JP2004063763A - Method for manufacturing voltage nonlinear resistor - Google Patents

Method for manufacturing voltage nonlinear resistor Download PDF

Info

Publication number
JP2004063763A
JP2004063763A JP2002219875A JP2002219875A JP2004063763A JP 2004063763 A JP2004063763 A JP 2004063763A JP 2002219875 A JP2002219875 A JP 2002219875A JP 2002219875 A JP2002219875 A JP 2002219875A JP 2004063763 A JP2004063763 A JP 2004063763A
Authority
JP
Japan
Prior art keywords
powder
zinc oxide
oxide
additive
roasted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002219875A
Other languages
Japanese (ja)
Inventor
Yukio Tagami
田上 幸雄
Kanehisa Iwami
岩見 金久
Takeshi Ogura
小椋 健
Kenichi Yamada
山田 憲一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2002219875A priority Critical patent/JP2004063763A/en
Publication of JP2004063763A publication Critical patent/JP2004063763A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ZnO element having high performance since improvement of a limit voltage characteristic and reinforcement of discharge resistance are requested of the ZnO element for protecting a power apparatus from abnormal voltage such as thunder impulse. <P>SOLUTION: In a granulated powder process at the time of manufacturing the ZnO element, a prescribed amount of additive raw material such as cobalt oxide, manganese dioxide and chromium oxide and that of zinc oxide are measured. Roasted powder is prepared by wet blending, drying, roasting and pulverizing. Roasted powder is added and mixed to zinc oxide of a main component at the time of manufacturing granulated powder. Thus, a voltage-current non-curve characteristic and discharge resistance can be improved. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電圧非直線抵抗体の製造方法に係わり、特に避雷器用の非直線抵抗体に関するものである。
【0002】
【従来の技術】
酸化亜鉛(以下ZnOと称す)を主成分とする電圧電流非直線抵抗体(以下ZnO素子という)は、副添加成分として酸化ビスマス、酸化アンチモン、酸化コバルト、酸化マンガン、酸化クロム、酸化ニッケル、酸化珪素等を添加して、非直線性が高く、熱損失の小さい等の性能を有する組成配合からなっている。
このようなZnO素子を製造するために、通常これら副添加成分をボール・ミル等にて湿式予備粉砕した後、有機バインダーおよびZnOと混合し、スプレードライヤーにて噴霧乾燥して流動性の良い造粒粉を得る。この造粒粉を金型プレスにより円盤等の形状に成形し、800〜1OOO℃で仮焼成を行った後、側面に一次絶縁材をコーティングし、1OOO〜1300℃で数時間焼成する。さらに側面に二次絶縁材をコーティングし、焼き付けを行う。この後両端面を平面研削し、アルミニウムの電極を溶射して完成する。
【0003】
【発明が解決しようとする課題】
避雷器用のZnO素子は、一般の弱電用サージ・アブソーパに比べると吸収しうるエネルギーが大きいため、大きな体積、または大口径サイズのZnO素子が必要になる。ZnO素子の製造方法は、PVA(ポリビニルアルコール)等から成る有機バインダー溶液に主成分であるZnOと、数種の金属酸化物(以下添加物と記す)を添加した原料を十分混合し、スプレードライヤーで噴霧乾燥して造粒粉を得る。この造粒粉を金型成形プレスで円柱状に成形し、脱脂後、800〜1OOO℃で仮焼する。この仮焼体の側面部分に絶縁性セラミック材料を塗布し、1000〜1300℃で数時間焼成する。この後さらに焼結体の側面部分に低融点ガラス材料を塗布し、焼き付けを行う。この後焼結体の両端面を研磨し、アルミニウムの電極を溶射して完成する。
【0004】
ZnO素子の開発、改善において、電力機器を雷インパルス等の異常電圧から保護するという避雷器が担う本質的な性能を向上させるため、ZnO素子の制限電圧特性を改良すること、及び過大な雷インパルス、開閉インパルスに対してZnO素子の放電耐量を増強すること等が、ZnO素子の重要な課題となってる。
【0005】
本発明が目的とするところは、より高性能を有するZnO素子を提供することにある。
【0006】
【課題を解決するための手段】
本発明の第1は、酸化亜鉛を主成分とし、この酸化亜鉛に複数種の金属酸化物の添加物原料を混合してスラリー状とし、これを噴霧乾燥して酸化亜鉛素子用の造粒粉を生成するものにおいて、
前記酸化亜鉛の全量の一部の酸化亜鉛と、添加物原料として配合させる酸化コバルト、二酸化マンガン、酸化クロムのうち少なくとも1種類の添加物原料を焙焼粉体用原料として湿式混合し、乾燥 焙焼、微粉砕によって製作した焙焼粉体をあらかじめ調製し、この焙焼粉体を前記金属酸化物の添加物原料に所定量を添加し、これら焙焼粉体と添加物原料を主成分である酸化亜鉛と共に乳化混合し、脱泡後噴霧乾燥して酸化亜鉛素子用の造粒粉を製作することを特徴としたものである。
【0007】
本発明の第2は、前記焙焼粉体は、前記添加物原料に所定量添加し、湿式混合粉砕して添加物スラリーを調製し、有機バインダー溶液に主成分である酸化亜鉛とともに乳化混合し、脱泡後噴霧乾燥して造粒粉を製作することを特徴としたものである。
【0008】
本発明の第3は、前記添加物原料は、Bi,Sb,C0,Cr,Mn0,Si0,NiOを含むことを特徴としたものである。
【0009】
本発明の第4は、前記焙焼粉体用の原料に、二酸化ケイ素と酸化ほう素を所定量添加することを特徴としたものである。
【0010】
本発明の第5は、前記焙焼粉体用の原料に、酸化アルミニュウムを所定量添加することを特徴としたものである。
【0011】
本発明の第6は、前記焙焼粉体を調製する焙焼温度は、800〜1200℃であることを特徴としたものである。
【0012】
【発明の実施の形態】
図1は、本発明の実施形態を示す造粒工程を示したもので、従来の造粒粉製造工程20に、さらに本発明による添加物原料の焙焼粉体調製工程10を追加したものである。
1は焙焼粉体の出発原料で、この原料の中から後述する任意の組み合わせ、或いは重量比率が選択される。2は湿式混合粉体工程で、1の焙焼粉体出発原料をそれぞれ所定量計量し、混合粉砕する。工程2で得られたスラリーを工程3で乾燥・解砕した後、焙焼工程4により800〜1200℃の温度で焙焼する。5は湿式混合粉砕工程で、焙焼されたものを更にこの工程でスラリーとして粉砕する。スラリー状のものを更に工程6で乾燥,粉砕し、添加焙焼粉体7を得る。
【0013】
21は添加物混合粉砕工程で、ZnO素子の各種金属酸化物と純水とをこの工程にて混合粉砕して添加物スラリー22を得る。23はバインダー溶解工程で、バインダー原料と純水とをこの工程で混合溶解してバインダー溶液24を得る。25は乳化混合工程で、この工程ではZnO素子の主原料である酸化亜鉛26と添加物スラリー22及びバインダー溶液24とが混合される。
【0014】
前記焙焼工程で得られた添加焙焼粉体7は、添加物混合粉砕工程21又は乳化混合工程25に添加されて混合される。乳化混合されたものは脱泡工程27において脱泡された後、スプレードライヤーにて噴霧乾燥して流動性の良いZnO素子用の造粒粉29を得る。
【0015】
造粒粉は、金型プレスにより円盤等の形状に形成され、800〜1000℃で仮焼成を行った後、側面に一次絶縁材をコーティングし、1OOO〜1300℃で数時間焼成する。さらに側面に二次絶縁材をコーティングし、焼き付けを行う。この後両端面を平面研削し、アルミニウムの電極を溶射して完成する。
【0016】
以下本発明の効果を検証するための実施の形態について述べる。なお、焙焼粉体用の原料は基本的には元々添加物原料として配合させるものであり、後述の検証実験のため作製した素子は各添加物原料の最終配合比が全て同一となるように調製した。
【0017】
【実施の形態1】
酸化コバルト、酸化マンガン、酸化クロムと酸化亜鉛の各焙焼について。
1.1 全酸化亜鉛量の5wt%分の酸化亜鉛と全酸化コバルト量の25wt%、50wt%、100wt%とを各々計量し、固形分濃度50wt%となるように純水を投入して湿式混合粉砕(工程2)を行った。得られた混合スラリーを乾燥(工程3)し、1,000℃で2時間焙焼(工程4)した。焙焼粉体を再び固形分濃度50wt%となるスラリーとして湿式微粉砕(工程5)し、再び乾燥(工程6)させて添加焙焼原料(ZnO−C0)7を得た。
1.2 全酸化亜鉛量の5wt%分の酸化亜鉛と全二酸化マンガン量の25wt%、50wt%、100wt%とを各々計量し、固形分濃度50wt%となるように純水を投入して湿式混合粉砕(工程2)を行った。得られた混合スラリーを乾燥(工程3)し、1,000℃で2時間焙焼(工程4)した。焙焼粉体を再び固形分濃度50wt%となるスラリーとして湿式微粉砕(工程5)し、再び乾燥(工程6)させて添加焙焼原料(ZnO−Mn0)7を得た。
1.3 全酸化亜鉛量の5wt%分の酸化亜鉛と全酸化クロム量の25wt%、50wt%、100wt%とを各々計量し、固形分濃度50wt%となるように純水を投入して湿式混合粉砕(工程2)を行った。得られた混合スラリーを乾燥(工程3)し、1,000℃で2時間焙焼(工程4)した。焙焼粉体を再び固形分濃度50wt%となるスラリーとして湿式微粉砕(工程5)し、再び乾燥(工程6)させて添加焙焼原料(ZnO−Cr)7を得た。
【0018】
【実施の形態2】
焙焼粉体へのSi0−B、およびA1の添加について。
2.1 全酸化亜鉛量の5wt%分の酸化亜鉛と酸化コバルト、二酸化マンガン、酸化クロムの各50wt%量とを計量し、さらに所定の配合量となる二酸化ケイ素、酸化ほう素を投入し、固形分濃度50wt%となるように純水を投入して湿式混合粉砕(工程2)を行った。得られた混合スラリーを乾燥(工程3)し、1,000℃で2時間焙焼(工程4)した。焙焼粉体を再び固形分濃度50wt%となるスラリーとして湿式微粉砕(工程5)し、再び乾燥(工程6)させて添加焙焼原料(Powder1)7を得た。
2.2 全酸化亜鉛量の5wt%分の酸化亜鉛と酸化コバルト、二酸化マンガン、酸化クロムの各50wt%量とを計量し、さらに所定の配合量となる酸化アルミニウムを投入し、固形分濃度50wt%となるように純水を投入して湿式混合粉砕(工程2)を行った。得られた混合スラリーを乾燥(工程3)し、1,000℃で2時間焙焼(工程4)した。焙焼粉体を再び固形分濃度50wt%となるスラリーとして湿式微粉砕(工程5)し、再び乾燥(工程6)させて添加焙焼原料(Powder2)7を得た。
【0019】
【実施の形態3】
焙焼粉体の焙焼温度について
3.1 全酸化亜鉛量の5wt%分の酸化亜鉛と酸化コバルト、二酸化マンガン、酸化クロムの各50w跳量とを計量し、固形分濃度50wt%となるように純水を投入して湿式混合粉砕を行った。得られた混合スラリーを乾燥し、800℃,900℃,1,000℃,1,100℃,1,200℃,1,300℃の各温度で2時間焙焼した。焙焼粉体を再び固形分濃度50wt%となるスラリーとして湿式微粉砕し、再び乾燥させて添加焙焼原料を得た。1,300℃における焙焼粉体は硬く微粉砕が不可能であった。
【0020】
造粒粉調製
Bi,Sb,C0,Cr,Mn0,Si0,NiO等の添加物原料を所定の配合量を各々計量し、前記1.1〜1.6、2.1,2.2及び3.1項で調製した焙焼粉体を図2に示す配合で添加した。
なお、図2における焙焼粉体比率は、各添加物原料の最終配合量に対する比率を示す。
粉体総質量と同量の純水を加えバイブロ・ミルによって2時間粉砕(工程21)を行い添加物スラリー22を調製した。添加物原料と焙焼粉体の配合は最終配合比で同一となるように調整した。
【0021】
主原料であるZnO26と工程21で得られた添加物スラリー22とを有機バインダー溶液24に各々加え、ディスパー・ミルで十分混合した。得られた原料スラリーを十分に脱泡(工程27)した後スフレー・ドライヤーで噴霧乾燥(工程28)し造粒粉29を得た。
工程25において添加焙焼粉体7を添加しても構わないが、工程21で添加物スラリーを混合粉砕して調製する段階にて添加した方がより好ましい。
【0022】
ZnO素子・製作
工程28にて得られた造粒粉を乾式金型ブレスにて、直径60mm−厚さ30mmの大きさの円盤に成形した。この時、一定の成形密度となるように成形圧力を調整して成形した。この後、800〜1OOO℃で6時間仮焼し、セラミック系絶縁材ぺ一ストを塗布後、11OO〜1200℃で10時間焼成した。焼成温度は図2に示すように完成ZnO素子のV1mA(素子内に電流1mAが流れたときの耐電圧)が同等となるようにサンプル別に調整した。
【0023】
得られた焼結体に低融点ガラス絶縁材料べ一ストを塗布し、550〜700℃で焼付けを行った。その後両端面を研削し、研削した両端面にアルミニウムの溶射電極を施してZnO素子を形成した。
【0024】
ZnO素子の電気特性試験
以上のようにして得られたZnO素子焼結体に対して試験を行った。その試験結果を図3に示す。
電気試験項目は、DC小電流測定:V1mA,V0.1mA、非直線性係数(α):1/{LOG(V1mA)−LOG(V0.1mA)}、制限電圧比測定:8/20μs10kAにおける制限電圧とV1mAとの比、ACワットロス測定:温度115℃、課電率85%、放電耐量試験:4/10μs110kA*2 供試素子20個の破壊率,2ms600A*20 供試素子20個の破壊率である。
【0025】
図4〜図6は本発明の実施の形態1におけるZnO素子の製造方法における造粒工程において、あらかじめ酸化コバルト、二酸化マンガン、および酸化クロムといった添加物原料と酸化亜鉛とを所定量計量し、湿式混合、乾燥、焙焼、微粉砕により焙焼粉体を調製して、造粒粉に配合させることによる効果を図示したものである。
【0026】
すなわち、図4では、全酸化亜鉛量の5wt%分の酸化亜鉛と添加物原料として配合させる酸化コバルトの一部、あるいは全部とを湿式混合、乾燥、焙焼、微粉砕により焙焼粉体を調製して造粒粉に配合させることにより、ZnO素子の電圧一電流非直線特性、放電耐量特性を飛躍的に向上していることが明かである。
【0027】
図5では、全酸化亜鉛量の5wt%分の酸化亜鉛と添加物原料として配合させる二酸化マンガンの一部、あるいは全部とを湿式混合、乾燥、焙焼、微粉砕により焙焼粉体を調製して造粒粉に配合させることにより、ZnO素子の電圧一電流非直線特性、放電耐量特性を飛躍的に向上していることが明かである。
【0028】
図6では、全酸化亜鉛量の5wt%分の酸化亜鉛と添加物原料として配合させる酸化クロムの一部、あるいは全部とを湿式混合、乾燥、焙焼、微粉砕により焙焼粉体を調製して造粒粉に配合させることにより、ZnO素子の電圧一電流非直線特性、放電耐量特性を飛躍的に向上していることが明かである。
【0029】
図3並びに図4〜図6においての実施の形態1による焙焼効果が明かであり、その上、更に実施の形態2の方法を採用すれば効果が向上する。
すなわち、全酸化亜鉛量の5wt%分の酸化亜鉛と添加物原料として配合させる酸化コバルト、二酸化マンガン、酸化クロムの一部、あるいは全部とを湿式混合、乾燥、焙焼、微粉砕により焙焼粉体を調製する工程において、二酸化ケイ素と酸化ほう素を所定量添加してホウケイ酸亜鉛を生成させ造粒粉に配合させることにより、ZnO素子の電圧一電流非直線特性、放電耐量特性を飛躍的に向上させることができる。
また、全酸化亜鉛量の5wt%分の酸化亜鉛と添加物原料として配合させる酸化コバルト、二酸化マンガン、酸化クロムの一部、あるいは全部とを湿式混合、乾燥、焙焼、微粉砕により焙焼粉体を調製する工程において、酸化アルミニウムを所定量添加して亜鉛一アルミニム酸化物を生成させ造粒粉に配合させることにより、ZnO素子の電圧一電流非直線特性、放電耐量特性を飛躍的に向上させることができる。
【0030】
図7は焙焼温度(実施の形態3)効果を示したものである。
全酸化亜鉛量の5wt%分の酸化亜鉛と添加物原料として配合させる酸化コバルト、二酸化マンガン、酸化クロムの一部、あるいは全部とを湿式混合、乾燥、焙焼、微粉砕により焙焼粉体を調製する工程において、焙焼温度を800〜1,2000Cとして焙焼粉体を調製し造粒粉に配合させることにより、ZnO素子の電圧一電流非直線特性、放電耐量特性を飛躍的に向上させることができる。
【0031】
【発明の効果】
以上のとおり、本発明によれば、ZnO素子の製造時に予め添加物の一部を焙焼粉体としておき、これを造粒粉製造時に添加混合してZnO素子の造粒粉を生成することにより、ZnO素子の電圧一電流非直線特性、放電耐量特性を向上することができるものである。
【図面の簡単な説明】
【図1】本発明の実施形態を示す製造工程のフローチャート。
【図2】添加焙焼粉体の焙焼温度、添加量、ZnO素子焼成温度図。
【図3】電気特性試験結果図。
【図4】酸化コバルト焙焼効果図。
【図5】二酸化マンガン焙焼効果図。
【図6】酸化クロム焙焼効果図。
【図7】焙焼温度の効果図。
【符号の説明】
1…焙焼粉体出発原料
2、5…湿式混合粉砕工程
3、6…乾燥・解砕工程
4…焙焼工程
7…添加焙焼粉体
10…焙焼粉体調製工程
20…造粒粉製造工程
21…添加物混合粉砕工程
22…添加物スラリー
23…バインダー溶解工程
24…バインダー溶液
25…乳化混合工程
26…酸化亜鉛
27…脱泡工程
28…噴霧乾燥工程
29…ZnO素子用造粒粉
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a voltage nonlinear resistor, and more particularly to a nonlinear resistor for a lightning arrester.
[0002]
[Prior art]
A voltage / current non-linear resistor (hereinafter, referred to as a ZnO element) containing zinc oxide (hereinafter, referred to as ZnO) as a main component includes bismuth oxide, antimony oxide, cobalt oxide, manganese oxide, chromium oxide, nickel oxide, It is composed of a composition having high non-linearity and low heat loss by adding silicon and the like.
In order to manufacture such a ZnO element, usually these auxiliary additives are wet-preliminarily pulverized by a ball mill or the like, then mixed with an organic binder and ZnO, and spray-dried with a spray drier to obtain a liquid having good fluidity. Get the flour. This granulated powder is formed into a disk shape or the like by a die press, pre-baked at 800-1OO ° C., then coated with a primary insulating material on the side surface, and baked at 1OO-1300 ° C. for several hours. Further, the side surfaces are coated with a secondary insulating material and are baked. Thereafter, both end faces are ground, and aluminum electrodes are thermally sprayed to complete.
[0003]
[Problems to be solved by the invention]
Since a ZnO element for a lightning arrester has a large amount of energy that can be absorbed as compared with a general surge absorber for weak electricity, a ZnO element having a large volume or a large diameter is required. The manufacturing method of the ZnO element is such that a raw material obtained by adding ZnO, which is a main component, to an organic binder solution made of PVA (polyvinyl alcohol) or the like and several kinds of metal oxides (hereinafter referred to as additives) is sufficiently mixed, and a spray dryer is used. To obtain a granulated powder. This granulated powder is formed into a cylindrical shape by a die forming press, degreased, and then calcined at 800 to 10000C. An insulating ceramic material is applied to the side surface of the calcined body and fired at 1000 to 1300 ° C. for several hours. Thereafter, a low-melting glass material is further applied to the side surface portion of the sintered body and baked. Thereafter, both end surfaces of the sintered body are polished, and aluminum electrodes are thermally sprayed to complete the sintered body.
[0004]
In the development and improvement of ZnO elements, to improve the essential performance of the surge arrester that protects power equipment from abnormal voltage such as lightning impulse, to improve the limiting voltage characteristics of ZnO element, It is an important subject of the ZnO element to enhance the discharge resistance of the ZnO element with respect to the switching impulse.
[0005]
An object of the present invention is to provide a ZnO element having higher performance.
[0006]
[Means for Solving the Problems]
A first aspect of the present invention is that a zinc oxide as a main component, a plurality of types of additive materials of metal oxides are mixed with the zinc oxide to form a slurry, which is spray-dried and granulated powder for a zinc oxide element. In generating
A part of the total amount of the zinc oxide and at least one additive material of cobalt oxide, manganese dioxide and chromium oxide to be blended as additive material are wet-mixed as a material for the roasting powder, and dried. A roasted powder produced by baking and fine pulverization is prepared in advance, and a predetermined amount of the roasted powder is added to the additive material of the metal oxide, and the roasted powder and the additive material are used as main components. It is characterized in that it is emulsified and mixed with a certain zinc oxide, defoamed and spray-dried to produce granulated powder for a zinc oxide element.
[0007]
A second aspect of the present invention is that the roasted powder is added to the additive raw material in a predetermined amount, wet-mixed and pulverized to prepare an additive slurry, and emulsified and mixed with zinc oxide as a main component in an organic binder solution. And defoaming and spray-drying to produce granulated powder.
[0008]
The third of the present invention, the additive material is obtained by comprising a Bi 2 0 3, Sb 2 0 3, C0 3 0 4, Cr 2 0 3, Mn0 2, Si0 2, NiO .
[0009]
A fourth feature of the present invention is that silicon dioxide and boron oxide are added in predetermined amounts to the raw material for the roasted powder.
[0010]
A fifth aspect of the present invention is characterized in that a predetermined amount of aluminum oxide is added to the raw material for the roasted powder.
[0011]
A sixth aspect of the present invention is characterized in that the roasting temperature for preparing the roasted powder is 800 to 1200 ° C.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a granulation process according to an embodiment of the present invention, in which a granulated powder manufacturing process 20 of the present invention is further added to a conventional granulated powder manufacturing process 20. is there.
Reference numeral 1 denotes a starting material of the roasted powder, and an arbitrary combination or a weight ratio described later is selected from the starting materials. Reference numeral 2 denotes a wet mixed powder process in which a predetermined amount of the first roasted powder starting material is measured and mixed and pulverized. After the slurry obtained in the step 2 is dried and crushed in the step 3, it is roasted at a temperature of 800 to 1200 ° C. in the roasting step 4. Reference numeral 5 denotes a wet mixing and pulverizing step, in which the roasted material is further pulverized as a slurry in this step. The slurry is further dried and pulverized in Step 6 to obtain an additional roasted powder 7.
[0013]
Reference numeral 21 denotes an additive mixing and pulverizing step, in which various metal oxides of the ZnO element and pure water are mixed and pulverized in this step to obtain an additive slurry 22. Reference numeral 23 denotes a binder dissolving step, in which a binder material and pure water are mixed and dissolved in this step to obtain a binder solution 24. Reference numeral 25 denotes an emulsification mixing step in which zinc oxide 26, which is a main raw material of the ZnO element, the additive slurry 22 and the binder solution 24 are mixed.
[0014]
The added roasted powder 7 obtained in the roasting step is added to the additive mixing and pulverizing step 21 or the emulsifying and mixing step 25 and mixed. The emulsified mixture is defoamed in a defoaming step 27 and then spray-dried with a spray drier to obtain granulated powder 29 for a ZnO element having good fluidity.
[0015]
The granulated powder is formed into a shape such as a disk by a die press, and after calcination is performed at 800 to 1000 ° C., a primary insulating material is coated on a side surface, and baked at 100 to 1300 ° C. for several hours. Further, the side surfaces are coated with a secondary insulating material and are baked. Thereafter, both end faces are ground, and aluminum electrodes are thermally sprayed to complete.
[0016]
Hereinafter, embodiments for verifying the effects of the present invention will be described. In addition, the raw material for the roasted powder is basically originally blended as an additive raw material, and the elements manufactured for the verification experiment described later are so made that the final blend ratio of each additive raw material is the same. Prepared.
[0017]
Embodiment 1
About roasting of cobalt oxide, manganese oxide, chromium oxide and zinc oxide.
1.1 Wet weight was measured by weighing 5 wt% of zinc oxide and 25 wt%, 50 wt%, and 100 wt% of total cobalt oxide, respectively, and adding pure water so that the solid content concentration became 50 wt%. Mixed pulverization (step 2) was performed. The obtained mixed slurry was dried (step 3) and calcined at 1,000 ° C. for 2 hours (step 4). And wet milling (step 5) roasting powder as a slurry again a solid concentration of 50 wt%, to obtain dried again (Step 6) is allowed to add roasted material (ZnO-C0 3 0 4) 7.
1.2 Weigh each of 5 wt% of zinc oxide and 25 wt%, 50 wt%, and 100 wt% of total manganese dioxide, and add pure water so that the solid content concentration becomes 50 wt%. Mixed pulverization (step 2) was performed. The obtained mixed slurry was dried (step 3) and calcined at 1,000 ° C. for 2 hours (step 4). The calcined powder was again wet-milled as a slurry having a solid content concentration of 50 wt% (step 5), and dried again (step 6) to obtain an additional calcined raw material (ZnO-MnO 2 ) 7.
1.3 Weigh each of 5 wt% of zinc oxide and 25 wt%, 50 wt%, and 100 wt% of total chromium oxide, and add pure water so that the solid content concentration becomes 50 wt%. Mixed pulverization (step 2) was performed. The obtained mixed slurry was dried (step 3) and calcined at 1,000 ° C. for 2 hours (step 4). And wet milling (step 5) roasting powder as a slurry again a solid concentration of 50 wt%, to obtain dried again (Step 6) is allowed to add roasted material (ZnO-Cr 2 0 3) 7.
[0018]
Embodiment 2
Calcined powder Si0 2 -B 2 0 3 to the body, and A1 2 0 3 addition for the.
2.1 Measure zinc oxide and cobalt oxide, manganese dioxide, and chromium oxide in an amount of 50 wt% each corresponding to 5 wt% of the total zinc oxide amount, and further add silicon dioxide and boron oxide in predetermined amounts, Pure water was charged so as to have a solid concentration of 50 wt%, and wet mixing and pulverization (step 2) was performed. The obtained mixed slurry was dried (step 3) and calcined at 1,000 ° C. for 2 hours (step 4). The calcined powder was again wet-milled as a slurry having a solid content concentration of 50 wt% (step 5) and dried again (step 6) to obtain an additional calcined raw material (Powder 1) 7.
2.2 Measure 5 wt% of zinc oxide and 50 wt% of cobalt oxide, manganese dioxide, and chromium oxide for 5 wt% of the total zinc oxide, and further add aluminum oxide having a predetermined blending amount, and solid content concentration of 50 wt%. %, And wet mixing and pulverization (step 2) was performed by adding pure water to the mixture. The obtained mixed slurry was dried (step 3) and calcined at 1,000 ° C. for 2 hours (step 4). The calcined powder was again wet-milled as a slurry having a solid concentration of 50 wt% (step 5) and dried again (step 6) to obtain an additional calcined raw material (Powder 2) 7.
[0019]
Embodiment 3
3.1 About the roasting temperature of the roasted powder 3.1 Measure 5 wt% of zinc oxide and cobalt oxide, manganese dioxide, and chromium oxide for 5 wt% of the total zinc oxide so that the solid content concentration becomes 50 wt%. , And wet mixing and pulverization were performed. The obtained mixed slurry was dried and calcined at 800 ° C., 900 ° C., 1,000 ° C., 1,100 ° C., 1,200 ° C., and 1,300 ° C. for 2 hours. The calcined powder was wet-milled as a slurry having a solid content concentration of 50 wt% again, and dried again to obtain an additional calcined raw material. The roasted powder at 1,300 ° C. was hard and could not be pulverized.
[0020]
Granulated powder prepared Bi 2 0 3, Sb 2 0 3, C0 2 0 3, Cr 2 0 3, Mn0 2, Si0 2, the additive material such as NiO respectively weighed prescribed amount, the 1.1 2. The roasted powders prepared in 1.6, 2.1, 2.2 and 3.1 were added in the composition shown in FIG.
In addition, the roasted powder ratio in FIG. 2 indicates a ratio to the final blending amount of each additive raw material.
Pure water in the same amount as the total mass of the powder was added, and the mixture was pulverized by a vibro mill for 2 hours (step 21) to prepare an additive slurry 22. The blending of the additive raw material and the roasted powder was adjusted so that the final blending ratio was the same.
[0021]
ZnO 26, which is a main raw material, and the additive slurry 22 obtained in the step 21 were added to the organic binder solution 24, respectively, and sufficiently mixed with a disper mill. The obtained raw material slurry was sufficiently defoamed (step 27) and then spray-dried with a saffry dryer (step 28) to obtain granulated powder 29.
In step 25, the additional roasted powder 7 may be added, but it is more preferable to add it in the step of mixing and pulverizing the additive slurry in step 21 to prepare.
[0022]
The granulated powder obtained in the ZnO element / manufacturing step 28 was formed into a disk having a size of 60 mm in diameter and 30 mm in thickness by a dry mold press. At this time, molding was performed by adjusting the molding pressure so as to obtain a constant molding density. Then, it was calcined at 800-1OO ° C. for 6 hours, applied with a ceramic insulating paste, and then fired at 11OO-1200 ° C. for 10 hours. As shown in FIG. 2, the firing temperature was adjusted for each sample so that V1 mA of the completed ZnO device (withstand voltage when a current of 1 mA flows in the device) was equivalent.
[0023]
A low-melting glass insulating material base was applied to the obtained sintered body, and baked at 550 to 700 ° C. Thereafter, both end surfaces were ground, and a sprayed electrode of aluminum was applied to the ground both end surfaces to form a ZnO element.
[0024]
Test of electrical characteristics of ZnO element A test was performed on the ZnO element sintered body obtained as described above. FIG. 3 shows the test results.
Electrical test items are DC small current measurement: V1 mA, V0.1 mA, nonlinearity coefficient (α): 1 / {LOG (V1 mA) -LOG (V0.1 mA)}, limit voltage ratio measurement: 8/20 μs, 10 kA limit Ratio of voltage to V1mA, AC watt loss measurement: temperature 115 ° C., power application rate 85%, discharge withstand test: 4/10 μs 110 kA * 2 Breakdown rate of 20 test elements, 2 ms 600 A * 20 Breakdown rate of 20 test elements It is.
[0025]
4 to 6 show that a predetermined amount of additive materials such as cobalt oxide, manganese dioxide, and chromium oxide and zinc oxide are measured in advance in a granulation step in the method of manufacturing a ZnO device according to Embodiment 1 of the present invention, and the wet process is performed. This figure illustrates the effect of preparing a roasted powder by mixing, drying, roasting, and finely pulverizing, and blending it into granulated powder.
[0026]
That is, in FIG. 4, the roasted powder is obtained by wet-mixing, drying, roasting, and finely pulverizing the zinc oxide corresponding to 5 wt% of the total zinc oxide and the cobalt oxide to be blended as the additive material. It is clear that the voltage-current non-linear characteristic and the discharge withstand characteristic of the ZnO element are remarkably improved by being prepared and mixed with the granulated powder.
[0027]
In FIG. 5, a roasted powder is prepared by wet mixing, drying, roasting, and finely pulverizing zinc oxide in an amount of 5 wt% of the total zinc oxide and manganese dioxide to be blended as an additive material. It is evident that the compounding into the granulated powder has dramatically improved the voltage-current non-linear characteristic and discharge withstand characteristic of the ZnO element.
[0028]
In FIG. 6, a roasted powder is prepared by wet mixing, drying, roasting, and finely pulverizing zinc oxide corresponding to 5 wt% of the total zinc oxide amount and chromium oxide to be added as an additive material. It is evident that the compounding into the granulated powder has dramatically improved the voltage-current non-linear characteristic and discharge withstand characteristic of the ZnO element.
[0029]
The roasting effect according to the first embodiment in FIGS. 3 and 4 to 6 is clear, and the effect is further improved by further employing the method of the second embodiment.
That is, a powdered mixture of 5 wt% of zinc oxide and a part or all of cobalt oxide, manganese dioxide, and chromium oxide to be blended as an additive material is wet-mixed, dried, roasted, and pulverized to obtain a roasted powder. In the step of preparing the body, a predetermined amount of silicon dioxide and boron oxide is added to form zinc borosilicate and blended with the granulated powder, thereby dramatically improving the voltage-current non-linear characteristic and discharge withstand characteristic of the ZnO element. Can be improved.
In addition, a mixture of 5% by weight of zinc oxide in total zinc oxide and a part or all of cobalt oxide, manganese dioxide, and chromium oxide to be blended as an additive material is wet-mixed, dried, roasted, and pulverized to obtain a powder. In the process of preparing the body, a predetermined amount of aluminum oxide is added to form zinc-aluminum oxide and blended with the granulated powder, thereby dramatically improving the voltage-current non-linear characteristics and discharge withstand characteristics of the ZnO element. Can be done.
[0030]
FIG. 7 shows the effect of the roasting temperature (Embodiment 3).
A part of or all of cobalt oxide, manganese dioxide, and chromium oxide to be blended as an additive material and 5 wt% of zinc oxide of 5 wt% of the total zinc oxide is wet-mixed, dried, roasted, and finely pulverized to obtain a roasted powder. In the preparation step, the roasting temperature is set to 800 to 12,000 C to prepare a roasted powder and mix it with the granulated powder, thereby dramatically improving the voltage-current non-linear characteristic and the discharge withstand characteristic of the ZnO element. be able to.
[0031]
【The invention's effect】
As described above, according to the present invention, a part of the additive is previously prepared as a roasted powder at the time of manufacturing the ZnO element, and this is added and mixed at the time of manufacturing the granulated powder to produce the granulated powder of the ZnO element. Thereby, the voltage-current non-linear characteristic and the discharge withstand characteristic of the ZnO element can be improved.
[Brief description of the drawings]
FIG. 1 is a flowchart of a manufacturing process showing an embodiment of the present invention.
FIG. 2 is a graph showing a roasting temperature, an added amount, and a ZnO element firing temperature of an added roasted powder.
FIG. 3 is a view showing a result of an electrical characteristic test.
FIG. 4 is a graph showing the effect of roasting cobalt oxide.
FIG. 5 is a manganese dioxide roasting effect diagram.
FIG. 6 is a chrome oxide roasting effect diagram.
FIG. 7 is an effect diagram of roasting temperature.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Roasted powder starting material 2, 5 ... Wet mixing and grinding step 3, 6 ... Drying / crushing step 4 ... Roasting step 7 ... Added roasted powder 10 ... Roasted powder preparation step 20 ... Granulated powder Manufacturing process 21: additive mixing and crushing process 22 ... additive slurry 23 ... binder dissolving process 24 ... binder solution 25 ... emulsification mixing process 26 ... zinc oxide 27 ... defoaming process 28 ... spray drying process 29 ... granulated powder for ZnO element

Claims (6)

酸化亜鉛を主成分とし、この酸化亜鉛に複数種の金属酸化物の添加物原料を混合してスラリー状とし、これを噴霧乾燥して酸化亜鉛素子用の造粒粉を生成するものにおいて、
前記酸化亜鉛の全量の一部の酸化亜鉛と、添加物原料として配合させる酸化コバルト、二酸化マンガン、酸化クロムのうち少なくとも1種類の添加物原料を焙焼粉体用原料として湿式混合し、乾燥 焙焼、微粉砕によって製作した焙焼粉体をあらかじめ調製し、この焙焼粉体を前記金属酸化物の添加物原料に所定量を添加し、これら焙焼粉体と添加物原料を主成分である酸化亜鉛と共に乳化混合し、脱泡後噴霧乾燥して酸化亜鉛素子用の造粒粉を製作することを特徴とする電圧非直線抵抗体の製造方法。
Zinc oxide as a main component, a mixture of zinc oxide and a plurality of types of metal oxide additive materials to form a slurry, which is spray-dried to produce granulated powder for a zinc oxide element,
A part of the total amount of the zinc oxide and at least one additive material of cobalt oxide, manganese dioxide and chromium oxide to be blended as additive material are wet-mixed as a material for the roasting powder, and dried. A roasted powder produced by baking and fine pulverization is prepared in advance, and a predetermined amount of the roasted powder is added to the additive material of the metal oxide, and the roasted powder and the additive material are used as main components. A method for producing a voltage non-linear resistor, comprising emulsifying and mixing with certain zinc oxide, defoaming and spray drying to produce granulated powder for a zinc oxide element.
前記焙焼粉体は、前記添加物原料に所定量添加し、湿式混合粉砕して添加物スラリーを調製し、有機バインダー溶液に主成分である酸化亜鉛とともに乳化混合し、脱泡後噴霧乾燥して造粒粉を製作することを特徴とする請求項1記載の電圧非直線抵抗体の製造方法。The roasted powder is added to the additive raw material in a predetermined amount, wet-mixed and pulverized to prepare an additive slurry, emulsified and mixed with an organic binder solution together with zinc oxide as a main component, and spray-dried after defoaming. The method for producing a voltage non-linear resistor according to claim 1, wherein the granulated powder is produced by the method. 前記添加物原料は、Bi,Sb,C0,Cr,Mn0,Si0,NiOを含むことを特徴とする請求項1又は2記載の電圧非直線抵抗体の製造方法。The additive material may, Bi 2 0 3, Sb 2 0 3, C0 3 0 4, Cr 2 0 3, Mn0 2, Si0 2, voltage nonlinear according to claim 1 or 2, wherein the containing NiO Manufacturing method of resistor. 前記焙焼粉体用の原料に、二酸化ケイ素と酸化ほう素を所定量添加することを特徴とする請求項1乃至3記載の電圧非直線抵抗体の製造方法。4. The method according to claim 1, wherein a predetermined amount of silicon dioxide and boron oxide is added to the raw material for the roasted powder. 前記焙焼粉体用の原料に、酸化アルミニュウムを所定量添加することを特徴とする請求項1乃至3記載の電圧非直線抵抗体の製造方法。4. The method for producing a voltage non-linear resistor according to claim 1, wherein a predetermined amount of aluminum oxide is added to the raw material for the roasted powder. 前記焙焼粉体を調製する焙焼温度は、800〜1200℃であることを特徴とする請求項1乃至5記載の電圧非直線抵抗体の製造方法。The method for producing a voltage non-linear resistor according to claim 1, wherein a roasting temperature for preparing the roasted powder is 800 to 1200 ° C. 7.
JP2002219875A 2002-07-29 2002-07-29 Method for manufacturing voltage nonlinear resistor Pending JP2004063763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002219875A JP2004063763A (en) 2002-07-29 2002-07-29 Method for manufacturing voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002219875A JP2004063763A (en) 2002-07-29 2002-07-29 Method for manufacturing voltage nonlinear resistor

Publications (1)

Publication Number Publication Date
JP2004063763A true JP2004063763A (en) 2004-02-26

Family

ID=31940669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002219875A Pending JP2004063763A (en) 2002-07-29 2002-07-29 Method for manufacturing voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JP2004063763A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108897951A (en) * 2018-06-28 2018-11-27 云南电网有限责任公司保山供电局 Arrester nonlinear wind vibration " turn point " and its " bending coefficient " approximating method
CN111505420A (en) * 2020-04-29 2020-08-07 国网陕西省电力公司电力科学研究院 Online monitoring and diagnosing method and system for state of line arrester

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108897951A (en) * 2018-06-28 2018-11-27 云南电网有限责任公司保山供电局 Arrester nonlinear wind vibration " turn point " and its " bending coefficient " approximating method
CN111505420A (en) * 2020-04-29 2020-08-07 国网陕西省电力公司电力科学研究院 Online monitoring and diagnosing method and system for state of line arrester

Similar Documents

Publication Publication Date Title
CN107473731A (en) A kind of high-energy type piezo-resistance and its manufacture method
JP6756484B2 (en) Voltage non-linear resistor
CN115536367A (en) High-resistance low-B-value thermistor ceramic body, preparation method and thermistor
CN101752046B (en) Current-voltage non-linear resistor and method of manufacture thereof
JP6628812B2 (en) Manufacturing method of large capacity ZnO varistor
JP2004063763A (en) Method for manufacturing voltage nonlinear resistor
JP5337073B2 (en) Current-voltage nonlinear resistor and method for manufacturing the same
JP2004088031A (en) Method of manufacturing voltage nonlinear resistor
JP2004088032A (en) Method of manufacturing voltage nonlinear resistor
JP2010103440A (en) Current-voltage nonlinear resistor and method of manufacturing the same
CN101154487A (en) Method for manufacturing zinc oxide nonlinear resistance slice used for lightning arrester
JP2692210B2 (en) Zinc oxide varistor
JPH08213209A (en) Manufacture of voltage nonlinear-type resistor
JPH07272906A (en) Manufacture of nonlinear resistor
JP2004335565A (en) Method of manufacturing voltage nonlinear resistor
JP2001326108A (en) Voltage nonlinear resistor and its manufacturing method
JP2000012309A (en) Manufacture of zinc oxide varistor
JP3631786B2 (en) Method for manufacturing voltage nonlinear resistor
JP5929152B2 (en) Method for manufacturing non-linear resistor element
CN100409374C (en) Method for making porous ceramics positive temperature coefficient thermistor
JP3728881B2 (en) Method for manufacturing non-linear resistor
JP2012231091A (en) Current-voltage nonlinear resistor
JPH06260304A (en) Manufacture of voltage-dependent nonlinear resistor
JPH02119102A (en) Manufacture of voltage non-linear resistor
JPH0578925B2 (en)