JP2004101719A - 投射表示装置 - Google Patents

投射表示装置 Download PDF

Info

Publication number
JP2004101719A
JP2004101719A JP2002261544A JP2002261544A JP2004101719A JP 2004101719 A JP2004101719 A JP 2004101719A JP 2002261544 A JP2002261544 A JP 2002261544A JP 2002261544 A JP2002261544 A JP 2002261544A JP 2004101719 A JP2004101719 A JP 2004101719A
Authority
JP
Japan
Prior art keywords
light receiving
pixel
display device
projection display
receiving elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002261544A
Other languages
English (en)
Inventor
Kazuya Miyagaki
宮垣 一也
Keishin Aisaka
逢坂 敬信
Takeshi Namie
浪江 健史
Kenji Kameyama
亀山 健司
Ikuo Kato
加藤 幾雄
Atsushi Takaura
高浦 淳
Yasuyuki Takiguchi
滝口 康之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002261544A priority Critical patent/JP2004101719A/ja
Publication of JP2004101719A publication Critical patent/JP2004101719A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)

Abstract

【課題】変位手段により画素ずらしされた画素を、複数の受光素子または多分割受光素子からなる受光手段で受け、受光信号の差分をとり、画素ずらし量へフィードバックをかけて正確な位置調整を可能にすることができる構成の投射表示装置を提供する。
【解決手段】本発明は、画像情報に対応して光を変調または放出する画素を有する表示素子3と、画像情報に対応した画像フィールドを構成する複数のサブフィールド毎に前記画素の位置を光学的に変位させる変位手段4と、前記画素を投射面6に投射する投射手段5とを有する投射表示装置において、前記投射面6またはその近傍に、複数の受光素子または領域分割された受光素子(多分割受光素子)からなる受光手段7を配置し、前記受光手段7からの信号を制御手段10で前記変位手段の駆動制御部9にフィードバックさせる構成とした。
【選択図】       図1

Description

【0001】
【発明の属する技術分野】
本発明は、表示素子に表示された画像をスクリーン等の投射面に拡大投射する投射表示装置に係り、特に画素ずらし(またはウォブリング)機能を有する投射表示装置に関する。
【0002】
【従来の技術】
投射表示装置に関する従来技術の一例として、サブフィールド毎に空間光変調器(例えば液晶素子)の画像を光学的に変位させて空間光変調器の解像度以上の画像を投影する方式が、[特許文献1]、[特許文献2]、[特許文献3]、[特許文献4]、[特許文献5]に、既に開示されている。これらは、走査線に垂直な2つの位置、または縦横4つの位置に画素を光軸シフトにより光学的に変位させることにより、変位させるサブフィールドを2枚または4枚とすることにより、スクリーン上で、それぞれ2倍および4倍の解像度を得ることができる。
さらに、別の従来技術として、ウォブリング素子(光シフト、画素ずらし用の素子)を用いて複数の画像の位置調整を行う方式が知られている(例えば、[特許文献6]参照)。これは、画素ずらし素子を調整することによって複数の画像(もしくは複数のサブフィールド画像)をひとつのスクリーンで位置調整を可能にした発明である。しかし、この従来技術では、テストパターンをイメージセンサで撮影している。このため位置検出手段としては大掛かりで、特に高解像度な場合、フィードバック制御にも負担がかかり、装置としては高コストになる。
また、[特許文献7]に記載のように、テストパターンを表示させ、これを撮像面で受光し光軸ずれを補正する発明がある。
【0003】
これらの従来技術を用いて、画像情報に対応した画像フィールドを構成する複数のサブフィールド毎に前記画素の位置を光学的に変位させるウォブリング素子を有する投射表示装置の、それぞれのサブフィールド画像の位置調整をすることは困難である。
最近のライトバルブは高解像化が進んでいるため、ウォブリング機能によってさらに高解像な画像がスクリーンに投射される。ここで、仮にSXGA(1280×1024画素)クラスまたはそれ以上の画素数を持ったライトバルブ3枚を使用する投射表示装置について考えるとすると、装置を組み付ける際、スクリーン上で対応する画素が重なるように3枚のライトバルブの位置調整をする。この場合、ウォブリング機能で各サブフィールド画像を所定の距離だけ変位させることになるが、投射レンズでスクリーンに拡大投射されていても目視ではもちろん、撮像装置を用いても調整は非常に困難である。
また、[特許文献7]に記載の発明を投射表示装置に利用した場合、スクリーン上の画素をカメラなどで受光し、画像処理の後、画素ずらし手段へフィードバックする構成となり、装置が大掛かりで、かつ、高コストになる。
【0004】
【特許文献1】
特開平04−113308号公報(特許第293926号)
【特許文献2】
特開平05−289044号公報
【特許文献3】
特開平09−152572号公報
【特許文献4】
特開平06−324320号公報
【特許文献5】
特開2000−98968号公報
【特許文献6】
特開平6−123868号公報
【特許文献7】
特開平8−242403号公報
【0005】
【発明が解決しようとする課題】
本発明は上記事情に鑑みてなされたものであり、画素ずらしされた画素を、複数の受光素子または多分割受光素子からなる受光手段で受け、受光信号の差分をとり、画素ずらし量へフィードバックをかけて正確な位置調整を可能にすることができる構成の投射表示装置を提供することを目的(課題)とする。
【0006】
【課題を解決するための手段】
請求項1に係る発明は、高解像度の場合でも画素ずらしの微調整ができる投射表示装置を提供するものであり、画像情報に対応して光を変調または放出する画素を有する表示素子と、前記画像情報に対応した画像フィールドを構成する複数のサブフィールド毎に前記画素の位置を光学的に変位させる変位手段と、前記画素を投射面に投射する投射手段とを有する投射表示装置において、前記投射面またはその近傍に、複数の受光素子または領域分割された受光素子(多分割受光素子)からなる受光手段を配置し、前記受光手段からの信号を制御手段で前記変位手段の駆動制御部にフィードバックさせることを特徴とするものである。
【0007】
請求項2に係る発明は、画素ずらしの微調整をさらに正確に行うことができる投射表示装置を提供するものであり、請求項1記載の投射表示装置において、投射画素位置調整のための前記受光手段を構成する複数の受光素子の数、または領域分割された受光素子(多分割受光素子)の分割数が、前記サブフィールド数の整数倍であることを特徴とするものである。
【0008】
請求項3に係る発明は、画素ずらしの微調整を行い、かつ、受光手段を構成する受光素子数または受光素子の分割数を減らすことができる投射表示装置を提供するものであり、請求項1または請求項2記載の投射表示装置において、前記受光手段を構成する複数の受光素子のうちの少なくとも一つの受光素子、または領域分割された受光素子(多分割受光素子)の少なくとも一つの分割領域に、前記複数の異なるサブフィールド画素が二つ以上、または異なるサブフィールド画素の一部が二つ以上、受光するように、前記受光手段を設置したことを特徴とするものである。
【0009】
請求項4に係る発明は、画素ずらしの微調整を行い、かつ、受光手段を構成する受光素子数または受光素子の分割数を大幅に減らすことができる投射表示装置を提供するものであり、請求項1または請求項2記載の投射表示装置において、前記変位手段で所定の2方向にそれぞれm,n(ただし、m,nは共に自然数でm≦nとする)通り変位させ、かつ、前記受光手段を構成する受光素子の数Dまたは受光素子の分割数Dが、
m=1のとき;D≧n+1
m≧2のとき;D≧f((m+1)/2)+(n+1)・f(m/2)
(ただし、f(x)はxの小数点以下を四捨五入する関数とする)
を満たすことを特徴とするものである。
【0010】
請求項5に係る発明は、画素ずらしの微調整を正確に行い、かつ、受光手段を構成する受光素子数または受光素子の分割数を極力減らすことができる投射表示装置を提供するものであり、請求項1または請求項2記載の投射表示装置において、前記変位手段で所定の2方向にそれぞれm,n(ただし、m,nは共に自然数でm≦nとする)通り変位させ、かつ、前記受光手段を構成する受光素子の数Dまたは分割数Dが、
D=(m+1)・(n+1)
を満たすことを特徴とするものである。
【0011】
請求項6に係る発明は、画素ずらしの微調整を行い、かつ、投射画素間のにじみの少ない良好な画像を得ることができる投射表示装置を提供するものであり、画像情報に対応して光を変調または放出する画素を有する表示素子と、前記画像情報に対応した画像フィールドを構成する複数のサブフィールド毎に前記画素の位置を光学的に変位させる変位手段と、前記画素のプロファイルを変形させる変形手段と、前記画素を投射面に投射する投射手段とを有する投射表示装置において、前記投射面またはその近傍に、複数の受光素子または領域分割された受光素子(多分割受光素子)からなる受光手段を配置し、前記受光手段からの信号を制御手段で前記変位手段の駆動制御部にフィードバックさせることを特徴とするものである。
【0012】
請求項7に係る発明は、画素ずらしの微調整を正確に行い、かつ、投射画素間のにじみの少ない良好な画像を得ることができる投射表示装置を提供するものであり、請求項6記載の投射表示装置において、前記受光手段を構成する複数の受光素子の数、または領域分割された受光素子(多分割受光素子)の分割数が、前記サブフィールド数の整数倍であることを特徴とするものである。
【0013】
請求項8に係る発明は、サブフィールド画素位置の微調整ができ、かつ、受光手段を構成する受光素子数または受光素子の分割数を減らすことができ、さらに、投射画素間のにじみの少ない良好な画像を得ることができる投射表示装置を提供するものであり、請求項6または請求項7記載の投射表示装置において、前記受光手段を構成する複数の受光素子のうちの少なくとも一つの受光素子、または領域分割された受光素子(多分割受光素子)の少なくとも一つの分割領域に、前記複数の異なるサブフィールド画素が二つ以上、または異なるサブフィールド画素の一部が二つ以上、受光するように、前記受光手段を設置したことを特徴とするものである。
【0014】
請求項9に係る発明は、画素ずらしの微調整ができ、かつ、受光手段を構成する受光素子数または受光素子の分割数を減らすことができ、さらに、投射画素間のにじみが少なく、変形手段を簡単な光学系で実現することにより、低コストの投射表示装置を提供するものであり、請求項6〜8のいずれか一つに記載の投射表示装置において、前記変形手段が、少なくとも1枚のマイクロレンズアレイで構成されたことを特徴とするものである。
【0015】
請求項10に係る発明は、画素ずらしの微調整ができ、かつ、受光手段を構成する受光素子数または受光素子の分割数を減らすことができ、さらに、投射画素間のにじみが少なく、変形手段を平板型の光学系で実現することにより、アライメントがしやすく、かつ位置ずれがしにくい、信頼性に優れた投射表示装置を提供するものであり、請求項6〜8のいずれか一つに記載の投射表示装置において、前記変形手段が、屈折率分布型レンズアレイで構成されたことを特徴とするものである。
【0016】
請求項11に係る発明は、画素ずらしの微調整を正確に行い、さらに、隣接画素へのにじみを減らし、光利用効率の高い画素縮小素子を提供することができる投射表示装置を提供するものであり、請求項6〜8のいずれか一つに記載の投射表示装置において、前記変形手段が、凹面ミラーアレイで構成されたことを特徴とするものである。
【0017】
請求項12に係る発明は、画素ずらしの微調整を正確に行い、さらに、隣接画素へのにじみを減らし、空間変調器と画素縮小素子の組合せの自由度を高めることができる投射表示装置を提供するものであり、請求項9または請求項10記載の投射表示装置において、前記表示素子と変形手段の間にマクロレンズを配置したことを特徴とするものである。
【0018】
【発明の実施の形態】
以下、本発明の投射表示装置の構成、動作及び作用を、図示の実施例に基づいて詳細に説明する。
【0019】
(実施例1)
まず、本発明の第1の実施例を説明する。図1は本発明の一実施例を示す投射表示装置の概略構成図である。この投射表示装置は、光源1と、照明光学系2と、表示素子であるライトバルブ3と、変位手段である画素ずらし手段4と、投射手段である投射レンズ5と、スクリーン等の投射面6と、その投射面6の近傍に設置された受光手段7を備えており、さらには、画像情報に対応してライトバルブ3を駆動する駆動制御部8と、画素ずらし手段4を駆動させる駆動制御部9と、受光手段7による受光信号を演算処理して制御信号を画素ずらし手段の駆動制御部9にフィードバックするための演算処理部(制御手段)10とを備えた構成となっている。
【0020】
照明光学系2はライトバルブ3の全面を均一照明するための光学素子であるが、本発明の効果に直接影響しないため省略することができる。また、光源1からライトバルブ3までは自発光表示素子に置き換えることも可能である。変位手段である画素ずらし手段4は、例えば平行平板をアクチュエータなどによって傾き角を変化させ、画素を光学的に変位させる手段である。また、画素ずらし手段4は、ライトバルブ3と投射レンズ5の間以外にも、投射レンズ5と投射面6の間に設置しても良い。
ここで、図1の例では4つの受光手段7を投射面6の近傍に設置している。具体的には図2に示す例のように、投射面の画像表示領域の外側の四箇所に受光手段7を設置して、ライトバルブ3の有効画素の外側にある画素の一部を用いて画素位置調整するように構成している。尚、受光手段7の数や配置位置は図2の例に限るものではない。
【0021】
次に図3を用いて画素の位置調整方法について説明する。図3は受光手段7を4つの受光素子(または4分割受光素子)で構成した場合の実施例を表す図であり、4つの受光素子(または4つの分割領域)の受光面がPD1,PD2,PD3,PD4である。このように受光手段7が4個の受光素子(または4分割受光素子)で構成されている場合、画素ずらし手段4で一つの投射画素を4つの受光面PD1,PD2,PD3,PD4の中央に移動させるとする。そして、4つの受光面PD1,PD2,PD3,PD4からの受光信号をA,B,C,Dとすると、画素の位置X,Yは
X=((A+D)−(B+C))/(A+B+C+D)
Y=((A+B)−(C+D))/(A+B+C+D)
で表される。したがって、受光手段7の4つの受光面PD1,PD2,PD3,PD4による受光信号を、図1に示す演算処理部(制御手段)10で演算処理して制御信号を出力し、X,Yがそれぞれ0に近づくように画素ずらし手段4の駆動制御部9にフィードバックをかけることにより、画素の位置調整を行うことができる。
【0022】
ところで、受光手段7は、変位画素の位置調整の時に必要であるが、位置調整の後は投射面6または投射面近傍に恒久的に設置する必要は無い。このため、例えば位置調整時のみ受光手段7を設置し、通常の投射表示では受光手段7を取り外しても構わない。この場合には、受光手段7の配置位置は図2に示すような場所ではなく、投射画像領域の内側に受光手段7を設置することができる。また、本発明では、受光手段としてCCD素子を用いずに、例えばフォトディテクターのような受光素子(または多分割受光素子)を用いるために省コストであり、フィードバック制御もしやすい。
【0023】
さて、図3の例では、受光手段7として、投射画素の一つに対して4個の受光素子(または4分割受光素子)を用いた場合であるが、受光手段7を構成する複数の受光素子(または多分割受光素子の分割領域)の数は4つに限るものではない。そこで別の例として、投射画素の一つに対して3個の受光素子(または3分割受光素子)を用いた受光手段7で受光する場合について説明する。
【0024】
図4は受光手段7を3つの受光素子(または3分割受光素子)で構成した場合の実施例を表す図であり、受光手段7を構成する3つの受光素子(または3分割受光素子の3つの分割領域)の受光面がPD5,PD6,PD7である。ここで、画素ずらし手段4で一つの投射画素を3つの受光面PD5,PD6,PD7の中央に合わせるとする。そして、受光面PD5,PD6,PD7からの各受光信号をS5,S6,S7とすると、投射画素の位置X,Yは、
X=(S6−S7)/(S6+S7)
Y=(S5−(S6+S7))/(S5+S6+S7)
で表される。したがって、受光手段7の3つの受光面PD5,PD6,PD7による受光信号を、図1に示す演算処理部(制御手段)10で演算処理して制御信号を出力し、X,Yの値がそれぞれ0に近づくように画素ずらし手段4の駆動制御部9にフィードバックをかけることにより、画素の位置調整を行うことができる。
【0025】
このように、受光手段7として、3つの受光素子(または3分割受光素子)を用いた場合にも容易に位置調整を行うことが可能である。さらに、画素ずらし手段4によって所定の一方向のみに画素を変位させる場合には、受光手段7を2個の受光素子(または2分割受光素子)で構成して位置検出し、演算処理部(制御手段)10で演算処理して画素ずらし手段4の駆動制御部9にフィードバックをかけることも可能である。
【0026】
(実施例2)
次に本発明の第2の実施例を説明する。本実施例の投射表示装置の基本的な構成は図1に示した実施例1の構成と同じであり、構成部材も略同様であるが、受光手段7を構成する受光素子の数、または多分割受光素子の分割領域数が異なる。すなわち、本実施例では、投射画素位置調整のための受光手段7を構成する複数の受光素子の数、または領域分割された受光素子の分割数を、サブフィールド数の整数倍とするものである。
【0027】
本実施例では、例えば図5に示すように、サブフィールド数を4として、画素変位方向は投射面上で水平方向と鉛直方向とする。図5はサブフィールド毎の位置画素をP1からP4として図示したものであり、受光手段7を構成する複数の受光素子(または多分割受光素子の受光領域)はPD11からPD44として示している。すなわち図5に示す実施例では、受光手段7は、サブフィールド数(4つ)の4倍の数の受光素子(または受光領域)を具備する構成となっている。ここで、各画素P1〜P4は、それぞれ対応する4個の受光素子(または受光領域)で受光され、例えば、画素P1は受光素子(または受光領域)PD13,PD14,PD23,PD24で、画素P2は受光素子(または受光領域)PD11,PD12,PD21,PD22で、画素P3は受光素子(または受光領域)PD31,PD32,PD41,PD42で、画素P4は受光素子(または受光領域)PD33,PD34,PD43,PD44で、それぞれ受光される。尚、P1〜P4の各画素毎の位置調整は、前述の図3の説明と同様であるため、ここでは説明を省略する。
【0028】
以上のように、各々のサブフィールド画素の調整を、分割数をサブフィールド数の整数倍の受光素子数または多分割受光素子の分割数にすることによって、画素ずらしされた投射画素位置の微調整を正確に行うことができる。尚、本実施例では受光手段7を1セットのみ図示したが、スクリーン等の投射面6の数ヶ所にそれぞれ1セットずつ配置させても良い。また、この1セットの受光手段内の受光素子数はサブフィールド数の整数倍であれば、本発明の効果が得られる。
【0029】
(実施例3)
次に本発明の第3の実施例を説明する。本実施例の投射表示装置の基本的な構成は図1に示した実施例1の構成と同じであり、構成部材も略同様であるが、受光手段7を構成する受光素子の数、または多分割受光素子の分割領域数、及びそれらの配置が異なる。本実施例では、受光手段7を構成する複数の受光素子のうちの少なくとも一つの受光素子、または領域分割された受光素子の少なくとも一つの分割領域に、複数の異なるサブフィールド画素が二つ以上、または異なるサブフィールド画素の一部が二つ以上、受光するように、受光手段を設置した場合の例について説明する。
ここでは、サブフィールド数を4として、画素変位方向は投射面上で水平方向と鉛直方向とする。したがって各変位方向に対して各々2通りの画素変位位置をもつ。図6は本実施例の受光手段の一例を示す図である。投射画素のうち4つのサブフィールド分の4画素をP1からP4として図示し、複数の受光素子(または多分割受光素子の受光領域)はPD1からPD9として図示している。また、投射されるべき画素ピッチとなるように受光素子(または受光領域)を水平方向と鉛直方向に配置している。
【0030】
さて、第1のサブフィールドの一つの画素であるP1の位置調整は、P1のみ表示させて、受光素子(または受光領域)PD2,PD3,PD5,PD6で受光させる。また、第2のサブフィールドの一つの画素に当たるP2は、受光素子PD1,PD2,PD4,PD5が受け持つ。また、第3、第4のサブフィールドの一つの画素に当たるP3,P4についても同じようにして対応する4つの受光素子(または4つの受光領域)が受け持つ。
このように、本実施例では一つの画素に4つの受光素子(または受光領域)が対応するため、前述の実施例1における図3の例での説明の通りフィードバック信号を作り、画素の位置調整を行うことができる。さらに、本実施例では受光素子(または受光領域)PD2,PD4,PD5,PD6,PD8を隣接画素の位置調整用として共用しているため、受光素子数または領域分割の数を減らすことができ、装置の省コスト化に貢献することができる。
【0031】
(実施例4)
次に本発明の第4の実施例を説明する。本実施例の投射表示装置の基本的な構成は図1に示した実施例1の構成と同じであり、構成部材も略同様であるが、受光手段7を構成する受光素子の数、または多分割受光素子の分割領域数、及びそれらの配置が異なる。以下、本実施例を図7から図9を用いて説明する。
図7は一方向のみにn枚のサブフィールドに対応して画素ずらし手段(変位手段)4によって投射面6上に現れる画素P〜Pと、受光手段7を構成する複数の受光素子(または多分割受光素子の複数の受光領域)B〜Bn+1を示している。この例では一方向への変位であるため、受光素子(または受光領域)B〜Bn+1は変位方向に沿って並べれば良い。また、両端の受光素子(または受光領域)B,Bn+1以外は全て隣接画素の一部ずつを受光する。ここで、第1のサブフィールドの画素PはPのみ表示させて受光素子(または受光領域)B,Bで受光し、受光信号を演算処理部(制御手段)10で演算処理して、それらの受光信号の差分を取りフィードバック信号を得ることにより位置調整でき、第2のサブフィールド画素PはPのみ表示させて受光素子(または受光領域)B,Bで受光し、受光信号を演算処理部(制御手段)10で演算処理して、それらの受光信号の差分を取りフィードバック信号を得ることにより位置調整できる。以下、同様にして画素P〜Pに対してもそれぞれ対応する受光素子(または受光領域)を二つずつ使い、受光信号を演算処理部(制御手段)10で演算処理して、それらの受光信号の差分を取りフィードバック信号を得ることにより位置調整できる。したがって、この構成によれば、複数の受光素子または多分割受光素子の分割数は(n+1)個で足りることになる。
【0032】
次に、図8に示すように、画素ずらし手段(変位手段)4によって投射面6上の鉛直方向に2段、水平方向にn個の変位された画素の場合について説明する。図8においては、サブフィールド毎の投射画素をP11〜P2nで示し、受光手段7を構成する複数の受光素子(または多分割受光素子の複数の受光領域)をA,B〜Bn+1,Cで表している。図8の例では、画素P11は受光素子(または受光領域)A,B,Bを使って受光し、画素P12は受光素子(または受光領域)A,B,Bを使って受光する。以下、同様にして画素P13〜P2nに対してもそれぞれ対応する3つの受光素子(または受光領域)を用いることで、前述の図4の説明の通り、投射面上の鉛直方向と水平方向の位置調整を可能にすることができる。この場合には、1つの画素に対して3つの受光素子(または受光領域)を用いているが、受光素子(または受光領域)を二以上の画素で共用しているので、受光素子または受光素子の分割数は(n+3)個で足りることになる。
【0033】
さらに図9は、画素ずらし手段(変位手段)4によって投射面6上の鉛直方向に3段、水平方向にn個の変位された画素の場合についての例を示す図である。図9においては、サブフィールド毎の投射画素をP11〜P3nで示し、受光手段7を構成する複数の受光素子(または多分割受光素子の複数の受光領域)をA,B〜Bn+1,C,D〜Dn+1で表している。この場合には、1つの画素に対して3つの受光素子(または受光領域)を用いているが、DとDn+1以外の受光素子(または受光領域)を二以上の画素で共用しているので、受光素子または受光素子の分割数は(2n+4)個で足りることになる。
【0034】
本実施例では、画素ずらし手段(変位手段)4によってm行×n列(m,nは共に自然数でm≦nとする)に画素ずらししたとすると、受光素子の数または多分割受光素子の分割数Dは、
m=1のとき;D≧n+1
m≧2のとき;D≧f((m+1)/2)+(n+1)・f(m/2)
(ただし、f(x)はxの小数点以下を四捨五入する関数とする)
を満たすようにすれば、サブフィールド毎の投射画素位置調整が可能である。特に、受光素子数(または分割数)Dが、
m=1のとき;D=n+1
m≧2のとき;D=f((m+1)/2)+(n+1)・f(m/2)
(ただし、f(x)はxの小数点以下を四捨五入する関数とする)
を満たす場合、最小の受光素子数(または受光素子の分割数)で画素の位置調整が可能になる。
以上のように、本実施例の構成によれば、画素ずらしの微調整を正確に行うことができ、かつ、受光素子数(または受光素子の分割数)を減らすことができる。そして、受光素子数(または受光素子の分割数)が減れば装置の省コスト化に貢献することができる。
【0035】
(実施例5)
次に本発明の第4の実施例を説明する。本実施例の投射表示装置の基本的な構成は図1に示した実施例1の構成と同じであり、構成部材も略同様であるが、受光手段7を構成する受光素子の数または分割受光素子の分割領域数、及びそれらの配置が異なる。図10は本実施例を説明するための図であり、画素ずらし手段(変位手段)4によってm行×n列(m,nは共に自然数でm≦nとする)に画素ずらしされた場合の例である。図10においては、サブフィールド毎の投射画素をP11〜Pmnで示し、受光手段7を構成する複数の受光素子(または多分割受光素子の複数の受光領域)はPD11〜PD(m+1)(n+1)で示し、その数は(m+1)×(n+1)個である。
【0036】
図10において、画素P11は4つの受光素子(または受光領域)PD11,PD12,PD21,PD22によって受光され、前述の図3の説明の様に画素位置調整を行うことができる。同様に、画素P12は4つの受光素子PD12,PD13,PD22,PD23によって受光され、画素位置調整を行うことができる。また、PD12〜PD1n,PD21〜PD2(n+1),・・・,PD(m+1)2〜PD(m+1)nのように、4隅以外の受光素子(または受光領域)は、少なくとも二つ以上の画像調整に対して共有して利用できる。また、画素の位置調整では4つの受光素子(または受光領域)を必ず利用するため、水平・鉛直方向の位置調整を厳密に行うことが可能である。したがって、本実施例では、受光素子(または受光領域)の数を(m+1)×(n+1)個にすることによって画素ずらしの微調整を正確に行い、かつ、受光素子数または受光素子分割数を極力減らすことができ、装置の省コスト化に貢献することができる。
【0037】
(実施例6)
次に本発明の第6の実施例を説明する。図11は本発明の別の実施例を示す投射表示装置の概略構成図である。この投射表示装置は、光源1と、照明光学系2と、表示素子であるライトバルブ3と、画素変形手段11と、変位手段である画素ずらし手段4と、投射手段である投射レンズ5と、スクリーン等の投射面6と、その投射面6の近傍に設置された受光手段7を備えており、さらには、画像情報に対応してライトバルブ3を駆動する駆動制御部8と、画素ずらし手段4を駆動させる駆動制御部9と、受光手段7による受光信号を演算処理して制御信号を画素ずらし手段の駆動制御部9にフィードバックするための演算処理部(制御手段)10とを備えた構成となっている。
【0038】
照明光学系2はライトバルブ3の全面を均一照明するための光学素子であるが、本発明の効果に直接影響しないため省略することができる。また、光源1からライトバルブ3までは自発光表示素子に置き換えることも可能である。画素変形手段11は各画素のプロファイル(光強度分布)を変形させる働きを持ち、図11の例ではライトバルブ3の各画素に対応したレンズ効果を有するアレイ状の素子などが用いられる。変位手段である画素ずらし手段4は、例えば平行平板をアクチュエータなどによって傾き角を変化させ、画素を光学的に変位させる手段である。また、画素ずらし手段4は、ライトバルブ3と投射レンズ5の間以外にも、投射レンズ5と投射面6の間に設置しても良い。
ここで、図11の例では4つの受光手段7を投射面6の近傍に設置している。具体的には図2に示す例と同様に、投射面の画像表示領域の外側の四箇所に受光手段7を設置して、ライトバルブ3の有効画素の外側にある画素の一部を用いて画素位置調整するように構成している。尚、受光手段7の数や配置位置は図2の例に限るものではない。
【0039】
図12は画素変形手段11が有る場合と無い場合で、投射面6上の画素プロファイルを比較した図である。図12では水平方向に画素変位手段4によって2通りの変位位置を有する。画素変形手段11は、投射画素のプロファイルを変形する機能を有する。ここで、画素変形手段11の一例を図13を用いて説明する。図13では画素変形手段11としてマイクロレンズアレイ12を用いている。そしてライトバルブ3として、透明基板3aと液晶層3bとバックプレーン3cからなる反射型液晶素子を用い、その透明基板3aに接着層13によりマイクロレンズアレイ12を接着して一体化した構成である。この場合、透明基板3aとマイクロレンズアレイ12の屈折率は同じとし、接着層13を挟み固定されている。また、透明基板3aの厚さを10μm、マイクロレンズアレイ12の各レンズのFナンバーを1.8とした。尚、図13では空間光変調器(反射型液晶素子)の3画素分だけを図示しているが本発明の効果に画素数の制限はない。図14は、この画素変形手段11の有無によって投射面で得られる一画素のプロファイル(光強度分布)の差異を示している。図14において横軸は投射面内の位置を、縦軸は光強度をそれぞれ表す。図14で破線は画素変形手段11の無い場合の画素プロファイルで、実線が画素変形手段11のある場合の画素プロファイルである。画素変形手段11によって画素プロファイルの幅、特に半値全幅(図中の矢印)が細くなっている。
【0040】
図12(a),(b)において、画素P〜Pはそれぞれ画素プロファイルの半分の強度となる領域を示している。また、PD1〜PD9は受光手段7を構成する複数の受光素子(または多分割受光素子の分割受光領域)である。
図12(a)の画素変形手段11を持たない場合には、画素プロファイルの幅が大きいため、正確な位置検出のためには受光手段7の受光面積を大きくする必要がある。一方、図12(b)の画素変形手段11を用いた投射では、画素プロファイルの幅が狭くなるため、受光手段7の面積を小さくしても正確な位置検出が可能である。受光手段7を小さくできればスクリーン(投射面)6に受光手段7を常に設置するような場合にも、受光手段自体が目立たなくなり、スクリーン6の美観を損なわない。また、画素変形手段11によって投射画素間のにじみが少なくなるため、高解像度にもかかわらず良好な画像が得られる。
【0041】
(実施例7)
次に本発明の第7の実施例を説明する。本実施例は、実施例6記載の投射表示装置において、受光素子の数、または受光素子の分割数を、サブフィールド数の整数倍とするものである。具体例として、サブフィールド数の4倍とした場合について図5を用いて説明する。
本実施例では実施例2の説明と同様に、受光素子数(または受光素子の分割数)をサブフィールド数の整数倍にすることによって投射画素位置の正確な微調整が可能になる。さらに、実施例6の説明と同じように画素変形手段11によって投射画素のプロファイル、特に半値全幅を小さくすることができる。このため、受光手段7を構成する複数の受光素子(または多分割受光素子の分割領域)PD11〜PD44の受光面積を小さくすることができ、受光手段7を小さくすることができる。受光手段7を小さくできればスクリーン(投射面)6に受光手段7を常に設置するような場合にも、受光手段自体が目立たなくなり、スクリーン6の美観を損なわない。また、画素変形手段11によって投射画素間のにじみが少なくなるため、高解像度にもかかわらず良好な画像が得られる。
【0042】
(実施例8)
次に本発明の第8の実施例を説明する。本実施例は、実施例6または7に記載の投射表示装置の受光手段7を構成する複数の受光素子のうちの少なくとも一つの受光素子、または領域分割された受光素子(多分割受光素子)の少なくとも一つの分割領域に、複数の異なるサブフィールド画素が二つ以上、または異なるサブフィールド画素の一部が二つ以上、受光するように、受光手段7を設置したことを特徴とする。以下、本実施例を図6を用いて説明する。
本実施例では実施例3の説明と同様に、サブフィールド数を4とし、画素ずらし手段(変位手段)4による画素ずらしを、水平・鉛直方向にそれぞれ2通り行う。また、実施例6の説明に記載したように画素変形手段11を用いるため、投射画素のプロファイルの半値全幅を小さくできる。この場合、図6の画素P1〜P4は各プロファイルピーク強度の半分の領域を示しているとすると、実施例7の説明と同様に、受光手段7を構成する複数の受光素子(または多分割受光素子の分割領域)PD1〜PD9の面積を小さくすることができ、受光手段7を小さくすることができ、かつ、4隅の受光素子(または受光領域)PD1,PD3、PD7,PD9以外の5つの受光素子(または受光領域)は少なくとも二つ以上の画素調整時に共通で使用される。このため、受光素子数または分割数を少なくすることができ、装置の小コスト化に貢献することができる。また、受光手段7を小さくできればスクリーン(投射面)6に受光手段7を常に設置するような場合にも、受光手段自体が目立たなくなり、スクリーン6の美観を損なわない。また、画素変形手段11によって投射画素間のにじみが少なくなるため、高解像度にもかかわらず良好な画像が得られる。
【0043】
(実施例9)
次に本発明の第9の実施例を説明する。本実施例は、実施例6〜8のいずれかに示した投射表示装置において、前記画素変形手段11が少なくとも1枚のマイクロレンズアレイで構成されたことを特徴とする。
ここで、1枚のマイクロレンズで構成される画素変形手段としては、例えば前述の図13に示した構成が利用できる。尚、図13の構成、動作は前述の通りなのでここでは説明を省略する。
【0044】
次に前記画素変形手段が2枚のマイクロレンズで構成された例を図15、図16を用いて説明する。
図15は2枚のマイクロレンズで構成された画素変形手段の構成例を示している。この画素変形手段14は、マイクロレンズアレイに接着剤を用いてカバー部材を貼り合わせた、所謂、貼り合わせ(カバー部材付き)マイクロレンズアレイを、画素縮小光学系に用いた例である。図15では、画素変形手段14を構成する第1のマイクロレンズアレイ14が、貼り合わせマイクロレンズアレイであり、貼り合わせマイクロレンズアレイ14は、マイクロレンズアレイ14a、接着剤14b、透明のカバー部材14cからなる。材料としては、マイクロレンズアレイ14aとカバー部材14cがガラス、または、マイクロレンズアレイ14a及びカバー部材14cが樹脂、または、一方がガラス、他方が樹脂の組合せ等が考えられる。また、高屈折率が必要な場合など、鉱物などの使用も考えられる。尚、接着剤14bは樹脂である。また、マイクロレンズアレイ14aとカバー部材14cの材料は異なっていても良い。さらに図15では、片方のマイクレンズアレイ14のみを貼り合わせマイクロレンズアレイとした例を示しているが、第2のマイクロレンズアレイ14も貼り合わせた、両方貼り合わせのマイクロレンズアレイであっても構わない。また、図15では、マイクロレンズアレイの形状を凸形状にしてあるが、これはマイクロレンズアレイとカバー部材の屈折率が接着剤屈折率よりも高い場合であり、逆に、接着剤の屈折率がマイクロレンズアレイ及びカバー部材の屈折率よりも高い場合には、マイクロレンズアレイの形状は凹となる。
【0045】
ここで、具体例としては、図15のマイクロレンズによる画素縮小光学系(貼り合わせマイクロレンズアレイ)14は、凸形状のマイクロレンズアレイ14aを、ネオセラム(日本電気硝子の結晶化透明ガラス)基板にレジスト転写法によるドライエッチングにより作製し、これを別の平板ネオセラム基板14cとで低屈折率のUV光硬化性接着剤(協立化学、#7702)14bを挟み込んで、UV照射により接着硬化させたものである。
【0046】
図16は、図15に示す2枚のマイクロレンズアレイからなる画素変形手段14と同様の構成の画素変形手段27を組み込んだ高精細プロジェクタの一例を説明するための全体構成図である。この実施例では、反射型のライトバルブを一枚用いる単板式プロジェクタの例を示す。図16において、白色光源21を出た光は、まず、フライアイレンズ等の光インテグレータ22により、照度が均一化される。次に、カラーホイール等の色分離装置23により、赤、緑、青の3色に分離される。カラーホイールを用いた場合、同時に、赤、緑、青に分離されるのではなく、時系列に赤、緑、青に分離される。次に、各色ごとに偏光ビームスプリッター25に入り、反射型のライトバルブである空間光変調素子24の画素で反射され、偏光ビームスプリッター25を抜け、マクロレンズ26に入る。そしてマクロレンズ26により、一旦、画素変形手段27の第1マイクロレンズアレイ27面で画素の中間像が形成され、続く第2マイクロレンズアレイ27によりこの中間像が縮小され、最終的に投射レンズ28によりスクリーン(投射面)29に投影され、スクリーン(投射面)29上に高詳細画像が形成される。
【0047】
ライトバルブ24としては、LCOS(liquid crystal on Si、ディスプレイテクノロジー社、米国),DMD(デジタルインストルメント社、米国)などがある。ただし、DMDを使う場合には偏光ビームスプリッター25は不要となる。また、マイクロレンズのF値を1.4として、投射レンズ28はF値が2.8、マクロレンズ26は等倍である。尚、第1マイクロレンズアレイ27と第2マイクロレンズアレイ27との調整は、それぞれのマイクロレンズアレイに6軸ステージ(光軸方向:Z、それに垂直な2方向:X及びY、またX,Y,Z軸での回転:3つ)を用いるのが、位置,角度,縮小率調整にとって望ましい。
【0048】
本実施例では、前述の通り、画素変形手段によって投射画素のプロファイルの半値全幅を狭くすることができる。このため、受光手段を小さくすることができ、スクリーン(投射面)に受光手段を常に設置するような場合にも、受光手段自体が目立たなくなり、スクリーンの美観を損なわない。また、画素変形手段によって投射画素間のにじみが少なくなるため、高解像度にもかかわらず良好な画像が得られる。また、画素変形手段にマイクロレンズアレイを用いるため、簡単な光学系で実現することができ、低コストの投射装置を提供することができる。
【0049】
(実施例10)
次に本発明の第10の実施例を説明する。本実施例の投射表示装置は、例えば実施例6と同様の構成であり、図11に示すように、光源1と、照明光学系2と、画像情報に対応して光を変調または放出する画素を有する画像表示素子(ライトバルブ)3と、画素変形手段11と、画素変位手段(例えばウォブリング素子)4と、投射レンズ5と、スクリーン等の投射面6と、投射面6またその近傍に設置された受光手段(複数の受光素子または領域分割された受光素子)7を備えており、さらには、画像情報に対応して画像表示素子3を駆動する駆動制御部8と、前記変位手段4を駆動させる駆動制御部9と、受光手段7による受光信号を演算処理して制御信号を変位手段の駆動制御部9にフィードバックするための演算処理部(制御手段)10とを備えた構成となっている。
【0050】
図17は本実施例の画素変形手段と画像表示素子の一例を示した図である。本実施例は、画素変形手段11として屈折率分布型レンズアレイ30を用い、画像表示素子3として液晶層32とバックプレーン33からなる反射型ライトバルブ31を用い、屈折率分布型レンズアレイ30と反射型ライトバルブ31を一体に構成した例である。また、反射型ライトバルブ31の各画素に対応して屈折率分布型レンズアレイ30を配置させている。屈折率分布型レンズアレイ31の各アレイは、例えば、実施例9で説明したレンズ性能を持たせれば良い。このように画素変形光学系を平板型の光学系で実現することにより、アライメントがしやすく、かつ位置ずれがしにくい、信頼性に優れた投射表示装置となる。
【0051】
(実施例11)
次に本発明の第11の実施例を説明する。本実施例の投射表示装置は、例えば実施例6と同様の構成であり、図11に示すように、光源1と、照明光学系2と、画像情報に対応して光を変調または放出する画素を有する画像表示素子(ライトバルブ)3と、画素変形手段11と、画素変位手段(例えばウォブリング素子)4と、投射レンズ5と、スクリーン等の投射面6と、投射面6またその近傍に設置された受光手段(複数の受光素子または領域分割された受光素子)7を備えており、さらには、画像情報に対応して画像表示素子3を駆動する駆動制御部8と、前記変位手段4を駆動させる駆動制御部9と、受光手段7による受光信号を演算処理して制御信号を変位手段の駆動制御部9にフィードバックするための演算処理部(制御手段)10とを備えた構成となっている。
【0052】
図18は本実施例の画素変形手段と画像表示素子の一例を示した図であり、凹面ミラーアレイ45からなる画素変形手段11を一体に備えた画像表示素子(反射型ライトバルブ)3を示している。この凹面ミラーアレイ45を一体に備えた画像表示素子(反射型ライトバルブ)3は、透明基板41と液晶層42と平坦化層43とバックプレーン44からなり、バックプレーン44には液晶層42を駆動するための薄膜トランジスタ(TFT)などが集積されている。従来の反射型液晶素子(特にLCOSと呼ばれる液晶素子)ではバックプレーンの最表層は反射板であるが、本実施例ではこの反射板が凹面ミラーアレイ45で構成され、凹面ミラーアレイ部45と液晶層42は平坦化層43を介して一体に構成される。尚、液晶素子としての構成要素として、透明電極、配向膜などが適宜必要であるが、画素縮小光学系の説明のためには、これらの詳細な説明は不要であるため、図18では省略している。
【0053】
図18において、平坦化層43の屈折率を1.52とし、凹面ミラーアレイ45の曲率半径を150μmとする。液晶層42の厚さや透明基板41の厚さは本発明の効果に大きな影響を及ぼさないため、説明を省略する。本実施例の構成で光線追跡計算したところ、下記の表1に示す特性が得られた。
【0054】
【表1】
Figure 2004101719
【0055】
表1のモデルAが本実施例の性能である。解像性能は空間周波数80本/mmの解像度チャートがどの程度コントラストを低下させるかを表している。表1のモデルB,Cは1枚のマイクロレンズアレイを用いた比較例である。これらは図13と同じ構成で、透明基板とマイクロレンズの屈折率n、透明基板の厚さt、マイクロレンズの曲率半径rとすると、下記の表2の構成である。
【0056】
【表2】
Figure 2004101719
【0057】
表1から、マイクロレンズアレイを用いた比較例では光利用効率を向上させると解像性能が劣化し、解像性能重視で設計すると光利用効率を犠牲にしている。本実施例では、画素変形手段に凹面ミラーアレイ45を用いることによって解像性能と光利用効率を共に高くすることが可能になる。
したがって、本実施例の投射表示装置は、画素変位された投射画像の位置調整ができ、かつ、実施例6から8に記載の通り、受光素子数(または受光素子の分割数)を減らすことができ省コストとなる。さらに、解像性能と光利用効率の高い画素変形手段であるため隣接画素間のにじみが少なく、明るい投射表示装置となる。
【0058】
(実施例12)
次に本発明の第12の実施例を図16に示す構成の投射表示装置を用いて説明する。この投射表示装置の画像表示部は光源21から表示素子(反射型ライトバルブ)24までで構成され,マクロレンズ26でライトバルブ24の画像を画素変形手段27近傍に結像させる。画素変形手段27は2枚のマイクロレンズアレイ27,27を利用した例を示しており、例えば図15の画素変形手段14と同様の構成である。図16では画素変位手段は図示していないが、例えば画素変形手段27と投射レンズ28の間に配置することができる。また、スクリーン(投射面)29上またはその近傍に受光手段として複数の受光素子または多分割受光素子が配置される。この受光手段は、恒久的にスクリーン近傍に配置させるには、図2の例のように、スクリーンの投射画像領域のすぐ外側の画素を利用することが考えられる。また、サブフィールド画像間の位置調整時にのみ受光手段をスクリーンに設置させ、位置調整が完了すれば、画素ずらし量を駆動制御部等のレジスタなどに記憶させることによって、受光手段をスクリーンから取り外すことも可能である。この場合には、受光手段を投射画像のどの位置に設置しても良いことになる。
【0059】
本実施例では、表示素子(ライトバルブ)24と画素変形手段27との間にマクロレンズ26を配置させるため、表示素子(ライトバルブ)24に直接、画素変形手段を組合せる必要がなくなる。このため、市販のライトバルブを用いることもでき、大掛かりな設備を用いることなく装置の組付けが可能になる。したがって、画素位置調整の微調整が可能な投射表示装置において隣接画素間のにじみが少なくでき、かつ、省コスト化となる。
【0060】
【発明の効果】
以上説明したように、請求項1,2に記載の投射表示装置においては、画素ずらしの微調整を正確に行うことができる。
また、請求項3,4に記載の投射表示装置においては、画素ずらしの微調整を正確に行うことができ、かつ、受光素子の数、または受光素子の分割数を減らすことができ、投射表示装置を低コストに提供することができる。
さらに請求項5に記載の投射表示装置においては、受光素子数(または受光素子の分割数)を(m+1)×(n+1)個にすることによって画素ずらしの微調整を正確に行い、かつ、受光素子数(または受光素子の分割数)を極力減らすことができ、投射表示装置を低コストに提供することができる。
【0061】
請求項6,7,8に記載の投射表示装置においては、画素変形手段によって投射画素間のにじみが少なくなるため、高解像度にもかかわらず画素ずらしの微調整を正確に行い、かつ、投射画素間のにじみの少ない良好な画像を得ることができ、また、受光素子数(または受光素子の分割数)を減らすことができ、投射表示装置を低コストに提供することができる。
【0062】
請求項9記載の投射表示装置においては、画素変形手段によって投射画素間のにじみが少なくなるため、高解像度にもかかわらず良好な画像を得ることができる。さらに画素変形手段にマイクロレンズアレイを用いるため、簡単な光学系で実現することができ、低コストの投射表示装置を提供することができる。
また、請求項10記載の投射表示装置においては、画素変形光学系を平板型の光学系で実現することにより、アライメントがしやすく、かつ位置ずれがしにくく、信頼性を高くすることができる。
さらに請求項11記載の投射表示装置においては、画素変位された投射画像の位置調整ができ、受光素子数(または受光素子の分割数)を減らすことができ、省コストとなる。さらに、解像性能と光利用効率の高い画素変形手段であるため、隣接画素間のにじみが少なく、明るい投射表示装置が提供できる。
さらに請求項12記載の投射表示装置においては、表示素子と画素変形手段との間にマクロレンズを配置させるため、画素位置調整の微調整が可能で隣接画素間のにじみが少なくでき、かつ、省コスト化となる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す投射表示装置の概略構成図である。
【図2】受光手段の設置場所の一例を示す図である。
【図3】実施例1の一例を示す図であって、受光手段を4つの受光素子(または4分割受光素子)で構成し画素位置検出および位置調整を行う場合の説明図である。
【図4】実施例1の別の例を示す図であって、受光手段を3つの受光素子(または3分割受光素子)で構成し画素位置検出および位置調整を行う場合の説明図である。
【図5】実施例2,7の一例を示す図であって、サブフィールド数が4の時の画素と、複数の受光素子(または多分割受光素子)からなる受光手段の説明図である。
【図6】実施例3,8の一例を示す図であって、サブフィールド数が4の時の画素と、複数の受光素子(または多分割受光素子)からなる受光手段の説明図である。
【図7】実施例4の一例を示す図であって、サブフィールド数が1×n個の場合の画素と、複数の受光素子または多分割受光素子からなる受光手段の説明図である。
【図8】実施例4の別の例を示す図であって、サブフィールド数が2×n個の場合の画素と、複数の受光素子または多分割受光素子からなる受光手段の説明図である。
【図9】実施例4のさらに別の例を示す図であって、サブフィールド数が3×n個の場合の画素と、複数の受光素子または多分割受光素子からなる受光手段の説明図である。
【図10】実施例5の一例を示す図であって、サブフィールド数がm×n個の場合の画素と、複数の受光素子または多分割受光素子からなる受光手段の説明図である。
【図11】本発明の別の実施例を示す投射表示装置の概略構成図である。
【図12】実施例6の一例を示す図であって、画素変形手段がある場合とない場合の投射画素プロファイルを説明するための図である。
【図13】画素変形手段としてマイクロレンズアレイを用い、表示素子と一体化した時の構成説明図である。
【図14】画素変形手段の有無によって投射面で得られる画素プロファイルの説明図である。
【図15】2枚のマイクロレンズアレイを用いた画素変形手段の構成説明図である。
【図16】本発明のさらに別の実施例を示す投射表示装置の概略構成図である。
【図17】画素変形手段として屈折率分布型レンズアレイを用い、表示素子と一体化した時の構成説明図である。
【図18】画素変形手段として凹面ミラーアレイを用い、表示素子と一体化した時の構成説明図である。
【符号の説明】
1:光源
2:照明光学系
3:表示素子(ライトバルブ)
4:画素ずらし手段(変位手段)
5:投射レンズ
6:投射面(スクリーン)
7:受光手段
8:ライトバルブの駆動制御部
9:画素ずらし手段(変位手段)の駆動制御部
10:演算処理部(制御手段)
11,14,27:画素変形手段
12:マイクロレンズアレイ
21:白色光源
22:光インテグレータ
23:色分離装置
24:空間光変調素子(反射型ライトバルブ)
25:偏光ビームスプリッター
26:マクロレンズ
28:投射レンズ
29:スクリーン(投射面)
30:屈折率分布型レンズアレイ
45:凹面ミラーアレイ

Claims (12)

  1. 画像情報に対応して光を変調または放出する画素を有する表示素子と、前記画像情報に対応した画像フィールドを構成する複数のサブフィールド毎に前記画素の位置を光学的に変位させる変位手段と、前記画素を投射面に投射する投射手段とを有する投射表示装置において、
    前記投射面またはその近傍に、複数の受光素子または領域分割された受光素子からなる受光手段を配置し、前記受光手段からの信号を制御手段で前記変位手段の駆動制御部にフィードバックさせることを特徴とする投射表示装置。
  2. 請求項1記載の投射表示装置において、
    投射画素位置調整のための前記受光手段を構成する複数の受光素子の数、または領域分割された受光素子の分割数が、前記サブフィールド数の整数倍であることを特徴とする投射表示装置。
  3. 請求項1または請求項2記載の投射表示装置において、
    前記受光手段を構成する複数の受光素子のうちの少なくとも一つの受光素子、または領域分割された受光素子の少なくとも一つの分割領域に、前記複数の異なるサブフィールド画素が二つ以上、または異なるサブフィールド画素の一部が二つ以上、受光するように、前記受光手段を設置したことを特徴とする投射表示装置。
  4. 請求項1または請求項2記載の投射表示装置において、
    前記変位手段で所定の2方向にそれぞれm,n(ただし、m,nは共に自然数でm≦nとする)通り変位させ、かつ、前記受光手段を構成する受光素子の数Dまたは受光素子の分割数Dが、
    m=1のとき;D≧n+1
    m≧2のとき;D≧f((m+1)/2)+(n+1)・f(m/2)
    (ただし、f(x)はxの小数点以下を四捨五入する関数とする)
    を満たすことを特徴とする投射表示装置。
  5. 請求項1または請求項2記載の投射表示装置において、
    前記変位手段で所定の2方向にそれぞれm,n(ただし、m,nは共に自然数でm≦nとする)通り変位させ、かつ、前記受光手段を構成する受光素子の数Dまたは分割数Dが、
    D=(m+1)・(n+1)
    を満たすことを特徴とする投射表示装置。
  6. 画像情報に対応して光を変調または放出する画素を有する表示素子と、前記画像情報に対応した画像フィールドを構成する複数のサブフィールド毎に前記画素の位置を光学的に変位させる変位手段と、前記画素のプロファイルを変形させる変形手段と、前記画素を投射面に投射する投射手段とを有する投射表示装置において、
    前記投射面またはその近傍に、複数の受光素子または領域分割された受光素子からなる受光手段を配置し、前記受光手段からの信号を制御手段で前記変位手段の駆動制御部にフィードバックさせることを特徴とする投射表示装置。
  7. 請求項6記載の投射表示装置において、
    前記受光手段を構成する複数の受光素子の数、または領域分割された受光素子の分割数が、前記サブフィールド数の整数倍であることを特徴とする投射表示装置。
  8. 請求項6または請求項7記載の投射表示装置において、
    前記受光手段を構成する複数の受光素子のうちの少なくとも一つの受光素子、または領域分割された受光素子の少なくとも一つの分割領域に、前記複数の異なるサブフィールド画素が二つ以上、または異なるサブフィールド画素の一部が二つ以上、受光するように、前記受光手段を設置したことを特徴とする投射表示装置。
  9. 請求項6〜8のいずれか一つに記載の投射表示装置において、
    前記変形手段が、少なくとも1枚のマイクロレンズアレイで構成されたことを特徴とする投射表示装置。
  10. 請求項6〜8のいずれか一つに記載の投射表示装置において、
    前記変形手段が、屈折率分布型レンズアレイで構成されたことを特徴とする投射表示装置。
  11. 請求項6〜8のいずれか一つに記載の投射表示装置において、
    前記変形手段が、凹面ミラーアレイで構成されたことを特徴とする投射表示装置。
  12. 請求項9または請求項10記載の投射表示装置において、
    前記表示素子と変形手段の間にマクロレンズを配置したことを特徴とする投射表示装置。
JP2002261544A 2002-09-06 2002-09-06 投射表示装置 Pending JP2004101719A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002261544A JP2004101719A (ja) 2002-09-06 2002-09-06 投射表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002261544A JP2004101719A (ja) 2002-09-06 2002-09-06 投射表示装置

Publications (1)

Publication Number Publication Date
JP2004101719A true JP2004101719A (ja) 2004-04-02

Family

ID=32261890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002261544A Pending JP2004101719A (ja) 2002-09-06 2002-09-06 投射表示装置

Country Status (1)

Country Link
JP (1) JP2004101719A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005117456A1 (ja) * 2004-05-25 2005-12-08 Seiko Epson Corporation プロジェクタ、画像データ変換方法及び画像データ変換プログラム
JP2007003816A (ja) * 2005-06-23 2007-01-11 Victor Co Of Japan Ltd 画像表示装置の調整装置
WO2007135999A1 (ja) * 2006-05-22 2007-11-29 Alps Electric Co., Ltd. 投映装置
JP2011180541A (ja) * 2010-03-04 2011-09-15 Nippon Seiki Co Ltd 表示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005117456A1 (ja) * 2004-05-25 2005-12-08 Seiko Epson Corporation プロジェクタ、画像データ変換方法及び画像データ変換プログラム
US7431462B2 (en) 2004-05-25 2008-10-07 Seiko Epson Corporation Projector, image data converting method, and image data converting program
JP2007003816A (ja) * 2005-06-23 2007-01-11 Victor Co Of Japan Ltd 画像表示装置の調整装置
WO2007135999A1 (ja) * 2006-05-22 2007-11-29 Alps Electric Co., Ltd. 投映装置
JP2011180541A (ja) * 2010-03-04 2011-09-15 Nippon Seiki Co Ltd 表示装置

Similar Documents

Publication Publication Date Title
JP3074259B2 (ja) 光投影方法及びこれを遂行するための投射型の画像表示装置
US7401926B2 (en) Space light modulating apparatus, projector including same, process for manufacturing microstructure element used in same, and microstructure element manufactured by the same process
US7327519B2 (en) Spatial light modulator and projector
JP4230187B2 (ja) マイクロレンズアレイの製造方法およびマイクロレンズアレイの製造装置
US7339638B2 (en) Micro-lens substrate, liquid crystal display element having same, and projection-type liquid crystal display device
US20060082692A1 (en) Image display device and projector
KR100675534B1 (ko) 회로디바이스나 표시디바이스의 제조방법, 및대형디스플레이장치
JP3953979B2 (ja) ダイクロイックミラーホイールを用いた照明光学系およびこれを具備する画像表示装置
US6939008B2 (en) Projection type display device
CN101218544A (zh) 曝光方法和设备
KR20060076142A (ko) 돔 스크린용 비디오 투영기
WO2007010764A1 (ja) マイクロレンズ付き液晶表示パネルおよびその製造方法
EP2186084A1 (en) Display with improved uniformity
US8066386B2 (en) Projection image display position control device, projection image display position control method, and projection system
JPH02181182A (ja) 液晶パネル式投写形ディスプレイ
JP2000193928A (ja) 光変調素子および画像投射表示装置
JP2003248181A (ja) 反射型空間光変調装置
JP2004101719A (ja) 投射表示装置
JP3228896B2 (ja) 反射型lcdパネルユニット及びこれを用いた液晶プロジェクター
WO2001041455A1 (en) Optical soft edge matching method for light valve projectors
JP2000019307A (ja) マイクロレンズアレイ基板の製造方法、マイクロレンズアレイ基板、液晶パネル用対向基板、液晶パネル、投射型表示装置および柱付きマイクロレンズ基板
JPH10253920A (ja) 光学装置
JP4697104B2 (ja) プロジェクタ
JP3875901B2 (ja) 投射画像表示装置
JPH08201930A (ja) 露光装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080513