CN100382205C - Preparation and Application of High Potential Gradient Zinc Oxide Varistor Material - Google Patents
Preparation and Application of High Potential Gradient Zinc Oxide Varistor Material Download PDFInfo
- Publication number
- CN100382205C CN100382205C CNB2005100253985A CN200510025398A CN100382205C CN 100382205 C CN100382205 C CN 100382205C CN B2005100253985 A CNB2005100253985 A CN B2005100253985A CN 200510025398 A CN200510025398 A CN 200510025398A CN 100382205 C CN100382205 C CN 100382205C
- Authority
- CN
- China
- Prior art keywords
- zinc oxide
- potential gradient
- gradient zinc
- energy ball
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 title claims abstract description 150
- 239000011787 zinc oxide Substances 0.000 title claims abstract description 75
- 239000000463 material Substances 0.000 title claims abstract description 36
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 28
- 239000011812 mixed powder Substances 0.000 claims abstract description 18
- 238000005245 sintering Methods 0.000 claims abstract description 16
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 15
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 15
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052709 silver Inorganic materials 0.000 claims abstract description 14
- 239000004332 silver Substances 0.000 claims abstract description 14
- 238000009766 low-temperature sintering Methods 0.000 claims abstract description 13
- 239000002994 raw material Substances 0.000 claims abstract description 12
- 238000000227 grinding Methods 0.000 claims abstract description 8
- 238000003466 welding Methods 0.000 claims abstract description 4
- 238000000748 compression moulding Methods 0.000 claims abstract description 3
- 238000000713 high-energy ball milling Methods 0.000 claims description 18
- 239000000843 powder Substances 0.000 claims description 15
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 claims description 12
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 238000001238 wet grinding Methods 0.000 claims description 9
- 239000004677 Nylon Substances 0.000 claims description 5
- 229910000831 Steel Inorganic materials 0.000 claims description 5
- 229920001778 nylon Polymers 0.000 claims description 5
- 239000010959 steel Substances 0.000 claims description 5
- UPWOEMHINGJHOB-UHFFFAOYSA-N oxo(oxocobaltiooxy)cobalt Chemical compound O=[Co]O[Co]=O UPWOEMHINGJHOB-UHFFFAOYSA-N 0.000 claims description 4
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 claims description 3
- 229910000416 bismuth oxide Inorganic materials 0.000 claims description 2
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 claims description 2
- 238000005476 soldering Methods 0.000 claims 1
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 abstract description 11
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 239000011248 coating agent Substances 0.000 abstract description 4
- 238000000576 coating method Methods 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 abstract 1
- 230000003647 oxidation Effects 0.000 abstract 1
- 238000007254 oxidation reaction Methods 0.000 abstract 1
- 229910052725 zinc Inorganic materials 0.000 abstract 1
- 239000011701 zinc Substances 0.000 abstract 1
- 239000011651 chromium Substances 0.000 description 10
- 238000009837 dry grinding Methods 0.000 description 6
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(III) oxide Inorganic materials O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- VJFCXDHFYISGTE-UHFFFAOYSA-N O=[Co](=O)=O Chemical compound O=[Co](=O)=O VJFCXDHFYISGTE-UHFFFAOYSA-N 0.000 description 4
- 238000005219 brazing Methods 0.000 description 4
- 229940117975 chromium trioxide Drugs 0.000 description 4
- WGLPBDUCMAPZCE-UHFFFAOYSA-N chromium trioxide Inorganic materials O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 4
- GAMDZJFZMJECOS-UHFFFAOYSA-N chromium(6+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Cr+6] GAMDZJFZMJECOS-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- XMTQQYYKAHVGBJ-UHFFFAOYSA-N 3-(3,4-DICHLOROPHENYL)-1,1-DIMETHYLUREA Chemical compound CN(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XMTQQYYKAHVGBJ-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000000462 isostatic pressing Methods 0.000 description 2
- 239000011858 nanopowder Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000005293 duran Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000010671 solid-state reaction Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003826 uniaxial pressing Methods 0.000 description 1
Images
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
一种高电位梯度氧化锌压敏电阻材料的制备和应用,属压敏电阻材料制造和应用的技术领域。所述材料的制备:将原料按摩尔比ZnO∶Bi2O3∶Sb2O3∶Cr2O3∶Co2O3∶MnO2为96.5∶0.7∶1.0∶0.5∶0.8∶0.5混合,通过第一次高能细磨、低温烧结、第二次高能细磨三步,得产品,高电位梯度氧化锌压敏电阻材料。所述材料的应用,即高电位梯度氧化锌压敏电阻的制备:以所述材料为原料,通过压制成型、低温烧结、涂电极银浆和焊接电极引线四步,得产品,高电位梯度氧化锌压敏电阻。本发明具有两次高能球磨使金属氧化物混合粉晶粒尺寸大大细化;烧结温度仅为900℃,使制得的高电位梯度氧化锌压敏电阻的晶粒尺寸为1.5-3.5μm;采用常规设备、工艺简单,生产成本低等优点。
The invention relates to the preparation and application of a high potential gradient zinc oxide varistor material, belonging to the technical field of varistor material manufacture and application. Preparation of the material: mix the raw materials in a molar ratio of ZnO: Bi 2 O 3 : Sb 2 O 3 : Cr 2 O 3 : Co 2 O 3 : MnO 2 is 96.5: 0.7: 1.0: 0.5: 0.8: 0.5, and pass The first high-energy fine grinding, low-temperature sintering, and the second high-energy fine grinding are three steps to obtain the product, a high-potential gradient zinc oxide varistor material. The application of the material, that is, the preparation of high-potential gradient zinc oxide varistors: using the material as raw material, through four steps of compression molding, low-temperature sintering, coating electrode silver paste and welding electrode leads, the product is obtained, and high-potential gradient oxidation Zinc Varistor. The invention has two high-energy ball mills to greatly refine the grain size of the metal oxide mixed powder; the sintering temperature is only 900°C, so that the grain size of the obtained high-potential gradient zinc oxide varistor is 1.5-3.5 μm; Conventional equipment, simple process, low production cost and other advantages.
Description
技术领域 technical field
本发明涉及一种高电位梯度氧化锌压敏电阻材料的制备和应用,确切说,涉及一种用低温烧结工艺制备高电位梯度氧化锌压敏电阻材料的方法和该材料的应用,属压敏电阻材料制造和应用的技术领域。The invention relates to the preparation and application of a high-potential gradient zinc oxide varistor material, to be precise, to a method for preparing a high-potential gradient zinc oxide varistor material by a low-temperature sintering process and the application of the material, which belongs to the varistor The technical field of fabrication and application of resistive materials.
背景技术 Background technique
氧化锌压敏电阻具有优异的伏-安特性,广泛用于制造避雷器阀片。为实现避雷器阀片的小型化和轻型化,降低制造成本,开发高电位梯度是发展趋势[1]。Viswanath [2]使用胶悬浮和离心分离法得到的超细纳米粉,在烧结温度750℃制备出电位梯度高达3000V/mm的氧化锌压敏电阻。Duran[3]也利用化学方法制得纳米粉,在两段烧结温度900℃及825℃下制备了电位梯度为2000V/mm的氧化锌压敏电阻。上两种方法均存在工艺复杂、成本高的缺点,难以形成规模生产。Oh[4]采用第一次无氧化铋粉末烧结,涂以含氧化铋浆料后再第二次烧结的办法,开发的氧化锌压敏电阻的电位梯度为500-900V/mm,但烧结温度高,第一次和第二次烧结温度分别1200-1350℃和1000-1200℃。Fah[5]采用接近工业化技术的高能球磨法,将粉料细化至17nm左右,先单轴压制再等静压成型,在烧结温度降至1100℃以下,制备出了电位梯度达440V/mm的氧化锌压敏电阻。Alamdari[6]采用与Fah不同的添加剂高能球磨,在1000℃下制备的氧化锌压敏电阻的电位梯度为1550V/mm。但最后两种方法的烧结温度仍然较高,等静压成型技术使成本增加。Zinc oxide varistors have excellent volt-ampere characteristics and are widely used in the manufacture of arrester valves. In order to realize the miniaturization and light weight of arrester valves and reduce manufacturing costs, it is a development trend to develop high potential gradients [1] . Viswanath [2] used ultrafine nano-powder obtained by gel suspension and centrifugal separation to prepare a zinc oxide varistor with a potential gradient as high as 3000V/mm at a sintering temperature of 750°C. Duran [3] also used chemical methods to prepare nano powders, and prepared zinc oxide varistors with a potential gradient of 2000V/mm at two-stage sintering temperatures of 900°C and 825°C. The above two methods all have the disadvantages of complicated process and high cost, and it is difficult to form large-scale production. Oh [4] adopts the method of sintering bismuth oxide-free powder for the first time, coating with bismuth oxide-containing slurry and then sintering the second time. The potential gradient of the developed zinc oxide varistor is 500-900V/mm, but the sintering temperature High, the first and second sintering temperatures are 1200-1350°C and 1000-1200°C respectively. Fah [5] used the high-energy ball milling method close to industrial technology to refine the powder to about 17nm, first uniaxial pressing and then isostatic pressing, and prepared a potential gradient of 440V/mm when the sintering temperature dropped below 1100°C. zinc oxide varistors. Alamdari [6] used high-energy ball milling with additives different from Fah, and the potential gradient of the zinc oxide varistor prepared at 1000 °C was 1550V/mm. However, the sintering temperature of the last two methods is still high, and the isostatic pressing technology increases the cost.
参考文献:references:
[1]李盛涛.ZnO压敏电阻片的基础研究和技术发展动态[J].电磁避雷器,1998,(3):42-48.[1] Li Shengtao. Basic research and technical development of ZnO varistors [J]. Electromagnetic arrester, 1998, (3): 42-48.
[2]R.N.Viswanath,S.Ramasamy,R.Ramamoorthy,etal.Preparation andcharacterization of nanocrystalline ZnO based materials for varistorapplications[J].Nanostructured materials,1995,6:993-996.[2] R.N.Viswanath, S.Ramasamy, R.Ramamoorthy, et al.Preparation and characterization of nanocrystalline ZnO based materials for varistor applications[J].Nanostructured materials, 1995, 6: 993-996.
[3]P.Duran,F.Capel,J.Tartaj,C.Moure.Effects of low-temperature annealing onthe microstructure and electrical properties of doped-ZnO varistors[J].KeyEngineering Materials,2002,206-213:1389-1392.[3]P.Duran, F.Capel, J.Tartaj, C.Moure.Effects of low-temperature annealing on the microstructure and electrical properties of doped-ZnO varistors[J].KeyEngineering Materials, 2002, 206-213: 1389- 1392.
[4]Myung H.Oh,Kyung J,Lee,In J.Chung,etal.Fabrication method for highvoltage zinc oxide varistor[P].U.S.:5004573,Apr.2,1991.[4]Myung H.Oh, Kyung J, Lee, In J.Chung, etal.Fabrication method for highvoltage zinc oxide varistor[P].U.S.: 5004573, Apr.2, 1991.
[5]C.P.Fah,J.Wang.Effect of high-energy mechanical activation on themicrostructure and electrical properties of ZnO-based varistors[J],Solid StateIonics,2000,132:107-117.[5] C.P.Fah, J.Wang.Effect of high-energy mechanical activation on the microstructure and electrical properties of ZnO-based varistors[J], Solid State Ionics, 2000, 132: 107-117.
[6]H.D.Alamdari,S.Boily,M.Blouin,etal.High energy ball milled nanocrystallineZnO varistors[J].Materials Science Forum,2000,343-346:909-917.[6] H.D. Alamdari, S. Boily, M. Blouin, et al. High energy ball milled nanocrystalline ZnO varistors [J]. Materials Science Forum, 2000, 343-346: 909-917.
发明内容 Contents of the invention
本发明要解决的第一个技术问题是提供一种高电位梯度氧化锌压敏电阻材料的制备方法。该方法有工艺简单、易于操作,对设备要求不高,生产成本低的优点。The first technical problem to be solved by the present invention is to provide a method for preparing a high potential gradient zinc oxide varistor material. The method has the advantages of simple process, easy operation, low requirement on equipment and low production cost.
本发明解决上述技术问题的技术方案是以商购微米级氧化锌ZnO、三氧化二铋Bi2O3、三氧化二锑Sb2O3、三氧化二铬Cr2O3、三氧化二钴Co2O3和二氧化锰MnO2为原料,将原料按摩尔比ZnO∶Bi2O3∶Sb2O3∶Cr2O3∶Co2O3∶MnO2为96.5∶0.7∶1.0∶0.5∶0.8∶0.5混合,通过第一次高能细磨、低温烧结、第二次高能细磨三步,得高电位梯度氧化锌压敏电阻材料。所述的材料是上述氧化物纳米级粉体的均匀混合粉。The technical solution of the present invention to solve the above technical problems is to use commercially available micron-sized zinc oxide ZnO, bismuth trioxide Bi 2 O 3 , antimony trioxide Sb 2 O 3 , dichromium trioxide Cr 2 O 3 , dicobalt trioxide Co 2 O 3 and manganese dioxide MnO 2 are used as raw materials, and the molar ratio of raw materials ZnO: Bi 2 O 3 : Sb 2 O 3 : Cr 2 O 3 : Co 2 O 3 : MnO 2 is 96.5: 0.7: 1.0: 0.5 : 0.8: 0.5, through the first three steps of high-energy fine grinding, low-temperature sintering, and second high-energy fine grinding, a high-potential gradient zinc oxide varistor material is obtained. The said material is the homogeneous mixed powder of the above-mentioned oxide nanoscale powder.
现详细说明上述的技术方案。The above-mentioned technical solution is now described in detail.
一种高电位梯度氧化锌压敏电阻材料的制备方法,其特征在于,具体操作步骤:A method for preparing a high-potential gradient zinc oxide varistor material, characterized in that, the specific operation steps:
第一步第一次高能细磨The first step is the first high-energy fine grinding
以商购微米级氧化锌ZnO、三氧化二铋Bi2O3、三氧化二锑Sb2O3、三氧化二铬Cr2O3、三氧化二钴Co2O3和二氧化锰MnO2粉体为原料,按摩尔比ZnO∶Bi2O3∶Sb2O3∶Cr2O3∶Co2O3∶MnO2为96.5∶0.7∶1.0∶0.5∶0.8∶0.5混合成金属氧化物混合粉,该混合粉放入高能球磨机,在转速和球粉比分别为300-650rpm和15-40∶1的高能球磨条件下,在无水乙醇中湿磨2-10小时,烘干,该混合粉再在相同的高能球磨条件下,干磨0.5小时,得干燥的金属氧化物混合粉;Commercially available micron-sized zinc oxide ZnO, bismuth trioxide Bi 2 O 3 , antimony trioxide Sb 2 O 3 , chromium trioxide Cr 2 O 3 , cobalt trioxide Co 2 O 3 and manganese dioxide MnO 2 The powder is used as the raw material, and the molar ratio of ZnO: Bi 2 O 3 : Sb 2 O 3 : Cr 2 O 3 : Co 2 O 3 : MnO 2 is 96.5: 0.7: 1.0: 0.5: 0.8: 0.5 to form a metal oxide mixture powder, the mixed powder is put into a high-energy ball mill, under the conditions of high-energy ball milling with a rotating speed and a ball-to-powder ratio of 300-650rpm and 15-40:1, respectively, wet-milling in absolute ethanol for 2-10 hours, drying, and mixing The powder was then dry-milled for 0.5 hour under the same high-energy ball milling conditions to obtain dry metal oxide mixed powder;
第二步低温烧结Second step low temperature sintering
将第一步得到的干燥金属氧化物混合粉压制后,在350-650℃下低温烧结1.5-2.5小时,得烧结块体;After pressing the dry metal oxide mixed powder obtained in the first step, sintering at a low temperature of 350-650° C. for 1.5-2.5 hours to obtain a sintered block;
第三步第二次高能细磨The third step is the second high-energy fine grinding
高能球磨条件:与第一步的相同,将第二步得到的烧结块体粉碎后,在无水乙醇中湿磨3-6小时,烘干,再干磨0.5小时,得高电位梯度氧化锌压敏电阻材料。High-energy ball milling conditions: the same as the first step, the sintered block obtained in the second step is pulverized, wet-milled in absolute ethanol for 3-6 hours, dried, and then dry-milled for 0.5 hours to obtain high-potential gradient zinc oxide Varistor material.
本发明的技术方案的进一步特征在于,高能球磨机是采用钢质耐磨球和尼龙罐的行星式高能球磨机。The further feature of the technical solution of the present invention is that the high-energy ball mill is a planetary high-energy ball mill using steel wear-resistant balls and nylon tanks.
本发明要解决的第二个技术问题是提供高电位梯度氧化锌压敏电阻材料的应用,确切说,提供一种以上述制得的材料为原料制备高电位梯度氧化锌压敏电阻的方法。The second technical problem to be solved by the present invention is to provide the application of high potential gradient zinc oxide varistor material, to be precise, to provide a method for preparing high potential gradient zinc oxide varistor using the above-mentioned prepared material as raw material.
本发明采用以下技术方案来实现上述技术问题。以上述制得的材料为原料,通过压制成型、低温烧结、涂电极银浆和焊接电极引线四步,得高电位梯度氧化锌压敏电阻。The present invention adopts the following technical solutions to achieve the above technical problems. Using the above-mentioned prepared materials as raw materials, the high-potential gradient zinc oxide varistor is obtained through four steps of pressing, low-temperature sintering, coating electrode silver paste and welding electrode leads.
现细述所述的的技术方案。Now describe the described technical scheme in detail.
一种制备高电位梯度氧化锌压敏电阻的方法,其特征在于,具体操作步骤:A method for preparing a high-potential gradient zinc oxide varistor, characterized in that, the specific operation steps:
第一步压制成型The first step of compression molding
将高电位梯度氧化锌压敏电阻材料压制成密度为5.50-5.57g/cm3柱形实体;Press the high potential gradient zinc oxide varistor material into a columnar entity with a density of 5.50-5.57g/ cm3 ;
第二步低温烧结Second step low temperature sintering
将第一步得到的柱形实体放入电阻炉中,900℃下低温烧结2-8小时;Put the columnar entity obtained in the first step into a resistance furnace, and sinter at a low temperature of 900°C for 2-8 hours;
第三步涂电极银浆The third step is to apply electrode silver paste
在第二步烧成的柱形实体的两个端面上,涂上电极银浆,放入电阻炉,600℃下保温10-30分钟,随炉冷却至室温;Coat the electrode silver paste on both ends of the columnar entity fired in the second step, put it into a resistance furnace, keep it warm at 600°C for 10-30 minutes, and cool to room temperature with the furnace;
第四步焊接电极引线The fourth step is to weld the electrode leads
在第三步烧成的电极银浆面上,采用钎焊工艺焊接电极引线,得高电位梯度氧化锌压敏电阻。On the silver paste surface of the electrode fired in the third step, the electrode leads are welded by a brazing process to obtain a high potential gradient zinc oxide varistor.
上述产品的指标:密度为5.50-5.57g/cm3,压敏电位(V1mA)梯度为820-900V/mm,非线性指数为31-40,漏电流(0.75V1mA下)为6.27-9.60μA。The indicators of the above products: density is 5.50-5.57g/cm 3 , varistor potential (V 1mA ) gradient is 820-900V/mm, nonlinear index is 31-40, leakage current (0.75V 1mA ) is 6.27-9.60 μA.
与背景技术相比,本发明具有下列突出优点:Compared with the background technology, the present invention has the following outstanding advantages:
(1)X射线衍射(XRD)分析表明,两次高能球磨后,金属氧化物混合粉的晶粒尺寸减小到22nm左右,粒度大大细化,确保具有良好的低温烧结性能。(1) X-ray diffraction (XRD) analysis shows that after two times of high-energy ball milling, the grain size of the metal oxide mixed powder is reduced to about 22nm, and the grain size is greatly refined, ensuring good low-temperature sintering performance.
(2)第二步的低温烧结工艺使金属氧化物混合粉各组分之间进行一定的固相反应,各组分的分散均匀程度大大提高,同时由于降低了原料的活性,改善了原料的烧成性能,对获得均匀一致的金属氧化物混合粉烧结体具有极大的促进作用。(2) The low-temperature sintering process in the second step causes a certain solid-state reaction between the components of the metal oxide mixed powder, and the dispersion uniformity of each component is greatly improved. The sintering performance has a great promotion effect on obtaining a uniform metal oxide mixed powder sintered body.
(3)烧结温度大大降低,仅为900℃。扫描电镜断口分析表明,本发明方法制得的高电位梯度氧化锌压敏电阻的晶粒尺寸为1.5-3.5μm。(3) The sintering temperature is greatly reduced, only 900°C. Fracture analysis of the scanning electron microscope shows that the crystal grain size of the high potential gradient zinc oxide varistor prepared by the method of the invention is 1.5-3.5 μm.
(4)采用常规设备、工艺简单,生产成本低。(4) Conventional equipment is adopted, the process is simple, and the production cost is low.
本发明所涉方法制备的高电位梯度氧化锌压敏电阻与国内外同类电阻的性能对比,列于表1。The performance comparison between the high potential gradient zinc oxide varistor prepared by the method of the present invention and similar resistors at home and abroad is listed in Table 1.
表1Table 1
附图说明 Description of drawings
图1是金属氧化物混合粉经高能球磨:5小时湿磨和1小时干磨的处理后,其X射线衍射图谱。Figure 1 is the X-ray diffraction pattern of metal oxide mixed powder after high energy ball milling: 5 hours of wet milling and 1 hour of dry milling.
图2是金属氧化物混合粉经高能球磨:5小时湿磨和1小时干磨、900℃温度下烧结和保温2小时的处理后,其扫描电镜断口形貌。Figure 2 is the SEM fracture morphology of metal oxide mixed powder after high energy ball milling: wet milling for 5 hours and dry milling for 1 hour, sintering at 900°C and heat preservation for 2 hours.
具体实施方式 Detailed ways
所有的实施例均完全按照上述高电位梯度氧化锌压敏电阻材料的制备方法和上述高电位梯度氧化锌压敏电阻的制备方法的操作步骤进行操作。All the embodiments are completely operated according to the above-mentioned preparation method of the high-potential gradient zinc oxide varistor material and the above-mentioned preparation method of the high-potential gradient zinc oxide varistor.
实施例1Example 1
(1)制备高电位梯度氧化锌压敏电阻材料(1) Preparation of high potential gradient zinc oxide varistor materials
第一步中,以商购微米级氧化锌ZnO、三氧化二铋Bi2O3、三氧化二锑Sb2O3、三氧化二铬Cr2O3、三氧化二钴Co2O3和二氧化锰MnO2粉体为原料,按摩尔比ZnO∶Bi2O3∶Sb2O3∶Cr2O3∶Co2O3∶MnO2为96.5∶0.7∶1.0∶0.5∶0.8∶0.5混合成金属氧化物混合粉。高能球磨机为行星式高能球磨机,采用钢质耐磨球和尼龙罐。高能球磨条件:转速620rpm,球粉比16∶1。无水乙醇中湿磨2小时,烘干,干磨0.5小时。第二步中,10吨万能液压机下压制成块,电阻炉中380℃下低温烧结1.5小时。第三步中,烧结块体粉碎。高能球磨条件:与第一步的相同。无水乙醇中湿磨3小时,烘干,干磨0.5小时,得高电位梯度氧化锌压敏电阻材料。In the first step, commercially available micron-sized zinc oxide ZnO, bismuth trioxide Bi 2 O 3 , antimony trioxide Sb 2 O 3 , chromium trioxide Cr 2 O 3 , cobalt trioxide Co 2 O 3 and Manganese dioxide MnO 2 powder is used as raw material, and the molar ratio of ZnO: Bi 2 O 3 : Sb 2 O 3 : Cr 2 O 3 : Co 2 O 3 : MnO 2 is 96.5: 0.7: 1.0: 0.5: 0.8: 0.5 mixed into metal oxide mixed powder. The high-energy ball mill is a planetary high-energy ball mill, which uses steel wear-resistant balls and nylon tanks. High-energy ball milling conditions: rotating speed 620rpm, ball-to-powder ratio 16:1. Wet mill in absolute ethanol for 2 hours, dry and dry mill for 0.5 hour. In the second step, a 10-ton universal hydraulic press is pressed into blocks, and sintered at a low temperature of 380°C for 1.5 hours in a resistance furnace. In the third step, the sintered mass is pulverized. High energy ball milling conditions: the same as the first step. wet grinding in absolute ethanol for 3 hours, drying, and dry grinding for 0.5 hour to obtain a high potential gradient zinc oxide varistor material.
(2)制备高电位梯度氧化锌压敏电阻(2) Preparation of high potential gradient zinc oxide varistors
第一步中,将干燥的高电位梯度氧化锌压敏电阻材料在10吨万能液压机下压制成密度为5.50g/cm3的柱形实体,如Φ10×2.0mm的圆柱形标样。第二步中,将标样放入电阻炉中,900℃下低温烧结2小时。第三步中,在烧成标样的两个端面上,均匀地涂上电极银浆后,放入电阻炉中,600℃下保温10分钟,随炉冷却至室温。第四步中,在烧成的电极银浆面上,采用钎焊工艺焊接电极引线,得高电位梯度氧化锌压敏电阻。In the first step, the dry high-potential gradient zinc oxide varistor material is pressed into a columnar entity with a density of 5.50g/ cm3 under a 10-ton universal hydraulic press, such as a cylindrical standard sample of Φ10×2.0mm. In the second step, the standard sample was placed in a resistance furnace and sintered at a low temperature of 900°C for 2 hours. In the third step, evenly coat the electrode silver paste on the two end surfaces of the fired standard sample, put it into a resistance furnace, keep it warm at 600°C for 10 minutes, and cool down to room temperature with the furnace. In the fourth step, on the surface of the fired electrode silver paste, the electrode leads are welded by a brazing process to obtain a high potential gradient zinc oxide varistor.
上述产品,高电位梯度氧化锌压敏电阻的技术指标:密度为5.50g/cm3,压敏电位(V1mA)梯度为875.44V/mm,非线性指数为31.5,漏电流(0.75V1mA下)为9.60μA。The technical indicators of the above-mentioned products, high-potential gradient zinc oxide varistor: the density is 5.50g/cm 3 , the varistor potential (V 1mA ) gradient is 875.44V/mm, the nonlinear index is 31.5, the leakage current (0.75V 1mA) ) is 9.60μA.
实施例2Example 2
(1)制备高电位梯度氧化锌压敏电阻材料(1) Preparation of high potential gradient zinc oxide varistor materials
第一步中,以商购微米级氧化锌ZnO、三氧化二铋Bi2O3、三氧化二锑Sb2O3、三氧化二铬Cr2O3、三氧化二钴Co2O3和二氧化锰MnO2粉体为原料,按摩尔比ZnO∶Bi2O3∶Sb2O3∶Cr2O3∶Co2O3∶MnO2为96.5∶0.7∶1.0∶0.5∶0.8∶0.5混合成金属氧化物混合粉。高能球磨机为行星式高能球磨机,采用钢质耐磨球和尼龙罐。高能球磨条件:转速460rpm,球粉比20∶1。无水乙醇中湿磨2小时,烘干,干磨0.5小时。第二步中,15吨万能液压机下压制成块,电阻炉中550℃下低温烧结2小时。第三步中,烧结块体粉碎。高能球磨条件:与第一步的相同。无水乙醇中湿磨3小时,烘干,干磨0.5小时,得高电位梯度氧化锌压敏电阻材料。In the first step, commercially available micron-sized zinc oxide ZnO, bismuth trioxide Bi 2 O 3 , antimony trioxide Sb 2 O 3 , chromium trioxide Cr 2 O 3 , cobalt trioxide Co 2 O 3 and Manganese dioxide MnO 2 powder is used as raw material, and the molar ratio of ZnO: Bi 2 O 3 : Sb 2 O 3 : Cr 2 O 3 : Co 2 O 3 : MnO 2 is 96.5: 0.7: 1.0: 0.5: 0.8: 0.5 mixed into metal oxide mixed powder. The high-energy ball mill is a planetary high-energy ball mill, which uses steel wear-resistant balls and nylon tanks. High-energy ball milling conditions: rotating speed 460rpm, ball-to-powder ratio 20:1. Wet mill in absolute ethanol for 2 hours, dry and dry mill for 0.5 hour. In the second step, a 15-ton universal hydraulic press is pressed into blocks, and sintered at a low temperature of 550 ° C for 2 hours in a resistance furnace. In the third step, the sintered mass is pulverized. High energy ball milling conditions: the same as the first step. wet grinding in absolute ethanol for 3 hours, drying, and dry grinding for 0.5 hour to obtain a high potential gradient zinc oxide varistor material.
(2)制备高电位梯度氧化锌压敏电阻(2) Preparation of high potential gradient zinc oxide varistors
第一步中,将干燥的高电位梯度氧化锌压敏电阻材料在15吨万能液压机下压制成密度为5.56g/cm3的柱形实体,如Φ10×2.0mm的圆柱形标样。第二步中,将标样放入电阻炉中,900℃下低温烧结4小时。第三步中,在烧成标样的两个端面上,均匀地涂上电极银浆后,放入电阻炉中,600℃下保温20分钟,随炉冷却至室温。第四步中,在烧成的电极银浆面上,采用钎焊工艺焊接电极引线,得高电位梯度氧化锌压敏电阻。In the first step, the dry high-potential gradient zinc oxide varistor material is pressed into a columnar entity with a density of 5.56g/ cm3 under a 15-ton universal hydraulic press, such as a cylindrical standard sample of Φ10×2.0mm. In the second step, the standard sample was placed in a resistance furnace and sintered at a low temperature of 900°C for 4 hours. In the third step, evenly coat the electrode silver paste on the two end surfaces of the fired standard sample, put it into a resistance furnace, keep it at 600°C for 20 minutes, and cool down to room temperature with the furnace. In the fourth step, on the surface of the fired electrode silver paste, the electrode leads are welded by a brazing process to obtain a high potential gradient zinc oxide varistor.
上述产品,高电位梯度氧化锌压敏电阻的技术指标:密度为5.56g/cm3,压敏电位(V1mA)梯度为819.77V/mm,非线性指数为36,漏电流(0.75V1mA下)为6.27μA。The technical indicators of the above products, high potential gradient zinc oxide varistor: density is 5.56g/cm 3 , varistor potential (V 1mA ) gradient is 819.77V/mm, nonlinear index is 36, leakage current (0.75V 1mA ) is 6.27μA.
实施例3.Example 3.
(1)制备高电位梯度氧化锌压敏电阻材料(1) Preparation of high potential gradient zinc oxide varistor materials
第一步中,以商购微米级氧化锌ZnO、三氧化二铋Bi2O3、三氧化二锑Sb2O3、三氧化二铬Cr2O3、三氧化二钴Co2O3和二氧化锰MnO2粉体为原料,按摩尔比ZnO∶Bi2O3∶Sb2O3∶Cr2O3∶Co2O3∶MnO2为96.5∶0.7∶1.0∶0.5∶0.8∶0.5混合成金属氧化物混合粉。高能球磨机为行星式高能球磨机,采用钢质耐磨球和尼龙罐。高能球磨条件:转速320rpm,球粉比40∶1。无水乙醇中湿磨8小时,烘干,干磨0.5小时。第二步中,25吨万能液压机下压制成块,电阻炉中630℃下低温烧结2.5小时。第三步中,烧结块体粉碎。高能球磨条件:与第一步的相同。无水乙醇中湿磨6小时,烘干,干磨0.5小时,得高电位梯度氧化锌压敏电阻材料。In the first step, commercially available micron-sized zinc oxide ZnO, bismuth trioxide Bi 2 O 3 , antimony trioxide Sb 2 O 3 , chromium trioxide Cr 2 O 3 , cobalt trioxide Co 2 O 3 and Manganese dioxide MnO 2 powder is used as raw material, and the molar ratio of ZnO: Bi 2 O 3 : Sb 2 O 3 : Cr 2 O 3 : Co 2 O 3 : MnO 2 is 96.5: 0.7: 1.0: 0.5: 0.8: 0.5 mixed into metal oxide mixed powder. The high-energy ball mill is a planetary high-energy ball mill, which uses steel wear-resistant balls and nylon tanks. High-energy ball milling conditions: rotating speed 320rpm, ball-to-powder ratio 40:1. Wet grinding in absolute ethanol for 8 hours, drying, and dry grinding for 0.5 hours. In the second step, a 25-ton universal hydraulic press is pressed into blocks, and sintered at a low temperature of 630°C for 2.5 hours in a resistance furnace. In the third step, the sintered mass is pulverized. High energy ball milling conditions: the same as the first step. Wet grinding in absolute ethanol for 6 hours, drying, and dry grinding for 0.5 hours to obtain a high potential gradient zinc oxide varistor material.
(2)制备高电位梯度氧化锌压敏电阻(2) Preparation of high potential gradient zinc oxide varistors
第一步中,将干燥的高电位梯度氧化锌压敏电阻材料在25吨万能液压机下压制成密度为5.57g/cm3的柱形实体,如Φ10×2.0mm的圆柱形标样。第二步中,将标样放入电阻炉中,900℃下低温烧结4小时。第三步中,在烧成标样的两个端面上,均匀地涂上电极银浆后,放入电阻炉中,600℃下保温30分钟,随炉冷却至室温。第四步中,在烧成的电极银浆面上,采用钎焊工艺焊接电极引线,得高电位梯度氧化锌压敏电阻。In the first step, the dry high-potential gradient zinc oxide varistor material is pressed into a columnar entity with a density of 5.57g/ cm3 under a 25-ton universal hydraulic press, such as a cylindrical standard sample of Φ10×2.0mm. In the second step, the standard sample was placed in a resistance furnace and sintered at a low temperature of 900°C for 4 hours. In the third step, after evenly coating the electrode silver paste on the two end surfaces of the fired standard sample, put it into a resistance furnace, keep it warm at 600°C for 30 minutes, and cool down to room temperature with the furnace. In the fourth step, on the surface of the fired electrode silver paste, the electrode leads are welded by a brazing process to obtain a high potential gradient zinc oxide varistor.
上述产品,高电位梯度氧化锌压敏电阻的技术指标:密度为5.57g/cm3,压敏电位压敏电位(V1mA)梯度为870.00V/mm,非线性指数为40,漏电流(0.75V1mA下)为8.37μA。The technical indicators of the above products, high-potential gradient zinc oxide varistor: density is 5.57g/cm 3 , varistor potential varistor potential (V 1mA ) gradient is 870.00V/mm, nonlinear index is 40, leakage current (0.75 V at 1mA ) is 8.37µA.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100253985A CN100382205C (en) | 2005-04-26 | 2005-04-26 | Preparation and Application of High Potential Gradient Zinc Oxide Varistor Material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100253985A CN100382205C (en) | 2005-04-26 | 2005-04-26 | Preparation and Application of High Potential Gradient Zinc Oxide Varistor Material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1687999A CN1687999A (en) | 2005-10-26 |
CN100382205C true CN100382205C (en) | 2008-04-16 |
Family
ID=35306040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100253985A Expired - Fee Related CN100382205C (en) | 2005-04-26 | 2005-04-26 | Preparation and Application of High Potential Gradient Zinc Oxide Varistor Material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100382205C (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101286393B (en) * | 2008-05-16 | 2011-06-08 | 昆明理工大学 | Stratified structure low-voltage ZnO piezoresistor preparation method |
DE102009023846B4 (en) * | 2009-02-03 | 2024-02-01 | Tdk Electronics Ag | Varistor ceramic, multilayer component comprising the varistor ceramic, manufacturing process for the varistor ceramic |
JP2013505540A (en) * | 2009-09-17 | 2013-02-14 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Thick film conductive composition comprising nano-sized zinc additive |
CN102260073A (en) * | 2011-04-28 | 2011-11-30 | 江苏大学 | Zinc-oxide-based low-voltage voltage-sensitive ceramic thin film material and preparation method thereof |
CN102531569A (en) * | 2012-03-09 | 2012-07-04 | 江苏新澳电力技术有限公司 | Formula of high-resistivity nano-paste and preparation process thereof |
CN104446437A (en) * | 2014-11-24 | 2015-03-25 | 南京信息工程大学 | Zinc oxide semiconductor ceramic chip for lightning protection and preparation method for zinc oxide semiconductor ceramic chip |
CN107021750A (en) * | 2017-03-24 | 2017-08-08 | 合肥羿振电力设备有限公司 | A kind of high sensitivity Zinc-oxide piezoresistor |
CN108863344B (en) * | 2018-10-10 | 2024-02-23 | 贵州大学 | Preparation process of high-performance ZnO pressure-sensitive ceramic |
CN109987933B (en) * | 2019-04-01 | 2021-11-02 | 中国科学院上海硅酸盐研究所 | A kind of high gradient ZnO varistor ceramic material without Bi, Pr, V and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1404074A (en) * | 2002-09-13 | 2003-03-19 | 四川大学 | Material for producing voltage sensitive zine oxide resistor |
JP2004088032A (en) * | 2002-08-29 | 2004-03-18 | Meidensha Corp | Method of manufacturing voltage nonlinear resistor |
-
2005
- 2005-04-26 CN CNB2005100253985A patent/CN100382205C/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004088032A (en) * | 2002-08-29 | 2004-03-18 | Meidensha Corp | Method of manufacturing voltage nonlinear resistor |
CN1404074A (en) * | 2002-09-13 | 2003-03-19 | 四川大学 | Material for producing voltage sensitive zine oxide resistor |
Also Published As
Publication number | Publication date |
---|---|
CN1687999A (en) | 2005-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101464688B1 (en) | Process for producing zinc oxide varistor having high potential gradient and high non-linearity coefficient | |
JP2001516142A (en) | Nanocrystallite powder based varistor formed by mechanical grinding | |
CN102476949A (en) | Method for preparing zinc oxide piezoresistor material with controllable electrical property at low temperature | |
CN101700976B (en) | Formula of non-linear resistor for high voltage surge arrester and manufacturing method thereof | |
CN104478428B (en) | Zinc oxide piezoresistor material with high electric potential gradient | |
CN100486928C (en) | Zinc oxide varistor ceramics and preparation method thereof | |
CN110272275B (en) | Zinc oxide resistor sheet and preparation method thereof | |
CN102515741A (en) | Zinc oxide varistor material and preparation method thereof | |
CN101613199B (en) | High-performance zinc oxide composite ceramic voltage dependent resistor material and preparation method | |
CN100382205C (en) | Preparation and Application of High Potential Gradient Zinc Oxide Varistor Material | |
CN101279844A (en) | Zinc Oxide Varistor Ceramic Material Doped with Composite Rare Earth Oxide | |
CN107394035A (en) | A kind of Sb doping BiCuSeO thermoelectric materials and preparation method thereof | |
CN101702358B (en) | High voltage varistor and preparation method thereof | |
CN111470858A (en) | A kind of permanent magnet ferrite magnet with high pressure resistance and its manufacturing method | |
CN100485827C (en) | Method for preparing high-potential gradient zinc oxide piezoresistance by low-temperature sintering | |
CN103011793A (en) | Method for preparing nickel-zinc ferrite by using microwave technology | |
CN101265083A (en) | Zinc oxide varistor ceramic material doped with rare earth nitrate and preparation method thereof | |
CN104557016A (en) | High-nonlinearity frit doped zinc oxide voltage-sensitive ceramic material | |
CN1686934B (en) | Nano modification method for manufacturing TiO2 pressure-sensitive ceramic material and TiO2 pressure-sensitive ceramic resistance and its fabricated method | |
CN111517778A (en) | Low-temperature sintered zinc oxide pressure-sensitive ceramic and preparation method thereof | |
JP5337073B2 (en) | Current-voltage nonlinear resistor and method for manufacturing the same | |
JP4582851B2 (en) | Voltage non-linear resistor and lightning arrester using the voltage non-linear resistor | |
CN109513933B (en) | Preparation method of iron-based soft magnetic core with high temperature resistance and high surface resistance | |
CN101823875A (en) | Zinc oxide varistor material suitable for being used by electrical appliance working in high-tension inrush current and preparation method thereof | |
CN101286393A (en) | Manufacturing method of layered structure low-voltage ZnO varistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080416 Termination date: 20120426 |