JPS63296307A - Manufacture of zinc oxide type varistor - Google Patents

Manufacture of zinc oxide type varistor

Info

Publication number
JPS63296307A
JPS63296307A JP62132437A JP13243787A JPS63296307A JP S63296307 A JPS63296307 A JP S63296307A JP 62132437 A JP62132437 A JP 62132437A JP 13243787 A JP13243787 A JP 13243787A JP S63296307 A JPS63296307 A JP S63296307A
Authority
JP
Japan
Prior art keywords
zinc oxide
silicon carbide
oxide type
starting material
varistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62132437A
Other languages
Japanese (ja)
Inventor
Masaaki Katsumata
雅昭 勝又
Akihiro Takami
高見 昭宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62132437A priority Critical patent/JPS63296307A/en
Publication of JPS63296307A publication Critical patent/JPS63296307A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To obtain an element having large surge resistance and high varistor voltage per unit thickness by using silicon carbide as a starting material for the zinc oxide type varistor element. CONSTITUTION:Silicon carbide is employed as a starting material for a zinc oxide type varistor element in which zinc silicate is contained in a sintered body. When silicon carbide is used as the starting material, grinding progresses at rates quicker and more uniform than silicon carbide is employed, thus reducing the generation of voids in the sintered body while equalizing current distribution by the uniform distribution of zinc silicate. Accordingly, surge resistance is increased, and varistor voltage per unit thickness is raised.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は酸化亜鉛を主成分とする酸化亜鉛形バリスタの
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a zinc oxide type varistor whose main component is zinc oxide.

従来の技術 酸化亜鉛形バリスタ素子は、大きなサージ電流耐量と優
れた電圧非直線性を持ち、低圧タイプの素子はサージア
ブソーバとして、高圧タイプの素子はギャップレスアレ
スタ素子として広く利用されている。
Conventional technology Zinc oxide type varistor elements have a large surge current withstand capacity and excellent voltage nonlinearity, and low-voltage type elements are widely used as surge absorbers, and high-voltage type elements as gapless arrester elements.

従来、酸化亜鉛形バリスタ素子は主成分の酸化亜鉛(Z
nO)に酸化ビスマス(Bi20s)、酸化アンチモン
(Sb20s)、酸化コバルト(C’203)1酸化マ
ンガン(Mn O2) +酸化珪素(Sin2)などを
添加し、適当なバインダーを加え、ボールミルなどで湿
式粉砕ののち、造粒、成形、焼結工程を経て製造されて
いる。アレスタ用の酸化亜鉛形バリスタを製造する場合
、一般に単位厚み当シのバリスタ電圧(v、1□/mm
 )が200V以上の材料が、素子の小形化、低価格化
のために必要である。上記添加物の中で特に酸化珪素(
Si02)は、酸化亜鉛の粒成長を抑制し、合わせて温
度特性、課電寿命特性を向上させる物質として知られ、
高圧タイプのアレスタ素子用の材料には不可欠の成分と
なっている。X線マイクロアナライザー、X線回折によ
る分析の結果、酸化珪素は焼結体中において、は化アン
チモンと同様に酸化亜鉛グレイン間の三重点付近に偏析
し、珪酸亜鉛(Zn25i04 )として存在している
ことが確認された。
Conventionally, the main component of zinc oxide type varistor elements is zinc oxide (Z
Add bismuth oxide (Bi20s), antimony oxide (Sb20s), cobalt oxide (C'203), manganese monooxide (MnO2) + silicon oxide (Sin2), etc. to nO), add an appropriate binder, and wet process using a ball mill etc. After pulverization, it is manufactured through granulation, molding, and sintering processes. When manufacturing zinc oxide type varistors for arresters, the varistor voltage per unit thickness (v, 1□/mm
) is 200V or higher, which is necessary for downsizing and lowering the cost of devices. Among the above additives, silicon oxide (
Si02) is known as a substance that suppresses grain growth of zinc oxide and also improves temperature characteristics and electrification life characteristics.
It is an essential component of materials for high-voltage arrester elements. As a result of analysis using an X-ray microanalyzer and X-ray diffraction, silicon oxide is segregated near the triple point between zinc oxide grains in the sintered body, similar to antimony halide, and exists as zinc silicate (Zn25i04). This was confirmed.

発明が解決しようとする問題点 しかしながら、酸化亜鉛形バリスタの出発原料に酸化珪
素(S工02)を用いた場合、他の添加物に比べ嵩比重
が著しく軽く、沈降性の材料を用いても充分粉砕されず
、この結果、焼結体中にボイドが発生し、酸化亜鉛形バ
リスタの最も重要な特性の一つであるサージ耐量(2m
sの矩形波電流印加試験)が低いという問題点を有して
いた。まだ、材料の高圧化を図るため酸化珪素(Si0
2)を1モル係以上添加すると、粉砕した原料スラリー
の粘度が著しく増加し、造粒が困難になる問題も同時に
有していた。
Problems to be Solved by the Invention However, when silicon oxide (S-02) is used as the starting material for zinc oxide type varistors, its bulk specific gravity is significantly lighter than other additives, and even when sedimentary materials are used, As a result, voids are generated in the sintered body, and the surge resistance (2 m
s square wave current application test) was low. Silicon oxide (Si0) is still being used to increase the pressure of the material.
When 2) is added in an amount of 1 molar or more, the viscosity of the pulverized raw material slurry increases significantly, which also poses the problem of making granulation difficult.

本発明は、このような従来の問題点を解決するもので、
酸化亜鉛形バリスタの高性能化、特にサージ耐量の大巾
な向上を主目的とし、合わせてスラリーのゲル化のない
酸化亜鉛形バリスタの製造方法の提供を目的とするもの
である0 問題点を解決するだめの手段 本発明では、上記の問題を解決するため、主成分の酸化
亜鉛に、添加物として少なくとも炭化珪素(Sin)を
用いることを特徴としている。
The present invention solves these conventional problems,
The main purpose of this study is to improve the performance of zinc oxide varistors, especially to significantly improve surge resistance, and also to provide a method for manufacturing zinc oxide varistors that does not cause slurry gelation. Means to Solve the Problem In order to solve the above problems, the present invention is characterized in that at least silicon carbide (Sin) is used as an additive in zinc oxide, which is the main component.

作用 本発明の酸化亜鉛形バリスタの製造方法によれば、添加
物の炭化珪素の嵩比重が高く、粉砕が速やかに進むだめ
、焼結体中にボイドが発生しにくく、究めて高いサージ
耐量を有する酸化亜鉛形バリスタを製造することができ
る。
Function: According to the method for producing a zinc oxide type varistor of the present invention, the bulk specific gravity of silicon carbide as an additive is high, and the pulverization proceeds quickly, making it difficult for voids to occur in the sintered body and achieving extremely high surge resistance. It is possible to manufacture a zinc oxide type varistor having the following properties.

実施例 以下、本発明の製造方法およびそれにより得られた酸化
亜鉛形バリスタについて実施例に基づき詳細に説明する
EXAMPLES Hereinafter, the manufacturing method of the present invention and the zinc oxide type varistor obtained thereby will be explained in detail based on examples.

まず、酸化亜鉛の粉末に、合計量に対し酸化ビスマス0
.5モル%、酸化アンチモン1.Qモル係、酸化コバル
ト0.5モル%、i化マンガン0.5モル係に炭化珪素
をSiCの形に換算して0.5〜20モル係加えた原料
粉末に、固形分比率が約60重量%となるよう純水を加
え、バインダーとしてPv人(ポリビニルアルコール)
を固形分に対し0.5重量%添加し、全体をジルコニア
玉石とともにボールミルに入れ、30時間粉砕しスラリ
ーを得た。
First, add 0 bismuth oxide to the total amount of zinc oxide powder.
.. 5 mol%, antimony oxide 1. Q mole ratio, 0.5 mol% of cobalt oxide, 0.5 mol% of manganese i-ide, and 0.5 to 20 mol of silicon carbide in SiC form are added to the raw material powder, and the solid content ratio is about 60. Add pure water to make the weight%, and use Pv (polyvinyl alcohol) as a binder.
was added in an amount of 0.5% by weight based on the solid content, and the whole was placed in a ball mill together with zirconia cobblestones and pulverized for 30 hours to obtain a slurry.

なお、添加した炭化珪素の平均粒径は3.0μmである
。このスラリーをスプレードライヤーにて乾燥、造粒し
て原料粉を作成した。この原料粉を直径40mm、厚さ
30mmの大きさに圧縮成形し、空気中において120
0’Cで焼結させた。このようにして得られた焼結体の
両端面を研磨し、アルミニウムの溶射電極を形成した。
Note that the average particle size of the added silicon carbide is 3.0 μm. This slurry was dried with a spray dryer and granulated to prepare raw material powder. This raw material powder was compression molded to a size of 40 mm in diameter and 30 mm in thickness, and
It was sintered at 0'C. Both end faces of the sintered body thus obtained were polished to form sprayed aluminum electrodes.

ここで、スラリーの粘度は回転粘度計にて測定した。ま
た比較のため、出発原料に酸化珪素を用いた系も同様の
製造工程により作成した。図にスラリー粘度の時間変化
を示す。出発原料として1モル係の酸化珪素を用いた場
合、約5時間で粘度がs o o cpsを超え、スプ
レードライヤーで造粒を行うのは不可能となる。さらに
、5モル係の酸化珪素を用いた場合、初期粘度が既にs
 o o cpsを超えていることが確認された。一方
、出発原料として1モル係の炭化珪素(SiC)を用い
た場合、スラリーの増粘現象はほとんど見られないこと
がわかる。また、1゜モル係のメチルポリシロキサンを
用いた場合にも同様に増粘現象は見られなかった0従っ
て、シリコーン樹脂の添加方式によυ長時間に渡りスプ
レードライヤーによる造粒が可能となり、大量の原料処
理にも究めて好都合となることがわかる0次に、焼結体
に電極を形成した試料の初期特性を下記の第1表に示す
。V、□、v、。1□は直流定電流電源を用いて測定し
た。また、制限電圧特性は電流波高値5ooo人、波形
8/2oμsのインパルスを用いて測定した。初期特性
は、スラリーの増粘現象を除けば、酸化珪素添加方式と
炭化珪素添加方式の差はほとんど無いことがわかる。さ
らに、シリコーン樹脂添加方式を採用することにより、
1〜10モルチモルの多量添加が可能となり、素子の小
形化、低価格化を容易に実現することができる。また、
炭化珪素を添加した焼結体について材料解析を実施した
結果、酸化珪素を添加した場合と全く同様に、酸化亜鉛
間の三重点付近に珪酸亜鉛として存在していることが確
認された。
Here, the viscosity of the slurry was measured using a rotational viscometer. For comparison, a system using silicon oxide as the starting material was also created using the same manufacturing process. The figure shows the change in slurry viscosity over time. When using 1 molar silicon oxide as the starting material, the viscosity exceeds so cps in about 5 hours, making it impossible to granulate with a spray dryer. Furthermore, when using silicon oxide with a 5 molar ratio, the initial viscosity is already s
It was confirmed that it exceeded o o cps. On the other hand, it can be seen that when 1 molar silicon carbide (SiC) is used as the starting material, almost no thickening phenomenon of the slurry is observed. Similarly, no thickening phenomenon was observed when using 1 mmol methylpolysiloxane. Therefore, the addition method of silicone resin allows granulation using a spray dryer for a long period of time. Table 1 below shows the initial characteristics of a sample in which electrodes were formed on a zero-order sintered body, which was found to be extremely convenient for processing a large amount of raw material. V,□,v,. 1□ was measured using a DC constant current power supply. Further, the limiting voltage characteristics were measured using an impulse with a current peak value of 500 μs and a waveform of 8/2 μs. It can be seen that there is almost no difference in initial characteristics between the silicon oxide addition method and the silicon carbide addition method, except for the thickening phenomenon of the slurry. Furthermore, by adopting the silicone resin addition method,
It becomes possible to add a large amount of 1 to 10 mol, and it is possible to easily realize miniaturization and cost reduction of the device. Also,
As a result of performing material analysis on the sintered body to which silicon carbide was added, it was confirmed that zinc silicate existed near the triple point between zinc oxides, just as in the case where silicon oxide was added.

(以下余 白) 〈第  1  表〉 (1)比較検討例で本発明とは異なる。(Left below) <Table 1> (1) This is a comparative study example and is different from the present invention.

(2) v5 K A /v1+1ム 次に上記の試料についてサージ耐量試験を実施した。試
験条件は2m1118,300ムの矩形波電流を同一方
向に6分間インターバルで素子が破壊に至るまで繰返し
印加した。この結果を下記の第2表に示す。表中の値は
、素子が破壊せずに耐えた矩形波電流の印加回数を試料
数各6個の平均値、および分布範囲(最高値−最低値)
で示した。
(2) v5 K A /v1+1m Next, a surge resistance test was conducted on the above sample. The test conditions were to repeatedly apply a rectangular wave current of 2m1118,300m in the same direction at 6 minute intervals until the device was destroyed. The results are shown in Table 2 below. The values in the table are the average value of the number of square wave current applications that the device withstood without breaking, the number of samples (6 each), and the distribution range (highest value - lowest value)
It was shown in

〈第  2  表〉 (1)比較検討例で本発明例とは異なる。<Table 2> (1) This is a comparative study example and is different from the present invention example.

第2表より、出発原料を酸化珪素から炭化珪素に変える
ことによってサージ耐量が約2倍になり、著しく高性能
化していることがわかる。また、分布範囲も平均値に比
べ狭くなシ、素子の信頼性も向上していることがわかる
。これは、出発原料として炭化珪素を用いた場合は酸化
珪素を用いた場合に比べ、粉砕が速やかに、かつ均一に
進むため、焼結体内部にボイドの発生が減少し、合わせ
て珪酸亜鉛の均一分布により電流分布が均一化したため
と考えられる。また、炭化珪素添加量が増加するのに反
してサージ耐量が徐々に低下するのは、炭化珪素添加に
より単位厚み当りのバリスタ電圧(v4.n、7mm)
が上昇し、単位体積当りにかかるエネルギーが上昇し、
熱ストレスにより破壊し易くなるものと考えられるが、
従来の試料と比較すれば、性能的にも、素子の小形低価
格化といった面からも大きな効果がある。
From Table 2, it can be seen that by changing the starting material from silicon oxide to silicon carbide, the surge resistance is approximately doubled, and the performance is significantly improved. It can also be seen that the distribution range is narrower than the average value, and the reliability of the device is also improved. This is because when silicon carbide is used as a starting material, pulverization proceeds more quickly and uniformly than when silicon oxide is used, which reduces the generation of voids inside the sintered body, and also reduces the amount of zinc silicate. This is thought to be because the current distribution became uniform due to the uniform distribution. In addition, the reason why the surge resistance gradually decreases as the amount of silicon carbide added increases is that the varistor voltage per unit thickness (v4.n, 7 mm) increases due to the addition of silicon carbide.
increases, the energy applied per unit volume increases,
Although it is thought that heat stress makes it easier to break down,
Compared to conventional samples, this method has significant effects in terms of performance and reduction in device size and cost.

発明の効果 以上のように本発明によれば、酸化亜鉛形バリスタ素子
の出発原料に炭化珪素を用いることにより、サージ耐量
が大きく、単位厚み当りのバリスタ電圧の高い素子を容
易に製造することができる。
Effects of the Invention As described above, according to the present invention, by using silicon carbide as the starting material for a zinc oxide type varistor element, it is possible to easily manufacture an element with a large surge resistance and a high varistor voltage per unit thickness. can.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明および従来の製造方法により得られた原料ス
ラリーの粘度の経時変化を示す図である。
The figure is a diagram showing changes over time in the viscosity of raw material slurries obtained by the present invention and the conventional manufacturing method.

Claims (1)

【特許請求の範囲】[Claims] 焼結体中に珪酸亜鉛を含む酸化亜鉛形バリスタ素子の出
発原料に炭化珪素を用いることを特徴とする酸化亜鉛形
バリスタの製造方法。
A method for producing a zinc oxide varistor, characterized in that silicon carbide is used as a starting material for a zinc oxide varistor element containing zinc silicate in a sintered body.
JP62132437A 1987-05-28 1987-05-28 Manufacture of zinc oxide type varistor Pending JPS63296307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62132437A JPS63296307A (en) 1987-05-28 1987-05-28 Manufacture of zinc oxide type varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62132437A JPS63296307A (en) 1987-05-28 1987-05-28 Manufacture of zinc oxide type varistor

Publications (1)

Publication Number Publication Date
JPS63296307A true JPS63296307A (en) 1988-12-02

Family

ID=15081348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62132437A Pending JPS63296307A (en) 1987-05-28 1987-05-28 Manufacture of zinc oxide type varistor

Country Status (1)

Country Link
JP (1) JPS63296307A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179301A (en) * 1987-12-29 1989-07-17 Okaya Electric Ind Co Ltd Voltage nonlinear resistor and surge-absorbing element using it
JPH02241003A (en) * 1989-03-15 1990-09-25 Matsushita Electric Ind Co Ltd Manufacture of zinc oxide type varistor
US5248452A (en) * 1989-07-11 1993-09-28 Ngk Insulators, Ltd. Process for manufacturing a voltage non-linear resistor
US5250281A (en) * 1989-07-11 1993-10-05 Ngk Insulators, Ltd. Process for manufacturing a voltage non-linear resistor and a zinc oxide material to be used therefor
US5269971A (en) * 1989-07-11 1993-12-14 Ngk Insulators, Ltd. Starting material for use in manufacturing a voltage non-linear resistor
JP2007266479A (en) * 2006-03-29 2007-10-11 Tateyama Kagaku Kogyo Kk Protection element and manufacturing method thereof
JP2008294325A (en) * 2007-05-28 2008-12-04 Tateyama Kagaku Kogyo Kk Electrostatic discharge protection element and method of manufacturing the same
JP2008294324A (en) * 2007-05-28 2008-12-04 Tateyama Kagaku Kogyo Kk Electrostatic discharge protection element and method of manufacturing the same
JP2011523778A (en) * 2008-05-21 2011-08-18 エプコス アクチエンゲゼルシャフト Electrical component assembly

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179301A (en) * 1987-12-29 1989-07-17 Okaya Electric Ind Co Ltd Voltage nonlinear resistor and surge-absorbing element using it
JPH02241003A (en) * 1989-03-15 1990-09-25 Matsushita Electric Ind Co Ltd Manufacture of zinc oxide type varistor
US5248452A (en) * 1989-07-11 1993-09-28 Ngk Insulators, Ltd. Process for manufacturing a voltage non-linear resistor
US5250281A (en) * 1989-07-11 1993-10-05 Ngk Insulators, Ltd. Process for manufacturing a voltage non-linear resistor and a zinc oxide material to be used therefor
US5269971A (en) * 1989-07-11 1993-12-14 Ngk Insulators, Ltd. Starting material for use in manufacturing a voltage non-linear resistor
JP2007266479A (en) * 2006-03-29 2007-10-11 Tateyama Kagaku Kogyo Kk Protection element and manufacturing method thereof
JP2008294325A (en) * 2007-05-28 2008-12-04 Tateyama Kagaku Kogyo Kk Electrostatic discharge protection element and method of manufacturing the same
JP2008294324A (en) * 2007-05-28 2008-12-04 Tateyama Kagaku Kogyo Kk Electrostatic discharge protection element and method of manufacturing the same
JP2011523778A (en) * 2008-05-21 2011-08-18 エプコス アクチエンゲゼルシャフト Electrical component assembly
US9177703B2 (en) 2008-05-21 2015-11-03 Epcos Ag Electric component assembly

Similar Documents

Publication Publication Date Title
JPH11340009A (en) Nonlinear resistor
JPS63296307A (en) Manufacture of zinc oxide type varistor
CA1331508C (en) Voltage non-linear type resistors
JPS63142603A (en) Manufacture of zinc oxide type varistor
JP2692210B2 (en) Zinc oxide varistor
JPS63296308A (en) Zinc oxide type varistor
WO2004110952A1 (en) Barium titanate based semiconductor porcelain composition
JPS63296309A (en) Zinc oxide type varistor
JPH0732088B2 (en) Method for producing zinc oxide varistor
JPS644651B2 (en)
JP2836893B2 (en) Method of manufacturing voltage non-linear resistor
JP2002217006A (en) Nonlinear resistor
JP2942027B2 (en) Method of manufacturing voltage non-linear resistor
JPH01228105A (en) Manufacture of non-linear voltage resistance
CN117497267A (en) Zinc oxide high-gradient nonlinear resistor and preparation method thereof
JPS63110601A (en) Manufacture of semiconductor porcelain material
JP2549756B2 (en) Manufacturing method of voltage non-linear resistor for arrester with gap
JP2003007512A (en) Nonlinear resistor element
JPH04338602A (en) Manufacture of zinc oxide nonlinear resistor
JPH04167502A (en) Manufacture of non-linear voltage resistor
JPH0516641B2 (en)
JPH02210803A (en) Manufacture of voltage nonlinear resistor
JPH0247802A (en) Voltage nonlinear resistor body
JPH02189904A (en) Manufacture of varistor
JPH0547514A (en) Manufacture of non-linearly voltage dependent resistor