホログラム拡散板25の屈曲方向が法線に対する入射角に対して回折角が大きくなる方向の場合の例ある。また、フレネル凹面反射鏡24’はフレネル裏面鏡で構成されており、そのフレネル裏面鏡の偏心量をMY、軸上主光線10のホログラム拡散板25による偏角量をγ、フレネル凹面反射鏡24’への入射角をβとするとすると、
MY=130.46mm
γ=6.61°(屈折率1.49の硝材中で)
β=10.29°(屈折率1.49の硝材中で)
である。
【0115】
また、この実施例のホログラム拡散板25の露光条件は、図28中に示す通り、露光の際の座標系をホログラム拡散板25の面の軸上主光線10の入射点を原点にして、ホログラム面をX−Y面とし、投影光学系2の射出瞳16から離れる方向をZ軸とするとき、露光のための第1光源位置(X1,Y1,Z1)は以下の通りであり、点光源とする。
【0116】
(X1,Y1,Z1)=(0,297.11,−578.12)
また、第2光源位置(X2,Y2,Z2)は以下の通りであり、光源位置を中心にφ82mmの面積を持つ拡散面光源とする。
【0117】
(X2,Y2,Z2)=(0,341.33,−553.14)
以上の露光条件で作製した透過型ホログラムをホログラム拡散板25として使用することにより、ホログラム拡散板25により拡散された光束は、フレネル凹面反射鏡24’で反射された後、観察者瞳面でφ60の拡大瞳60となる。
【0118】
実施例9のY−Z断面内の光路図を図30に示す。また、図31にこの実施例のホログラム拡散板25に用いる透過型ホログラムの撮影配置を示す。そして、図32にこの実施例における射出瞳60位置での波長400nm、波長586nm、波長700nmでの射出瞳像の重なり具合と、0次光及び表面反射光の入射位置を示す。なお、図31、図32中の数字はmm単位である。
【0119】
実施例9は、図13(b)に対応して再生光入射角度条件が1回目の入射の際に満足し、2回目には回折せず、かつ、ホログラム拡散板25の屈曲方向が法線に対する入射角に対して回折角が小さくなる方向の場合の例ある。また、フレネル凹面反射鏡24’はフレネル裏面鏡で構成されており、そのフレネル裏面鏡の偏心量をMY、軸上主光線10のホログラム拡散板25による偏角量をγ、フレネル凹面反射鏡24’への入射角をβとするとすると、
MY=90.64mm
γ=14.28°(屈折率1.62の硝材中で)
β=6.46°(屈折率1.62の硝材中で)
である。
【0120】
また、この実施例のホログラム拡散板25の露光条件は、図31中に示す通り、露光の際の座標系をホログラム拡散板25の面の軸上主光線10の入射点を原点にして、ホログラム面をX−Y面とし、投影光学系2の射出瞳16から離れる方向をZ軸とするとき、露光のための第1光源位置(X1,Y1,Z1)は以下の通りであり、点光源とする。
【0121】
(X1,Y1,Z1)=(0,297.11,−578.12)
また、第2光源位置(X2,Y2,Z2)は以下の通りであり、光源位置を中心にφ82mmの面積を持つ拡散面光源とする。
【0122】
(X2,Y2,Z2)=(0,235.70,−605.76)
以上の露光条件で作製した透過型ホログラムをホログラム拡散板25として使用することにより、ホログラム拡散板25により拡散された光束は、フレネル凹面反射鏡24’で反射された後、観察者瞳面でφ60の拡大瞳60となる。
【0123】
実施例10のY−Z断面内の光路図を図33に示す。また、図34にこの実施例のホログラム拡散板25に用いる透過型ホログラムの撮影配置を示す。そして、図35にこの実施例における射出瞳60位置での波長400nm、波長586nm、波長700nmでの射出瞳像の重なり具合と、0次光及び表面反射光の入射位置を示す。なお、図34、図35中の数字はmm単位である。
【0124】
実施例10は、図14(a)に対応して再生光入射角度条件が2回目の入射の際に満足し、1回目には回折せず、かつ、ホログラム拡散板25の屈曲方向が法線に対する入射角に対して回折角が小さくなる方向の場合の例ある。また、フレネル凹面反射鏡24’はフレネル裏面鏡で構成されており、そのフレネル裏面鏡の偏心量をMY、軸上主光線10のホログラム拡散板25による偏角量をγ、フレネル凹面反射鏡24’への入射角をβとするとすると、
MY=89.27mm
γ=3.76°(屈折率1.49の硝材中で)
β=10.80°屈折率1.49の硝材中で)
である。
【0125】
また、この実施例のホログラム拡散板25の露光条件は、図34中に示す通り、露光の際の座標系をホログラム拡散板25の面の軸上主光線10の入射点を原点にして、ホログラム面をX−Y面とし、投影光学系2の射出瞳16から離れる方向をZ軸とするとき、露光のための第1光源位置(X1,Y1,Z1)は以下の通りであり、点光源とする。
【0126】
(X1,Y1,Z1)=(0,0,−450)
また、第2光源位置(X2,Y2,Z2)は以下の通りであり、光源位置を中心にφ60mmの面積を持つ拡散面光源とする。
【0127】
(X2,Y2,Z2)=(0,−41.73,−424.62)
以上の露光条件で作製した透過型ホログラムをホログラム拡散板25として使用することにより、フレネル凹面反射鏡24’で反射された後、ホログラム拡散板25により拡散された光束は、観察者瞳面でφ60の拡大瞳60となる。
【0128】
図26、図29、図32、図35から明らかなように、実施例7〜10においては、装置の射出瞳60の位置で、波長700nmの光軸と波長400nmの光軸の入射位置の差が射出瞳の瞳径の2分の1以下であり、RGBの瞳が重なって色再現性良く観察できる射出瞳範囲が広くなっており、その範囲には0次光とホログラムでの表面反射光が入射していないことが分かる。
【0129】
以下に、上記実施例1〜10の構成パラメータを示す。ここで、光線追跡は上記のように逆光線追跡で行う。実施例1〜3においては、軸上主光線10を、物体面11中心を出て絞り面(接眼光学系3の入射面位置に配置されている。)中心を通り、像面12の中心に至る光線で定義する。また、実施例4〜6においては、投影光学系2の表示面(物体面)中心から絞り面(投影光学系2の射出瞳面)中心を通り、表示素子1の中心に至る光線で定義する。また、実施例7〜10においては、軸上主光線10を、投影光学系2の射出瞳16の中心を出て透過型ホログラムからなる拡散板25の中心通り装置の射出瞳60中心に至る光線で定義する。
【0130】
そして、逆光線追跡において、実施例1〜3においては、絞り面中心を原点とし、絞り面をX−Y面とし、絞り面に垂直な方向をZ軸方向とし、接眼光学系3の裏面に向かう方向をZ軸正方向としている。実施例4〜6においては、投影光学系2の表示面(物体面)中心を原点として、軸上主光線10に沿う方向をZ軸方向とし、物体面から投影光学系2の表示面に面した面に向かう方向をZ軸正方向とし、図の面をY−Z平面とし、原点を通りY−Z平面に直交し、紙面の表から裏へ向かう方向をX軸正方向とし、X軸、Z軸と右手直交座標系を構成する軸をY軸とする。実施例7〜10においては、順光線追跡において、投影光学系2の射出瞳16の中心を原点とし、瞳面をX−Y面とし、瞳に垂直な軸上主光線10の進行方向をZ軸正方向としている。
【0131】
偏心面については、光学系の原点の中心Oからその面の面頂位置の偏心量(X軸方向、Y軸方向、Z軸方向をそれぞれX,Y,Z)と、その面の中心軸(自由曲面については、前記(a)式のZ軸、非球面については、下記(b)式のZ軸、アナモルフィック面については、下記(c)式のZ軸)のX軸、Y軸、Z軸それぞれを中心とする傾き角(それぞれα,β,γ(°))とが与えられている。その場合、αとβの正はそれぞれの軸の正方向に対して反時計回りを、γの正はZ軸の正方向に対して時計回りを意味する。なお、面の中心軸のα,β,γの回転のさせ方は、面の中心軸とそのXYZ直交座標系を、まずX軸の回りで反時計回りにα回転させ、次に、その回転した面の中心軸を新たな座標系のY軸の回りで反時計回りにβ回転させると共に1度回転した座標系もY軸の回りで反時計回りにβ回転させ、次いで、その2度回転した面の中心軸を新たな座標系の新たな座標系のZ軸の回りで時計回りにγ回転させるものである。
【0132】
また、本発明で用いられる自由曲面の面の形状は、例えば特許文献3(特許文献4)の(a)式により定義される自由曲面であり、その定義式のZ軸が自由曲面の軸となる。
【0133】
また、非球面は、以下の定義式で与えられる回転対称非球面である。
【0134】
Z=(Y2 /R)/[1+{1−(1+K)Y2 /R2 1 /2]+AY4 +BY6 +CY8 +DY10+……   ・・・(b)
ただし、Zを光の進行方向を正とした光軸(軸上主光線)とし、Yを光軸と垂直な方向にとる。ここで、Rは近軸曲率半径、Kは円錐定数、A、B、C、D、…はそれぞれ4次、6次、8次、10次の非球面係数である。この定義式のZ軸が回転対称非球面の軸となる。
【0135】
また、アナモルフィック面の形状は以下の式により定義する。面形状の原点を通り、光学面に垂直な直線がアナモルフィック面の軸となる。
【0136】
Z=(Cx・X2 +Cy・Y2 )/[1+{1−(1+Kx)Cx2 ・X2 −(1+Ky)Cy2 ・Y2 1/2 ]+ΣRn{(1−Pn)X2 +(1+Pn)Y2 (n+1) 
ここで、例としてn=4(4次項)を考えると、展開したとき、以下の式(c)で表すことができる。
【0137】
Z=(Cx・X2 +Cy・Y2 )/[1+{1−(1+Kx)Cx2 ・X2 −(1+Ky)Cy2 ・Y2 1/2 ]+R1{(1−P1)X2 +(1+P1)Y2 2 +R2{(1−P2)X2 +(1+P2)Y2 3 +R3{(1−P3)X2 +(1+P3)Y2 4 +R4{(1−P4)X2 +(1+P4)Y2 5 ・・・(c)
ただし、Zは面形状の原点に対する接平面からのズレ量、CxはX軸方向曲率、CyはY軸方向曲率、KxはX軸方向円錐係数、KyはY軸方向円錐係数、Rnは非球面項回転対称成分、Pnは非球面項回転非対称成分である。なお、X軸方向曲率半径Rx、Y軸方向曲率半径Ryと曲率Cx、Cyとの間には、
Rx=1/Cx,Ry=1/Cy
の関係にある。
【0138】
なお、データの記載されていない自由曲面に関する項は0である。屈折率については、d線(波長587.56nm)に対するものを表記してある。長さの単位はmmである。
【0139】
以下に、上記実施例1〜10の構成パラメータを示す。なお、以下の表中の“FFS”は自由曲面、“ASS”は非球面、“ANM”はアナモルフィック面、“FL”はフレネル面、“RE”は反射面、“HOE”は透過型ホログラム、“PIM”は画像投影面をそれぞれ示す。
【0140】
Figure 2004102204
【0141】
Figure 2004102204
【0142】
Figure 2004102204
【0143】
Figure 2004102204
Figure 2004102204
【0144】
Figure 2004102204
Figure 2004102204
【0145】
Figure 2004102204
Figure 2004102204
【0146】
Figure 2004102204
【0147】
Figure 2004102204
【0148】
Figure 2004102204
【0149】
Figure 2004102204
【0150】
上記実施例4の像歪みを示す収差図を図22に示す。また、実施例4の横収差図を図23に示す。この横収差図において、括弧内に示された2つの数字は(水平(X方向)画角、垂直(Y方向)画角)を表し、その画角における横収差を示す。
【0151】
次に、実施例11として、図36に投影観察装置の模式的斜視図を示す。なお、数値データは省略する。
【0152】
この実施例の投影観察装置は、接眼光学系3側から、面対称形状の偏心プリズム23と偏心プリズム21からなる投影光学系2を備えている。偏心プリズム23は、第1面41、第2面42及び第3面43を有する。第1面41は透過面であって、偏心プリズム21を射出した光がこの面から入射する。第2面42は反射面であって、第1面41からプリズム内に入射した光をこの面で反射(全反射あるいはミラー反射)させる。第3面43は透過面であって、第2面42で反射した光がこの面からプリズム外に射出する。また、偏心プリズム21は、実施例5と同様の面配置の偏心プリズムである。偏心プリズム21の射出面44が偏心プリズム23の第1面41に向き合うように、2つの偏心プリズムが配置されている。そして、偏心プリズム21の入射面41に面して、表示素子1が配置されている。
【0153】
この実施例において、偏心プリズム21内の軸上主光線が含まれる平面(対称面)と、偏心プリズム23内の軸上主光線が含まれる平面(対称面)とは相互に45°を成すように配置されている。すなわち、偏心プリズム21から出る軸上主光線の周りで偏心プリズム23が45°回転した関係になるように、偏心プリズム21と偏心プリズム23が配置されている。そして、表示素子1は、偏心プリズム21へ入射する軸上主光線の回りで45°傾くように配置される。これにより、接眼光学系3上で投影光学系2から射出する軸上主光線の回りで、投影像が45°傾くのを補償することができる。
【0154】
また、実施例12として、数値データは省いているが、図37にこの実施例の投影観察装置の模式的斜視図を示す。
【0155】
この実施例の投影観察装置は、接眼光学系3側から、面対称形状の偏心プリズム21と偏心プリズム21’からなる投影光学系2を用い、偏心プリズム21と21’は実施例5と同様の面配置の偏心プリズムである。そして、偏心プリズム21’の入射面41に面して表示素子1が配置されている。
【0156】
この実施例においても、偏心プリズム21内の軸上主光線が含まれる平面(対称面)と、偏心プリズム21’内の軸上主光線が含まれる平面(対称面)とは相互に45°を成すように構成されている。また、偏心プリズム21’から出る軸上主光線の周りで偏心プリズム21が45°回転した関係になるように、偏心プリズム21と偏心プリズム21’が配置されている。そして、表示素子1は、投影像が接眼光学系3上で投影光学系2から射出する軸上主光線の回りで45°傾くのを補償するために、偏心プリズム21’へ入射する軸上主光線の回りで45°傾くように配置される。
【0157】
この実施例11、12のように、2つ以上の偏心プリズムを組み合わせて投影光学系2を構成することもできる。その場合に、各偏心プリズムを面対称形状の偏心プリズムとし、両者の対称面が相互に所定角度成すように組み合わせて任意の方向に軸上主光線を向け、その回転に伴う投影像の投影面(接眼光学系3)での傾きを表示素子1の軸上主光線の回りでの回転によって補償することが可能である。
【0158】
ところで、本発明で用いる拡散板4として、特願2001−370950の作製方法に基づき、以下のようにして作製した。まず、サンドブラスト法により粒径が制限された球形ビーズを、型となる金属板に吹き付けた。次に、この金属板に形成されたランダム配置の凹面群を透明樹脂板に転写し複製した。このようにして、透明樹脂板の1面にランダムな凹凸形状が形成された1回透過型拡散板を作製した。サンプルは11個作製した。それぞれのサンプル番号を#1〜#11としたとき、これら#1〜#11の拡散板の拡散光の角度分布は図38のようになった。#1〜#11の拡散板のSm/Raの値、その拡散角の半値全幅、10分の1全幅は次の通りである。この結果から、上記実施例の拡散板4としては、#11の拡散板を使用することが望ましい。
【0159】
Figure 2004102204
図39に、本発明の投影観察装置を自動車のダッシュボード50の一部に取り付け、運転者と助手席に乗っている同乗者の両者にそれぞれ別々の映像、例えば運転者にはナビゲーションの映像を、同乗者にはTV映像を同時に表示して別々に観察可能にする例を示す図である。この場合、接眼光学系3は反射タイプのものを用い、図の投影光学系21 は運転者用、投影光学系22 は同乗者用になる。そして、接眼光学系3により投影された投影光学系21 、22 の射出瞳像61、62はそれぞれ運転者、同乗者の眼球近傍に位置することになり、拡散板4の拡散特性により観察しやすい大きさの瞳径の射出瞳にそれぞれ拡大される。
【0160】
以上の本発明の投影観察装置は例えば次のように構成することができる。
【0161】
〔1〕 少なくとも2つ表示素子と、前記少なくとも2つの表示素子に表示された映像を異なる方向から拡大投影する少なくとも2つの投影光学系と、前記少なくとも2つの投影光学系で投影された像近傍に配置された共通の拡散板と、前記投影光学系各々の射出瞳を観察者側に投影する共通の接眼光学系とを備えていることを特徴とする投影観察装置。
【0162】
〔2〕 前記拡散板の拡散角は、半値全幅で20°以下であることを特徴とする請求項1記載の投影観察装置。
【0163】
〔3〕 前記拡散板の拡散角は、10分の1全幅で40°以下であることを特徴とする上記1又は2記載の投影観察装置。
【0164】
〔4〕 前記拡散板の表面粗さは、以下の条件を満足することを特徴とする上記1から3の何れか1項記載の投影観察装置。
【0165】
5<(Sm/Ra)<1000             ・・・(1)
ただし、SmはJIS B0601による表面の凹凸の平均間隔(μm)、Raは表面の中心線平均粗さ(μm)である。
【0166】
〔5〕 以下の条件を満足することを特徴とする上記4記載の投影観察装置。
【0167】
1回透過型の拡散板では、
5<(Sm/Ra)×(Ep/400)<70      ・・・(2)
2回透過型の拡散板では、
10<(Sm/Ra)×(Ep/400)<80     ・・・(3)
表面反射型の拡散板では、
50<(Sm/Ra)×(Ep/400)<200    ・・・(4)
裏面反射型の拡散板では、
80<(Sm/Ra)×(Ep/400)<250    ・・・(5)
ただし、SmはJIS B0601による表面の凹凸の平均間隔(μm)、Raは表面の中心線平均粗さ(μm)、Epは拡散板の拡散面から観察者の眼の位置までの距離(mm)である。
【0168】
〔6〕 以下の条件を満足することを特徴とする上記4又は5記載の投影観察装置。
【0169】
Sm<200μm                   ・・・(9)
〔7〕 前記接眼光学系がフレネルレンズからなることを特徴とする上記1から6の何れか1項記載の投影観察装置。
【0170】
〔8〕 前記接眼光学系が反射面からなることを特徴とする上記1から6の何れか1項記載の投影観察装置。
【0171】
〔9〕 前記接眼光学系がフレネル反射鏡からなることを特徴とする上記8記載の投影観察装置。
【0172】
〔10〕 前記接眼光学系がフレネル裏面反射鏡からなることを特徴とする上記8記載の投影観察装置。
【0173】
〔11〕 前記拡散面が前記接眼光学系の少なくとも1面に設けられていることを特徴とする上記7から10の何れか1項記載の投影観察装置。
【0174】
〔12〕 少なくとも2つ表示素子と、前記少なくとも2つの表示素子に表示された映像を異なる方向から拡大投影する少なくとも2つの投影光学系と、前記少なくとも2つの投影光学系で投影された像近傍に配置された共通の透過型ホログラムからなる拡散板と、前記投影光学系各々の射出瞳を観察者側に投影する共通の凹面鏡からなる接眼光学系とを備えていることを特徴とする投影観察装置。
【0175】
〔13〕 前記凹面鏡がフレネル凹面反射鏡からなることを特徴とする上記12記載の投影観察装置。
【0176】
〔14〕 前記投影光学系から装置の射出瞳に至る光線が前記透過型ホログラムからなる拡散板を2回透過する配置において、1回目に前記透過型ホログラムからなる拡散板を透過する角度と、2回目に前記透過型ホログラムからなる拡散板を透過する角度とが異なるように配置されていることを特徴とする上記12又は13記載の投影観察装置。
【0177】
〔15〕 前記透過型ホログラムからなる拡散板が、光強度が半値全幅で20°以下であることを特徴とする上記12から14の何れか1項記載の投影観察装置。
【0178】
〔16〕 前記透過型ホログラムからなる拡散板が、光強度が1/10になる全幅の拡散角が40°以下以下であることを特徴とする上記12から15の何れか1項記載の投影観察装置。
【0179】
〔17〕 前記投影光学系からの軸上主光線が前記凹面鏡に斜めに入射するように配置されていることを特徴とする上記12から16の何れか1項記載の投影観察装置。
【0180】
〔18〕 前記透過型ホログラムの1回目及び2回目透過時に回折されてない0次光が装置の射出瞳に入射しないように構成されていることを特徴とする上記12から17の何れか1項記載の投影観察装置。
【0181】
〔19〕 装置の射出瞳の位置で、前記透過型ホログラムの1回目及び2回目透過時に回折されてない0次光がその射出瞳の中心からその瞳径の2分の1以上離れて入射するように構成されていることを特徴とする上記12から18の何れか1項記載の投影観察装置。
【0182】
〔20〕 前記透過型ホログラムからなる拡散板が、回折による屈曲作用を有することを特徴とする上記12から19の何れか1項記載の投影観察装置。
【0183】
〔21〕 前記透過型ホログラムからなる拡散板によるd線の光軸の屈曲角をγとするとき、
γ>1°                       ・・・(7)
の条件を満足することを特徴とする上記20記載の投影観察装置。
【0184】
〔22〕 前記透過型ホログラムからなる拡散板によるd線の光軸の屈曲角をγとするとき、
γ<45°                      ・・・(8)
の条件を満足することを特徴とする上記20又は21記載の投影観察装置。
【0185】
〔23〕 前記透過型ホログラムからなる拡散板による波長700nmの光と波長400nmの光の間の光軸の回折角の差が18°以下であることを特徴とする上記12から22の何れか1項記載の投影観察装置。
【0186】
〔24〕 装置の射出瞳の位置で、波長700nmの光軸と波長400nmの光軸の入射位置の差が射出瞳の瞳径の2分の1以下であることを特徴とする上記12から23の何れか1項記載の投影観察装置。
【0187】
〔25〕 前記凹面鏡へのd線の光軸の入射角をβとすると、
0°<β<45°                   ・・・(9)
の関係を満たすことを特徴とする上記12から24の何れか1項記載の投影観察装置。
【0188】
〔26〕 前記透過型ホログラムからなる拡散板によるd線の光軸の屈曲角をγ、前記凹面鏡へのd線の光軸の入射角をβとすると、
0.01<γ/β<1000             ・・・(10)
の関係を満たすことを特徴とする上記12から25の何れか1項記載の投影観察装置。
【0189】
〔27〕 前記投影光学系の光軸の何れか一方が前記接眼光学系と交差し、交差する点における前記接眼光学系の垂線とその光軸とのなす角が10°以上であることを特徴とする上記1から26の何れか1項記載の投影観察装置。
【0190】
〔28〕 前記投影光学系の少なくとも1つは、屈折率(n)が1よりも大きい(n>1)媒質で形成された偏心プリズムを1個以上備えた偏心プリズム光学系からなり、前記偏心プリズムは、表示素子から射出された光束をプリズム内に入射する入射面と、その光束をプリズム内で反射する少なくとも1つの反射面と、光束をプリズム外に射出する射出面とを有し、その少なくとも1つの反射面が曲面形状を有し、その曲面形状が偏心によって発生する収差を補正する回転非対称な面形状にて構成されていることを特徴とする上記1から27の何れか1項記載の投影観察装置。
【0191】
〔29〕 前記偏心プリズムの少なくとも1つが、前記表示素子からの光束をプリズム内に入射させる入射面と、その入射面からプリズム内に入射した光束をプリズム内で反射する第1反射面と、その第1反射面で反射された光束をプリズム内で反射する第2反射面と、その第2反射面で反射された光束をプリズム外に射出する射出面とを備え、その入射面から第1反射面へ向かう光束と第2反射面から射出面へ向かう光束とがプリズム内で交差する面配置の偏心プリズムからなることを特徴とする上記28記載の投影観察装置。
【0192】
〔30〕 前記偏心プリズムの少なくとも1つが、前記表示素子からの光束をプリズム内に入射させる入射面と、その入射面からプリズム内に入射した光束をプリズム内で反射する第1反射面と、その第1反射面で反射された光束をプリズム内で反射する第2反射面と、その第2反射面で反射された光束をプリズム外に射出する射出面とを備え、その入射面と第2反射面とを1面で兼用した偏心プリズムからなることを特徴とする上記28記載の投影観察装置。
【0193】
〔31〕 前記表示素子に表示する像を前記投影光学系による像歪みを補償するように歪ませて表示するように構成されていることを特徴とする上記1から30の何れか1項記載の投影観察装置。
【0194】
〔32〕 前記偏心プリズム光学系は面対称形状に構成され、その投影光学系の光軸が前記接眼光学系と交差する点における前記接眼光学系の垂線とその光軸がなす角が10°以上であることを特徴とする上記28から30の何れか1項記載の投影観察装置。
【0195】
〔33〕 前記交差する点を略含むように前記偏心プリズム光学系の対称面が配置され、前記偏心プリズム光学系に対応する前記表示素子の表示画面の縦又は横方向が前記接眼光学系近傍に投影されたときに、前記接眼光学系の縦又は横方向と略一致するように、前記偏心プリズム光学系の物体面に前記表示素子が配置されていることを特徴とする上記28から32の何れか1項記載の投影観察装置。
【0196】
〔34〕 前記投影光学系はアオリ像の像歪みを補正する機能を持ったものであることを特徴とする上記1から33の何れか1項記載の投影観察装置。
【0197】
〔35〕 光源としてLED又はLDを用いたことを特徴とする上記1から34の何れか1項記載の投影観察装置。
【0198】
【発明の効果】
以上の説明から明らかなように、本発明によると、観察方向により異なる映像を1つの表示面に同時に少なくとも2つ観察可能に表示する、簡単な構成で照明効率の良い投影観察装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の投影観察装置の光学系の概念図である。
【図2】映像を一部重ねて投影する本発明の投影観察装置の光学系の概念図である。
【図3】小さい射出瞳を観察しやすい大きさの瞳径の射出瞳に拡大する拡散板の機能を説明するための図である。
【図4】2次元偏心的に投影光学系を配置した場合の投影光学系の光軸が接眼光学系の垂線となす角度を説明するための図である。
【図5】3次元偏心的に投影光学系を配置した場合の図4と同様の図である。
【図6】回転対称なレンズ系と偏心プリズムを組み合わせて投影光学系を構成した場合の光学系を模式的に示す図である。
【図7】本発明における透過型拡散板の算術平均荒さRaと凹凸の平均間隔Smとの関係を求めるための図である。
【図8】透過型拡散板の拡散面での入射角と屈折角の関係を示す図である。
【図9】本発明における反射型拡散板の算術平均荒さRaと凹凸の平均間隔Smとの関係を求めるための図である。
【図10】反射型拡散板の拡散面での入射角と反射角の関係を示す図である。
【図11】本発明における拡散板のSm/Raと拡散半角との関係を示す図である。
【図12】本発明に基づき構成された投影観察装置の光学系の概念図と投影観察装置の配置例を示す図である。
【図13】1回目の通過で屈曲される透過型ホログラムからなる拡散板と接眼光学系の凹面鏡との組み合わせの光路図である。
【図14】2回目の通過で屈曲される透過型ホログラムからなる拡散板と接眼光学系の凹面鏡との組み合わせの光路図である。
【図15】接眼光学系の凹面鏡が偏心している場合の1回目の通過で屈曲される透過型ホログラムからなる拡散板と凹面鏡との組み合わせの光路図である。
【図16】本発明の実施例1の接眼光学系の光軸を含む光路図である。
【図17】本発明の実施例2の接眼光学系の光軸を含む光路図である。
【図18】本発明の実施例3の接眼光学系の光軸を含む光路図である。
【図19】本発明の実施例4の投影光学系の光路図である。
【図20】本発明の実施例5の投影光学系の光路図である。
【図21】本発明の実施例6の投影光学系の光路図である。
【図22】実施例4の像歪みを示す収差図である。
【図23】実施例4の横収差図である。
【図24】本発明の実施例7のY−Z断面内の光路図である。
【図25】本発明の実施例7の拡散板に用いる透過型ホログラムの撮影配置を示す図である。
【図26】本発明の実施例7の射出瞳位置でのRGBの射出瞳像の重なり具合と0次光及び表面反射光の入射位置を示す図である。
【図27】本発明の実施例8のY−Z断面内の光路図である。
【図28】本発明の実施例8の拡散板に用いる透過型ホログラムの撮影配置を示す図である。
【図29】本発明の実施例8の射出瞳位置でのRGBの射出瞳像の重なり具合と0次光及び表面反射光の入射位置を示す図である。
【図30】本発明の実施例9のY−Z断面内の光路図である。
【図31】本発明の実施例9の拡散板に用いる透過型ホログラムの撮影配置を示す図である。
【図32】本発明の実施例9の射出瞳位置でのRGBの射出瞳像の重なり具合と0次光及び表面反射光の入射位置を示す図である。
【図33】本発明の実施例10のY−Z断面内の光路図である。
【図34】本発明の実施例10の拡散板に用いる透過型ホログラムの撮影配置を示す図である。
【図35】本発明の実施例10の射出瞳位置でのRGBの射出瞳像の重なり具合と0次光及び表面反射光の入射位置を示す図である。
【図36】本発明の実施例11の投影観察装置の模式的斜視図である。
【図37】本発明の実施例12の投影観察装置の模式的斜視図である。
【図38】本発明において使用可能ないくつかの例の1回透過型拡散板の拡散光の角度分布を示す図である。
【図39】本発明の投影観察装置を自動車のダッシュボードに取り付けた例を示す図である。
【符号の説明】
1、11 、12 …表示素子
2、21 、22 …投影光学系
3…接眼光学系
4…拡散板
1 、52 …表示像
6、61 、62 …射出瞳(投影光学系の射出瞳像)
6’、61 ’、62 ’…投影光学系の射出瞳
10…軸上主光線
11…観察者瞳位置に相当する面
12…投影光学系の射出瞳に相当する面
24…凹面鏡
21、21’、22、23…偏心プリズム
24…凹面鏡(接眼光学系)
24’…フレネル凹面反射鏡
25…透過型ホログラムからなる拡散板
26…投影光学系からの軸上主光線
270 …0次光
271 …拡散光中の主光線(中心光線)
27R 、27G 、27B …透過型ホログラムからなる拡散板で回折して屈曲されたR、G、Bの波長の主光線(中心光線)
31…アナモルフィック反射鏡
32…自由曲面の反射面
33…フレネル裏面反射鏡
34…入射面
35…裏面(フレネル反射面)
41…第1面
42…第2面
43…第3面
44…第4面
50…ダッシュボード
60、601、602…拡大された射出瞳(投影光学系の射出瞳像)
E、E1 、E2 …観察者眼球
M、M1 、M2 …観察者

Claims (4)

  1. 少なくとも2つ表示素子と、前記少なくとも2つの表示素子に表示された映像を異なる方向から拡大投影する少なくとも2つの投影光学系と、前記少なくとも2つの投影光学系で投影された像近傍に配置された共通の拡散板と、前記投影光学系各々の射出瞳を観察者側に投影する共通の接眼光学系とを備えていることを特徴とする投影観察装置。
  2. 少なくとも2つ表示素子と、前記少なくとも2つの表示素子に表示された映像を異なる方向から拡大投影する少なくとも2つの投影光学系と、前記少なくとも2つの投影光学系で投影された像近傍に配置された共通の透過型ホログラムからなる拡散板と、前記投影光学系各々の射出瞳を観察者側に投影する共通の凹面鏡からなる接眼光学系とを備えていることを特徴とする投影観察装置。
  3. 前記投影光学系の光軸の何れか一方が前記接眼光学系と交差し、交差する点における前記接眼光学系の垂線とその光軸とのなす角が10°以上であることを特徴とする請求項1又は2記載の投影観察装置。
  4. 前記投影光学系の少なくとも1つは、屈折率(n)が1よりも大きい(n>1)媒質で形成された偏心プリズムを1個以上備えた偏心プリズム光学系からなり、前記偏心プリズムは、表示素子から射出された光束をプリズム内に入射する入射面と、その光束をプリズム内で反射する少なくとも1つの反射面と、光束をプリズム外に射出する射出面とを有し、その少なくとも1つの反射面が曲面形状を有し、その曲面形状が偏心によって発生する収差を補正する回転非対称な面形状にて構成されていることを特徴とする請求項1から3の何れか1項記載の投影観察装置。
JP2002304555A 2002-07-16 2002-10-18 投影観察装置 Expired - Fee Related JP4129976B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002304555A JP4129976B2 (ja) 2002-07-16 2002-10-18 投影観察装置
US10/612,092 US7317565B2 (en) 2002-07-16 2003-07-03 Projection viewing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002206860 2002-07-16
JP2002304555A JP4129976B2 (ja) 2002-07-16 2002-10-18 投影観察装置

Publications (3)

Publication Number Publication Date
JP2004102204A true JP2004102204A (ja) 2004-04-02
JP2004102204A5 JP2004102204A5 (ja) 2005-11-24
JP4129976B2 JP4129976B2 (ja) 2008-08-06

Family

ID=32300244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002304555A Expired - Fee Related JP4129976B2 (ja) 2002-07-16 2002-10-18 投影観察装置

Country Status (2)

Country Link
US (1) US7317565B2 (ja)
JP (1) JP4129976B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351990A (ja) * 2004-06-08 2005-12-22 Canon Inc 走査型表示光学系
US7296901B2 (en) 2004-07-29 2007-11-20 Olympus Corporation Projection display
US7317565B2 (en) * 2002-07-16 2008-01-08 Olympus Corporation Projection viewing system
WO2013024539A1 (ja) * 2011-08-18 2013-02-21 パイオニア株式会社 虚像表示装置
JP2014191128A (ja) * 2013-03-27 2014-10-06 Nippon Telegr & Teleph Corp <Ntt> 多指向映像表示装置及び多指向映像表示方法
WO2019065245A1 (ja) * 2017-09-29 2019-04-04 株式会社Qdレーザ 画像投影装置
EP3451041A3 (en) * 2017-08-09 2019-05-08 Samsung Electronics Co., Ltd. Optical window system and see-through type display apparatus including the same
WO2019087670A1 (ja) * 2017-11-02 2019-05-09 ソニーセミコンダクタソリューションズ株式会社 画像投影システム
CN112334815A (zh) * 2018-07-02 2021-02-05 华为技术有限公司 视网膜显示设备和方法
WO2021149512A1 (ja) * 2020-01-22 2021-07-29 ソニーグループ株式会社 画像表示装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049811A (ja) * 2003-07-15 2005-02-24 Olympus Corp 立体表示装置及び立体視観察装置
US20050030622A1 (en) * 2003-07-15 2005-02-10 Kazuo Morita Three-dimensional observation apparatus
FR2902203B1 (fr) * 2006-06-13 2008-12-19 Peugeot Citroen Automobiles Sa Systeme d'affichage et vehicule comportant un tel systeme
JP5186003B2 (ja) * 2008-08-12 2013-04-17 オリンパス株式会社 視覚表示装置
JP5567924B2 (ja) * 2010-07-27 2014-08-06 オリンパス株式会社 プリズム光学系、プリズム光学系を用いた画像表示装置及びプリズム光学系を用いた撮像装置
FR2984533A3 (fr) * 2011-12-19 2013-06-21 Renault Sa Dispositif d'affichage d'images pour vehicule automobile.

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3264457B2 (ja) 1993-02-02 2002-03-11 日本電信電話株式会社 多画面表示装置
AU3481495A (en) * 1995-09-15 1997-04-01 Richmond Holographic Research & Development Limited Projection system
JP3206713B2 (ja) * 1995-10-27 2001-09-10 株式会社巴川製紙所 防眩材料及びそれを使用した偏光フィルム
US6198555B1 (en) * 1996-03-25 2001-03-06 Denso Corporation Manufacturing method for a hologram and a related exposure apparatus
JPH10115878A (ja) 1996-10-09 1998-05-06 Ishikawa Kogaku Zokei Kenkyusho:Kk 指向性スクリーンを用いる3次元画像投写システム
JPH1184291A (ja) 1997-09-11 1999-03-26 Olympus Optical Co Ltd 走査光学系
JP2000066105A (ja) * 1998-08-21 2000-03-03 Olympus Optical Co Ltd 結像光学系
JP3587437B2 (ja) 1998-12-09 2004-11-10 株式会社巴川製紙所 フィラーレンズの製造方法
JP4594485B2 (ja) 2000-03-29 2010-12-08 オリンパス株式会社 走査光学系
US6416181B1 (en) * 2000-12-15 2002-07-09 Eastman Kodak Company Monocentric autostereoscopic optical apparatus and method
JP2003207743A (ja) * 2002-01-16 2003-07-25 Olympus Optical Co Ltd 立体観察装置
JP4129976B2 (ja) * 2002-07-16 2008-08-06 オリンパス株式会社 投影観察装置

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7317565B2 (en) * 2002-07-16 2008-01-08 Olympus Corporation Projection viewing system
JP2005351990A (ja) * 2004-06-08 2005-12-22 Canon Inc 走査型表示光学系
JP4681825B2 (ja) * 2004-06-08 2011-05-11 キヤノン株式会社 走査型表示光学系
US7296901B2 (en) 2004-07-29 2007-11-20 Olympus Corporation Projection display
WO2013024539A1 (ja) * 2011-08-18 2013-02-21 パイオニア株式会社 虚像表示装置
JP5214060B1 (ja) * 2011-08-18 2013-06-19 パイオニア株式会社 虚像表示装置
US9810908B2 (en) 2011-08-18 2017-11-07 Pioneer Corporation Virtual image display device
JP2014191128A (ja) * 2013-03-27 2014-10-06 Nippon Telegr & Teleph Corp <Ntt> 多指向映像表示装置及び多指向映像表示方法
US10877273B2 (en) 2017-08-09 2020-12-29 Samsung Electronics Co., Ltd. Optical window system and see-through type display apparatus including the same
EP3451041A3 (en) * 2017-08-09 2019-05-08 Samsung Electronics Co., Ltd. Optical window system and see-through type display apparatus including the same
JPWO2019065245A1 (ja) * 2017-09-29 2019-11-14 株式会社Qdレーザ 画像投影装置
WO2019065245A1 (ja) * 2017-09-29 2019-04-04 株式会社Qdレーザ 画像投影装置
US11428926B2 (en) 2017-09-29 2022-08-30 Qd Laser, Inc. Image projection device
WO2019087670A1 (ja) * 2017-11-02 2019-05-09 ソニーセミコンダクタソリューションズ株式会社 画像投影システム
US11175510B2 (en) 2017-11-02 2021-11-16 Sony Semiconductor Solutions Corporation Image projection system
CN112334815A (zh) * 2018-07-02 2021-02-05 华为技术有限公司 视网膜显示设备和方法
US11470289B2 (en) 2018-07-02 2022-10-11 Huawei Technologies Co., Ltd. Retinal display apparatus and method
CN112334815B (zh) * 2018-07-02 2022-11-18 华为技术有限公司 视网膜显示设备和方法
WO2021149512A1 (ja) * 2020-01-22 2021-07-29 ソニーグループ株式会社 画像表示装置

Also Published As

Publication number Publication date
JP4129976B2 (ja) 2008-08-06
US7317565B2 (en) 2008-01-08
US20050206985A1 (en) 2005-09-22

Similar Documents

Publication Publication Date Title
US7450310B2 (en) Head mounted display devices
US7230766B2 (en) Optical combiner designs and head mounted displays
US7360899B2 (en) Beamsplitting structures and methods in optical systems
US6715885B2 (en) Display device with screen having curved surface
US7542209B2 (en) Compact head mounted display devices with tilted/decentered lens element
US7196849B2 (en) Apparatus and methods for illuminating optical systems
JP4129976B2 (ja) 投影観察装置
US6926409B2 (en) Projection viewing system
US10180575B2 (en) Image display apparatus
JP7196832B2 (ja) 画像表示装置
US20070177275A1 (en) Personal Display Using an Off-Axis Illuminator
US20030133191A1 (en) Three-dimensional observation apparatus
JP6521537B2 (ja) 普通のフロントガラスを使用したディスプレイ装置、および、その自動車のヘッドアップディスプレイシステム
US7522339B2 (en) High contrast projection systen
US7167307B2 (en) Projection screen, and projection type display system
US20070139767A1 (en) Stereoscopic image display apparatus
JP2004061906A (ja) 2次元光走査装置及び映像表示装置
JP3990536B2 (ja) 光学補正をしたホログラフィック・スクリーン・プロジェクション・テレビジョン
TW202111391A (zh) 雷射光學投影模組及包含其之穿戴裝置
JP7375629B2 (ja) 虚像表示装置
US20240061240A1 (en) Air floating video display apparatus and light source
WO2023145112A1 (ja) 画像表示装置、画像表示システム、及び投射光学系
CN100357789C (zh) 投影观察装置
JP2004012570A (ja) 拡大観察装置
CN116149077A (zh) 用于悬浮图像的拼接显示装置以及包括其的多层显示设备

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140530

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees