JP2004087671A - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP2004087671A
JP2004087671A JP2002245114A JP2002245114A JP2004087671A JP 2004087671 A JP2004087671 A JP 2004087671A JP 2002245114 A JP2002245114 A JP 2002245114A JP 2002245114 A JP2002245114 A JP 2002245114A JP 2004087671 A JP2004087671 A JP 2004087671A
Authority
JP
Japan
Prior art keywords
region
conductivity type
semiconductor device
channel
well region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002245114A
Other languages
English (en)
Other versions
JP4020730B2 (ja
Inventor
Masayuki Nakano
中野 雅行
Akihide Shibata
柴田 晃秀
Seizo Kakimoto
柿本 誠三
Hiroshi Iwata
岩田 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002245114A priority Critical patent/JP4020730B2/ja
Publication of JP2004087671A publication Critical patent/JP2004087671A/ja
Application granted granted Critical
Publication of JP4020730B2 publication Critical patent/JP4020730B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

【課題】接合容量を増大させることなく基板バイアス効果の大きな半導体装置を提供する。
【解決手段】素子分離領域102、103上には多結晶半導体膜のソース・ドレイン領域114,115が、浅いウェル領域106,107上には単結晶半導体膜のチャネル領域108,108’が、素子分離領域に対して自己整合的に形成されている。浅いウェル領域106,107の不純物濃度はチャネル領域108,108’のそれより濃い。また、ソース・ドレイン領域114、115に形成されたゲート絶縁膜116の部分は、チャネル領域108、108’上に形成されたゲート絶縁膜116の部分よりも厚く形成されている。さらに、ゲート電極117と浅いウェル領域106,107を接続してDTMOSとしている。
【選択図】 図4

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置およびその製造方法に関する。より具体的には、例えば、ゲート電極とウェル領域が接続された動的閾値トランジスタ等の基板バイアス効果を利用する半導体装置およびその製造方法に関する。
【0002】
【従来の技術】
従来、ウェル領域のバイアスを変化させることにより生じる基板バイアス効果を利用した、低電圧駆動、低消費電力、かつ高速動作が可能なMOSFET(Metal Oxide Semiconductor Field Effect Transistor)技術として、バルク基板を用いた動的閾値動作トランジスタ(以下、DTMOS)が提案されている。
【0003】
ここで、DTMOSの効果について考察する。ここでは、Nチャネル型DTMOSに関して考察するが、Pチャネル型DTMOSについても、符号が異なる以外は同様である。
【0004】
上記DTMOSは、ゲート電極とウェル領域とが電気的に接続されている。そのため、ゲート電極にハイレベルの電位が与えられた時のみウェル領域のポテンシャルが上昇し、基板バイアス効果により実効的な閾値が低下し、駆動電流は通常のMOSFETの場合に比べて増加する。このため、低電源電圧で低リーク電流を維持しながら大きな駆動電流を得ることができる。したがって、低電圧駆動で低消費電力なMOSFETが実現される。
【0005】
ここで、DTMOSの基板バイアス効果について説明する。基板バイアス効果とは、ウェル領域にバイアスを印加すると、トランジスタの閾値が変化し、ドレイン電流が増減する効果のことである。基板バイアス効果の大きさをあらわす量として基板バイアス効果因子γを用いるのが便利である。以下、DTMOSで実現される基板バイアスとして順方向バイアスが印可される場合(ソース・ドレイン接合にとっては順方向となるバイアス)について説明する。
【0006】
γ=|ΔVt/Vb| …(1)
ここで、Vbはソース領域の電位を基準として浅いウェル領域に印加された電圧であり、ΔVtは浅いウェル領域に電圧Vbが印加されたことによる閾値のシフト量(負の値)である。ここでの閾値とは、浅いウェル領域に電圧Vbが常にかかった状態での閾値であり、ウェル領域の電圧が変動するDTMOSの実効的な閾値とは異なることに注意されたい。DTMOSにおいては、Vbが電源電圧VddのときのΔVtからγを求めることとする。
【0007】
(1)式から、浅いウェル領域に一定の電圧Vbをかけた時、γが大きいほど閾値のシフト量ΔVtが増加し、ドライブ電流が多く流れることが分かる。
【0008】
ところで、閾値のシフト量ΔVtはゲート酸化膜から基板側に伸びる空乏層の幅Xdと以下の関係を持つことが知られている。
【0009】
ΔVt∝ToxVdd/Xd …(2)
ここで、Toxはゲート絶縁膜厚である。したがって、(2)式から基板バイアス効果を増大するためには、ゲート絶縁膜から基板側に伸びる空乏層の幅Xdを抑制するのが効果的であることが分かる。
【0010】
ゲート絶縁膜から基板側に伸びる空乏層の幅Xdを抑制することにより基板バイアス効果因子γを増大させる方法が提案されている(Channel Profile Optimization and Device Design for Low−Power High Performance Dynamic Threshold MOSFET,C.Wann et al.,IEDM Tech. Dig.,p113,1996)。上記文献で示された構造について図10を用いて説明する。図10中、31はPチャネル型DTMOS、32はNチャネル型DTMOS、301はP型基板、302はN型の深いウェル領域、303はN型の浅いウェル領域、304はP型の浅いウェル領域、305はN型不純物濃度が濃い領域、306はP型不純物濃度が濃い領域、307はPチャネル型DTMOSのチャネル領域、308はNチャネル型DTMOSのチャネル領域、309はP拡散領域、310はN拡散領域、311はゲート絶縁膜、312はゲート電極、313は素子分離領域である。なお、図示していないが、各DTMOSにおいては、ゲート電極312と浅いウェル領域303,304とは夫々電気的に接続されている。
【0011】
上記不純物濃度が濃い領域305,306で電界が急峻に減衰し、該領域305,306がグランドプレートの役割を果たすため、空乏層の伸びは該領域305,306表面近傍に留まる。したがって、上記ゲート酸化膜311からチャネル領域307,308側に伸びる空乏層幅Xdは、チャネル領域307,308が十分に薄ければ、不純物濃度が濃い領域305,306がストッパーとなって制限される。それゆえ、(1),(2)式より基板バイアス効果因子γが大きくなる。したがって、上記動的閾値トランジスタ31,32の駆動電流をより大きくすることができる。
【0012】
【非特許文献1】
シー.ワン他(C.Wann et al.)著,「チャネル・プロファイル・オプティマイゼーション・アンド・デバイス・デザイン・フォー・ローパワー・ハイ・パーフォーマンス・ダイナミック・スレッショルド・MOSFET(Channel Profile Optimization and Device Design for Low−Power High Performance Dynamic Threshold MOSFET)」,アイデエム・テク・ダイジェスト(IEDM Tech. Dig.),1996年,p113
【0013】
【発明が解決しようとする課題】
しかしながら、上記従来技術によれば、P拡散領域309(N拡散領域310)と、N型の浅いウェル領域303(P型の浅いウェル領域304)との接合容量が大きいという問題があった。特に、N型不純物濃度が濃い領域305(P型不純物濃度が濃い領域306)とP拡散領域309(N拡散領域310)とが接しており、接合容量をさらに大きくしていた。このことがDTMOSの消費電力を増加させ、動作速度を遅くする要因となっていた。
【0014】
本発明は、上記問題を解決するべくなされたものであり、その主たる目的は、ゲート空乏層の伸びを抑制して駆動電流を大きくしたDTMOS等において、拡散層領域と浅いウェル領域との接合容量を低減し、より低消費電力で高速動作を可能にすることである。また、DTMOSには限らず、(1),(2)式に示すとおり基板バイアス効果因子γが大きくなる構造の半導体装置を提供することである。
【0015】
【課題を解決するための手段】
上記目的を達成するため、本発明の半導体装置は、
半導体基板と、
上記半導体基板内に形成された第2導電型のウェル領域と、
素子分離領域と、
上記素子分離領域上に形成された第1導電型のソース領域およびドレイン領域と、
上記ソース領域と上記ドレイン領域との間にあって、上記第2導電型のウェル領域上に形成された第2導電型のチャネル領域と、
上記チャネル領域、ソース領域およびドレイン領域上に形成されたゲート絶縁膜と、
上記ゲート絶縁膜上に形成されたゲート電極と
を備える。
【0016】
上記ウェル領域中の第2導電型を与える不純物濃度は、上記チャネル領域中の第2導電型を与える不純物濃度よりも濃く、かつ、上記ソース領域およびドレイン領域上に形成された上記ゲート絶縁膜の部分は、上記チャネル領域上に形成された上記ゲート絶縁膜の部分よりも厚い。
【0017】
本明細書において、第1導電型とは、P型又はN型を意味する。また、第2導電型とは、第1導電型がP型の場合はN型、N型の場合はP型を意味する。
【0018】
上記構成によれば、不純物濃度が薄い上記第2導電型のチャネル領域下に不純物濃度が濃い上記第2導電型の浅いウェル領域が形成されている。そのため、上記ゲート電極から上記チャネル領域に伸びる空乏層は、上記第2導電型のウェル領域によってその幅が抑制されるので、基板バイアス効果を大きくすることができる。したがって、半導体装置(素子)の駆動電流を大きくすることができる。
【0019】
また、上記ソース領域およびドレイン領域は上記素子分離領域上に形成されているので、上記ソース領域およびドレイン領域に纏わる接合容量を非常に小さくすることができると共に、上記ソース領域およびドレイン領域上に形成されたゲート絶縁膜の部分は、チャネル領域上に形成されたゲート絶縁膜の部分よりも厚く形成されているので、上記ゲート電極と、上記ソース領域およびドレイン領域とに纏わる容量を小さくすることができる。したがって、半導体装置を低消費電力化し、高速化することができる。
【0020】
また、1実施の形態の半導体装置は、
上記半導体基板内に形成された第1導電型の深いウェル領域を備え、
上記第2導電型のウェル領域は、上記第1導電型の深いウェル領域上に形成された第2導電型の浅いウェル領域であり、
上記ゲート電極と上記第2導電型の浅いウェル領域とは電気的に接続されている。
【0021】
上記構成によれば、上記ゲート電極から上記チャネル領域に伸びる空乏層は、上記第2導電型の浅いウェル領域によってその幅が抑制されるので、基板バイアス効果を大きくすることができるという上記効果が得られる上に、さらに、上記ゲート電極と上記第2導電型の浅いウェル領域とが電気的に接続されて、DTMOS構造になっているため、一層大きな基板バイアス効果が得られて、駆動電流を極めて大きくすることができる。したがって、駆動電流が極めて大きくて、低消費電力で、高速化されたDTMOSを実現することができる。
【0022】
1実施の形態では、
上記素子分離領域は、
上記第1導電型の深いウェル領域と上記第2導電型の浅いウェル領域との接合の深さより深い深さを有する深い素子分離領域と、
上記第1導電型の深いウェル領域と上記第2導電型の浅いウェル領域との接合の深さより浅い深さを有する絶縁層である浅い素子分離領域と
からなり、
上記浅い素子分離領域は、上記ソース領域およびドレイン領域と、上記第2導電型の浅いウェル領域との間に位置する。
【0023】
上記実施の形態によれば、上記素子分離領域は、上記第2導電型の浅いウェル領域を素子毎に分離するための上記深い素子分離領域と、上記ソース領域およびドレイン領域と、上記第2導電型の浅いウェル領域とを分離する上記絶縁層である浅い素子分離領域とからなっている。したがって、上記浅い素子分離領域である絶縁層下には上記第2導電型の浅いウェル領域が存在することとなるので、上記第2導電型の浅いウェル領域の抵抗を低減することができる。したがって、上記ゲート電極に与えられた電位が上記第2導電型の浅いウェル領域に伝達する際の遅延時間を短くすることができるので、DTMOSの基板バイアス効果を有効に利用することができる。
【0024】
また、1実施の形態では、
上記チャネル領域は単結晶半導体からなり、上記ソース領域およびドレイン領域は多結晶半導体からなる。
【0025】
上記実施の形態によれば、上記ソース領域およびドレイン領域は多結晶半導体からなるから、不純物拡散の制御が容易になる。すなわち、多結晶半導体は単結晶半導体に比べて極めて(100倍以上)拡散係数が大きいので、不純物は上記ソース領域および上記ドレイン領域となるべき領域(多結晶半導体からなる領域)には速やかに拡散し、上記チャネル領域となるべき領域(単結晶半導体からなる領域)にはほとんど拡散しない。したがって、チャネル幅が再現性良く制御されるので半導体装置の素子毎およびロット毎のばらつきを小さくすることができる。
【0026】
また、1実施の形態では、
上記ソース領域およびドレイン領域の一部をシリサイド化している。
【0027】
上記実施の形態によれば、上記ソース領域およびドレイン領域の一部がシリサイド化され、低抵抗化されている。したがって、半導体装置の駆動電流を更に大きくすることができる。
【0028】
また、1実施の形態では、
上記多結晶半導体の粒径が50nm以下である。
【0029】
上記実施の形態によれば、上記多結晶半導体の粒径が50nm以下であるので、上記多結晶半導体と単結晶半導体との拡散係数の差が極めて大きくなる。したがって、ソース領域およびドレイン領域となる拡散層領域の活性化アニールの温度を800℃以下に低温化できて、半導体装置の素子毎およびロット毎のばらつきをさらに小さくすることができる。多結晶半導体の粒径が50nmを越えると、拡散係数の差がそれ程大きくならなくて、ソース領域およびドレイン領域となる拡散層領域の活性化アニールの温度を800℃以下に低温化することができなくなるのである。
【0030】
また、1実施の形態では、
上記第2導電型のウェル領域中の第2導電型を与える不純物濃度は、上記チャネル領域中の第2導電型を与える不純物濃度よりも10倍以上濃くしている。
【0031】
上記実施の形態によれば、不純物濃度が薄い上記チャネル領域下に不純物濃度が十分(10倍以上)濃い上記第2導電型の浅いウェル領域が形成されている。このように、上記第2導電型の浅いウェル領域の不純物濃度が濃いため、電界の減衰が急峻になって、上記ゲート電極から上記チャネル領域に伸びる空乏層の幅がより有効に抑制されるので、制御性良く基板バイアス効果を大きくすることができる。したがって、半導体装置の駆動電流を極めて大きくすることができる。
【0032】
また、この発明の半導体装置の製造方法は、
半導体基板に第2導電型のウェル領域および素子分離領域を、上記第2導電型のウェル領域および素子分離領域が表面に露出した状態で形成する工程と、
上記第2導電型の浅いウェル領域が露出した領域では選択的に単結晶半導体膜がエピタキシャル成長する一方、上記素子分離領域上では選択的に多結晶半導体膜が成長する条件下で、上記表面に半導体膜を堆積する工程と、
上記多結晶半導体膜中に第1導電型の不純物を導入する工程と、
上記第1導電型の不純物を拡散させてソース領域およびドレイン領域を形成する工程と、
上記単結晶半導体膜からなるチャネル領域、上記ソース領域および上記ドレイン領域上にゲート絶縁膜を熱酸化法により形成する工程と
を備えることを特徴としている。
【0033】
上記発明によれば、上記素子分離領域および不純物濃度が濃い上記第2導電型のウェル領域を形成した後に、上記チャネル領域となる半導体膜を成膜するので、チャネル領域とウェル領域との界面付近で、不純物濃度分布の急峻なプロファイルを持たせることができる。したがって、MOSトランジスタやDTMOS等の半導体装置に所望の閾値を与え、かつ、上記第2導電型のウェル領域により空乏層幅を制限することが容易となる。
【0034】
また、上記発明によれば、上記第2導電型のウェル領域が露出した領域上では単結晶半導体膜を、上記素子分離領域上には多結晶半導体膜を自己整合的に形成し、上記第1導電型の不純物を上記多結晶半導体膜中に導入して拡散させることにより、上記ソース領域および上記ドレイン領域を形成している。そのため、特殊な装置、プロセスを用いることなく、上記ソース領域およびドレイン領域と、上記第2導電型のウェル領域とを接触しないようにすることができ、上記ソース領域および上記ドレイン領域に纏わる接合容量を非常に小さくすることができる。
【0035】
更にまた、上記ゲート絶縁膜を形成する前に、上記第1導電型の不純物を拡散させて上記ソース領域およびドレイン領域を形成するため、上記ソース領域およびドレイン領域上に形成された上記ゲート絶縁膜の部分は、チャネル領域上に形成された上記ゲート絶縁膜の部分の厚さよりも厚く形成される。このため、上記ゲート電極と、上記ソース領域およびドレイン領域とに纏わる容量を小さくすることができる。
【0036】
また、1実施の形態では、
上記半導体膜を表面に堆積する工程は、化学気相成長法により650℃以上の成長温度により上記半導体膜を形成する。
【0037】
上記実施の形態によれば、制御性良く50nm以下の上記多結晶半導体膜を形成することができる。
【0038】
また、1実施の形態では、
上記第1導電型の不純物を拡散させて上記ソース領域および上記ドレイン領域を形成する工程は酸素雰囲気にて行う。
【0039】
上記実施の形態によれば、酸素雰囲気中でアニールするので増速拡散現象が起こり、例えば窒素雰囲気中でのアニールと比べて多結晶シリコン膜中の不純物速度を大きくすることができる。これにより、アニール時間の短縮やアニール温度のさらなる低減が可能となる。
【0040】
また、1実施の形態では、
上記第1導電型の不純物を拡散させて上記ソース領域およびドレイン領域を形成する工程と上記ゲート絶縁膜を熱酸化法により形成する工程とは同時に行われる。
【0041】
上記実施の形態によれば、工程を簡略化することができる。
【0042】
【発明の実施の形態】
以下、本発明を図示の実施の形態により詳細に説明する。
【0043】
本発明に使用することができる半導体基板は、特に限定されないが、シリコン基板が好ましい。また、半導体基板は、P型またはN型の導電型を有していても良い。
【0044】
(実施の形態1)
本実施の形態1の半導体装置は、半導体基板上の活性領域上にチャネル領域を、素子分離領域上に拡散領域を、夫々自己整合的に形成することにより、拡散領域に纏わる接合容量を著しく小さくしたものである。本実施の形態1の半導体装置を、図1および図2を用いて説明する。図1は本実施の形態1の半導体装置のゲート電極長手方向に垂直な方向の断面図である。なお、図1においては、層間絶縁膜および上部配線を省略している。図2は、図1のNチャネル型MOSトランジスタ11のゲート電極117端を拡大した図で、ゲート電極117と、ソース領域114およびドレイン領域114とのオーバーラップ容量を詳細に説明するものである。
【0045】
まず、図1により本実施の形態1の半導体装置の構成を説明する。
【0046】
シリコン半導体基板101内には、N型の深いウェル領域104およびP型の深いウェル領域105が形成されている。上記N型の深いウェル領域104上には、N型の深いウェル領域104よりも濃度の濃いN型の浅いウェル領域107が形成されている。また、上記P型の深いウェル領域105上には、P型の深いウェル領域105よりも濃度の濃いP型の浅いウェル領域106が形成されている。上記浅いウェル領域106,107は、絶縁層の一例としてのシリコン酸化膜からなる素子分離領域103により素子毎に電気的に分離されている。P型の浅いウェル領域106とN型の浅いウェル領域107とが直接接続されることは、リーク電流および容量の増大という問題を引き起こすため避けるべきで、浅いウェル領域106,107の深さは素子分離領域103の深さよりも浅いのが好ましい。もっとも、素子間の距離に十分余裕がある場合は、浅いウェル領域106,107の深さは両者が直接接続されない限り、素子分離領域103より深くても構わない。
【0047】
上記P型の浅いウェル領域106の上面および素子分離領域103の上面の一部は半導体薄膜で覆われている。上記半導体薄膜は、P型の浅いウェル領域106上ではP型不純物を含む単結晶半導体薄膜のチャネル領域108となり、素子分離領域103上では多結晶半導体薄膜のN拡散層領域114となっている。チャネル領域108上およびP型の浅いウェル領域106上にはゲート絶縁膜116を介してゲート電極117が形成されている。
【0048】
一方、上記N型の浅いウェル領域107の上面および素子分離領域103の上面の一部は半導体薄膜で覆われている。上記半導体薄膜は、N型の浅いウェル領域107上ではN型不純物を含む単結晶半導体薄膜のチャネル領域108’となり、素子分離領域103上では多結晶半導体薄膜のP拡散層領域115となっている。チャネル領域108’上およびN型の浅いウェル領域107上にはゲート絶縁膜116を介してゲート電極117が形成されている。
【0049】
上記単結晶半導体薄膜のチャネル領域108,108’は、浅いウェル領域106,107の上面よりも少し幅が広がって、一部が素子分離領域103の上に在る。
【0050】
本半導体薄膜は、一般的なシリコンが用いられるが、ゲルマニウムやシリコンゲルマニウム(SiGe)、またはこれらからなる積層膜でも良い。
【0051】
上記ゲート絶縁膜116は、チャネル領域108,108’上に形成された部分116aの膜厚よりも拡散層領域114,115上に形成された部分116bの膜厚のほうが2〜5倍厚い。
【0052】
したがって、上記ゲート電極117と拡散層領域(ソース・ドレイン領域)114,115とのオーバーラップ容量を小さくすることができる。図2を用いてこれを説明する。上記ゲート電極117はチャネル幅のバラツキによる素子特性のバラツキを抑制するためにチャネル領域108に対してデザインマージン(DM:素子分離に対するゲート電極の位置決め合わせ寸法)を持ってオーバーラップするように形成する必要がある。そのため、上記ゲート電極117は素子分離領域103(またはソース・ドレイン領域114)に対して自己整合的に形成できないため、ゲート電極117とソース・ドレイン領域114との間のオーバーラップ容量の増大が懸念される。しかしながら、本実施の形態1においては、図1,2に示すように、拡散層領域114,115上には、チャネル領域108,108’上のゲート絶縁膜(シリコン酸化膜)116の部分116aに対して2〜5倍の膜厚のゲート絶縁膜116の部分116bが形成されるため、ゲート電極117とソース・ドレイン領域114,115との間のオーバーラップ容量を小さくすることができる。
【0053】
上記チャネル領域108,108’の不純物濃度は、MOSトランジスタ11,12が所望の閾値を持つように決定すればよい。上記チャネル領域108,108’の最上層部には、MOSトランジスタ11,12がオン状態の時にはチャネル(反転層)が形成される。また、チャネル領域108,108’の厚さは、MOSトランジスタ11,12がオフ状態の時であっても完全に空乏化するように、チャネルが均一濃度の時の最大空乏層幅より小さく決定するのが好ましい。この場合、MOSトランジスタ11,12の基板バイアス効果を十分に引き出すことができる。具体的には、MOSトランジスタ11,12がオフ状態にあるとき、ゲート絶縁膜116側からチャネル領域108,108’中に伸びる空乏層の幅は、例えば、チャネル領域108,108’の不純物濃度が均一で1×1017cm−3のときの最大空乏層幅は約100nmである。したがって、チャネル領域108,108’の厚さは100nm以下であることが好ましい。チャネル領域108,108’の厚さと駆動電流との関係については実施の形態2において詳しく説明する。
【0054】
上記不純物濃度が濃い浅いウェル領域106,107で電界が急峻に減衰し、該ウェル領域106,107がグランドプレートの役割を果たすため、空乏層の伸びは該ウェル領域106,107表面近傍に留まる。したがって、上記浅いウェル領域106,107の濃度が濃いほど電界の減衰が急峻になり、より有効にチャネル領域108,108’から伸びる空乏層の伸びを抑制することができる。上記浅いウェル領域106,107の不純物濃度は、例えば、チャネル領域108,108’より10倍以上濃い1018cm−3〜1020cm−3とすることで、この空乏層の伸びを抑制する効果が大きくなるのでより望ましい。このように、上記ゲート電極117からチャネル領域108,108’に伸びる空乏層は、浅いウェル領域106,107によってその幅が抑制されるので、式(2)により、基板バイアス効果因子γを大きくすることができるのである。なお、上記チャネル領域108,108’と浅いウェル領域106,107との境界ではできるだけ急峻な不純物プロファイルを持つことが好ましい。なぜなら、プロファイルが緩慢に変化すると空乏層の伸びを阻止する能力が低下するからである。
【0055】
本実施の形態1の半導体装置は、チャネル領の不純物濃度が均一な従来の素子と比較して、ソース・ドレイン領域114,115間の電界強度に対して半導体基板表面とは垂直な方向の電界強度が大きいため、短チャネル効果を抑制する効果がある。
【0056】
ところで、図1から明らかなように、上記拡散層領域114,115は、チャネル領域108,108’とごく小さな面積の接合を持つのみであり、浅いウェル領域106,107とは接合を持たない。また、多結晶半導体の粒径が50nm以下で、多結晶半導体の拡散係数を単結晶半導体のそれに比べて極めて大きくすることができるので、不純物は上記ソース・ドレイン領域(ソース領域およびドレイン領域)114,115となるべき領域(多結晶半導体からなる領域)には速やかに拡散し、上記チャネル領域108,108’となるべき領域(単結晶半導体からなる領域)にはほとんど拡散しない。また、上記拡散層領域(ソース・ドレイン領域)114,115は素子分離領域103上に、かつ、その素子分離領域103に対して自己整合的に形成されている。したがって、上記拡散層領域114,115に纏わる接合容量を非常に小さくすることができると共に、チャネル幅が再現性良く制御されるので半導体装置の素子毎およびロット毎のばらつきを小さくすることができる。
【0057】
なお、本実施の形態1の半導体装置の製造手順は、後述する実施の形態2の半導体装置の製造手順に対して、後述する深い素子分離領域102が存在しないこと、浅いウェル領域106,107の形成領域が異なること、および、ゲート電極117と浅いウェル領域106,107とが接続されていないこと以外は同じなので、ここでは省略する。
【0058】
(実施の形態2)
本実施の形態2の半導体装置は、実施の形態1の半導体装置において、ゲート電極と浅いウェル領域が接続されたDTMOSにして基板バイアス効果を一層高めて、より大きな駆動力を得るものである。本実施の形態2の半導体装置を、図3〜図8を用いて説明する。図3は本実施の形態2の半導体装置の平面図であり、図4は図3の切断面線A−A’からみた断面図であり、図5は図3の切断面線B−B’からみた断面図である。なお、図3〜図5においては、層間絶縁膜および上部配線を省略している。図6および図7は、本実施の形態2の半導体装置を製造する手順を説明するものである。図8は、チャネル領域の厚さと駆動電流との関係を説明するものである。
【0059】
まず、図3〜図5により本実施の形態2の半導体装置の構成を説明する。
【0060】
図4に示すように、半導体基板101内には、N型の深いウェル領域104およびP型の深いウェル領域105が形成されている。このN型の深いウェル領域104上には、P型の浅いウェル領域106が形成されている。上記P型の深いウェル領域105上には、N型の浅いウェル領域107が形成されている。上記浅いウェル領域106,107は、絶縁層の一例としてのシリコン酸化膜からなる深い素子分離領域102により素子毎に電気的に分離されている。
【0061】
上記P型の浅いウェル領域106内には、絶縁層の一例としてのシリコン酸化膜からなる浅い素子分離領域103が形成されている。図3,4に示すように、上記P型の浅いウェル領域106の上面および素子分離領域102,103の上面の一部は半導体薄膜で覆われている。上記半導体薄膜は、P型の浅いウェル領域106上ではP型不純物を含む単結晶半導体薄膜からなるチャネル領域108となり、素子分離領域102,103上では多結晶半導体薄膜からなるN拡散層領域114となっている。上記拡散層領域114とP型の浅いウェル領域106との間に上記浅い素子分離領域103が位置している。上記チャネル領域108上およびP型の浅いウェル領域106上にはゲート絶縁膜116を介してゲート電極117が形成されている。図3,5に示すように、ゲート電極117の一部は除去されてP型の浅いウェル領域106が露出し(図3中の領域131を参照)、P型の浅いウェル領域106が露出した領域にはP拡散層132(図5参照)が形成されている。図示しないが、ゲート電極117とP拡散層132にまたがってコンタクトが形成されており、ゲート電極117とP型の浅いウェル領域106とがオーミック接続されている。かくして、Nチャネル型DTMOS21が構成されている。
【0062】
一方、上記N型の浅いウェル領域107内には、絶縁層の一例としてのシリコン酸化膜からなる浅い素子分離領域103が形成されている。上記N型の浅いウェル領域107の上面および素子分離領域102,103の上面の一部は半導体薄膜で覆われている。上記半導体薄膜は、N型の浅いウェル領域107上ではN型不純物を含む単結晶半導体薄膜からなるチャネル領域108’となり、素子分離領域102,103上では多結晶半導体薄膜からなるP拡散層領域115となっている。上記拡散層領域115とN型の浅いウェル領域107との間に上記浅い素子分離領域103が位置している。上記チャネル領域108’上およびN型の浅いウェル領域107上にはゲート絶縁膜116を介してゲート電極117が形成されている。図示しないが、ゲート電極117の一部は除去されてN型の浅いウェル領域107が露出し(図3中の領域131を参照)、N型の浅いウェル領域107が露出した領域にはN拡散層が形成されている。図示しないが、ゲート電極117とN拡散層にまたがってコンタクトが形成されており、ゲート電極117とN型の浅いウェル領域107とがオーミック接続されている。かくして、Pチャネル型DTMOS22が構成されている。
【0063】
上記浅いウェル領域106,107の不純物濃度は、実施の形態1の半導体装置と同様に、ゲート電極117からチャネル領域108,108に伸びる空乏層の幅を抑制して、基板バイアス効果因子γを大きくするために、チャネル領域108,108’の不純物濃度に比べて濃く形成されている。また、図示していないが、上記浅いウェル領域106,107と深いウェル領域104,105とに纏わる容量を低減するために、両者の間に浅いウェル領域106,107よりも不純物濃度が薄い浅いウェル領域と同じ導電型のウェル領域を形成しても良い。
【0064】
本半導体薄膜には、シリコンが用いられているが、ゲルマニウムやシリコンゲルマニウム(SiGe)、またはこれらからなる積層膜を用いても良い。
【0065】
素子分離領域は、深い素子分離領域102のみの単一の深さを持っていてもよいが、上述のように、深い素子分離領域102と浅い素子分離領域103とからなることが望ましい。上記浅い素子分離領域103を併用することにより、上記浅い素子分離領域103下に浅いウェル領域106,107が存することとなる。そのため、上記浅い素子分離領域103下の浅いウェル領域106,107の抵抗を低減することができる。上記ゲート電極117に印加された電位が浅いウェル106,107に伝達される際、浅いウェル領域106,107の抵抗と浅いウェル領域106,107に纏わる接合容量の積で表される遅延が発生し、この遅延が素子のスイッチング時間と比べて無視できない時は、基板バイアス効果が有効に得られない。
【0066】
したがって、上記浅い素子分離領域103を併用すれば上記遅延が短くなり、DTMOSの基板バイアス効果を有効に利用することができる。
【0067】
また、上記浅い素子分離領域103は、ソース・ドレイン領域つまり拡散層領域114,115と浅いウェル領域106,107との接触を防止する目的で形成されているので、これらを分離可能な絶縁層であれば良い。したがって、図示はしていないが、本実施の形態2の後述する製造方法には限るものではなく、例えば、シリコン膜を浅いウェル領域全面に形成した後、チャネル領域になる領域のシリコン酸化膜のみを除去して形成しても良い。また、その膜厚は、ソース・ドレイン領域への不純物注入時にその不純物が絶縁層を突き抜けて浅いウェル領域にドープされない膜厚に設定されれば良い。
【0068】
上記チャネル領域108,108’の不純物濃度は、DTMOS21,22が所望の閾値を持つように決定すればよい。上記チャネル領域108,108’の最上層部には、DTMOS21,22がオン状態のときにはチャネル(反転層)が形成される。また、上記チャネル領域108,108’の厚さは、DTMOS21,22がオフ状態のときであっても完全に空乏化するように、チャネル領域108,108’が均一濃度のときの最大空乏層幅より小さく決定するのが好ましい。この場合、DTMOS21,22の基板バイアス効果を十分に引き出すことができる。具体的には、DTMOS21,22がオフ状態にあるとき、ゲート絶縁膜116側からチャネル領域108,108’中に伸びる空乏層の幅は、例えば、チャネル領域108,108’の不純物濃度が均一で1×1017cm−3のときの最大空乏層幅は約100nmである。したがって、チャネル領域108,108’の厚さは100nm以下であることが好ましい。
【0069】
さらに、上記チャネル領域108,108’の厚さと駆動電流との関係について、より詳しく説明する。図8は、本発明によるDTMOSのオフリーク電流Ioffが1×10−11A/μmのときの駆動電流(μA/μm)と、チャネル領域108,108’の厚さD(nm)との関係を示している。実効チャネル長Leffは、200nm、ゲート酸化膜厚Toxは2nmである。従来構造のDTMOSの駆動電流も合わせて点線で示している。本実施の形態2によるDTMOSは従来のDTMOSと比べて大きな駆動電流を実現することができる。また、D=12nmのとき駆動電流は極大値を示し最適な膜厚であることがわかる。以上のように、本実施の形態2によるDTMOSは最大で約80%の駆動力の向上が実現できる。ここで、この結果は、Ioffが1×10−11A/μmになる様に閾値電圧を設定したLeff=200nmにおける一例であって、Leff、Tox、チャネル濃度、閾値電圧により最適なDの値も変化する。
【0070】
本実施の形態2の半導体装置は、実施の形態1の半導体装置と同様に、チャネル濃度が均一な従来構造の素子と比較して、ソース・ドレイン間の電界強度に対して半導体基板表面とは垂直な方向の電界強度が大きいため、短チャネル効果を抑制する効果がある。また、DTMOS21,22においては、ゲート電極117の電位(順方向バイアス)がチャネル領域108,108’からウェル領域106,107に伝わって、ドレイン114,115から伸びる空乏層の幅を小さくできるので、実施の形態1と比して、より一層、基板バイアス効果を大きくできると共に短チャネル効果を抑制する効果がある。
【0071】
次に、本実施の形態2の半導体装置を製造する手順を、図6および図7を用いて説明する。図6および図7は、作成途中の素子の断面図で、図3の切断面線A−A’からみた断面に相当する。
【0072】
まず、図6(a)に示すように、半導体基板101中に公知の方法で素子分離領域102,103、深いウェル領域104,105、および、浅いウェル領域106,107を形成する。このとき、上記浅いウェル領域106,107の露出した表面付近の不純物濃度はチャネル領域と比較して十分濃くしておく(例えば、チャネル領域の不純物濃度が1017cm−3の場合、上記露出した表面付近の不純物濃度は10倍以上の1018cm−3〜1020cm−3にしておく。)。
【0073】
次に、図6(b)に示すように、活性領域である浅いウェル領域106,107が露出した領域上には単結晶半導体膜108,108’をエピタキシャル成長させ、素子分離領域102,103上には多結晶半導体膜109を堆積させる。上記浅いウェル領域106,107が露出した活性領域上の単結晶半導体膜108,108’は、エピタキシャル成長しているため、図6(b)に示すように、上記活性領域よりも広がって、一部が浅い素子分離領域103上に在る。例として、シリコン基板を用いてシリコン膜を形成する場合には、HF(弗化水素)処理により活性領域の表面を清浄化した後、LPCVD(減圧化学的気相成長)法により、例えば、580〜700℃(より好ましくは650〜700℃)、SiもしくはSiHガスが20〜100Paの条件でシリコン膜を堆積すれば、上記活性領域上にはシリコン単結晶膜108,108’を、素子分離領域102,103上には多結晶シリコン膜109を自己整合的に形成することができる。650℃以上の成長温度により形成した場合、制御性良く粒径が50nm以下の多結晶半導体膜109を形成することができる。したがって、後の工程であるソース・ドレイン領域すなわち拡散層領域の不純物活性化およびチャネル領域108,108’付近までの拡散のためのアニール温度を800℃以下に低温化することができるので、不純物濃度の濃い浅いウェル領域106,107からチャネル領域108,108’へのオートドーピングを抑制して界面を急峻に保つことができる。
【0074】
次に、図6(c)に示すように、単結晶半導体膜108,108’および多結晶半導体膜109の一部をエッチングにより除去し、パターン加工する。次に、Pチャネル型DTMOSおよびNチャネル型DTMOSのチャネル領域108’,108はレジスト110により覆い、Nチャネル型DTMOSのソース・ドレイン領域となる領域109にN型の不純物111(PやAsなど)を2×1015〜1×1016cm−2注入する。
【0075】
次に、図7(a)に示すように、レジスト110を除去後、図6(c)と同様にして、Nチャネル型DTMOSおよびPチャネル型DTMOSのチャネル領域108,108’はレジスト112により覆い、Pチャネル型DTMOSのソース・ドレイン領域となる領域109にP型の不純物113(B(ボロン)やBFなど)を2×1015〜1×1016cm−2注入する。
【0076】
このとき、上記単結晶半導体膜108,108’および多結晶半導体膜109の一部をエッチングによりパターン加工した後に、5〜20nmのシリコン酸化膜を形成して、注入時のスクリーン酸化膜として使用しても良い。また、チャネル領域108,108’上のレジストは、チャネル領域108,108’に不純物が直接注入されないようにチャネル領域108,108’に対してデザインマージン(DM)ほど余裕を持たせてチャネル領域108,108’を完全に覆うように形成されている。
【0077】
次に、図7(b)に示すように、上記レジスト112を除去後、アニール処理を施すことにより、Nチャネル型DTMOSにはN拡散層領域114が、Pチャネル型DTMOSにはP拡散層領域115がそれぞれ形成される。アニール処理は、例えば、700〜800℃の温度が好ましい。不純物はチャネル領域108,108’に直接注入されるのを防ぐために、チャネル領域108,108’からデザインマージンほど離れた位置に注入されるが、多結晶半導体膜109は拡散係数が非常に大きいため、本アニール処理により不純物は速やかに拡散する。一方、単結晶半導体膜108,108’中では不純物はゆっくりと拡散する。このため、アニール条件を適切に定めることにより、不純物が多結晶半導体膜109から単結晶半導体膜108,108’中にわずかに染み出した状態にすることができる。したがって、素子分離領域102,103に対して拡散層領域114,115つまりソース・ドレイン領域114,115を自己整合的に形成することができると共に、チャネル幅が再現性良く制御されるので半導体装置の素子毎およびロット毎のばらつきを小さくすることができる。また、上記拡散層領域114,115と浅いウェル領域106,107とをほとんど接触しないようにすることができるので、接合容量を小さくすることができる。ここで、本アニール処理は、酸素雰囲気中で行っても良い。酸素雰囲気中でアニールすると増速拡散現象により、例えば窒素雰囲気中と比べて多結晶シリコン膜109中の不純物拡散速度を大きくすることができる。これにより、アニール時間の短縮やアニール温度のさらなる低減が可能となる。また、この後に形成するゲート絶縁膜116を熱酸化法によるシリコン酸化膜で形成した場合、このシリコン酸化膜116の形成工程は、ソース・ドレイン領域つまり拡散層領域114,115の活性化のためのアニール工程と兼ねることができるので工程を簡略化することができる。
【0078】
次に、図7(c)に示すように、ゲート絶縁膜116a、116bおよびゲート電極117を形成する。ゲート絶縁膜は熱酸化法を用いてシリコン酸化膜を形成することにより得られる。そうすると、チャネル領域108、108’上にはゲート酸化膜116aが、ソース、ドレイン拡散層上にはチャネル領域108、108’上に形成されるゲート酸化膜116aよりも膜厚が2〜5倍程厚いゲート酸化膜116bがそれぞれ形成される。これは、不純物が高濃度にドープされたソース、ドレイン拡散層114、115のような領域上の熱酸化膜の成長速度は、不純物が低濃度しかドープされていないチャネル領域108、108’のような領域上よりも大きいからである。このように、ゲート酸化工程の前に不純物が高濃度にドープされたソース、ドレイン拡散層114、115を形成しているので、ソース、ドレイン拡散層領域114、115上にチャネル領域108、108’上よりも厚いゲート酸化膜を形成することができる。したがって、ゲート電極とソース、ドレイン電極とに纏わる容量を低減することができる。また、これを新たなプロセスステップを追加することなく、ゲート酸化工程のみで行うことができるので、生産コストを低減することができる。なお、図示していないが、ゲート電極117の一部(図3の領域131)が除去されてゲート電極117と浅いウェル領域106,107とを接続する領域が形成される。
【0079】
その後、公知の方法で上部配線等を形成して半導体装置が完成する。
【0080】
上記製造手順によれば、不純物濃度が濃い浅いウェル領域106,107を形成した後に、チャネル領域108,108’となる半導体膜を成膜するので、浅いウェル領域106,107とチャネル領域108,108’との界面付近で不純物濃度分布の急峻なプロファイルを持たせることができる。したがって、DTMOSに所望の閾値を与え、かつ、浅いウェル領域106,107により空乏層幅を制限することが容易にできる。
【0081】
また、上記製造手順によれば、実施の形態2の半導体装置の拡散層領域(ソース・ドレイン領域)114,115を自己整合的に形成することができる。すなわち、活性領域上では単結晶半導体膜108,108’を、素子分離領域102,103上には多結晶半導体膜109を自己整合的に形成し、その多結晶半導体膜109中に不純物を導入して拡散させることにより、拡散層領域114,115を形成している。そのため、上記拡散層領域114,115と浅いウェル領域106,107とはほとんど接触しないので、拡散層領域114,115に纏わる接合容量を非常に小さくすることができる。また、特殊なプロセス装置を用いること無く、所望の構造の半導体装置を得ることができる。
【0082】
(実施の形態3)
本実施の形態3の半導体装置は、本実施の形態2の半導体装置において、拡散層領域の一部およびゲート電極の上部をシリサイド化して抵抗を低減したものである。図9は、本実施の形態3の半導体装置の断面図である。
【0083】
図9中、既出の符号は、図4に示す実施の形態2で説明した構成部と同一構成部を指すので、詳しい説明は省略する。
【0084】
ゲート電極117の側壁にはゲート側壁絶縁膜118が形成されている。また、拡散層領域114,115のうち、ゲート側壁絶縁膜118で覆われていない部分はシリサイド化されると共に、ゲート電極117の上部もシリサイド化されて、それぞれ高融点のシリサイド層119が形成されている。上記ゲート側壁絶縁膜118は、ゲート電極117と拡散層領域114,115との短絡を防止する機能と、シリサイド層119が拡散層領域114,115とチャネル領域108,108’との接合に達するのを防止する機能とを持つ。
【0085】
本実施の形態3の半導体装置においては、拡散層領域114,115の一部およびゲート電極117の上部がシリサイド化されているので、これらの抵抗を低減することができる。特に、拡散層領域114,115は薄膜であり、もともと抵抗が大きいのでシリサイド化による低抵抗化の効果は大きい。したがって、DTMOSの駆動電流を更に大きくすることができる。
【0086】
なお、図示しないが、本実施の形態3の半導体装置のゲート側壁絶縁膜118およびシリサイド層119を用いる構成は、実施の形態1の半導体装置にも適用可能である。
【0087】
【発明の効果】
以上より明らかなように、この発明の半導体装置によれば、不純物濃度が薄い第2導電型のチャネル領域下に、不純物濃度が濃い第2導電型の浅いウェル領域を形成して、ゲート電極から上記チャネル領域に伸びる空乏層を、上記第2導電型のウェル領域によってその幅を抑制するので、基板バイアス効果を大きくして、半導体装置の駆動電流を大きくすることができる。
【0088】
また、ソース領域およびドレイン領域を、素子分離領域上に形成しているので、上記ソース領域およびドレイン領域に纏わる接合容量を非常に小さくすることができると共に、上記ソース領域およびドレイン領域上に形成されたゲート絶縁膜の部分は、チャネル領域上に形成されたゲート絶縁膜の部分よりも厚く形成されているので、上記ゲート電極と、上記ソース領域およびドレイン領域とに纏わる容量を小さくすることができる。したがって、半導体装置を低消費電力化し、高速化することができる。
【0089】
また、1実施の形態の半導体装置は、上記ゲート電極と上記第2導電型の浅いウェル領域とを電気的に接続して、DTMOS構造にしているため、一層大きな基板バイアス効果を得ることができて、駆動電流を更に大きくすることができて、低消費電力で、高速化されたDTMOSを実現することができる。
【0090】
また、この発明の半導体装置の製造方法によれば、素子分離領域および不純物濃度が濃い第2導電型のウェル領域を形成した後に、チャネル領域となる半導体膜を成膜するので、上記チャネル領域と浅いウェル領域との界面付近で、不純物濃度分布の急峻なプロファイルを持たせることができる。したがって、MOSトランジスタやDTMOS等の半導体装置に所望の閾値を与え、かつ、上記第2導電型のウェル領域により空乏層幅を制限することが容易となる。
【0091】
また、上記第2導電型のウェル領域が露出した領域上では単結晶半導体膜を、上記素子分離領域上には多結晶半導体膜を自己整合的に形成し、上記第1導電型の不純物を上記多結晶半導体膜中に導入して拡散させることにより、ソース領域およびドレイン領域を形成しているので、特殊な装置、プロセスを用いることなく、上記ソース領域およびドレイン領域と、上記第2導電型の浅いウェル領域とを接触しないようにすることができ、上記ソース領域およびドレイン領域に纏わる接合容量を非常に小さくすることができる。
【0092】
更にまた、上記ゲート絶縁膜を形成する前に、第1導電型の不純物を拡散させて上記ソース領域およびドレイン領域を形成するため、上記ソース領域およびドレイン領域上に形成された上記ゲート絶縁膜の部分は、チャネル領域上に形成された上記ゲート絶縁膜の部分の厚さよりも厚く形成して、上記ゲート電極と、上記ソース領域およびドレイン領域とに纏わる容量を小さくすることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1の半導体装置の断面図である。
【図2】本発明のゲート電極と、ソース領域およびドレイン領域とのオーバーラップ容量を詳細に説明する図である。
【図3】本発明の実施の形態2の半導体装置の平面図である。
【図4】図3の切断面線A−A’からみた断面図である。
【図5】図3の切断面線B−B’からみた断面図である。
【図6】図6(a)、(b)、(c)は本発明の実施の形態2の半導体装置の製造手順を説明する図である。
【図7】図7(a)、(b)、(c)は本発明の実施の形態2の半導体装置の製造手順を説明する図である。
【図8】本発明の実施の形態2の半導体装置における駆動電流とチャネル厚さの関係を説明する図である。
【図9】本発明の実施の形態3の半導体装置の断面図である。
【図10】従来の半導体装置の断面図である。
【符号の説明】
101 半導体基板
102、103 素子分離領域
104 N型の深いウェル領域
105 P型の深いウェル領域
106 P型の浅いウェル領域
107 N型の浅いウェル領域
108、108’ 単結晶半導体膜
109 多結晶半導体膜
110、112 レジスト
111 N型不純物
113 P型不純物
114 N拡散層領域
115、132 P拡散層領域
116 ゲート絶縁膜
117 ゲート電極
118 ゲート側壁絶縁膜
119 シリサイド層
131 P型の浅いウェルが露出している領域
11 Nチャネル型MOS
12 Pチャネル型MOS
21 Nチャネル型DTMOS
22 Pチャネル型DTMOS

Claims (10)

  1. 半導体基板と、
    上記半導体基板内に形成された第2導電型のウェル領域と、
    素子分離領域と、
    上記素子分離領域上に形成された第1導電型のソース領域およびドレイン領域と、
    上記ソース領域と上記ドレイン領域との間にあって、上記第2導電型のウェル領域上に形成された第2導電型のチャネル領域と、
    上記チャネル領域、ソース領域およびドレイン領域上に形成されたゲート絶縁膜と、
    上記ゲート絶縁膜上に形成されたゲート電極と
    を備え、
    上記ウェル領域中の第2導電型を与える不純物濃度は、上記チャネル領域中の第2導電型を与える不純物濃度よりも濃く、かつ、
    上記ソース領域およびドレイン領域上に形成された上記ゲート絶縁膜の部分は、上記チャネル領域上に形成された上記ゲート絶縁膜の部分よりも厚いことを特徴とする半導体装置。
  2. 請求項1に記載の半導体装置において、
    上記半導体基板内に形成された第1導電型の深いウェル領域を備え、
    上記第2導電型のウェル領域は、上記第1導電型の深いウェル領域上に形成された第2導電型の浅いウェル領域であり、
    上記ゲート電極と上記第2導電型の浅いウェル領域とは電気的に接続されていることを特徴とする半導体装置。
  3. 請求項2に記載の半導体装置において、
    上記素子分離領域は、
    上記第1導電型の深いウェル領域と上記第2導電型の浅いウェル領域との接合の深さより深い深さを有する深い素子分離領域と、
    上記第1導電型の深いウェル領域と上記第2導電型の浅いウェル領域との接合の深さより浅い深さを有する絶縁層である浅い素子分離領域と
    からなり、
    上記浅い素子分離領域は、上記ソース領域およびドレイン領域と、上記第2導電型の浅いウェル領域との間に位置することを特徴とする半導体装置。
  4. 請求項1に記載の半導体装置において、
    上記チャネル領域は単結晶半導体からなり、上記ソース領域およびドレイン領域は多結晶半導体からなることを特徴とする半導体装置。
  5. 請求項1に記載の半導体装置において、
    上記ソース領域およびドレイン領域の一部をシリサイド化したことを特徴とする半導体装置。
  6. 請求項4に記載の半導体装置において、
    上記多結晶半導体の粒径が50nm以下であることを特徴とする半導体装置。
  7. 請求項1に記載の半導体装置において、
    上記第2導電型のウェル領域中の第2導電型を与える不純物濃度は、上記チャネル領域中の第2導電型を与える不純物濃度よりも10倍以上濃いことを特徴とする半導体装置。
  8. 半導体基板に第2導電型のウェル領域および素子分離領域を、上記第2導電型のウェル領域および素子分離領域が表面に露出した状態で形成する工程と、
    上記第2導電型の浅いウェル領域が露出した領域では選択的に単結晶半導体膜がエピタキシャル成長する一方、上記素子分離領域上では選択的に多結晶半導体膜が成長する条件下で、上記表面に半導体膜を堆積する工程と、
    上記多結晶半導体膜中に第1導電型の不純物を導入する工程と、
    上記第1導電型の不純物を拡散させてソース領域およびドレイン領域を形成する工程と、
    上記単結晶半導体膜からなるチャネル領域、上記ソース領域および上記ドレイン領域上にゲート絶縁膜を熱酸化法により形成する工程と
    を備えることを特徴とする半導体装置の製造方法。
  9. 請求項8に記載の半導体装置の製造方法において、
    上記半導体膜を表面に堆積する工程は、化学気相成長法により650℃以上の成長温度により上記半導体膜を形成することを特徴とする半導体装置の製造方法。
  10. 請求項8に記載の半導体装置の製造方法において、
    上記第1導電型の不純物を拡散させて上記ソース領域およびドレイン領域を形成する工程は酸素雰囲気にて行うことを特徴とする半導体装置の製造方法。
JP2002245114A 2002-08-26 2002-08-26 半導体装置およびその製造方法 Expired - Fee Related JP4020730B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002245114A JP4020730B2 (ja) 2002-08-26 2002-08-26 半導体装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002245114A JP4020730B2 (ja) 2002-08-26 2002-08-26 半導体装置およびその製造方法

Publications (2)

Publication Number Publication Date
JP2004087671A true JP2004087671A (ja) 2004-03-18
JP4020730B2 JP4020730B2 (ja) 2007-12-12

Family

ID=32053405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002245114A Expired - Fee Related JP4020730B2 (ja) 2002-08-26 2002-08-26 半導体装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP4020730B2 (ja)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7560757B2 (en) 2005-06-09 2009-07-14 Kabushiki Kaisha Toshiba Semiconductor device with a structure suitable for miniaturization
JP2010118539A (ja) * 2008-11-13 2010-05-27 Toshiba Corp 不揮発性半導体記憶装置
WO2011103314A1 (en) * 2010-02-18 2011-08-25 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US8377783B2 (en) 2010-09-30 2013-02-19 Suvolta, Inc. Method for reducing punch-through in a transistor device
JP2013507001A (ja) * 2009-09-30 2013-02-28 スボルタ,インコーポレーテッド 電子デバイス及びシステム、並びにその製造方法及び使用方法
US8400219B2 (en) 2011-03-24 2013-03-19 Suvolta, Inc. Analog circuits having improved transistors, and methods therefor
US8404551B2 (en) 2010-12-03 2013-03-26 Suvolta, Inc. Source/drain extension control for advanced transistors
US8421162B2 (en) 2009-09-30 2013-04-16 Suvolta, Inc. Advanced transistors with punch through suppression
JP2013074146A (ja) * 2011-09-28 2013-04-22 Fujitsu Semiconductor Ltd 半導体装置及びその製造方法
US8461875B1 (en) 2011-02-18 2013-06-11 Suvolta, Inc. Digital circuits having improved transistors, and methods therefor
US8525271B2 (en) 2011-03-03 2013-09-03 Suvolta, Inc. Semiconductor structure with improved channel stack and method for fabrication thereof
US8530286B2 (en) 2010-04-12 2013-09-10 Suvolta, Inc. Low power semiconductor transistor structure and method of fabrication thereof
US8569128B2 (en) 2010-06-21 2013-10-29 Suvolta, Inc. Semiconductor structure and method of fabrication thereof with mixed metal types
US8569156B1 (en) 2011-05-16 2013-10-29 Suvolta, Inc. Reducing or eliminating pre-amorphization in transistor manufacture
US8599623B1 (en) 2011-12-23 2013-12-03 Suvolta, Inc. Circuits and methods for measuring circuit elements in an integrated circuit device
US8614128B1 (en) 2011-08-23 2013-12-24 Suvolta, Inc. CMOS structures and processes based on selective thinning
US8629016B1 (en) 2011-07-26 2014-01-14 Suvolta, Inc. Multiple transistor types formed in a common epitaxial layer by differential out-diffusion from a doped underlayer
US8637955B1 (en) 2012-08-31 2014-01-28 Suvolta, Inc. Semiconductor structure with reduced junction leakage and method of fabrication thereof
US8645878B1 (en) 2011-08-23 2014-02-04 Suvolta, Inc. Porting a circuit design from a first semiconductor process to a second semiconductor process
JP2014038956A (ja) * 2012-08-17 2014-02-27 Fujitsu Semiconductor Ltd 半導体装置及び半導体装置の製造方法
US8713511B1 (en) 2011-09-16 2014-04-29 Suvolta, Inc. Tools and methods for yield-aware semiconductor manufacturing process target generation
US8735987B1 (en) 2011-06-06 2014-05-27 Suvolta, Inc. CMOS gate stack structures and processes
US8748986B1 (en) 2011-08-05 2014-06-10 Suvolta, Inc. Electronic device with controlled threshold voltage
US8748270B1 (en) 2011-03-30 2014-06-10 Suvolta, Inc. Process for manufacturing an improved analog transistor
US8759872B2 (en) 2010-06-22 2014-06-24 Suvolta, Inc. Transistor with threshold voltage set notch and method of fabrication thereof
US8796048B1 (en) 2011-05-11 2014-08-05 Suvolta, Inc. Monitoring and measurement of thin film layers
US8811068B1 (en) 2011-05-13 2014-08-19 Suvolta, Inc. Integrated circuit devices and methods
US8816754B1 (en) 2012-11-02 2014-08-26 Suvolta, Inc. Body bias circuits and methods
US8819603B1 (en) 2011-12-15 2014-08-26 Suvolta, Inc. Memory circuits and methods of making and designing the same
US8863064B1 (en) 2012-03-23 2014-10-14 Suvolta, Inc. SRAM cell layout structure and devices therefrom
US8877619B1 (en) 2012-01-23 2014-11-04 Suvolta, Inc. Process for manufacture of integrated circuits with different channel doping transistor architectures and devices therefrom
US8883600B1 (en) 2011-12-22 2014-11-11 Suvolta, Inc. Transistor having reduced junction leakage and methods of forming thereof
US8895327B1 (en) 2011-12-09 2014-11-25 Suvolta, Inc. Tipless transistors, short-tip transistors, and methods and circuits therefor
US8970289B1 (en) * 2012-01-23 2015-03-03 Suvolta, Inc. Circuits and devices for generating bi-directional body bias voltages, and methods therefor
US8976575B1 (en) 2013-08-29 2015-03-10 Suvolta, Inc. SRAM performance monitor
US8988153B1 (en) 2013-03-09 2015-03-24 Suvolta, Inc. Ring oscillator with NMOS or PMOS variation insensitivity
US8994415B1 (en) 2013-03-01 2015-03-31 Suvolta, Inc. Multiple VDD clock buffer
US8995204B2 (en) 2011-06-23 2015-03-31 Suvolta, Inc. Circuit devices and methods having adjustable transistor body bias
US8999861B1 (en) 2011-05-11 2015-04-07 Suvolta, Inc. Semiconductor structure with substitutional boron and method for fabrication thereof
US9041126B2 (en) 2012-09-21 2015-05-26 Mie Fujitsu Semiconductor Limited Deeply depleted MOS transistors having a screening layer and methods thereof
US9054219B1 (en) 2011-08-05 2015-06-09 Mie Fujitsu Semiconductor Limited Semiconductor devices having fin structures and fabrication methods thereof
US9070477B1 (en) 2012-12-12 2015-06-30 Mie Fujitsu Semiconductor Limited Bit interleaved low voltage static random access memory (SRAM) and related methods
US9093997B1 (en) 2012-11-15 2015-07-28 Mie Fujitsu Semiconductor Limited Slew based process and bias monitors and related methods
US9093550B1 (en) 2012-01-31 2015-07-28 Mie Fujitsu Semiconductor Limited Integrated circuits having a plurality of high-K metal gate FETs with various combinations of channel foundation structure and gate stack structure and methods of making same
US9112495B1 (en) 2013-03-15 2015-08-18 Mie Fujitsu Semiconductor Limited Integrated circuit device body bias circuits and methods
US9112484B1 (en) 2012-12-20 2015-08-18 Mie Fujitsu Semiconductor Limited Integrated circuit process and bias monitors and related methods
US9112057B1 (en) 2012-09-18 2015-08-18 Mie Fujitsu Semiconductor Limited Semiconductor devices with dopant migration suppression and method of fabrication thereof
US9236466B1 (en) 2011-10-07 2016-01-12 Mie Fujitsu Semiconductor Limited Analog circuits having improved insulated gate transistors, and methods therefor
US9268885B1 (en) 2013-02-28 2016-02-23 Mie Fujitsu Semiconductor Limited Integrated circuit device methods and models with predicted device metric variations
US9299801B1 (en) 2013-03-14 2016-03-29 Mie Fujitsu Semiconductor Limited Method for fabricating a transistor device with a tuned dopant profile
US9299698B2 (en) 2012-06-27 2016-03-29 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
US9319013B2 (en) 2014-08-19 2016-04-19 Mie Fujitsu Semiconductor Limited Operational amplifier input offset correction with transistor threshold voltage adjustment
US9406567B1 (en) 2012-02-28 2016-08-02 Mie Fujitsu Semiconductor Limited Method for fabricating multiple transistor devices on a substrate with varying threshold voltages
US9431068B2 (en) 2012-10-31 2016-08-30 Mie Fujitsu Semiconductor Limited Dynamic random access memory (DRAM) with low variation transistor peripheral circuits
US9449967B1 (en) 2013-03-15 2016-09-20 Fujitsu Semiconductor Limited Transistor array structure
US9478571B1 (en) 2013-05-24 2016-10-25 Mie Fujitsu Semiconductor Limited Buried channel deeply depleted channel transistor
US9710006B2 (en) 2014-07-25 2017-07-18 Mie Fujitsu Semiconductor Limited Power up body bias circuits and methods

Cited By (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7560757B2 (en) 2005-06-09 2009-07-14 Kabushiki Kaisha Toshiba Semiconductor device with a structure suitable for miniaturization
US8928062B2 (en) 2008-11-13 2015-01-06 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and manufacturing method thereof
JP2010118539A (ja) * 2008-11-13 2010-05-27 Toshiba Corp 不揮発性半導体記憶装置
US9263523B2 (en) 2009-09-30 2016-02-16 Mie Fujitsu Semiconductor Limited Advanced transistors with punch through suppression
US8273617B2 (en) 2009-09-30 2012-09-25 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US11062950B2 (en) 2009-09-30 2021-07-13 United Semiconductor Japan Co., Ltd. Electronic devices and systems, and methods for making and using the same
US10074568B2 (en) 2009-09-30 2018-09-11 Mie Fujitsu Semiconductor Limited Electronic devices and systems, and methods for making and using same
US8604530B2 (en) 2009-09-30 2013-12-10 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US8421162B2 (en) 2009-09-30 2013-04-16 Suvolta, Inc. Advanced transistors with punch through suppression
US11887895B2 (en) 2009-09-30 2024-01-30 United Semiconductor Japan Co., Ltd. Electronic devices and systems, and methods for making and using the same
US10217668B2 (en) 2009-09-30 2019-02-26 Mie Fujitsu Semiconductor Limited Electronic devices and systems, and methods for making and using the same
US8975128B2 (en) 2009-09-30 2015-03-10 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US10224244B2 (en) 2009-09-30 2019-03-05 Mie Fujitsu Semiconductor Limited Electronic devices and systems, and methods for making and using the same
US8541824B2 (en) 2009-09-30 2013-09-24 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US8604527B2 (en) 2009-09-30 2013-12-10 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US10325986B2 (en) 2009-09-30 2019-06-18 Mie Fujitsu Semiconductor Limited Advanced transistors with punch through suppression
US9508800B2 (en) 2009-09-30 2016-11-29 Mie Fujitsu Semiconductor Limited Advanced transistors with punch through suppression
JP2013507001A (ja) * 2009-09-30 2013-02-28 スボルタ,インコーポレーテッド 電子デバイス及びシステム、並びにその製造方法及び使用方法
WO2011103314A1 (en) * 2010-02-18 2011-08-25 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US9865596B2 (en) 2010-04-12 2018-01-09 Mie Fujitsu Semiconductor Limited Low power semiconductor transistor structure and method of fabrication thereof
US8530286B2 (en) 2010-04-12 2013-09-10 Suvolta, Inc. Low power semiconductor transistor structure and method of fabrication thereof
US9496261B2 (en) 2010-04-12 2016-11-15 Mie Fujitsu Semiconductor Limited Low power semiconductor transistor structure and method of fabrication thereof
US9224733B2 (en) 2010-06-21 2015-12-29 Mie Fujitsu Semiconductor Limited Semiconductor structure and method of fabrication thereof with mixed metal types
US8569128B2 (en) 2010-06-21 2013-10-29 Suvolta, Inc. Semiconductor structure and method of fabrication thereof with mixed metal types
US9418987B2 (en) 2010-06-22 2016-08-16 Mie Fujitsu Semiconductor Limited Transistor with threshold voltage set notch and method of fabrication thereof
US9922977B2 (en) 2010-06-22 2018-03-20 Mie Fujitsu Semiconductor Limited Transistor with threshold voltage set notch and method of fabrication thereof
US8759872B2 (en) 2010-06-22 2014-06-24 Suvolta, Inc. Transistor with threshold voltage set notch and method of fabrication thereof
US8377783B2 (en) 2010-09-30 2013-02-19 Suvolta, Inc. Method for reducing punch-through in a transistor device
US8686511B2 (en) 2010-12-03 2014-04-01 Suvolta, Inc. Source/drain extension control for advanced transistors
US8404551B2 (en) 2010-12-03 2013-03-26 Suvolta, Inc. Source/drain extension control for advanced transistors
US9006843B2 (en) 2010-12-03 2015-04-14 Suvolta, Inc. Source/drain extension control for advanced transistors
US8563384B2 (en) 2010-12-03 2013-10-22 Suvolta, Inc. Source/drain extension control for advanced transistors
US9985631B2 (en) 2011-02-18 2018-05-29 Mie Fujitsu Semiconductor Limited Digital circuits having improved transistors, and methods therefor
US9680470B2 (en) 2011-02-18 2017-06-13 Mie Fujitsu Semiconductor Limited Digital circuits having improved transistors, and methods therefor
US9184750B1 (en) 2011-02-18 2015-11-10 Mie Fujitsu Semiconductor Limited Digital circuits having improved transistors, and methods therefor
US8461875B1 (en) 2011-02-18 2013-06-11 Suvolta, Inc. Digital circuits having improved transistors, and methods therefor
US9838012B2 (en) 2011-02-18 2017-12-05 Mie Fujitsu Semiconductor Limited Digital circuits having improved transistors, and methods therefor
US10250257B2 (en) 2011-02-18 2019-04-02 Mie Fujitsu Semiconductor Limited Digital circuits having improved transistors, and methods therefor
US8525271B2 (en) 2011-03-03 2013-09-03 Suvolta, Inc. Semiconductor structure with improved channel stack and method for fabrication thereof
US9111785B2 (en) 2011-03-03 2015-08-18 Mie Fujitsu Semiconductor Limited Semiconductor structure with improved channel stack and method for fabrication thereof
US9231541B2 (en) 2011-03-24 2016-01-05 Mie Fujitsu Semiconductor Limited Analog circuits having improved transistors, and methods therefor
US8400219B2 (en) 2011-03-24 2013-03-19 Suvolta, Inc. Analog circuits having improved transistors, and methods therefor
US8847684B2 (en) 2011-03-24 2014-09-30 Suvolta, Inc. Analog circuits having improved transistors, and methods therefor
US8748270B1 (en) 2011-03-30 2014-06-10 Suvolta, Inc. Process for manufacturing an improved analog transistor
US9093469B2 (en) 2011-03-30 2015-07-28 Mie Fujitsu Semiconductor Limited Analog transistor
US8796048B1 (en) 2011-05-11 2014-08-05 Suvolta, Inc. Monitoring and measurement of thin film layers
US8999861B1 (en) 2011-05-11 2015-04-07 Suvolta, Inc. Semiconductor structure with substitutional boron and method for fabrication thereof
US8811068B1 (en) 2011-05-13 2014-08-19 Suvolta, Inc. Integrated circuit devices and methods
US9741428B2 (en) 2011-05-13 2017-08-22 Mie Fujitsu Semiconductor Limited Integrated circuit devices and methods
US9362291B1 (en) 2011-05-13 2016-06-07 Mie Fujitsu Semiconductor Limited Integrated circuit devices and methods
US9966130B2 (en) 2011-05-13 2018-05-08 Mie Fujitsu Semiconductor Limited Integrated circuit devices and methods
US8569156B1 (en) 2011-05-16 2013-10-29 Suvolta, Inc. Reducing or eliminating pre-amorphization in transistor manufacture
US9793172B2 (en) 2011-05-16 2017-10-17 Mie Fujitsu Semiconductor Limited Reducing or eliminating pre-amorphization in transistor manufacture
US9514940B2 (en) 2011-05-16 2016-12-06 Mie Fujitsu Semiconductor Limited Reducing or eliminating pre-amorphization in transistor manufacture
US8937005B2 (en) 2011-05-16 2015-01-20 Suvolta, Inc. Reducing or eliminating pre-amorphization in transistor manufacture
US9508728B2 (en) 2011-06-06 2016-11-29 Mie Fujitsu Semiconductor Limited CMOS gate stack structures and processes
US9281248B1 (en) 2011-06-06 2016-03-08 Mie Fujitsu Semiconductor Limited CMOS gate stack structures and processes
US8735987B1 (en) 2011-06-06 2014-05-27 Suvolta, Inc. CMOS gate stack structures and processes
US8995204B2 (en) 2011-06-23 2015-03-31 Suvolta, Inc. Circuit devices and methods having adjustable transistor body bias
US8653604B1 (en) 2011-07-26 2014-02-18 Suvolta, Inc. Multiple transistor types formed in a common epitaxial layer by differential out-diffusion from a doped underlayer
US8916937B1 (en) 2011-07-26 2014-12-23 Suvolta, Inc. Multiple transistor types formed in a common epitaxial layer by differential out-diffusion from a doped underlayer
US8629016B1 (en) 2011-07-26 2014-01-14 Suvolta, Inc. Multiple transistor types formed in a common epitaxial layer by differential out-diffusion from a doped underlayer
US8748986B1 (en) 2011-08-05 2014-06-10 Suvolta, Inc. Electronic device with controlled threshold voltage
US8963249B1 (en) 2011-08-05 2015-02-24 Suvolta, Inc. Electronic device with controlled threshold voltage
US9054219B1 (en) 2011-08-05 2015-06-09 Mie Fujitsu Semiconductor Limited Semiconductor devices having fin structures and fabrication methods thereof
US9391076B1 (en) 2011-08-23 2016-07-12 Mie Fujitsu Semiconductor Limited CMOS structures and processes based on selective thinning
US9117746B1 (en) 2011-08-23 2015-08-25 Mie Fujitsu Semiconductor Limited Porting a circuit design from a first semiconductor process to a second semiconductor process
US8614128B1 (en) 2011-08-23 2013-12-24 Suvolta, Inc. CMOS structures and processes based on selective thinning
US8806395B1 (en) 2011-08-23 2014-08-12 Suvolta, Inc. Porting a circuit design from a first semiconductor process to a second semiconductor process
US8645878B1 (en) 2011-08-23 2014-02-04 Suvolta, Inc. Porting a circuit design from a first semiconductor process to a second semiconductor process
US8713511B1 (en) 2011-09-16 2014-04-29 Suvolta, Inc. Tools and methods for yield-aware semiconductor manufacturing process target generation
JP2013074146A (ja) * 2011-09-28 2013-04-22 Fujitsu Semiconductor Ltd 半導体装置及びその製造方法
US9087898B2 (en) 2011-09-28 2015-07-21 Fujitsu Semiconductor Limited Semiconductor device and method of manufacturing semiconductor device
US9236466B1 (en) 2011-10-07 2016-01-12 Mie Fujitsu Semiconductor Limited Analog circuits having improved insulated gate transistors, and methods therefor
US9583484B2 (en) 2011-12-09 2017-02-28 Mie Fujitsu Semiconductor Limited Tipless transistors, short-tip transistors, and methods and circuits therefor
US9385121B1 (en) 2011-12-09 2016-07-05 Mie Fujitsu Semiconductor Limited Tipless transistors, short-tip transistors, and methods and circuits therefor
US11145647B2 (en) 2011-12-09 2021-10-12 United Semiconductor Japan Co., Ltd. Tipless transistors, short-tip transistors, and methods and circuits therefor
US9953974B2 (en) 2011-12-09 2018-04-24 Mie Fujitsu Semiconductor Limited Tipless transistors, short-tip transistors, and methods and circuits therefor
US10573644B2 (en) 2011-12-09 2020-02-25 Mie Fujitsu Semiconductor Limited Tipless transistors, short-tip transistors, and methods and circuits therefor
US8895327B1 (en) 2011-12-09 2014-11-25 Suvolta, Inc. Tipless transistors, short-tip transistors, and methods and circuits therefor
US8819603B1 (en) 2011-12-15 2014-08-26 Suvolta, Inc. Memory circuits and methods of making and designing the same
US9196727B2 (en) 2011-12-22 2015-11-24 Mie Fujitsu Semiconductor Limited High uniformity screen and epitaxial layers for CMOS devices
US8883600B1 (en) 2011-12-22 2014-11-11 Suvolta, Inc. Transistor having reduced junction leakage and methods of forming thereof
US9368624B2 (en) 2011-12-22 2016-06-14 Mie Fujitsu Semiconductor Limited Method for fabricating a transistor with reduced junction leakage current
US9297850B1 (en) 2011-12-23 2016-03-29 Mie Fujitsu Semiconductor Limited Circuits and methods for measuring circuit elements in an integrated circuit device
US8599623B1 (en) 2011-12-23 2013-12-03 Suvolta, Inc. Circuits and methods for measuring circuit elements in an integrated circuit device
US8877619B1 (en) 2012-01-23 2014-11-04 Suvolta, Inc. Process for manufacture of integrated circuits with different channel doping transistor architectures and devices therefrom
US8970289B1 (en) * 2012-01-23 2015-03-03 Suvolta, Inc. Circuits and devices for generating bi-directional body bias voltages, and methods therefor
US9093550B1 (en) 2012-01-31 2015-07-28 Mie Fujitsu Semiconductor Limited Integrated circuits having a plurality of high-K metal gate FETs with various combinations of channel foundation structure and gate stack structure and methods of making same
US9385047B2 (en) 2012-01-31 2016-07-05 Mie Fujitsu Semiconductor Limited Integrated circuits having a plurality of high-K metal gate FETs with various combinations of channel foundation structure and gate stack structure and methods of making same
US9406567B1 (en) 2012-02-28 2016-08-02 Mie Fujitsu Semiconductor Limited Method for fabricating multiple transistor devices on a substrate with varying threshold voltages
US9424385B1 (en) 2012-03-23 2016-08-23 Mie Fujitsu Semiconductor Limited SRAM cell layout structure and devices therefrom
US8863064B1 (en) 2012-03-23 2014-10-14 Suvolta, Inc. SRAM cell layout structure and devices therefrom
US10217838B2 (en) 2012-06-27 2019-02-26 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
US9299698B2 (en) 2012-06-27 2016-03-29 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
US10014387B2 (en) 2012-06-27 2018-07-03 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
US9812550B2 (en) 2012-06-27 2017-11-07 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
JP2014038956A (ja) * 2012-08-17 2014-02-27 Fujitsu Semiconductor Ltd 半導体装置及び半導体装置の製造方法
US8637955B1 (en) 2012-08-31 2014-01-28 Suvolta, Inc. Semiconductor structure with reduced junction leakage and method of fabrication thereof
US9105711B2 (en) 2012-08-31 2015-08-11 Mie Fujitsu Semiconductor Limited Semiconductor structure with reduced junction leakage and method of fabrication thereof
US9112057B1 (en) 2012-09-18 2015-08-18 Mie Fujitsu Semiconductor Limited Semiconductor devices with dopant migration suppression and method of fabrication thereof
US9041126B2 (en) 2012-09-21 2015-05-26 Mie Fujitsu Semiconductor Limited Deeply depleted MOS transistors having a screening layer and methods thereof
US9431068B2 (en) 2012-10-31 2016-08-30 Mie Fujitsu Semiconductor Limited Dynamic random access memory (DRAM) with low variation transistor peripheral circuits
US8816754B1 (en) 2012-11-02 2014-08-26 Suvolta, Inc. Body bias circuits and methods
US9154123B1 (en) 2012-11-02 2015-10-06 Mie Fujitsu Semiconductor Limited Body bias circuits and methods
US9093997B1 (en) 2012-11-15 2015-07-28 Mie Fujitsu Semiconductor Limited Slew based process and bias monitors and related methods
US9319034B2 (en) 2012-11-15 2016-04-19 Mie Fujitsu Semiconductor Limited Slew based process and bias monitors and related methods
US9070477B1 (en) 2012-12-12 2015-06-30 Mie Fujitsu Semiconductor Limited Bit interleaved low voltage static random access memory (SRAM) and related methods
US9112484B1 (en) 2012-12-20 2015-08-18 Mie Fujitsu Semiconductor Limited Integrated circuit process and bias monitors and related methods
US9276561B2 (en) 2012-12-20 2016-03-01 Mie Fujitsu Semiconductor Limited Integrated circuit process and bias monitors and related methods
US9268885B1 (en) 2013-02-28 2016-02-23 Mie Fujitsu Semiconductor Limited Integrated circuit device methods and models with predicted device metric variations
US8994415B1 (en) 2013-03-01 2015-03-31 Suvolta, Inc. Multiple VDD clock buffer
US8988153B1 (en) 2013-03-09 2015-03-24 Suvolta, Inc. Ring oscillator with NMOS or PMOS variation insensitivity
US9577041B2 (en) 2013-03-14 2017-02-21 Mie Fujitsu Semiconductor Limited Method for fabricating a transistor device with a tuned dopant profile
US9893148B2 (en) 2013-03-14 2018-02-13 Mie Fujitsu Semiconductor Limited Method for fabricating a transistor device with a tuned dopant profile
US9299801B1 (en) 2013-03-14 2016-03-29 Mie Fujitsu Semiconductor Limited Method for fabricating a transistor device with a tuned dopant profile
US9548086B2 (en) 2013-03-15 2017-01-17 Mie Fujitsu Semiconductor Limited Integrated circuit device body bias circuits and methods
US9449967B1 (en) 2013-03-15 2016-09-20 Fujitsu Semiconductor Limited Transistor array structure
US9853019B2 (en) 2013-03-15 2017-12-26 Mie Fujitsu Semiconductor Limited Integrated circuit device body bias circuits and methods
US9112495B1 (en) 2013-03-15 2015-08-18 Mie Fujitsu Semiconductor Limited Integrated circuit device body bias circuits and methods
US9991300B2 (en) 2013-05-24 2018-06-05 Mie Fujitsu Semiconductor Limited Buried channel deeply depleted channel transistor
US9478571B1 (en) 2013-05-24 2016-10-25 Mie Fujitsu Semiconductor Limited Buried channel deeply depleted channel transistor
US9786703B2 (en) 2013-05-24 2017-10-10 Mie Fujitsu Semiconductor Limited Buried channel deeply depleted channel transistor
US8976575B1 (en) 2013-08-29 2015-03-10 Suvolta, Inc. SRAM performance monitor
US9710006B2 (en) 2014-07-25 2017-07-18 Mie Fujitsu Semiconductor Limited Power up body bias circuits and methods
US9319013B2 (en) 2014-08-19 2016-04-19 Mie Fujitsu Semiconductor Limited Operational amplifier input offset correction with transistor threshold voltage adjustment

Also Published As

Publication number Publication date
JP4020730B2 (ja) 2007-12-12

Similar Documents

Publication Publication Date Title
JP4020730B2 (ja) 半導体装置およびその製造方法
US7494861B2 (en) Method for metal gated ultra short MOSFET devices
JP3544833B2 (ja) 半導体装置及びその製造方法
US5792679A (en) Method for forming silicon-germanium/Si/silicon dioxide heterostructure using germanium implant
KR100597460B1 (ko) 반도체 소자의 트랜지스터 및제조방법
US7018901B1 (en) Method for forming a semiconductor device having a strained channel and a heterojunction source/drain
JP3982218B2 (ja) 半導体装置およびその製造方法
US7067868B2 (en) Double gate device having a heterojunction source/drain and strained channel
TW506076B (en) CMOS integrated circuit devices and substrates having buried silicon germanium layers therein and methods of forming same
US6713779B2 (en) Semiconductor device and method of manufacturing the same
CN101604691B (zh) 半导体器件和半导体器件的制造方法
TWI424566B (zh) 具有增加之臨限穩定性而沒有驅動電流降級之電晶體裝置及其製造方法
US20100102401A1 (en) Semiconductor transistor having a stressed channel
US20050285212A1 (en) Transistors with increased mobility in the channel zone and method of fabrication
JP2006019727A (ja) 勾配付き組み込みシリコン−ゲルマニウムのソース−ドレイン及び/又は延長部をもつ、歪みp型mosfetの構造及びこれを製造する方法
JP2000286418A (ja) 半導体装置および半導体基板
KR20020066191A (ko) Mos 전계 효과 트랜지스터
JP2701762B2 (ja) 半導体装置及びその製造方法
US6949777B2 (en) Method of controlling insulated gate transistor
CN105244375B (zh) 具有突变隧穿结的pnin/npip型ssoi tfet及制备方法
JP2002246601A (ja) 半導体装置及び半導体装置の製造方法
CN102738161B (zh) 一种双多晶双应变混合晶面Si基BiCMOS集成器件及制备方法
JP2004221530A (ja) 半導体装置
JP3600174B2 (ja) 半導体装置の製造方法及び半導体装置
JPH11168211A (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees