JP2004088032A - Method of manufacturing voltage nonlinear resistor - Google Patents

Method of manufacturing voltage nonlinear resistor Download PDF

Info

Publication number
JP2004088032A
JP2004088032A JP2002250297A JP2002250297A JP2004088032A JP 2004088032 A JP2004088032 A JP 2004088032A JP 2002250297 A JP2002250297 A JP 2002250297A JP 2002250297 A JP2002250297 A JP 2002250297A JP 2004088032 A JP2004088032 A JP 2004088032A
Authority
JP
Japan
Prior art keywords
powder
zinc oxide
roasted
slurry
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002250297A
Other languages
Japanese (ja)
Inventor
Yukio Tagami
田上 幸雄
Naohito Tsuge
柘植 尚人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2002250297A priority Critical patent/JP2004088032A/en
Publication of JP2004088032A publication Critical patent/JP2004088032A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable a zinc oxide element to possess improved voltage limiting properties and an enhanced withstand discharge current rating to excessive lightning impulses and switching impulses, and to provide granulated power at a low cost by using zinc oxide and antimony trioxide as roasted powder used for the granulated powder. <P>SOLUTION: Zinc oxide and antimony trioxide are mixed together and ground into a mixed slurry (S11); the mixed slurry is dried and broken into pieces (S12); the broken slurry is roasted into roasted powder (S13); the roasted powder is mixed and ground (S14), the ground roasted powder is dried and broken into an additive roasted powder material (S15); the additive roasted powder material, additive metal oxide powder, and pure water are mixed together into an additive slurry (S16); the additive slurry, an organic binder solution, and zinc oxide are mixed, emulsified (S17), deaerated (S18), and dried by spraying (19); and thus the granulated powder for the zinc oxide element as a voltage nonlinear resistor can be manufactured. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、酸化亜鉛を主成分とし、主に避雷器に組み込まれる電圧非直線抵抗体の製造方法に関するものである。
【0002】
【従来の技術】
電圧非直線抵抗体(非直線抵抗体)には、酸化亜鉛(ZnO)を主成分とするものが多く、その副添加物成分(以下、添加物スラリーと称す)として三酸化ビスマス,三酸化アンチモン,三酸化コバルト,二酸化マンガン,三酸化クロム,酸化ニッケル,二酸化珪素等の複数個の金属酸化物を添加し、非直線性が高く、熱損失の小さい組成配合からなっている。
【0003】
通常、前記添加物スラリーをボール・ミル等にて湿式予備粉砕した後、有機バインダー(結合剤)及び酸化亜鉛と十分混合して混合物(原料スラリー)を得、その混合物をスプレードライヤーにより噴霧乾燥して流動性の良好な造粒粉を得る。なお、前記有機バインダーには水系の有機バインダー、例えばポリビニルアルコール(PVA)が用いられている。
【0004】
次に、前記造粒粉を金型プレス機により例えば円盤状等の成形体に成形し、この成形体を脱脂し、脱脂した後800〜1000℃で仮焼することにより仮焼体を得る。その後、その仮焼体の側面部分に一次絶縁材を塗布し、塗布した後1000〜1300℃の温度で焼成して、側面部分に高抵抗層(絶縁層)を形成した焼結体を得る。更に、その焼結体の側面部分に二次絶縁材を塗布し、焼成する。そして、その二次絶縁材を焼成した焼結体の両端面を平滑に研磨した後、その研磨した両端面にアルミニウムから成る電極材料を溶射して電圧非直線抵抗体を完成させる。
【0005】
【発明が解決しようとする課題】
上記電圧非直線抵抗体(非直線抵抗体)は、避雷器用電圧−電流非直線抵抗体に使用されるが、一般の避雷器用弱電用サージ・アブソーバに比べると吸収し得るエネルギーが大きいため、大きな体積、または大口径サイズの酸化亜鉛素子が必要となる。
【0006】
前記酸化亜鉛素子の製造方法は、PVA(ポリビニルアルコール)等から成る有機バインダー溶液に主成分である酸化亜鉛と、その添加物スラリーとして三酸化ビスマス,三酸化アンチモン,三酸化コバルト,二酸化マンガン,三酸化クロム,酸化ニッケル,二酸化珪素等の金属酸化物を添加し、非直線性が高く、熱損失の小さい組成配合から成る原料スラリーを得、その原料スラリーを十分混合し、スプレードライヤーで噴霧乾燥して造粒粉を得る。
【0007】
前記造粒粉を金型成形プレス機で円柱状に成形し、脱脂後、800〜1000℃で仮焼する。この仮焼体の側面部分に絶縁性セラミック材料(一次絶縁材)を塗布し、1000〜1300℃で数時間焼成する。更に、焼結体の側面部分に低融点ガラス材料(二次絶縁材)を塗布し、焼き付けを行う。この後、その焼結体の両端面を研磨し、アルミニウムの電極を溶射して電圧非直線抵抗体を完成させる。
【0008】
上記電圧非直線抵抗体は、電力機器を雷インパルス等の異常電圧から保護する目的で使用されており、避雷器が担う本質的な性能を向上させている。前記電圧非直線抵抗体における酸化亜鉛素子において、制限電圧特性を改良し、過大な雷インパルス及び開閉インパルスに対して、酸化亜鉛素子の放電耐量を増強することなどが、酸化亜鉛素子の重要な課題となる。
【0009】
本発明は、前記課題に基づいて成されたものであり、酸化亜鉛素子において、造粒粉の添加焙焼粉体原料にアンチモン酸亜鉛を用いることにより、電圧非直線抵抗体の制限電圧特性を向上させると共に、過大な雷インパルス及び開閉インパルスに対して素子の放電耐量を増強させる電圧非直線抵抗体の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明は、前記課題の解決を図るために、第1発明は、原料スラリーの主成分として酸化亜鉛及び三酸化アンチモンを使用し、その酸化亜鉛と三酸化アンチモンを所定量計量し、湿式混合し、乾燥し、焙焼し、微粉砕して調整した焙焼粉体を得、その焙焼粉体に複数個の金属酸化物の添加物成分を所定量添加して湿式混合し、粉砕して添加物スラリーを得、前記焙焼粉体を有機バインダー溶液に主成分である酸化亜鉛と添加物スラリーとを乳化混合する際に添加し、脱泡後噴霧乾燥して造粒粉を得ることを特徴とする。
【0011】
第2発明は、前記第1発明における焙焼粉体において、酸化亜鉛66.15wt%と三酸化アンチモン33.85wt%を焙焼してアンチモン酸亜鉛の粉体を得、そのアンチモン酸亜鉛の分子量が893.08であり、アンチモン酸亜鉛の理論上の配合量が0.01〜1.0モル%と成ることを特徴とする。
【0012】
第3発明は、前記第1発明及び第2発明における焙焼粉体において、酸化亜鉛と三酸化アンチモンの混合粉体を焙焼してアンチモン酸亜鉛を得るとき、焙焼温度を850℃以上とすることを特徴とする。
【0013】
上記第1発明〜第3発明によれば、焙焼粉体に酸化亜鉛及び三酸化アンチモンを用いることにより、酸化亜鉛素子にアンチモン酸亜鉛を使用した素子を得、その酸化亜鉛素子を使用することにより、酸化亜鉛素子の制限電圧特性を向上させることがでると共に、過大な雷インパルス及び開閉インパルスに対しても、酸化亜鉛素子による放電耐量を増強させることができる電圧非直線抵抗体を得ることができる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。本発明の実施の形態では、酸化亜鉛素子の電気特性を向上させるために、焙焼粉体原料の添加効果の検証を実施し、添加する焙焼粉体原料は目的となる結晶構造となるように、あらかじめ所定の原料を所定量計量し、湿式混合、乾燥、焙焼、微粉砕して調製している。
【0015】
(実施の形態1)
ここで、本発明の実施の形態1について説明する。図1に、本発明の実施の形態1における酸化亜鉛素子用の造粒粉工程図を示す。図1において、ステップS11は湿式混合粉砕工程を示すものであり、この湿式混合粉砕工程では酸化亜鉛素子用の造粒粉における添加焙焼粉体原料の主成分として、酸化亜鉛66.15wt%と三酸化アンチモン33.85wt%を計量し、固形分濃度50wt%となるように純水を投入して、湿式混合し、粉砕して混合物スラリーを得、その混合物スラリーをステップS12で乾燥し、解砕する。
【0016】
前記乾燥し、解砕された混合物スラリーは、ステップS13に示す焙焼工程で、900℃の温度で2時間焙焼し、焙焼粉体を得、この焙焼粉体はステップS14に示す湿式混合粉砕工程により、焙焼粉体を再び固形分濃度50wt%となるように湿式混合し、微粉砕して混合物スラリーを得、この混合物スラリーをステップS15に示す乾燥解砕工程により、再び乾燥し、解砕して添加焙焼粉体原料(アンチモン酸亜鉛)を得る。なお、ステップS11〜15において、湿式混合粉砕工程,乾燥解砕工程及び焙焼工程には既存の装置を使用し、例えば、湿式混合粉砕工程では石臼粉砕機及びボール・ミル等,乾燥解砕工程では、乾燥にスラリードライヤー及び流動式乾燥機等、解砕に石臼粉砕機等,焙焼工程ではロータリーキルン等が用いられる。
【0017】
次に、ステップS16に添加物混合粉砕工程を示す。この工程では酸化亜鉛素子に必要とされる種々の添加金属酸化物粉体(三酸化ビスマス,三酸化アンチモン,三酸化コバルト,二酸化マンガン,三酸化クロム,酸化ニッケル,二酸化珪素等)をそれぞれ所定の配合量となるように計量し、前記添加焙焼粉体原料とを混合する。その添加焙焼粉体原料(アンチモン酸亜鉛)の添加量は、アンチモン酸亜鉛の分子量893.08の理論上のモル分率から、試料a:0.005mol%,a:0.01mol%,a:0.02mol%,a:0.05mol%,a:0.1mol%,a:0.2mol%,a:0.5mol%,a:1.0mol%,a:2.0mol%,a10:3.0mol%の添加量となるように前記計量された添加金属酸化物粉体を配合し、この配合された添加金属酸化物粉体及び焙焼粉体の粉体総質量と同量の純水を投入し、バイプロ・ミル等により、2時間混合粉砕を行い添加物スラリーを得る。
ここで、ステップS17に乳化混合工程を示す。この工程では主成分である酸化亜鉛と、前記添加物スラリー及び結合剤と分散剤からなる有機バインダー溶液(カチオン系分散剤,PVA)とを各々所定量加え、ディスパーミル等により十分混合して原料スラリーを形成し、その原料スラリーを脱泡するステップS18の脱泡工程を行った後、ステップS19に示す噴霧乾燥工程において、前記脱泡された原料スラリーをスプレードライヤー等により噴霧乾燥して造粒粉を得る。
なお、ステップS16の添加物混合粉砕工程において、ステップS15の乾燥解砕工程で得られた添加焙焼粉体原料と添加金属酸化物粉体とを混合しているが、ステップS17の乳化混合工程において添加焙焼粉体原料を混合しても構わないが、ステップS16の添加物混合工程で添加物スラリーと同時に添加焙焼粉体原料を添加して、混合粉砕した方がより好ましい。
【0018】
次に、図2に本発明実施の形態1における電圧非直線抵抗体の製造工程図を示すものである。図2において、造粒粉とあるが、上記で述べた造粒粉工程により得られた造粒粉のことである。その造粒粉はステップS21に示す成形工程に送られ、この工程では、一定質量の造粒粉を計量し、その造粒粉を乾式金型プレス機により成形圧力を調整しながら、直径60mm、厚さ30mm(φ60−t30)の円盤状の成形体に成形する。そして、その成形体をステップS22に示す仮焼工程にて、例えば温度800〜1000℃で6時間仮焼して仮焼体を得る。
【0019】
前記仮焼体はステップS23に示すセラミック絶縁材塗布工程(第1絶縁材塗布工程)に送られる。なお、セラミック絶縁材としては、酸化亜鉛,三酸化ビスマス,三酸化アンチモン,二酸化珪素を混合して混合粉体を形成し、その混合粉体に対して所定の添加量の純水、分散剤を添加した後、湿式混合粉砕して混合スラリーを得る。この混合スラリーをスラリードライヤー等により水分除去して乾燥粉体を得る。この乾燥粉体を例えばロータリーキルンにより焙焼し、その焙焼された乾燥粉体を石臼粉砕機等により微粉砕して焙焼粉体を得る。この焙焼粉体は、ペースト状に混練され所定の添加量の純水、分散剤、結合剤を添加した後、湿式混合粉砕してペースト状のセラミック絶縁材を得る。このペースト状のセラミック絶縁材をロール塗布またはスプレー塗布により、前記仮焼体の側面部分に対して塗布する。ステップS24は焼成工程を示すものであり、この工程では側面部分にセラミック絶縁材が塗布された前記仮焼体が、完成された酸化亜鉛素子の電気特性試験におけるDC小電流測定時(V1mA)で同等の特性を示すように試料別に調整するため、焼成温度は試料別にa:1110℃,a:1110℃,a:1120℃,a:1120℃,a:1130℃,a:1130℃,a:1130℃,a:1140℃,a:1180℃,a10:1200℃の温度で10時間焼成し、側面部分にセラミック絶縁材から成る絶縁層が形成された焼結体を得る。
前記焼結体はステップS25に示す低融点ガラス絶縁材塗布工程(第2絶縁材塗布工程)に送られ、焼結体の高低抗層に低融点ガラス絶縁材を塗布し、ステップS25の焼付け工程に送られる。前記低融点ガラス絶縁材を塗布された焼結体を例えば550〜700℃で焼付けた後、ステップS26に示す研磨工程にて前記焼結体の両端面を研磨し、ステップS27に示す電極付け工程にて前記研磨された両端面の表面に対して、アルミニウムから成る電極を溶射して酸化亜鉛素子を製造する。
【0020】
ここで、上記電圧非直線抵抗体の製造工程から得られた各試料の酸化亜鉛素子に対する添加焙焼粉体原料の焙焼温度,添加量及び酸化亜鉛素子の焼成温度を下記表1に示す。
【0021】
【表1】

Figure 2004088032
【0022】
上記のようにして得られた本発明の実施の形態1における酸化亜鉛素子に対して電気特性試験を実施し、その電気特性試験結果を表2に示す。この電気特性試験の測定結果としては、酸化亜鉛素子の制限電圧比・ワットロスを求めたもので、DC小電流試験(V1mA,V0.1mA)を実施し、酸化亜鉛素子のα値(電圧非直線係数・α=1/{log(V1mA)−log(V0.1mA)})を求め、8/20μsで10kAの制限電圧比較試験及びワットロス試験(ワットロスの測定条件は温度115℃、課電率85%)を実施し、4/10μsで120kAの時の供試素子20個の破壊率における放電耐量試験を2回実施し、2msで700Aの時の供試素子20個の破壊率における放電耐量試験を20回実施している。
【0023】
【表2】
Figure 2004088032
【0024】
上記表2の電気特性試験の測定結果から、酸化亜鉛素子に対する添加焙焼粉体原料の配合量が0.01mol%以下の場合は添加効果がなく、添加焙焼粉体原料の配合量が1.0mol%以上だと制限電圧特性が悪化し、酸化亜鉛素子の焼成温度を上昇させる。以上より添加焙焼粉体原料の配合量が0.01mol%〜1.0mol%の時に、酸化亜鉛素子の電圧−電流非直線特性及び放電耐量特性を飛躍的に向上させている。
【0025】
(実施の形態2)
次に、本発明の実施の形態2について説明する。上記実施の形態1と同様に、図1により本発明の実施の形態2における酸化亜鉛素子用の造粒粉工程図を示す。図1において、ステップS11は湿式混合粉砕工程を示すものであり、この湿式混合粉砕工程では酸化亜鉛素子用の造粒粉における添加焙焼粉体原料の主成分として、酸化亜鉛66.15wt%と三酸化アンチモン33.85wt%を計量し、固形分濃度50wt%となるように純水を投入して、例えば石臼粉砕機,ボール・ミル等を用いて、湿式混合し、粉砕して混合物スラリーを得、その混合物スラリーをステップS12の乾燥解砕工程から、例えば乾燥にスラリードライヤー,流動式乾燥機等を用い、解砕に石臼粉砕機等を用いる。
【0026】
前記乾燥し、解砕された混合物スラリーは、ステップS13に示す焙焼工程で、例えばロータリーキルン等を用いて、比較試料別に各a11:800℃,a12:850℃,a13:900℃,a14:950℃,a15:1000℃の温度で2時間焙焼し、焙焼粉体を得、この焙焼粉体はステップS14に示す湿式混合粉砕工程により、例えば石臼粉砕機,ボール・ミル等を用いて、この焙焼粉体を再び固形分濃度50wt%となるように湿式混合し、微粉砕して混合物スラリーを得、この混合物スラリーをステップS15に示す乾燥解砕工程により、再びスラリードライヤー,流動式乾燥機等を用いて乾燥した後、石臼粉砕機等を用いて解砕し、添加焙焼粉体原料(アンチモン酸亜鉛)を得る。
【0027】
次に、ステップS16に添加物混合粉砕工程を示す。この工程では酸化亜鉛素子に必要とされる種々の添加金属酸化物粉体(三酸化ビスマス,三酸化アンチモン,三酸化コバルト,二酸化マンガン,三酸化クロム,酸化ニッケル,二酸化珪素等)をそれぞれ所定の配合量となるように計量し、前記添加焙焼粉体原料とを混合する。その添加焙焼粉体原料(アンチモン酸亜鉛)の添加量は、アンチモン酸亜鉛の分子量893.08の理論上のモル分率から、各試料a11〜a15で0.1mol%の添加量となるように前記計量された添加金属酸化物粉体を配合し、この配合された添加金属酸化物粉体及び焙焼粉体の粉体総質量と同量の純水を投入し、バイプロ・ミル等により、2時間混合粉砕を行い添加物スラリーを得る。ここで、ステップS17に乳化混合工程を示す。この工程では主成分である酸化亜鉛と、前記添加物スラリー及び結合剤と分散剤からなる有機バインダー溶液(カチオン系分散剤,PVA)とを各々所定量加え、ディスパーミル等により十分混合して原料スラリーを形成し、その原料スラリーを脱泡するステップS18の脱泡工程を行った後、ステップS19に示す噴霧乾燥工程において、前記脱泡された原料スラリーをスプレードライヤー等により噴霧乾燥して造粒粉を得る。
なお、ステップS16の添加物混合粉砕工程において、ステップS15の乾燥解砕工程で得られた添加焙焼粉体原料と添加金属酸化物粉体とを混合しているが、ステップS17の乳化混合工程において添加焙焼粉体原料を混合しても構わないが、ステップS16の添加物混合工程で添加物スラリーと同時に添加焙焼粉体原料を添加して、混合粉砕した方がより好ましい。
【0028】
次に、上記実施の形態1と同様に、図2に本発明実施の形態2における電圧非直線抵抗体の製造工程図を示すものである。図2において、造粒粉とあるが、上記で述べた造粒粉工程により得られた造粒粉のことである。その造粒粉はステップS21に示す成形工程に送られ、この工程では、一定質量の造粒粉を計量し、その造粒粉を乾式金型プレス機により成形圧力を調整しながら、直径60mm、厚さ30mm(φ60−t30)の円盤状の成形体に成形する。そして、その成形体をステップS22に示す仮焼工程にて、例えば温度800〜1000℃で6時間仮焼して仮焼体を得る。
【0029】
前記仮焼体はステップS23に示すセラミック絶縁材塗布工程(第1絶縁材塗布工程)に送られる。なお、セラミック絶縁材としては、酸化亜鉛,三酸化ビスマス,三酸化アンチモン,二酸化珪素を混合して混合粉体を形成し、その混合粉体に対して所定の添加量の純水、分散剤を添加した後、湿式混合粉砕して混合スラリーを得る。この混合スラリーをスラリードライヤー等により水分除去して乾燥粉体を得る。この乾燥粉体を例えばロータリーキルンにより焙焼し、その焙焼された乾燥粉体を石臼粉砕機等により微粉砕して焙焼粉体を得る。この焙焼粉体は、ペースト状に混練され所定の添加量の純水、分散剤、結合剤を添加した後、湿式混合粉砕してペースト状のセラミック絶縁材を得る。このペースト状のセラミック絶縁材をロール塗布またはスプレー塗布により前記仮焼体の側面部分に対して塗布する。ステップS24は焼成工程を示すものであり、この工程では側面部分にセラミック絶縁材が塗布された前記仮焼体が、完成された酸化亜鉛素子の電気特性試験におけるDC小電流測定時(V1mA)で同等の特性を示すように試料別に調整するため、焼成温度は試料別にa11:1110℃,a12:1120℃,a13:1130℃,a14:1130℃,a15:1130℃の温度で10時間焼成し、側面部分にセラミック絶縁材から成る絶縁層が形成された焼結体を得る。
前記焼結体はステップS25に示す低融点ガラス絶縁材塗布工程(第2絶縁材塗布工程)に送られ、焼結体の高低抗層に低融点ガラス絶縁材を塗布し、ステップS25の焼付け工程に送られる。前記低融点ガラス絶縁材を塗布された焼結体を例えば550〜700℃で焼付けた後、ステップS26に示す研磨工程にて前記焼結体の両端面を研磨し、ステップS27に示す電極付け工程にて前記研磨された両端面の表面に対して、アルミニウムから成る電極を溶射して酸化亜鉛素子を製造する。
【0030】
ここで、上記電圧非直線抵抗体の製造工程から得られた各試料の酸化亜鉛素子に対する添加焙焼粉体原料の焙焼温度,添加量及び酸化亜鉛素子の焼成温度を下記表3に示す。
【0031】
【表3】
Figure 2004088032
【0032】
上記のようにして得られた本発明の実施の形態2における酸化亜鉛素子に対して電気特性試験を実施し、その電気特性試験結果を表4に示す。この電気特性試験の測定結果としては、酸化亜鉛素子の制限電圧比・ワットロスを求めたもので、DC小電流試験(V1mA,V0.1mA)を実施し、酸化亜鉛素子のα値(電圧非直線係数・α=1/{log(V1mA)−log(V0.1mA)})を求め、8/20μsで10kAの制限電圧比較試験及びワットロス試験(ワットロスの測定条件は温度115℃、課電率85%)を実施し、4/10μsで120kAの時の供試素子20個の破壊率における放電耐量試験を2回実施し、及び2msで700Aの時の供試素子20個の破壊率における放電耐量試験を20回実施している。
【0033】
【表4】
Figure 2004088032
【0034】
上記表4の電気特性試験の測定結果から、酸化亜鉛と三酸化アンチモンの混合粉体を焙焼する際に、焙焼温度が850℃以上とすることで、酸化亜鉛素子の電圧−電流非直線特性及び放電耐量特性を飛躍的に向上させている。
【0035】
なお、実施の形態1の表1及び表2,実施の形態2の表3及び表4において、本発明の各試料a〜a15との比較に使用された試料aは従来技術により製造された酸化亜鉛素子のことであり、この比較試料aの酸化亜鉛素子の製造工程は、酸化亜鉛を主成分とし、その添加金属酸化物粉体(添加物スラリー)として三酸化ビスマス,三酸化アンチモン,三酸化コバルト,二酸化マンガン,三酸化クロム,酸化ニッケル,二酸化珪素等の複数個の金属酸化物を添加し、非直線性が高く、熱損失の小さい組成配合からなり、前記添加物スラリーをボール・ミル等にて湿式予備粉砕した後、有機バインダー(水系の結合剤であるPVA等)及び酸化亜鉛と十分混合して混合物(原料スラリー)を得、その混合物をスプレードライヤーにより噴霧乾燥して流動性の良好な造粒粉を得る。
【0036】
次に、前記造粒粉を金型プレス機により例えばφ60−30tの円盤状等の成形体に成形し、この成形体を脱脂し、脱脂した後800〜1000℃で仮焼することにより仮焼体を得る。その後、その仮焼体の側面部分に一次絶縁材を塗布し、塗布した後1000〜1300℃の温度で焼成して、側面部分に高抵抗層(絶縁層)を形成した焼結体を得る。更に、その焼結体の側面部分に二次絶縁材を塗布し、焼成する。そして、その二次絶縁材を焼成した焼結体の両端面を平滑に研磨した後、その研磨した両端面にアルミニウムから成る電極材料を溶射して電圧非直線抵抗体の酸化亜鉛素子を完成させている。
【0037】
【発明の効果】
以上示したように本発明によれば、酸化亜鉛素子(ZnO素子)の製造方法における造粒粉工程において、あらかじめ酸化亜鉛と三酸化アンチモンを所定量計量し、湿式混合し、乾燥し、焙焼し、微粉砕することにより、焙焼粉体(アンチモン酸亜鉛)を調製して、造粒粉に配合させている。
【0038】
前記アンチモン酸亜鉛である焙焼粉体は、分子量に対するモル分率から、配合量を0.01〜1.0モル%の添加量となるように、添加酸化物粉体(三酸化ビスマス,三酸化アンチモン,三酸化コバルト,二酸化マンガン,三酸化クロム,酸化ニッケル,二酸化珪素等)を配合し、この配合された添加金属酸化粉体及び焙焼粉体の粉体総質量と同量の純水を投入し、バイプロ・ミル等により、混合粉砕を行い添加物スラリーを得る。
【0039】
前記添加物スラリーを用いた酸化亜鉛素子を電圧非直線抵抗体に使用することにより、電圧−電流非直線特性及び放電耐量特性を飛躍的に向上させることができる。
【0040】
この時、前記焙焼粉体の配合量が0.01mol%を下回ると添加効果がなく、1.0mol%を上回ると制限電圧特性が悪化する。また、過剰配合は焙焼粉体の製造コストを上昇させ、酸化亜鉛素子の焼成温度の上昇により焼成エネルギーのコストを上昇させる。
【0041】
更に、前記焙焼粉体であるアンチモン酸亜鉛は、酸化亜鉛66.15wt%と三酸化アンチモン33.85wt%の混合粉体であり、このアンチモン酸亜鉛を焙焼する際、焙焼温度を850℃以上とすることで、前記アンチモン酸亜鉛を用いた酸化亜鉛素子における電圧−電流非直線特性及び放電耐量特性を飛躍的に向上させることができる。
【0042】
この時、アンチモン酸亜鉛を焙焼する温度が850℃を下回る場合、アンチモン酸亜鉛の生成が不十分となり、焙焼粉体の製造コストを上昇させる。
【図面の簡単な説明】
【図1】本発明の実施の形態における酸化亜鉛素子用の造粒粉工程図。
【図2】本発明実施の形態における電圧非直線抵抗体の製造工程図。
【符号の説明】
S11,S14…湿式混合粉砕工程
S12,S15…乾燥解砕工程
S13…焙焼工程
S16…添加物混合粉砕工程
S17…乳化混合工程
S18…脱泡工程
S19…噴霧乾燥工程[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a voltage nonlinear resistor mainly composed of zinc oxide and mainly incorporated in a lightning arrester.
[0002]
[Prior art]
Many voltage non-linear resistors (non-linear resistors) have zinc oxide (ZnO) as a main component, and bismuth trioxide and antimony trioxide as sub-additive components (hereinafter referred to as additive slurries). , Cobalt trioxide, manganese dioxide, chromium trioxide, nickel oxide, silicon dioxide, etc., and a plurality of metal oxides are added to form a composition with high non-linearity and low heat loss.
[0003]
Usually, the additive slurry is wet-pulverized with a ball mill or the like, and then sufficiently mixed with an organic binder (binder) and zinc oxide to obtain a mixture (raw material slurry). The mixture is spray-dried with a spray drier. To obtain granulated powder with good fluidity. Note that an aqueous organic binder, for example, polyvinyl alcohol (PVA) is used as the organic binder.
[0004]
Next, the granulated powder is formed into a disk-shaped molded body by a die press, the molded body is degreased, degreased, and then calcined at 800 to 1000 ° C. to obtain a calcined body. Thereafter, a primary insulating material is applied to the side surface portion of the calcined body, and after the application, firing is performed at a temperature of 1000 to 1300 ° C. to obtain a sintered body having a high resistance layer (insulating layer) formed on the side surface portion. Further, a secondary insulating material is applied to a side surface portion of the sintered body and fired. Then, both end surfaces of the sintered body obtained by firing the secondary insulating material are polished smoothly, and an electrode material made of aluminum is sprayed on the polished both end surfaces to complete a voltage non-linear resistor.
[0005]
[Problems to be solved by the invention]
The voltage non-linear resistor (non-linear resistor) is used as a voltage-current non-linear resistor for an arrester, but has a large energy that can be absorbed as compared with a general surge absorber for a lightning arrester. A zinc oxide element having a large volume or a large diameter is required.
[0006]
The method for producing the zinc oxide element includes zinc oxide, which is a main component in an organic binder solution such as PVA (polyvinyl alcohol), and bismuth trioxide, antimony trioxide, cobalt trioxide, manganese dioxide, Metal oxides such as chromium oxide, nickel oxide, and silicon dioxide are added to obtain a raw material slurry having a composition with high non-linearity and low heat loss, and the raw material slurry is sufficiently mixed and spray-dried with a spray drier. To obtain granulated powder.
[0007]
The granulated powder is formed into a cylindrical shape by a die-forming press, degreased, and then calcined at 800 to 1000 ° C. An insulating ceramic material (primary insulating material) is applied to the side surface of the calcined body and fired at 1000 to 1300 ° C. for several hours. Further, a low-melting glass material (secondary insulating material) is applied to the side surface of the sintered body and is baked. Thereafter, both end surfaces of the sintered body are polished, and aluminum electrodes are sprayed to complete a voltage non-linear resistor.
[0008]
The above-mentioned voltage non-linear resistor is used for the purpose of protecting power equipment from abnormal voltage such as lightning impulse, and improves the essential performance of the lightning arrester. In the zinc oxide element in the voltage non-linear resistor, it is an important issue of the zinc oxide element to improve the limiting voltage characteristic and to increase the discharge withstand capacity of the zinc oxide element against an excessive lightning impulse and a switching impulse. It becomes.
[0009]
The present invention has been made based on the above problem, and in a zinc oxide element, by using zinc antimonate as a roasting powder material added with granulated powder, the limiting voltage characteristic of the voltage nonlinear resistor is reduced. It is an object of the present invention to provide a method for manufacturing a voltage non-linear resistor, which improves the discharge withstand capability of an element against an excessive lightning impulse and an opening / closing impulse.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the present invention uses zinc oxide and antimony trioxide as main components of a raw material slurry, weighs a predetermined amount of the zinc oxide and antimony trioxide, and wet-mixes them. , Dried, roasted, finely pulverized to obtain an adjusted roasted powder, a predetermined amount of a plurality of metal oxide additive components are added to the roasted powder, wet-mixed, and pulverized. Obtaining an additive slurry, adding the roasted powder to the organic binder solution when emulsifying and mixing zinc oxide and the additive slurry as main components, and spray-drying after defoaming to obtain a granulated powder. Features.
[0011]
According to a second invention, in the roasted powder of the first invention, 66.15 wt% of zinc oxide and 33.85 wt% of antimony trioxide are roasted to obtain a powder of zinc antimonate, and the molecular weight of the zinc antimonate is obtained. Is 893.08, and the theoretical blending amount of zinc antimonate is 0.01 to 1.0 mol%.
[0012]
The third invention is characterized in that, in the roasted powder according to the first and second inventions, when roasting a mixed powder of zinc oxide and antimony trioxide to obtain zinc antimonate, the roasting temperature is 850 ° C. or higher. It is characterized by doing.
[0013]
According to the first to third inventions, an element using zinc antimonate as a zinc oxide element is obtained by using zinc oxide and antimony trioxide for the roasted powder, and the zinc oxide element is used. Accordingly, it is possible to improve the limiting voltage characteristic of the zinc oxide element, and to obtain a voltage non-linear resistor capable of enhancing the discharge withstand capacity of the zinc oxide element even for an excessive lightning impulse and switching impulse. it can.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described. In the embodiment of the present invention, in order to improve the electrical characteristics of the zinc oxide element, verification of the effect of adding the calcined powder raw material is performed, so that the calcined powder raw material to be added has a target crystal structure. First, a predetermined amount of a predetermined raw material is measured in advance, and is prepared by wet mixing, drying, roasting, and finely pulverizing.
[0015]
(Embodiment 1)
Here, Embodiment 1 of the present invention will be described. FIG. 1 shows a granulated powder process chart for a zinc oxide element according to Embodiment 1 of the present invention. In FIG. 1, step S11 shows a wet mixing and pulverizing step. In this wet mixing and pulverizing step, 66.15% by weight of zinc oxide is used as a main component of the added roasted powder raw material in the granulated powder for the zinc oxide element. 33.85% by weight of antimony trioxide is weighed, and pure water is charged so as to have a solid concentration of 50% by weight, wet-mixed, and pulverized to obtain a mixture slurry. The mixture slurry is dried in step S12, Crush.
[0016]
The dried and crushed mixture slurry is roasted at a temperature of 900 ° C. for 2 hours in a roasting step shown in step S13 to obtain a roasted powder. In the mixing and pulverizing step, the roasted powder is wet-mixed again so as to have a solid content concentration of 50 wt%, and finely pulverized to obtain a mixture slurry. The mixture slurry is dried again in the drying and crushing step shown in step S15. And crushed to obtain an additional roasted powder raw material (zinc antimonate). In Steps S11 to S15, existing equipment is used for the wet mixing and pulverizing step, the dry pulverizing step and the roasting step. For example, in the wet mixing and pulverizing step, a dry milling and milling machine and a ball mill are used. In this method, a slurry dryer and a fluidized dryer are used for drying, a millstone pulverizer and the like are used for crushing, and a rotary kiln and the like are used for the roasting process.
[0017]
Next, Step S16 shows the additive mixing and grinding step. In this step, various additive metal oxide powders (bismuth trioxide, antimony trioxide, cobalt trioxide, manganese dioxide, chromium trioxide, nickel oxide, silicon dioxide, etc.) required for the zinc oxide element are respectively prescribed. It is weighed so as to have a compounding amount, and is mixed with the added roasted powder raw material. The amount of the added roasted powder raw material (zinc antimonate) was determined based on the theoretical mole fraction of the molecular weight of zinc antimonate 893.08 by using the sample a 1 : 0.005 mol% and a 2 : 0.01 mol% , a 3: 0.02mol%, a 4: 0.05mol%, a 5: 0.1mol%, a 6: 0.2mol%, a 7: 0.5mol%, a 8: 1.0mol%, a 9: 2.0mol%, a 10: blending the metered addition of metal oxide powder such that 3.0 mol% of the added amount, the additive metal oxides the formulated powder and calcined powder Of pure water in the same amount as the total mass of the powder and mixed and pulverized by a bipro mill or the like for 2 hours to obtain an additive slurry.
Here, the emulsification mixing step is shown in step S17. In this step, a predetermined amount of zinc oxide as a main component and the above-mentioned additive slurry and an organic binder solution (cationic dispersant, PVA) comprising a binder and a dispersant are each added in a predetermined amount, and sufficiently mixed by a disper mill or the like to mix the raw materials. After forming a slurry and performing the defoaming step of step S18 for defoaming the raw material slurry, in the spray drying step shown in step S19, the defoamed raw material slurry is spray-dried with a spray drier or the like to granulate. Get the powder.
In addition, in the additive mixing and crushing step of step S16, the added roasted powder raw material obtained in the dry crushing step of step S15 and the added metal oxide powder are mixed. In step S16, the added roasted powder raw material may be mixed with the additive roasted powder raw material at the same time as the additive slurry in the additive mixing step of step S16.
[0018]
Next, FIG. 2 shows a manufacturing process diagram of the voltage non-linear resistor according to the first embodiment of the present invention. In FIG. 2, the term "granulated powder" refers to the granulated powder obtained by the above-described granulated powder process. The granulated powder is sent to a forming step shown in step S21. In this step, a fixed mass of the granulated powder is weighed, and the granulated powder is adjusted to a forming pressure by a dry mold pressing machine while adjusting the forming pressure to a diameter of 60 mm. It is formed into a disk-shaped formed body having a thickness of 30 mm (φ60-t30). Then, in a calcining step shown in step S22, the compact is calcined at a temperature of, for example, 800 to 1000 ° C. for 6 hours to obtain a calcined body.
[0019]
The calcined body is sent to a ceramic insulating material applying step (first insulating material applying step) shown in step S23. As a ceramic insulating material, a mixed powder is formed by mixing zinc oxide, bismuth trioxide, antimony trioxide, and silicon dioxide, and a predetermined amount of pure water and a dispersant are added to the mixed powder. After the addition, wet mixing and pulverization are performed to obtain a mixed slurry. The mixed slurry is removed with a slurry dryer or the like to obtain a dry powder. This dry powder is roasted by, for example, a rotary kiln, and the roasted dry powder is finely pulverized by a millstone grinder or the like to obtain a roasted powder. The roasted powder is kneaded into a paste, and after adding a predetermined amount of pure water, a dispersant, and a binder, the mixture is wet-mixed and pulverized to obtain a paste-like ceramic insulating material. The paste-like ceramic insulating material is applied to the side surface of the calcined body by roll coating or spray coating. Step S24 shows a firing step. In this step, the calcined body having the side surface coated with the ceramic insulating material is used for measuring the small DC current (V1 mA) in the electrical characteristic test of the completed zinc oxide element. to adjust for each sample as shown comparable properties, the firing temperature is a 1 by the sample: 1110 ℃, a 2: 1110 ℃, a 3: 1120 ℃, a 4: 1120 ℃, a 5: 1130 ℃, a 6 Baking at a temperature of 1130 ° C., a 7 : 1130 ° C., a 8 : 1140 ° C., a 9 : 1180 ° C., a 10 : 1200 ° C. for 10 hours, and a baking in which an insulating layer made of a ceramic insulating material is formed on the side surface. Get the unity.
The sintered body is sent to a low-melting glass insulating material applying step (second insulating material applying step) shown in step S25, and a low-melting glass insulating material is applied to a high-low resistance layer of the sintered body, and a baking step in step S25 is performed. Sent to After baking the sintered body coated with the low-melting-point glass insulating material at, for example, 550 to 700 ° C., both end surfaces of the sintered body are polished in a polishing step shown in step S26, and an electrode attaching step shown in step S27 is performed. Then, electrodes made of aluminum are sprayed on the polished surfaces of both end faces to produce a zinc oxide element.
[0020]
Table 1 below shows the roasting temperature and amount of the roasted powder raw material added to the zinc oxide element of each sample obtained from the voltage nonlinear resistor manufacturing process, and the firing temperature of the zinc oxide element.
[0021]
[Table 1]
Figure 2004088032
[0022]
An electrical property test was performed on the zinc oxide element according to Embodiment 1 of the present invention obtained as described above, and the results of the electrical property test are shown in Table 2. As the measurement results of the electrical characteristic test, the limiting voltage ratio / watt loss of the zinc oxide element was obtained, and a DC small current test (V1 mA, V0.1 mA) was performed, and the α value (voltage nonlinearity) of the zinc oxide element was measured. The coefficient · α = 1 / {log (V1mA) −log (V0.1mA)}) is obtained, and a limiting voltage comparison test and a watt loss test of 10/20 mA in 8/20 μs (the measurement conditions of the watt loss are a temperature of 115 ° C. and a power application rate of 85) %), And a discharge withstand test at a breakdown rate of 20 test elements at 120 kA in 4/10 μs was performed twice. A discharge withstand test at a breakage rate of 20 test elements at 700 A in 2 ms was performed. Is performed 20 times.
[0023]
[Table 2]
Figure 2004088032
[0024]
From the results of the electrical property test shown in Table 2 above, when the compounding amount of the added roasted powder raw material to the zinc oxide element is 0.01 mol% or less, there is no addition effect, and the compounding amount of the added roasted powdered raw material is 1 If it is more than 0.0 mol%, the limiting voltage characteristic deteriorates, and the firing temperature of the zinc oxide element is increased. As described above, when the amount of the added roasted powder raw material is 0.01 mol% to 1.0 mol%, the voltage-current non-linear characteristic and the discharge withstand characteristic of the zinc oxide element are remarkably improved.
[0025]
(Embodiment 2)
Next, a second embodiment of the present invention will be described. FIG. 1 shows a granulated powder process chart for a zinc oxide element according to the second embodiment of the present invention, similarly to the first embodiment. In FIG. 1, step S11 shows a wet mixing and pulverizing step. In this wet mixing and pulverizing step, 66.15% by weight of zinc oxide is used as a main component of the added roasted powder raw material in the granulated powder for the zinc oxide element. 33.85% by weight of antimony trioxide is weighed, and pure water is charged so as to have a solid content concentration of 50% by weight. From the drying and crushing step of step S12, the mixture slurry is dried, for example, using a slurry drier, a fluidized drier or the like, and crushed using a millstone crusher or the like.
[0026]
The dried, disintegrated mixture slurry, with roasting process shown in step S13, for example, using a rotary kiln or the like, each of a 11 by Comparative Sample: 800 ℃, a 12: 850 ℃, a 13: 900 ℃, a 14 : 950 ° C., a 15 : roast at 1000 ° C. for 2 hours to obtain a calcined powder. The calcined powder is subjected to, for example, a stone mill, Using a mill or the like, the roasted powder is wet-mixed again so as to have a solid content concentration of 50 wt%, and finely pulverized to obtain a mixture slurry. The mixture slurry is again subjected to a dry crushing step shown in step S15. After drying using a slurry drier, a fluid type drier or the like, it is pulverized using a millstone pulverizer or the like to obtain an additional roasted powder raw material (zinc antimonate).
[0027]
Next, Step S16 shows the additive mixing and grinding step. In this step, various additive metal oxide powders (bismuth trioxide, antimony trioxide, cobalt trioxide, manganese dioxide, chromium trioxide, nickel oxide, silicon dioxide, etc.) required for the zinc oxide element are respectively prescribed. It is weighed so as to have a compounding amount, and is mixed with the added roasted powder raw material. The addition amount of the addition calcined powder material (zinc antimonate) from the mole fraction of the theoretical molecular weight 893.08 zinc antimonate, and the addition amount of 0.1 mol% in each sample a 11 ~a 15 Then, the weighed additive metal oxide powder was blended so that pure water was added in the same amount as the total mass of the blended additive metal oxide powder and the roasted powder. For example, mixing and grinding are performed for 2 hours to obtain an additive slurry. Here, the emulsification mixing step is shown in step S17. In this step, a predetermined amount of zinc oxide as a main component and the above-mentioned additive slurry and an organic binder solution (cationic dispersant, PVA) comprising a binder and a dispersant are each added in a predetermined amount, and sufficiently mixed by a disper mill or the like to mix the raw materials. After forming a slurry and performing the defoaming step of step S18 for defoaming the raw material slurry, in the spray drying step shown in step S19, the defoamed raw material slurry is spray-dried with a spray drier or the like to granulate. Get the powder.
In addition, in the additive mixing and crushing step of step S16, the added roasted powder raw material obtained in the dry crushing step of step S15 and the added metal oxide powder are mixed. In step S16, the added roasted powder raw material may be mixed with the additive roasted powder raw material at the same time as the additive slurry in the additive mixing step of step S16.
[0028]
Next, as in the first embodiment, FIG. 2 shows a manufacturing process diagram of the voltage non-linear resistor according to the second embodiment of the present invention. In FIG. 2, the term "granulated powder" refers to the granulated powder obtained by the above-described granulated powder process. The granulated powder is sent to a forming step shown in step S21. In this step, a fixed mass of the granulated powder is weighed, and the granulated powder is adjusted to a forming pressure by a dry mold pressing machine while adjusting the forming pressure to a diameter of 60 mm. It is formed into a disk-shaped formed body having a thickness of 30 mm (φ60-t30). Then, in a calcining step shown in step S22, the compact is calcined at a temperature of, for example, 800 to 1000 ° C. for 6 hours to obtain a calcined body.
[0029]
The calcined body is sent to a ceramic insulating material applying step (first insulating material applying step) shown in step S23. As a ceramic insulating material, a mixed powder is formed by mixing zinc oxide, bismuth trioxide, antimony trioxide, and silicon dioxide, and a predetermined amount of pure water and a dispersant are added to the mixed powder. After the addition, wet mixing and pulverization are performed to obtain a mixed slurry. The mixed slurry is removed with a slurry dryer or the like to obtain a dry powder. This dry powder is roasted by, for example, a rotary kiln, and the roasted dry powder is finely pulverized by a millstone grinder or the like to obtain a roasted powder. The roasted powder is kneaded into a paste, and after adding a predetermined amount of pure water, a dispersant, and a binder, the mixture is wet-mixed and pulverized to obtain a paste-like ceramic insulating material. The paste-like ceramic insulating material is applied to the side surface of the calcined body by roll coating or spray coating. Step S24 shows a firing step. In this step, the calcined body having the side surface coated with the ceramic insulating material is used for measuring the small DC current (V1 mA) in the electrical characteristic test of the completed zinc oxide element. to adjust the sample by as shown comparable properties, the firing temperature for each sample a 11: 1110 ℃, a 12 : 1120 ℃, a 13: 1130 ℃, a 14: 1130 ℃, a 15: at 1130 ° C. the temperature It is fired for 10 hours to obtain a sintered body having an insulating layer made of a ceramic insulating material formed on a side surface portion.
The sintered body is sent to a low-melting glass insulating material applying step (second insulating material applying step) shown in step S25, and a low-melting glass insulating material is applied to a high-low resistance layer of the sintered body, and a baking step in step S25 is performed. Sent to After baking the sintered body coated with the low-melting-point glass insulating material at, for example, 550 to 700 ° C., both end surfaces of the sintered body are polished in a polishing step shown in step S26, and an electrode attaching step shown in step S27 is performed. Then, electrodes made of aluminum are sprayed on the polished surfaces of both end faces to produce a zinc oxide element.
[0030]
Table 3 below shows the roasting temperature and amount of the roasted powdery raw material added to the zinc oxide element of each sample obtained from the step of manufacturing the voltage non-linear resistor, and the firing temperature of the zinc oxide element.
[0031]
[Table 3]
Figure 2004088032
[0032]
An electrical property test was performed on the zinc oxide device according to Embodiment 2 of the present invention obtained as described above, and the results of the electrical property test are shown in Table 4. As the measurement results of the electrical characteristic test, the limiting voltage ratio / watt loss of the zinc oxide element was obtained, and a DC small current test (V1 mA, V0.1 mA) was performed, and the α value (voltage nonlinearity) of the zinc oxide element was measured. The coefficient · α = 1 / {log (V1mA) −log (V0.1mA)}) is obtained, and a limiting voltage comparison test and a watt loss test of 10/20 mA in 8/20 μs (the measurement conditions of the watt loss are a temperature of 115 ° C. and a power application rate of 85) %), And a discharge withstand test at a breakdown rate of 20 test elements at 120 kA in 4/10 μs was performed twice, and a discharge withstand rate at a breakdown rate of 20 test elements at 700 A in 2 ms. The test has been performed 20 times.
[0033]
[Table 4]
Figure 2004088032
[0034]
From the measurement results of the electric property test in Table 4 above, when the mixed powder of zinc oxide and antimony trioxide was roasted, the roasting temperature was set to 850 ° C. or more, so that the voltage-current nonlinearity of the zinc oxide element was reduced. The characteristics and discharge withstand characteristics are dramatically improved.
[0035]
In Table 1 and Table 2, Table 3 and Table 4 of the second embodiment of the first embodiment, the sample a 0, which is used for comparison with each sample a 1 ~a 15 of the present invention by the prior art manufacturing and that of the zinc oxide element, the manufacturing process of the zinc oxide elements of the comparative sample a 0 is a zinc oxide as a main component, the additive metal oxide powder (additive slurry) as bismuth trioxide trioxide A plurality of metal oxides such as antimony, cobalt trioxide, manganese dioxide, chromium trioxide, nickel oxide, and silicon dioxide are added, and the composition of the additive has a high non-linearity and a small heat loss. After wet pre-grinding with a ball mill or the like, a mixture (raw material slurry) is obtained by sufficiently mixing with an organic binder (such as PVA as an aqueous binder) and zinc oxide, and the mixture is spray-dried. And spray-dried to obtain a good granulation powder flowability.
[0036]
Next, the granulated powder is formed into a disk-shaped molded body having a diameter of, for example, 60 to 30 tons by a die press, and the molded body is degreased, degreased, and then calcined at 800 to 1000 ° C. Get the body. Thereafter, a primary insulating material is applied to the side surface portion of the calcined body, and after the application, firing is performed at a temperature of 1000 to 1300 ° C. to obtain a sintered body having a high resistance layer (insulating layer) formed on the side surface portion. Further, a secondary insulating material is applied to a side surface portion of the sintered body and fired. Then, after polishing both end surfaces of the sintered body obtained by firing the secondary insulating material, an electrode material made of aluminum is sprayed on the polished both end surfaces to complete a voltage non-linear resistor zinc oxide element. ing.
[0037]
【The invention's effect】
As described above, according to the present invention, in a granulation powder process in a method for manufacturing a zinc oxide element (ZnO element), a predetermined amount of zinc oxide and antimony trioxide are measured in advance, wet-mixed, dried, and calcined. Then, the powder is finely pulverized to prepare a roasted powder (zinc antimonate), which is mixed with the granulated powder.
[0038]
The roasted powder which is the zinc antimonate is added oxide powder (bismuth trioxide, bismuth trioxide, Antimony oxide, cobalt trioxide, manganese dioxide, chromium trioxide, nickel oxide, silicon dioxide, etc.) and pure water in the same amount as the total mass of the added metal oxide powder and the roasted powder. And mixed and pulverized by a bipro mill or the like to obtain an additive slurry.
[0039]
By using a zinc oxide element using the additive slurry for a voltage non-linear resistor, the voltage-current non-linear characteristics and discharge withstand characteristics can be drastically improved.
[0040]
At this time, if the amount of the roasted powder is less than 0.01 mol%, there is no effect of addition, and if it exceeds 1.0 mol%, the limiting voltage characteristic deteriorates. Excessive blending increases the production cost of the roasted powder, and increases the firing energy cost by raising the firing temperature of the zinc oxide element.
[0041]
The roasted powder zinc antimonate is a mixed powder of 66.15% by weight of zinc oxide and 33.85% by weight of antimony trioxide, and when roasting this zinc antimonate, the roasting temperature is 850. By setting the temperature to not less than ° C., the voltage-current non-linear characteristic and the discharge withstand characteristic of the zinc oxide element using the zinc antimonate can be remarkably improved.
[0042]
At this time, when the temperature at which the zinc antimonate is roasted is lower than 850 ° C., the production of zinc antimonate becomes insufficient, and the production cost of the roasted powder increases.
[Brief description of the drawings]
FIG. 1 is a process chart of granulated powder for a zinc oxide element according to an embodiment of the present invention.
FIG. 2 is a manufacturing process diagram of the voltage non-linear resistor according to the embodiment of the present invention.
[Explanation of symbols]
S11, S14: wet mixing and crushing step S12, S15: dry crushing step S13 ... roasting step S16 ... additive mixing and crushing step S17 ... emulsification mixing step S18 ... defoaming step S19 ... spray drying step

Claims (3)

三酸化ビスマス,三酸化アンチモン,三酸化コバルト,二酸化マンガン,三酸化クロム,酸化ニッケル,二酸化珪素等の複数個の金属酸化物を混合して添加物成分を得た後、原料スラリーとしての主成分及び有機バインダーと共に湿式混合し、乾燥し、粉砕して造粒粉を得、その造粒粉を円盤状等の成形体に成形し、脱脂してから、仮焼して仮焼体を形成した後、その仮焼体の側面部分に絶縁材を塗布し、焼成して焼結体を得、その焼結体の両端面に電極を設けて成る電圧非直線抵抗体の製造方法において、
前記原料スラリーとしての主成分は、酸化亜鉛と三酸化アンチモンを計量し、湿式混合し、乾燥し、焙焼し、微粉砕して調整した焙焼粉体であるアンチモン酸亜鉛を得た後、前記焙焼粉体に複数個の金属酸化物の添加物成分を所定量添加して湿式混合し、粉砕して添加物スラリーを得、
前記アンチモン酸亜鉛を有機バインダー溶液に酸化亜鉛と添加物スラリーとを乳化混合する際に添加し、脱泡後噴霧乾燥して造粒粉を得ることを特徴とする電圧非直線抵抗体の製造方法。
After mixing a plurality of metal oxides such as bismuth trioxide, antimony trioxide, cobalt trioxide, manganese dioxide, chromium trioxide, nickel oxide, and silicon dioxide to obtain an additive component, the main component as a raw material slurry And wet-blending with an organic binder, drying and pulverizing to obtain granulated powder, forming the granulated powder into a disk-shaped or the like, degreasing, and calcining to form a calcined body. Thereafter, an insulating material is applied to the side surface portion of the calcined body, fired to obtain a sintered body, and in a method for manufacturing a voltage non-linear resistor comprising electrodes provided on both end surfaces of the sintered body,
The main component as the raw material slurry, after weighing zinc oxide and antimony trioxide, wet-mixing, drying, roasting, after obtaining zinc antimonate which is a calcined powder adjusted by pulverization, A predetermined amount of additive components of a plurality of metal oxides are added to the roasted powder, wet-mixed, and pulverized to obtain an additive slurry,
A method for producing a voltage non-linear resistor, comprising: adding the zinc antimonate to an organic binder solution when emulsifying and mixing zinc oxide and an additive slurry; defoaming and spray-drying to obtain granulated powder. .
前記アンチモン酸亜鉛は、酸化亜鉛と三酸化アンチモンを焙焼した粉体からなり、この粉体の配合量が0.01〜1.0モル%と成ることを特徴とする請求項1記載の電圧非直線抵抗体の製造方法。2. The voltage according to claim 1, wherein the zinc antimonate comprises a powder obtained by roasting zinc oxide and antimony trioxide, and the compounding amount of the powder is 0.01 to 1.0 mol%. Manufacturing method of non-linear resistor. 前記焙アンチモン酸亜鉛は、酸化亜鉛と三酸化アンチモンの混合粉体を焙焼するときの焙焼温度を850℃以上とすることを特徴とする請求項1及び2記載の電圧非直線抵抗体の製造方法。The voltage non-linear resistor according to claim 1, wherein the roasted zinc antimonate has a roasting temperature of 850 ° C. or more when roasting a mixed powder of zinc oxide and antimony trioxide. 4. Production method.
JP2002250297A 2002-08-29 2002-08-29 Method of manufacturing voltage nonlinear resistor Pending JP2004088032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002250297A JP2004088032A (en) 2002-08-29 2002-08-29 Method of manufacturing voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002250297A JP2004088032A (en) 2002-08-29 2002-08-29 Method of manufacturing voltage nonlinear resistor

Publications (1)

Publication Number Publication Date
JP2004088032A true JP2004088032A (en) 2004-03-18

Family

ID=32057164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002250297A Pending JP2004088032A (en) 2002-08-29 2002-08-29 Method of manufacturing voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JP2004088032A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100382205C (en) * 2005-04-26 2008-04-16 华东师范大学 Preparation and application of high-potential gradient zinc oxide piezoresistor material
JP2020047685A (en) * 2018-09-18 2020-03-26 株式会社明電舎 Zinc oxide element
CN114400121A (en) * 2021-12-17 2022-04-26 南阳金牛电气有限公司 Manufacturing method of zinc oxide resistance card with high flux density

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100382205C (en) * 2005-04-26 2008-04-16 华东师范大学 Preparation and application of high-potential gradient zinc oxide piezoresistor material
JP2020047685A (en) * 2018-09-18 2020-03-26 株式会社明電舎 Zinc oxide element
CN114400121A (en) * 2021-12-17 2022-04-26 南阳金牛电气有限公司 Manufacturing method of zinc oxide resistance card with high flux density

Similar Documents

Publication Publication Date Title
JPH11340009A (en) Nonlinear resistor
JP6756484B2 (en) Voltage non-linear resistor
CN115536367A (en) High-resistance low-B-value thermistor ceramic body, preparation method and thermistor
JP2004088031A (en) Method of manufacturing voltage nonlinear resistor
JP2004088032A (en) Method of manufacturing voltage nonlinear resistor
JP5337073B2 (en) Current-voltage nonlinear resistor and method for manufacturing the same
JPS63296307A (en) Manufacture of zinc oxide type varistor
JP2004063763A (en) Method for manufacturing voltage nonlinear resistor
JP2692210B2 (en) Zinc oxide varistor
CN101154487A (en) Method for manufacturing zinc oxide nonlinear resistance slice used for lightning arrester
JPH08213209A (en) Manufacture of voltage nonlinear-type resistor
JP2004335565A (en) Method of manufacturing voltage nonlinear resistor
JP2005032996A (en) Method for manufacturing thermistor element
JP2000012309A (en) Manufacture of zinc oxide varistor
JPH07272906A (en) Manufacture of nonlinear resistor
JP3631786B2 (en) Method for manufacturing voltage nonlinear resistor
CN105418066A (en) Low-potential-gradient voltage-sensitive-capacitance dual-functional titanium dioxide ceramic material and preparing method thereof
JPH0773082B2 (en) Method for producing zinc oxide varistor
JP3728881B2 (en) Method for manufacturing non-linear resistor
JPH02241003A (en) Manufacture of zinc oxide type varistor
JP2000235905A (en) Manufacture of nonlinear resistor
JPH06260304A (en) Manufacture of voltage-dependent nonlinear resistor
JP5929152B2 (en) Method for manufacturing non-linear resistor element
JPH03257902A (en) Manufacture of voltage nonlinear resistor
JP2003007512A (en) Nonlinear resistor element