JP2004087514A - 固体撮像素子及びその製造方法 - Google Patents
固体撮像素子及びその製造方法 Download PDFInfo
- Publication number
- JP2004087514A JP2004087514A JP2002223554A JP2002223554A JP2004087514A JP 2004087514 A JP2004087514 A JP 2004087514A JP 2002223554 A JP2002223554 A JP 2002223554A JP 2002223554 A JP2002223554 A JP 2002223554A JP 2004087514 A JP2004087514 A JP 2004087514A
- Authority
- JP
- Japan
- Prior art keywords
- transfer
- semiconductor layer
- solid
- state imaging
- imaging device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Solid State Image Pick-Up Elements (AREA)
Abstract
【課題】画素の縮小化を図っても各種特性を確保することができるようにすることにより、縮小化や多画素化を図ることを可能にした構成の固体撮像素子及びその製造方法を提供する。
【解決手段】複数のセンサ部11と、読み出しゲート部12と、転送領域5及び転送電極7から成る転送レジスタ13とを有し、転送領域5及びセンサ部11が半導体層1内に形成され、この半導体層1の転送領域5の表面がセンサ部11の表面よりも深く形成されている固体撮像素子21を構成する。また、半導体層1の表面に転送領域5及び読み出しゲート部12を含むように凹部10を形成し、この凹部10の下に転送領域5を形成し、半導体層の表面に絶縁膜6を形成し、その上に凹部10を埋めるように転送電極7を形成し、さらに半導体層1の転送電極7のない部分にセンサ部11を形成して、上記固体撮像素子21を製造する。
【選択図】 図2
【解決手段】複数のセンサ部11と、読み出しゲート部12と、転送領域5及び転送電極7から成る転送レジスタ13とを有し、転送領域5及びセンサ部11が半導体層1内に形成され、この半導体層1の転送領域5の表面がセンサ部11の表面よりも深く形成されている固体撮像素子21を構成する。また、半導体層1の表面に転送領域5及び読み出しゲート部12を含むように凹部10を形成し、この凹部10の下に転送領域5を形成し、半導体層の表面に絶縁膜6を形成し、その上に凹部10を埋めるように転送電極7を形成し、さらに半導体層1の転送電極7のない部分にセンサ部11を形成して、上記固体撮像素子21を製造する。
【選択図】 図2
Description
【0001】
【発明の属する技術分野】
本発明は、センサ部と読み出しゲート部と転送レジスタ(電荷転送部)を有する固体撮像素子(及びその製造方法)に係わる。
【0002】
【従来の技術】
従来のCCD固体撮像素子の概略構成図を図13に示す。
このCCD固体撮像素子は、例えばシリコン基板等の半導体基板、或いは半導体基板及びその上の半導体エピタキシャル層から成る半導体基体51に、n型不純物領域52、p型の正電荷蓄積領域53、p型半導体ウエル領域54、n型の転送チャネル領域55、読み出しゲート部62、チャネルストップ領域64がそれぞれ不純物の拡散により形成されている。
このうち、n型不純物領域52とp型の正電荷蓄積領域53とによりセンサ部(受光部)61が構成され、p型半導体ウエル領域54と転送チャネル領域55とその上方の後述する転送電極57とからCCD構造の垂直転送レジスタ63が構成される。
センサ部61は画素となるもので、このセンサ部61で光電変換が行われる。
【0003】
また、半導体基体51より上方にはゲート絶縁膜56を介して転送電極57が形成され、この転送電極57は、読み出しゲート部62及び垂直転送レジスタ63及びチャネルストップ領域64上に形成されている。
【0004】
尚、転送電極57より上方には、図示しないが遮光膜やその他必要に応じてカラーフィルタやオンチップレンズ等の各層が形成される。
【0005】
そして、固体撮像素子において、今後の多画素化や光学系の縮小化に伴って、単位画素の縮小が求められている。
【0006】
【発明が解決しようとする課題】
しかしながら、単位画素を縮小しようとすると、センサ部61、読出しゲート部62、垂直転送レジスタ63、チャネルストップ領域64等のサイズの縮小が余儀なくされる。
【0007】
このようにサイズを縮小することにより、電荷が蓄積される各部(センサ部61、読み出しゲート部62、垂直転送レジスタ63)において、取り扱い電荷量が減少してしまう。
【0008】
特に、垂直転送レジスタ63の取り扱い電荷量は、転送チャネル領域55の面積及び基板表面近傍の容量で決まってしまう。このため、垂直転送レジスタ63のサイズの縮小に伴い、取り扱い電荷量が大幅に減少してしまう。
【0009】
また、読み出しゲート部62においては、サイズの縮小に伴い、充分なゲート長が得られなくなるため、読み出しゲート部62の特性が劣化してしまう。
【0010】
さらに、サイズの縮小に伴い、各部の分離を充分に行うことが難しくなることから、センサ部61の表面のp型の正電荷蓄積領域53を構成するp型不純物が、製造時の熱処理等により拡散して、図14に破線で示すように、読み出しゲート部62側にも拡散する。
これにより、読み出しゲート部62に拡散したp型不純物によって、読み出しゲート部62の基体51の表面付近における不純物濃度が非常に高くなる。
そして、センサ部61から転送チャネル領域55への信号電荷の読み出し経路は図14中矢印Eで示すように、転送チャネル領域55の表面付近に向かう上向きとなるため、拡散したp型不純物の影響により、信号電荷の読み出しが妨げられることになる。
従って、電荷を読み出すための読み出し電圧を高くする必要が生じる。
【0011】
さらには、単位画素の縮小化に伴い、転送電極57、オンチップレンズやカラーフィルタ等、センサ部61より上方に形成される各層による高さも問題になってくる。単位画素の縮小化によりセンサ部61の開口幅が縮小していくのに対して、この上方に形成される各層の高さを低減することが難しいため、その結果、光がセンサ部61に入射する経路が細長く(アスペクト比即ち幅と高さの比が大きく)なってしまう。
このため、集光状態が非常に悪くなり、CCD固体撮像素子の基本特性である感度、スミア等が大きく劣化する。
【0012】
また、製造工程における熱処理による各部からの不純物の拡散により、読み出しゲート部や転送チャネル領域が、実効的にはさらに縮小されていると予想されるので、取り扱い電荷量が減少することが考えられる。
【0013】
上述した問題の解決のために、本発明においては、画素の縮小化を図っても各種特性を確保することができるようにすることにより、縮小化や多画素化を図ることを可能にした構成の固体撮像素子及びその製造方法を提供するものである。
【0014】
【課題を解決するための手段】
本発明の固体撮像素子は、光電変換を行う複数のセンサ部と、このセンサ部で光電変換された信号電荷を読み出す読み出しゲート部と、この読み出しゲート部により読み出された信号電荷を転送する転送領域及びこの転送領域の転送を制御する転送電極から成る転送レジスタとを有し、転送レジスタの転送領域及びセンサ部が半導体層内に形成され、この半導体層は、転送領域の表面がセンサ部の表面よりも深く形成されているものである。
【0015】
上記本発明の固体撮像素子において、少なくとも転送領域を含む半導体層の表面に凹部が形成され、この凹部を埋めるように転送電極が形成されている構成とするを可とする。
【0016】
上記本発明の固体撮像素子において、さらに転送電極の表面とセンサ部の表面とがほぼ同一平面になるように平坦化されている構成とするを可とする。
【0017】
上記本発明の固体撮像素子において、センサ部の半導体層は、半導体の選択成長により、転送領域を含む部分よりも厚く形成されている構成とするを可とする。
【0018】
上記本発明の固体撮像素子において、転送レジスタの最小ポテンシャル位置の半導体層の表面からの距離が、センサ部の最小ポテンシャル位置の半導体層の表面からの距離の50%〜150%の範囲にある構成とするを可とする。
【0019】
上述の本発明の固体撮像素子の構成によれば、転送レジスタの転送領域及びセンサ部が半導体層内に形成され、この半導体層の転送領域の表面がセンサ部の表面よりも深く形成されていることにより、センサ部から転送領域に向かう信号電荷の読み出しの経路が、従来よりも深く形成された転送領域に向かうため、従来よりも下方に向かうことになる。これにより、信号電荷の読み出しの経路が、センサ部の表面付近の不純物(例えば正電荷蓄積領域のp型不純物)の拡散の影響を受けにくくなる。
従って、信号電荷の読み出しを良好に行うことが可能になり、読み出しゲート部の読み出し電圧を高くする必要がなくなる。
【0020】
特に、少なくとも転送領域を含む半導体層の表面に凹部が形成され、この凹部を埋めるように転送電極が形成されている構成としたときには、転送電極が凹部を埋めていることにより、従来の半導体層の表面に凹部が形成されていない場合と比較して、転送電極の高さを低くして、さらに転送電極の上方に形成される各層の高さを低くすることができる。これにより、光がセンサ部に入射する経路のアスペクト比(幅に対する高さの比)を小さくすることができる。また、凹部は斜面(平面の他に傾斜した曲面を含む)又は垂直面を有するので、この斜面又は垂直面によって、半導体層の読み出しゲート部や転送領域の表面積を増やすことができることから、読み出しゲート部や転送領域の取り扱い電荷量を増やすことが可能になる。
【0021】
さらに、転送電極の表面とセンサ部の表面とがほぼ同一平面になるように平坦化されている構成としたときには、転送電極及びその上方に形成される各層の高さをより低くすることができる。
【0022】
また特に、センサ部の半導体層が、半導体の選択成長により転送領域を含む部分よりも厚く形成されている構成としたときには、半導体層に凹部を形成した場合と同様に、センサ部に対する転送電極の相対的な高さを、従来の構成よりも低くすることができるため、光がセンサ部に入射する経路のアスペクト比(幅に対する高さの比)を小さくすることができる。
【0023】
また特に、転送レジスタの最小ポテンシャル位置の半導体層の表面からの距離が、センサ部の最小ポテンシャル位置の半導体層の表面からの距離の50%〜150%の範囲にある構成としたときには、両者の最小ポテンシャル位置が近くなるため、電荷の読み出しに必要な電圧を低減することができる。
【0024】
本発明の固体撮像素子は、光電変換を行う複数のセンサ部と、このセンサ部で光電変換された信号電荷を読み出す読み出しゲート部と、この読み出しゲート部により読み出された信号電荷を転送する転送領域及びこの転送領域の転送を制御する転送電極から成る転送レジスタとを有し、転送レジスタの転送領域及びセンサ部が半導体層内に形成され、転送領域とセンサ部との間の半導体層に凹部が形成され、この凹部内に埋め込まれた導電膜により読み出しゲート部が構成されているものである。
【0025】
上述の本発明の固体撮像素子の構成によれば、転送領域とセンサ部との間の半導体層に凹部が形成され、この凹部内に埋め込まれた導電膜により読み出しゲート部が構成されていることにより、導電膜によって読み出しゲート部の特性を従来の構成と比較して大幅に向上することが可能になる。
従って、信号電荷の読み出しを非常に良好に行うことが可能になり、読み出しゲート部の読み出し電圧を高くする必要がなくなる。
【0026】
本発明の固体撮像素子の製造方法は、光電変換を行う複数のセンサ部と、センサ部で光電変換された信号電荷を読み出す読み出しゲート部と、読み出しゲート部により読み出された信号電荷を転送する転送領域及びこの転送領域の転送を制御する転送電極から成る転送レジスタとを有する固体撮像素子を製造する際に、半導体層の表面に凹部を形成する工程と、半導体層の凹部の下にイオン注入により転送領域を形成する工程と、半導体層の表面に絶縁膜を形成する工程と、この絶縁膜上に凹部を埋めるように転送電極を形成する工程と、半導体層の転送電極のない部分に、イオン注入によりセンサ部を形成する工程とを少なくとも有し、凹部は転送領域及び読み出しゲート部を含むように形成するものである。
【0027】
上述の本発明の固体撮像素子の製造方法によれば、半導体層の表面に凹部を形成し、この凹部の下に転送領域を形成することにより、転送領域は凹部の下の一段下がった位置に形成される。そして、半導体層の表面に絶縁膜を形成し、その上に凹部を埋めるように転送電極を形成することにより、凹部を埋めた転送電極の上面は、半導体層に凹部を形成しない従来の構成よりも低くなる。さらに、半導体層の転送電極のない部分にセンサ部を形成することにより、センサ部は凹部以外に形成されるため、凹部の下に形成される転送領域の表面はセンサ部の表面よりも深く形成される。また、凹部は斜面或いは垂直面を有するので、転送電極又は読み出しゲート部の表面積や読み出しゲート部のゲート長を増大させることができる。
【0028】
本発明の固体撮像素子の製造方法は、光電変換を行う複数のセンサ部と、センサ部で光電変換された信号電荷を読み出す読み出しゲート部と、読み出しゲート部により読み出された信号電荷を転送する転送領域及びこの転送領域の転送を制御する転送電極から成る転送レジスタとを有する固体撮像素子を製造する際に、読み出しゲート部となる部分の半導体層の表面に凹部を形成する工程と、半導体層の凹部の周辺にイオン注入により転送領域を形成する工程と、半導体層の表面に絶縁膜を形成する工程と、絶縁膜上の凹部の周辺の転送領域上に転送電極を形成する工程と、凹部に導電材を埋めて読み出しゲート部を形成する工程と、半導体層の転送電極及び導電材のない部分に、イオン注入によりセンサ部を形成する工程とを有するものである。
【0029】
上述の本発明の固体撮像素子の製造方法によれば、読み出しゲート部となる部分の半導体層の表面に凹部を形成し、この凹部の周辺に転送領域を形成することにより、転送領域は凹部以外の部分に形成される。そして、半導体層の表面に絶縁膜を形成し、凹部の周辺の転送領域上に転送電極を形成し、凹部に導電材を埋めて読み出しゲート部を形成することにより、凹部を埋めた導電材から成る読み出しゲート部の周辺に転送領域及び転送電極が配置される。さらに、半導体層の転送電極及び導電材のない部分にセンサ部を形成することにより、センサ部は凹部以外に形成され、センサ部と転送領域との間に凹部を埋めた導電材から成る読み出しゲート部が配置される。
【0030】
本発明の固体撮像素子の製造方法は、光電変換を行う複数のセンサ部と、センサ部で光電変換された信号電荷を読み出す読み出しゲート部と、読み出しゲート部により読み出された信号電荷を転送する転送領域及びこの転送領域の転送を制御する転送電極から成る転送レジスタとを有する固体撮像素子を製造する際に、半導体層内にイオン注入により転送領域を形成する工程と、半導体層の表面に絶縁膜を形成する工程と、絶縁膜上の少なくとも転送レジスタ及び読み出しゲート部となる部分に転送電極を形成する工程と、半導体層の転送電極のない部分を半導体の選択成長により隆起させる工程と、半導体層の隆起させた部分にイオン注入によりセンサ部を形成する工程とを有するものである。
【0031】
上述の本発明の固体撮像素子の製造方法によれば、半導体層内にイオン注入により転送領域を形成し、半導体層の表面に絶縁膜を形成し、絶縁膜上の少なくとも転送レジスタ及び読み出しゲート部となる部分に転送電極を形成し、半導体層の転送電極のない部分を半導体の選択成長により隆起させ、この隆起させた部分にイオン注入によりセンサ部を形成することにより、センサ部の表面は、転送電極のある転送領域及び読み出しゲート部の半導体層の表面よりも高く形成される。即ち半導体層に凹部を形成した場合と同様に、転送領域の表面がセンサ部の表面よりも深く形成された構造となる。
【0032】
【発明の実施の形態】
本発明の一実施の形態として、固体撮像素子の概略構成図を図1及び図2に示す。図1は平面図、図2は図1のA−Aにおける断面図である。この固体撮像素子1は、本発明をCCD固体撮像素子に適用したものである。
【0033】
図1に示すように、この固体撮像素子は、フォトダイオードから成る多数のセンサ部11がマトリクス状に配置されている。センサ部11の各列の一側には、センサ部11の列方向(図中V方向)に伸びるCCD構造の垂直転送レジスタ13が配置されている。
そして、各センサ部11の左側には、垂直転送レジスタ13との間に読み出しゲート部12が配置されている。一方、各センサ部11の右側には垂直転送レジスタ13との間にチャネルストップ領域14が形成されている。
垂直転送レジスタ13の先には、センサ部11の行方向(図中H方向)に伸びるCCD構造の水平転送レジスタ15が配置され、水平転送レジスタ15の一方の端部にアンプ部16と出力端子17が形成されている。
【0034】
センサ部11付近の断面構造は、図2に示すように、例えば半導体基板或いは半導体基板とその上の半導体エピタキシャル層により構成される半導体基体1内に、それぞれn型不純物領域2、p型の正電荷蓄積領域3、p型半導体ウエル領域4、n型の転送チャネル領域5、読み出しゲート部12、チャネルストップ領域14がそれぞれ不純物の拡散により形成されている。
このうち、n型不純物領域2とp型の正電荷蓄積領域3とによりセンサ部(受光部)11が構成され、p型半導体ウエル領域4とn型の転送チャネル領域5とその上方の後述する転送電極7とからCCD構造の垂直転送レジスタ13が構成される。
センサ部11は画素となるもので、このセンサ部11で光電変換が行われる。
【0035】
また、半導体基体1より上方にはゲート絶縁膜6を介して転送電極7が形成され、この転送電極7は、読み出しゲート部12及び垂直転送レジスタ13及びチャネルストップ領域14上に形成されている。
【0036】
尚、転送電極7より上方には、図示しないが従来のCCD固体撮像素子と同様に、遮光膜やその他必要に応じてカラーフィルタやオンチップレンズ等の各層が形成される。
【0037】
本実施の形態は、特に、読み出しゲート部12の一部及び垂直転送レジスタ13において、半導体基体1に凹部10が形成され、この半導体基体1に形成された凹部10を埋めて転送電極7が形成されている。
即ち、転送電極7が、読み出しゲート部12の一部及び垂直転送レジスタ13において、センサ部11等他の部分の半導体基体1の表面よりも埋め込まれている。
【0038】
従って、転送電極7が半導体基体1の凹部10に埋め込まれていることにより、図13に示した構造と比較して、垂直転送レジスタ13や読み出しゲート部12の表面積が増えることになるため、その分取り扱い電荷量を確保することができる。
また、実効的な読み出しゲート部12のゲート長も確保することができる。
【0039】
さらに、転送チャネル領域5が半導体基体1の凹部10の下に形成されているため、センサ部11の正電荷蓄積領域3よりも深い位置に転送チャネル領域5がある。
これにより、読み出しゲート部12により電荷を読み出す経路を、図3の矢印Eで示すように、ある程度深い位置に置くことができるため、センサ部11のp形不純物(p++)の拡散の影響を受けにくくなり、読み出しやすくなると考えられる。
【0040】
上述の本実施の形態の固体撮像素子21によれば、半導体基体1に凹部10が形成され、この凹部10の形成された部分に転送チャネル領域5が設けられていることにより、センサ部11の表面よりも転送チャネル領域5の表面が深い位置になることから、転送チャネル領域5がセンサ部11の正電荷蓄積領域3よりも深い位置になっている。
これにより、センサ部11から転送チャネル領域5への信号電荷の読み出しの経路が、例えば図3の矢印Eで示すように下方に向かうようになり、正電荷蓄積領域3のp型不純物が製造時に拡散して読み出しゲート部12側にかかっていても、信号電荷の読み出しの経路Eがこの拡散した部分を通らないようにすることができるため、正電荷蓄積領域3のp型不純物の拡散の影響によって信号電荷の読み出しが妨げられる問題を解決することができる。
従って、読み出しゲート部12による信号電荷の読み出しを容易にして、読み出しゲート部12の特性を確保し、転送電極7に印加する読み出し電圧の改善を図ることができる。
【0041】
また、本実施の形態の固体撮像素子21によれば、読み出しゲート部12の表面が、半導体基体1に形成された凹部10の斜面となっているため、転送電極7と対向する部分の長さ、即ちセンサ部11から転送チャネル領域5までの実効的な読み出しゲート長が、従来の固体撮像素子の構成よりも長くなる。
これにより、読み出しゲート部12の取り扱い電荷量を確保することができると共に、実効的な読み出しゲート長を充分確保して、読み出しゲート部12の特性を確保することが可能になる。
【0042】
同様に、転送チャネル領域5の表面も、その一部が凹部10の斜面となっているため、その分転送チャネル領域5の表面積が増えて、転送チャネル領域5の取り扱い電荷量を確保することができる。
【0043】
即ち、固体撮像素子21の画素の縮小化を図っても、電荷の読み出しを問題なく行うと共に、取り扱い電荷量や各部の特性を確保することができる。
従って、固体撮像素子21の画素を縮小化して、固体撮像素子21の多画素化や縮小化を図ることができる。そして、固体撮像素子21の縮小化により、1枚のウエハから得られる固体撮像素子21を増やして、製造コストの低減を図ることが可能になる。
さらに、固体撮像素子21を備えた固体撮像装置やカメラ等の装置において、素子21の多画素化による装置の高解像度化や、素子の縮小化による装置の小型化を実現することができる。
【0044】
さらに、転送電極7が半導体基体1に一部埋め込まれた構造となっているため、図13に示した従来の構成と比較して、転送電極7の上面の高さを低くすることができ、また転送電極7より上方に設けられる遮光膜や、カラーフィルタ、オンチップレンズ等の各層を従来の構成よりも低くして、固体撮像素子の総厚さを薄くすることができる。
これにより、入射光がセンサ部11に達するまでの経路のアスペクト比(幅に対する高さの比)を従来の固体撮像素子の構造よりも低減することができることから、斜めに入射する光を遮光膜等にけられることなくセンサ部11に到達するようにできるため、光の利用効率や感度を向上することができる。さらに、スミアの発生を抑制することができる。
このため、斜めに入射した光がセンサ部11に到達するように例えばセンサ部11とオンチップレンズとの間に層内レンズを形成する必要がなくなる。
【0045】
本実施の形態の固体撮像素子は、例えば次のようにして製造することができる。
まず、図4Aに示すように、半導体基体1に対してエッチングを行って、凹部10を形成する。この凹部10は、読み出しゲート部12となる部分と、垂直転送レジスタ13となる部分と、チャネルストップ領域14となる部分とに対応して形成されている。
【0046】
次に、半導体基体1に対して、不純物(n型不純物或いはp型不純物)のイオン注入を行い、注入した不純物の拡散を行って、p型半導体ウエル領域4、転送チャネル領域5、読み出しゲート部12、並びにチャネルストップ領域14を、それぞれ半導体基体1内に形成する。
続いて、図4Bに示すように、半導体基体1の表面を熱酸化することにより、ゲート絶縁膜6を形成する。このとき、半導体基体1の凹部10の表面も、同様に熱酸化されて絶縁膜6が形成される。
【0047】
次に、表面を覆って、転送電極7を構成する導電膜を形成する。これにより、半導体基体1の凹部10を含んで、この凹部10を埋めるように導電膜が形成される。
そして、図4Cに示すように、この導電膜をパターニングして、半導体基体1の凹部10を含むようなパターンに転送電極7を形成する。
【0048】
続いて、転送電極7をマスクとして、半導体基体1にイオン注入を行って、センサ部11を構成するn型不純物領域2及びp型の正電荷蓄積領域3を形成する。
その後は、表面を覆って絶縁膜を形成し、その上に遮光膜を形成する。さらに層間絶縁膜を形成して、必要に応じてカラーフィルタやオンチップレンズ等の各層を形成する。
このようにして、図2に示した本実施の形態の固体撮像素子21を製造することができる。
【0049】
次に、本発明の固体撮像素子の他の実施の形態の概略構成図(断面図)を図5に示す。
本実施の形態の固体撮像素子22は、特に転送電極7の上面とセンサ部11の上面とが、ほぼ同一面上にあるように平坦化されている。
また、半導体基体1に形成された凹部10は、読み出しゲート部12及びチャネルストップ領域14のみに斜面を有し、転送チャネル領域5には斜面を有していない。
尚、図中8は、平坦化した後に表面に形成した熱酸化膜(絶縁膜)を示す。
その他の構成は、図2に示した先の実施の形態の固体撮像素子21と同様であるので、同一符号を付して重複説明を省略する。
【0050】
本実施の形態の固体撮像素子22によれば、半導体基体1に凹部10が形成され、この凹部10の形成された部分に転送チャネル領域5が設けられていることにより、先の実施の形態と同様に、転送チャネル領域5がセンサ部11の正電荷蓄積領域3よりも深い位置になる。
これにより、先の実施の形態と同様に、正電荷蓄積領域3のp型不純物の拡散の影響によって電荷の読み出しが妨げられる問題を解決し、読み出しゲート部12の特性を確保し、転送電極7に印加する読み出し電圧の改善を図ることができる。
【0051】
また、本実施の形態の固体撮像素子22によれば、読み出しゲート部12の表面が、半導体基体1に形成された凹部10の斜面となっているため、転送電極7と対向する部分の長さ、即ちセンサ部11から転送チャネル領域5までの実効的な読み出しゲート長が、従来の固体撮像素子の構成よりも長くなる。
これにより、読み出しゲート部12の取り扱い電荷量を確保すること、読み出しゲート部12の特性を確保することが可能になる。
【0052】
即ち、固体撮像素子22の画素の縮小化を図っても、電荷の読み出しを問題なく行うと共に、取り扱い電荷量や各部の特性を確保することができる。
従って、固体撮像素子22の画素の縮小化によって、固体撮像素子22の多画素化や縮小化を図り、1枚のウエハから得られる固体撮像素子22を増加させて製造コストを低減すると共に、固体撮像素子22を備えた固体撮像装置やカメラ等の装置において、高解像度化や小型化を図ることが可能になる。
【0053】
さらに、本実施の形態の固体撮像素子22によれば、特に半導体基体1に転送電極7が完全に埋め込まれて、転送電極7の上面がセンサ部11の上面とほぼ同一面となるように平坦化されているため、半導体基体1の表面から上方にある各部に関して少なくとも転送電極7の厚さの影響がなくなる。これにより、遮光膜や、さらにその上のオンチップフィルタ及びオンチップレンズ等の各層も容易に作製することができる。また、各層の高さを従来の構成よりも大幅に低くして、固体撮像素子の総厚さを薄くすることができる。さらに、各層の膜厚均一性を向上し、製造ムラの低減を図ることができる。
従って、入射光がセンサ部11に達するまでの経路のアスペクト比(高さ/幅)を従来の固体撮像素子の構造よりも低減して、光の利用効率や感度を大幅に向上することができる。また、スミアの発生を抑制することができる。さらに、オンチップレンズを半導体基体1の表面に近づけて設けることができるため、シェーディング特性が改善される。
このことから、固体撮像素子の画素を縮小することが容易になるため、固体撮像素子のさらなる小型化や多画素化を図ることが可能になる。
【0054】
本実施の形態の固体撮像素子22は、例えば次のように製造することができる。
基本的には、先の実施の形態の固体撮像素子21の製造方法と同様な方法で製造することができる。
ただし、転送電極7を形成する工程では、表面を覆って電極膜(導電膜)を形成した後、パターニングを行う代わりに表面の平坦化工程、例えばCMP(化学的機械的研磨)法による研磨加工を行って、電極膜の半導体基体1の表面から突出した部分を除去する。
【0055】
まず、半導体基体1に対してエッチングを行って、それぞれ読み出しゲート部12、転送チャネル領域5、チャネルストップ領域14となる部分に対応して、凹部10を形成する。この場合、凹部10は、読み出しゲート部12となる部分とチャネルストップ領域14となる部分が斜面となっている。
【0056】
次に、半導体基体1に対して、不純物のイオン注入を行い、注入した不純物の拡散を行って、p型半導体ウエル領域4、転送チャネル領域5、読み出しゲート部12、並びにチャネルストップ領域14を、それぞれ半導体基体1内に形成する。
続いて、半導体基体1の表面を熱酸化することにより、ゲート絶縁膜6を形成する。このとき、半導体基体1の凹部10の表面も、同様に熱酸化されて絶縁膜6が形成される。ここまでの工程は、凹部10の形状を除けば図4A及び図4Bと同様である。
【0057】
次に、図6に示すように、成長或いは堆積により、表面を覆って電極膜7Xを形成する。
その後、表面の平坦化工程(例えば研磨加工)を行って、上面がほぼセンサ部11となる部分の上面と同一面となる転送電極7を形成する。尚、センサ部11となる部分のゲート絶縁膜6は、平坦化工程において除去される。
次に、熱酸化により、転送電極7の表面及びセンサ部11となる部分の半導体基体1の表面に熱酸化膜8を形成する。
続いて、転送電極7をマスクとして、半導体基体1にイオン注入を行って、センサ部11を構成するn型不純物領域2及びp型の正電荷蓄積領域3を形成する。
その後は、熱酸化膜8の上に、直接又は絶縁膜を介して、遮光膜を形成する。さらに、層間絶縁膜等を形成して、必要に応じてカラーフィルタやオンチップレンズ等の各層を形成する。
このようにして、図5に示した本実施の形態の固体撮像素子22を製造することができる。
【0058】
尚、上述の各実施の形態では、半導体基体1の凹部10が斜面(平面)を有する構成となっているが、水平面(底面)と垂直面(側面)とを有する構成や、傾斜した曲面を有する構成としてもよい。これらの場合も、垂直面や傾斜した曲面が形成された部分において、その部分の表面積を増やして取り扱い電荷量を増やすことができる。
その場合の実施の形態を次に示す。
【0059】
図13に示した従来の構成では、CCD固体撮像素子の単位セルの小型化に伴い、垂直転送レジスタの容量を増大する必要が生じることに対応して、図15に示すように、垂直転送レジスタ63のp型半導体ウエル領域54の最小ポテンシャル位置(図15中破線で示す)54Aを、半導体基体51−ゲート絶縁膜56の界面付近に近づけることにより容量を増大させている。その一方、センサ部61では、センサ部61内で発生する暗電流を減らすために、最小ポテンシャル位置(図15中破線で示す)52Aを半導体基体51−ゲート絶縁膜56の界面から遠ざけるようにしている。
【0060】
このように、垂直転送レジスタ63のp型半導体ウエル領域54の最小ポテンシャル位置54Aとセンサ部61の最小ポテンシャル位置52Aとが、表面からの深さに違いがあることにより、この違いが大きくなりこれら最小ポテンシャル位置54A,52Aが離れてしまうと、センサ部61から垂直転送レジスタ63への電荷の読み出しに必要な電圧が上昇してしまう。
しかし、これら最小ポテンシャル位置54A,52Aの深さを同一にしようとすると、垂直転送レジスタ63の容量を減らしてしまう、或いはセンサ部61の暗電流を悪化させてしまうという問題を生じることになる。
【0061】
この問題を解決する構成として、本発明の固体撮像素子の別の実施の形態の概略構成図(断面図)を図7に示す。
本実施の形態の固体撮像素子23は、図5に示した固体撮像素子22と同様に、転送電極7の上面とセンサ部11の上面とが、ほぼ同一面上にあるように平坦化されている。
本実施の形態では、特に半導体基体1に形成された凹部10が、読み出しゲート部12、転送チャネル領域5、チャネルストップ領域14にまたがる底面を有し、両端に垂直面を有している。そして、この凹部10内にゲート絶縁膜6を介して、転送電極7が形成されている。
尚、この図7では、絶縁膜8上に形成された遮光膜9を示している。
【0062】
本実施の形態では、半導体基体1に転送電極7が完全に埋め込まれて、転送電極7の上面がセンサ部11の上面とほぼ同一面となるように平坦化されているため、さらに図7に示すように、p型半導体ウエル領域4の最小ポテンシャル位置4Aとセンサ部11の最小ポテンシャル位置2Aとが、半導体基体1の表面からほぼ同じ深さになっている。これにより、前述した読み出し電圧の上昇の問題を解決することができる。
【0063】
尚、図7では、垂直転送レジスタ13のp型半導体ウエル領域4の最小ポテンシャル位置4Aとセンサ部11の最小ポテンシャル位置2Aとが、半導体基体1の表面からほぼ同じ深さになっているが、必ずしも同じほぼ深さになっていなくても、半導体基体1の表面からの深さが近くなるようにすればよい。
好ましくは、垂直転送レジスタ13のp型半導体ウエル領域4の最小ポテンシャル位置4Aの半導体基体1の表面からの深さが、センサ部11の最小ポテンシャル位置2Aの半導体基体1の表面からの深さの50〜150%の範囲内にあるようにする。
【0064】
その他の構成は、図5に示した先の実施の形態の固体撮像素子22と同様であるので、同一符号を付して重複説明を省略する。
【0065】
本実施の形態の固体撮像素子23によれば、半導体基体1に凹部10が形成され、この凹部10の形成された部分に転送チャネル領域5が設けられていることにより、先の実施の形態と同様に、転送チャネル領域5がセンサ部11の正電荷蓄積領域3よりも深い位置になる。
これにより、先の実施の形態と同様に、正電荷蓄積領域3のp型不純物の拡散の影響によって電荷の読み出しが妨げられる問題を解決し、読み出しゲート部12の特性を確保し、転送電極7に印加する読み出し電圧の改善を図ることができる。
【0066】
また、本実施の形態の固体撮像素子23によれば、特に半導体基体1に転送電極7が完全に埋め込まれて、転送電極7の上面がセンサ部11の上面とほぼ同一面となるように平坦化されているため、半導体基体1の表面から上方にある各部に関して少なくとも転送電極7の厚さの影響がなくなる。これにより、遮光膜9や、さらにその上のオンチップフィルタ及びオンチップレンズ等の各層も容易に作製することができる。また、各層の高さを従来の構成よりも大幅に低くして、固体撮像素子の総厚さを薄くすることができる。さらに、各層の膜厚均一性を向上し、製造ムラの低減を図ることができる。
従って、入射光がセンサ部11に達するまでの経路のアスペクト比(高さ/幅)を従来の固体撮像素子の構造よりも低減して、光の利用効率(集光性)や感度を大幅に向上することができる。また、スミアの発生を抑制することができる。さらに、オンチップレンズを半導体基体1の表面に近づけて設けることができるため、シェーディング特性が改善される。
【0067】
このことから、固体撮像素子の画素を縮小することが容易になるため、固体撮像素子のさらなる小型化や多画素化を図ることが可能になる。
従って、固体撮像素子23の画素の縮小化によって、固体撮像素子23の多画素化や縮小化を図り、1枚のウエハから得られる固体撮像素子23を増加させて製造コストを低減すると共に、固体撮像素子23を備えた固体撮像装置やカメラ等の装置において、高解像度化や小型化を図ることが可能になる。
【0068】
さらに、本実施の形態の固体撮像素子23によれば、垂直転送レジスタ13の最小ポテンシャル位置即ちp型半導体ウエル領域4の最小ポテンシャル位置4Aが、センサ部11の最小ポテンシャル位置2Aと、半導体基体1の表面からの深さがほぼ同一となっているため、読み出し電圧を低減することができる。
そして、垂直転送レジスタ13の容量を低下させてしまったり、センサ部11の暗電流を増大させてしまったりすることなく、読み出し電圧を低減することができるため、特性が良好であり、かつ読み出し電圧の小さい固体撮像素子を構成することができる。
【0069】
尚、先に示した各実施の形態の固体撮像装置21,22においても、転送電極7を半導体基体1の表面よりも深い位置に配置しているので、センサ部11及び垂直転送レジスタ13の不純物の分布を調整することにより、同様に垂直転送レジスタ13のp型半導体ウエル領域4の最小ポテンシャルの位置4Aをセンサ部11の最小ポテンシャル位置2Aと半導体基体1の表面からほぼ同じ深さにする、もしくは深さを近く(センサ部11の最小ポテンシャル位置2Aの50〜150%)することが可能である。
即ち、転送電極7が半導体基体1に完全に埋め込まれている構成でも、転送電極7の一部が半導体基体1に埋め込まれている構成でも、いずれも垂直転送レジスタ13のp型半導体ウエル領域4の最小ポテンシャルの位置4Aをセンサ部11の最小ポテンシャル位置2Aと半導体基体1の表面からほぼ同じ深さにする、もしくは深さを近くすることが可能である。
【0070】
本実施の形態の固体撮像素子23は、例えば次のように製造することができる。
基本的には、先の実施の形態の固体撮像素子22の製造方法と同様な方法で製造することができる。
【0071】
まず、図8Aに示すように、半導体基体1に対してエッチングを行って、それぞれ読み出しゲート部12、転送チャネル領域5、チャネルストップ領域14となる部分に対応した凹部10を形成する。この場合、凹部10は、両端面が垂直面であり、その間が水平な底面となっている。
【0072】
次に、図8Bに示すように、半導体基体1に対して、不純物のイオン注入を行い、注入した不純物の拡散を行って、p型半導体ウエル領域4、転送チャネル領域5、読み出しゲート部12、並びにチャネルストップ領域14を、それぞれ半導体基体1内に形成する。
続いて、図8Cに示すように、半導体基体1の表面を熱酸化することにより、ゲート絶縁膜6を形成する。このとき、半導体基体1の凹部10の表面も、同様に熱酸化されて絶縁膜6が形成される。
【0073】
次に、成長或いは堆積により、表面を覆って電極膜を形成する。
その後、図9Dに示すように、表面の平坦化工程(例えばCMP(化学的機械的研磨)法等の研磨加工)を行って、転送電極7を形成する。
尚、先の実施の形態の固体撮像素子22の製造工程の説明では、上面がほぼセンサ部11となる部分の上面と同一面となる転送電極7を形成するようにして、センサ部11となる部分のゲート絶縁膜6が平坦化工程において除去されていたが、この図9Dは平坦化工程の後も、センサ部11となる部分のゲート絶縁膜6を残した場合を示している。
【0074】
次に、センサ部11に開口を有するマスクを用いて、半導体基体1にイオン注入を行って、図9Eに示すように、センサ部11を構成するn型不純物領域2及びp型の正電荷蓄積領域3を形成する。
さらに、図9Fに示すように、表面にシリコン酸化膜8を形成した後、シリコン酸化膜8の上に遮光膜9を形成する。
さらに、層間絶縁膜等を形成して、必要に応じてカラーフィルタやオンチップレンズ等の各層を形成する。
このようにして、図7に示した本実施の形態の固体撮像素子23を製造することができる。
【0075】
尚、上述した各実施の形態のように半導体基体1をエッチングして凹部10を形成する代わりに、逆にセンサ部11側をエピタキシャル成膜(選択成長)させることにより隆起させてもよい。
その場合には、例えば転送電極7をマスクとして、または別途センサ部11となる部分に開口を形成したフォトレジストをマスクとして、センサ部11において半導体層を選択成長させる。その後、センサ部11を構成する半導体領域2,3を形成するイオン注入を行う。
【0076】
即ち図10Aに示すように、p型半導体ウエル領域4、n型の転送チャネル領域5、読出しゲート部12、チャネルストップ領域14の各不純物領域を半導体基体1に形成し、半導体基体1表面のゲート絶縁膜6を形成し、転送電極7を読出しゲート部12、垂直転送レジスタ13、チャネルストップ領域14に対応する部分に形成する。ここまでは、従来の構成と同様の製造工程を採る。
【0077】
その後、センサ部となる部分のゲート絶縁膜6を除去し、転送電極7または別途形成したフォトレジストをマスクとして、半導体層を選択成長させ、その後、図10Bに示すように、選択成長層1Xに、センサ部11を構成するn型不純物領域2及びp型の正電荷蓄積領域3をイオン注入により形成する。
この場合、n型不純物領域2は、選択成長層1Xと元の半導体基体1とに跨って形成されている。
この後は、遮光膜や、層間絶縁膜、さらに必要に応じてカラーフィルタやオンチップレンズ等の各層を形成する。
【0078】
このようにしても、上述の各実施の形態の固体撮像素子21,22,23と同様に、転送チャネル領域5の表面がセンサ部11の表面よりも深く形成され、転送チャネル領域がセンサ部の正電荷蓄積領域よりも深い位置にある構造を形成することができる。
【0079】
続いて、本発明のさらに他の実施の形態として、固体撮像素子の概略構成図を図11に示す。
本実施の形態の固体撮像素子31は、半導体基体1の読み出しゲート部12のみに凹部33が形成され、この凹部33内に導電膜(導電材)32が埋め込まれている。
導電膜32が埋め込まれた凹部33は、転送チャネル領域5よりも深い位置まで形成されている。導電膜32には、例えば電極材(例えばアモルファスシリコン、多結晶シリコン、SiGe等)を用いることができる。
【0080】
また、読出しゲート部12の導電膜32と半導体基体1との間には、ゲート絶縁膜6を兼ねる絶縁膜が形成されている。
読出しゲート部12の導電膜32があるため、転送電極7は通常の構成とは異なり、転送電極7は垂直転送レジスタ13及びチャネルストップ領域14のみに対応して形成されている。
【0081】
さらに、読み出しゲート部12の導電膜32と転送電極7との間は、互いに絶縁膜34により電気的に分離されている。このように互いに分離して、導電膜32と転送電極7とにそれぞれ異なる電位を印加することが可能となるように構成することが望ましい。
【0082】
その他の構成は、図13に示した従来の固体撮像素子の構造と同様になっている。転送チャネル領域5の上面は、センサ部11の上面と同じく、半導体基体1の表面となっている。
【0083】
本実施の形態の固体撮像素子31によれば、読み出しゲート部12の導電膜32の中を通って、電荷がセンサ部11から垂直転送レジスタ13に移動する。
これにより、読み出しゲート部が半導体層である従来の構成と比較して読み出しゲート部12の特性が飛躍的に向上する。即ち読み出しゲート部12が導電膜32であることにより、電荷の移動がスムーズであり、またセンサ部11の正電荷蓄積領域3のp型不純物が導電膜32の一部に拡散しても導電膜32のその他の部分で容易に電荷が移動するのでp型不純物の拡散の影響を低減することができる。
従って、読み出し電圧を高くする必要がなくなり、読み出しゲート部12の特性を確保することができる。
【0084】
即ち、本実施の形態の固体撮像素子31によれば、固体撮像素子31の画素の縮小化を図っても、電荷の読み出しを容易に行うと共に、読み出しゲート部の特性を確保することができる。
従って、固体撮像素子31の画素を縮小化して、固体撮像素子31の多画素化や縮小化を図ることができる。そして、固体撮像素子31の縮小化により、1枚のウエハから得られる固体撮像素子31を増やして、製造コストの低減を図ることが可能になる。
さらに、固体撮像素子31を備えた固体撮像装置やカメラ等の装置において、素子31の多画素化による装置の高解像度化や、素子の縮小化による装置の小型化を実現することができる。
【0085】
本実施の形態の固体撮像素子31は、例えば次のようにして製造することができる。
【0086】
まず、半導体基体1の読み出しゲート部12となる部分に、例えばエッチングにより凹部33を形成する。
次に、半導体基体1に、不純物のイオン注入により、p型半導体ウエル領域4、転送チャネル領域5、及びチャネルストップ領域14をそれぞれ形成する。
続いて、半導体基体1の表面に、例えば熱酸化等により、ゲート絶縁膜を兼ねる絶縁膜6を形成する。このとき、半導体基体1の凹部33の表面にも絶縁膜6が形成される。
次に、転送チャネル領域5及びチャネルストップ領域14上の部分の絶縁膜6上に、転送電極7を形成する。ここまでの状態を図12に示す。
【0087】
その後、転送電極7の表面の熱酸化或いは薄い絶縁膜の成膜により、転送電極7を覆って絶縁膜34を形成する。
次に、半導体基体1の凹部33を埋めるように導電膜32を形成する。この導電膜32をパターニングして読み出しゲート部12とする。
【0088】
続いて、半導体基体1に、イオン注入によりセンサ部11のn型不純物領域2及びp型の正電荷蓄積領域3を形成する。このとき、転送電極7及び導電膜32をイオン注入のマスクとしてもよいし、これらの膜7,32とは別にマスクを形成してもよい。
その後は、層間絶縁膜、遮光膜、さらに必要に応じてカラーフィルタやオンチップレンズを形成する。
このようにして、図11に示した本実施の形態の固体撮像素子31を製造することができる。
【0089】
尚、本実施の形態において、読み出しゲート部12の導電膜32と、転送電極7とを同じ材料で構成することも可能である。
さらに、同じ材料で構成し、同一工程で同時に形成することも可能である。例えば凹部33を埋めて全面的に電極材を成膜し、これをパターニングして導電膜32と転送電極7をそれぞれ形成する。同一工程で形成することにより、固体撮像素子の製造工程数を低減することができる利点を有する。
これらの構成においても、読み出しゲート部12の導電膜32と転送電極7との間を絶縁分離して、導電膜32と転送電極7とにそれぞれ異なる電位を印加することが可能となるように構成することが望ましい。
【0090】
上述の各実施の形態では、CCD固体撮像素子に本発明を適用したが、その他の構成にも本発明を適用することができる。
例えばCCD構造以外の電荷転送部(転送レジスタ)を有するCCD固体撮像素子にも、同様に本発明を適用することができる。
【0091】
また、図1に示したようにセンサ部11がマトリクス状に形成された構成だけでなく、例えばいわゆるラインセンサのように、一列のセンサ部と1つの電荷転送部(転送レジスタ)との組を単位とした構成にも本発明を適用することができる。
【0092】
尚、本発明における半導体層は、その材料や膜構造が特に限定されるものではなく、上述した半導体基体(半導体基板、或いは半導体基板及びその上の半導体エピタキシャル層等)以外の構成も可能であり、例えば絶縁基板上に形成された半導体層をも含むものである。
【0093】
本発明は、上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲でその他様々な構成が取り得る。
【0094】
【発明の効果】
上述の本発明によれば、読み出しゲート部の特性を向上して、画素縮小に伴う読み出しゲート部の特性等の劣化を防ぐことができる。
これにより、読み出し電圧を低減して、消費電力を低減することができる。
【0095】
特に、半導体層の転送領域の表面をセンサ部の表面よりも深く形成したときは、センサ部に対する転送電極の高さや、転送電極より上層のカラーフィルタやオンチップレンズ等の高さを低くすることができる。これにより、センサ部に入射する光の経路のアスペクト比(幅に対する高さの比)を小さくすることができる。これにより、斜めに入射した光が遮光膜等にけられることなくセンサ部に到達するようになって、光の利用効率や感度を向上させ、スミアを抑制することができる。このため、斜めに入射した光がセンサ部に達するように例えば層内レンズを形成する必要がなくなる。
【0096】
さらに、半導体層に凹部を形成して、この凹部に転送領域及び読み出しゲート部を形成する構成としたときには、凹部の斜面や垂直面により、転送領域又は読み出しゲート部において、表面積を増やして取り扱い電荷量を増やすことができると共に、さらに読み出しゲート部においては、そのゲート長を長くして読み出し特性を向上することが可能になる。
【0097】
即ち本発明により、固体撮像素子の多画素化や縮小化のために単位画素を縮小したことによる各種特性の劣化を防ぐことができ、基本特性を維持したまま多画素化、縮小化を実現することができる。
そして、固体撮像素子の縮小化により、1枚のウエハからの収率を増やして、製造コストの低減を図ることが可能になる。
【0098】
従って、本発明によれば、固体撮像素子を搭載した装置(カメラ等)において、素子の多画素化による装置の高解像度化や、素子の縮小化による装置の小型化を実現することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態の固体撮像素子の概略構成図(平面図)である。
【図2】図1のA−Aにおける断面図である。
【図3】図2の構成における電荷の読み出し時の電荷の移動経路を説明する図である。
【図4】A〜C 図1及び図2の固体撮像素子の製造工程を示す工程図である。
【図5】本発明の他の実施の形態の固体撮像素子の概略構成図(断面図)である。
【図6】図5の固体撮像素子の製造工程を示す工程図である。
【図7】本発明の別の実施の形態の固体撮像素子の概略構成図(断面図)である。
【図8】A〜C 図7の固体撮像素子の製造工程を示す工程図である。
【図9】D〜F 図7の固体撮像素子の製造工程を示す工程図である。
【図10】A、B 半導体層を選択成長させる場合の製造工程を示す工程図である。
【図11】本発明のさらに他の実施の形態の固体撮像素子の概略構成図(断面図)である。
【図12】図11の固体撮像素子の製造工程を示す工程図である。
【図13】従来のCCD固体撮像素子の概略構成図(断面図)である。
【図14】図13の構成における電荷の読み出し時の電荷の移動経路を説明する図である。
【図15】図13の構成における最小ポテンシャル位置の関係を示す図である。
【符号の説明】
1 半導体基体、2 n型不純物領域、3 正電荷蓄積領域、5 転送チャネル領域、6 ゲート絶縁膜、7 転送電極、9 遮光膜、10,33 凹部、11センサ部、12 読み出しゲート部、13 垂直転送レジスタ、14 チャネルストップ領域、15 水平転送レジスタ、21,22,23,31 固体撮像素子、32 導電膜
【発明の属する技術分野】
本発明は、センサ部と読み出しゲート部と転送レジスタ(電荷転送部)を有する固体撮像素子(及びその製造方法)に係わる。
【0002】
【従来の技術】
従来のCCD固体撮像素子の概略構成図を図13に示す。
このCCD固体撮像素子は、例えばシリコン基板等の半導体基板、或いは半導体基板及びその上の半導体エピタキシャル層から成る半導体基体51に、n型不純物領域52、p型の正電荷蓄積領域53、p型半導体ウエル領域54、n型の転送チャネル領域55、読み出しゲート部62、チャネルストップ領域64がそれぞれ不純物の拡散により形成されている。
このうち、n型不純物領域52とp型の正電荷蓄積領域53とによりセンサ部(受光部)61が構成され、p型半導体ウエル領域54と転送チャネル領域55とその上方の後述する転送電極57とからCCD構造の垂直転送レジスタ63が構成される。
センサ部61は画素となるもので、このセンサ部61で光電変換が行われる。
【0003】
また、半導体基体51より上方にはゲート絶縁膜56を介して転送電極57が形成され、この転送電極57は、読み出しゲート部62及び垂直転送レジスタ63及びチャネルストップ領域64上に形成されている。
【0004】
尚、転送電極57より上方には、図示しないが遮光膜やその他必要に応じてカラーフィルタやオンチップレンズ等の各層が形成される。
【0005】
そして、固体撮像素子において、今後の多画素化や光学系の縮小化に伴って、単位画素の縮小が求められている。
【0006】
【発明が解決しようとする課題】
しかしながら、単位画素を縮小しようとすると、センサ部61、読出しゲート部62、垂直転送レジスタ63、チャネルストップ領域64等のサイズの縮小が余儀なくされる。
【0007】
このようにサイズを縮小することにより、電荷が蓄積される各部(センサ部61、読み出しゲート部62、垂直転送レジスタ63)において、取り扱い電荷量が減少してしまう。
【0008】
特に、垂直転送レジスタ63の取り扱い電荷量は、転送チャネル領域55の面積及び基板表面近傍の容量で決まってしまう。このため、垂直転送レジスタ63のサイズの縮小に伴い、取り扱い電荷量が大幅に減少してしまう。
【0009】
また、読み出しゲート部62においては、サイズの縮小に伴い、充分なゲート長が得られなくなるため、読み出しゲート部62の特性が劣化してしまう。
【0010】
さらに、サイズの縮小に伴い、各部の分離を充分に行うことが難しくなることから、センサ部61の表面のp型の正電荷蓄積領域53を構成するp型不純物が、製造時の熱処理等により拡散して、図14に破線で示すように、読み出しゲート部62側にも拡散する。
これにより、読み出しゲート部62に拡散したp型不純物によって、読み出しゲート部62の基体51の表面付近における不純物濃度が非常に高くなる。
そして、センサ部61から転送チャネル領域55への信号電荷の読み出し経路は図14中矢印Eで示すように、転送チャネル領域55の表面付近に向かう上向きとなるため、拡散したp型不純物の影響により、信号電荷の読み出しが妨げられることになる。
従って、電荷を読み出すための読み出し電圧を高くする必要が生じる。
【0011】
さらには、単位画素の縮小化に伴い、転送電極57、オンチップレンズやカラーフィルタ等、センサ部61より上方に形成される各層による高さも問題になってくる。単位画素の縮小化によりセンサ部61の開口幅が縮小していくのに対して、この上方に形成される各層の高さを低減することが難しいため、その結果、光がセンサ部61に入射する経路が細長く(アスペクト比即ち幅と高さの比が大きく)なってしまう。
このため、集光状態が非常に悪くなり、CCD固体撮像素子の基本特性である感度、スミア等が大きく劣化する。
【0012】
また、製造工程における熱処理による各部からの不純物の拡散により、読み出しゲート部や転送チャネル領域が、実効的にはさらに縮小されていると予想されるので、取り扱い電荷量が減少することが考えられる。
【0013】
上述した問題の解決のために、本発明においては、画素の縮小化を図っても各種特性を確保することができるようにすることにより、縮小化や多画素化を図ることを可能にした構成の固体撮像素子及びその製造方法を提供するものである。
【0014】
【課題を解決するための手段】
本発明の固体撮像素子は、光電変換を行う複数のセンサ部と、このセンサ部で光電変換された信号電荷を読み出す読み出しゲート部と、この読み出しゲート部により読み出された信号電荷を転送する転送領域及びこの転送領域の転送を制御する転送電極から成る転送レジスタとを有し、転送レジスタの転送領域及びセンサ部が半導体層内に形成され、この半導体層は、転送領域の表面がセンサ部の表面よりも深く形成されているものである。
【0015】
上記本発明の固体撮像素子において、少なくとも転送領域を含む半導体層の表面に凹部が形成され、この凹部を埋めるように転送電極が形成されている構成とするを可とする。
【0016】
上記本発明の固体撮像素子において、さらに転送電極の表面とセンサ部の表面とがほぼ同一平面になるように平坦化されている構成とするを可とする。
【0017】
上記本発明の固体撮像素子において、センサ部の半導体層は、半導体の選択成長により、転送領域を含む部分よりも厚く形成されている構成とするを可とする。
【0018】
上記本発明の固体撮像素子において、転送レジスタの最小ポテンシャル位置の半導体層の表面からの距離が、センサ部の最小ポテンシャル位置の半導体層の表面からの距離の50%〜150%の範囲にある構成とするを可とする。
【0019】
上述の本発明の固体撮像素子の構成によれば、転送レジスタの転送領域及びセンサ部が半導体層内に形成され、この半導体層の転送領域の表面がセンサ部の表面よりも深く形成されていることにより、センサ部から転送領域に向かう信号電荷の読み出しの経路が、従来よりも深く形成された転送領域に向かうため、従来よりも下方に向かうことになる。これにより、信号電荷の読み出しの経路が、センサ部の表面付近の不純物(例えば正電荷蓄積領域のp型不純物)の拡散の影響を受けにくくなる。
従って、信号電荷の読み出しを良好に行うことが可能になり、読み出しゲート部の読み出し電圧を高くする必要がなくなる。
【0020】
特に、少なくとも転送領域を含む半導体層の表面に凹部が形成され、この凹部を埋めるように転送電極が形成されている構成としたときには、転送電極が凹部を埋めていることにより、従来の半導体層の表面に凹部が形成されていない場合と比較して、転送電極の高さを低くして、さらに転送電極の上方に形成される各層の高さを低くすることができる。これにより、光がセンサ部に入射する経路のアスペクト比(幅に対する高さの比)を小さくすることができる。また、凹部は斜面(平面の他に傾斜した曲面を含む)又は垂直面を有するので、この斜面又は垂直面によって、半導体層の読み出しゲート部や転送領域の表面積を増やすことができることから、読み出しゲート部や転送領域の取り扱い電荷量を増やすことが可能になる。
【0021】
さらに、転送電極の表面とセンサ部の表面とがほぼ同一平面になるように平坦化されている構成としたときには、転送電極及びその上方に形成される各層の高さをより低くすることができる。
【0022】
また特に、センサ部の半導体層が、半導体の選択成長により転送領域を含む部分よりも厚く形成されている構成としたときには、半導体層に凹部を形成した場合と同様に、センサ部に対する転送電極の相対的な高さを、従来の構成よりも低くすることができるため、光がセンサ部に入射する経路のアスペクト比(幅に対する高さの比)を小さくすることができる。
【0023】
また特に、転送レジスタの最小ポテンシャル位置の半導体層の表面からの距離が、センサ部の最小ポテンシャル位置の半導体層の表面からの距離の50%〜150%の範囲にある構成としたときには、両者の最小ポテンシャル位置が近くなるため、電荷の読み出しに必要な電圧を低減することができる。
【0024】
本発明の固体撮像素子は、光電変換を行う複数のセンサ部と、このセンサ部で光電変換された信号電荷を読み出す読み出しゲート部と、この読み出しゲート部により読み出された信号電荷を転送する転送領域及びこの転送領域の転送を制御する転送電極から成る転送レジスタとを有し、転送レジスタの転送領域及びセンサ部が半導体層内に形成され、転送領域とセンサ部との間の半導体層に凹部が形成され、この凹部内に埋め込まれた導電膜により読み出しゲート部が構成されているものである。
【0025】
上述の本発明の固体撮像素子の構成によれば、転送領域とセンサ部との間の半導体層に凹部が形成され、この凹部内に埋め込まれた導電膜により読み出しゲート部が構成されていることにより、導電膜によって読み出しゲート部の特性を従来の構成と比較して大幅に向上することが可能になる。
従って、信号電荷の読み出しを非常に良好に行うことが可能になり、読み出しゲート部の読み出し電圧を高くする必要がなくなる。
【0026】
本発明の固体撮像素子の製造方法は、光電変換を行う複数のセンサ部と、センサ部で光電変換された信号電荷を読み出す読み出しゲート部と、読み出しゲート部により読み出された信号電荷を転送する転送領域及びこの転送領域の転送を制御する転送電極から成る転送レジスタとを有する固体撮像素子を製造する際に、半導体層の表面に凹部を形成する工程と、半導体層の凹部の下にイオン注入により転送領域を形成する工程と、半導体層の表面に絶縁膜を形成する工程と、この絶縁膜上に凹部を埋めるように転送電極を形成する工程と、半導体層の転送電極のない部分に、イオン注入によりセンサ部を形成する工程とを少なくとも有し、凹部は転送領域及び読み出しゲート部を含むように形成するものである。
【0027】
上述の本発明の固体撮像素子の製造方法によれば、半導体層の表面に凹部を形成し、この凹部の下に転送領域を形成することにより、転送領域は凹部の下の一段下がった位置に形成される。そして、半導体層の表面に絶縁膜を形成し、その上に凹部を埋めるように転送電極を形成することにより、凹部を埋めた転送電極の上面は、半導体層に凹部を形成しない従来の構成よりも低くなる。さらに、半導体層の転送電極のない部分にセンサ部を形成することにより、センサ部は凹部以外に形成されるため、凹部の下に形成される転送領域の表面はセンサ部の表面よりも深く形成される。また、凹部は斜面或いは垂直面を有するので、転送電極又は読み出しゲート部の表面積や読み出しゲート部のゲート長を増大させることができる。
【0028】
本発明の固体撮像素子の製造方法は、光電変換を行う複数のセンサ部と、センサ部で光電変換された信号電荷を読み出す読み出しゲート部と、読み出しゲート部により読み出された信号電荷を転送する転送領域及びこの転送領域の転送を制御する転送電極から成る転送レジスタとを有する固体撮像素子を製造する際に、読み出しゲート部となる部分の半導体層の表面に凹部を形成する工程と、半導体層の凹部の周辺にイオン注入により転送領域を形成する工程と、半導体層の表面に絶縁膜を形成する工程と、絶縁膜上の凹部の周辺の転送領域上に転送電極を形成する工程と、凹部に導電材を埋めて読み出しゲート部を形成する工程と、半導体層の転送電極及び導電材のない部分に、イオン注入によりセンサ部を形成する工程とを有するものである。
【0029】
上述の本発明の固体撮像素子の製造方法によれば、読み出しゲート部となる部分の半導体層の表面に凹部を形成し、この凹部の周辺に転送領域を形成することにより、転送領域は凹部以外の部分に形成される。そして、半導体層の表面に絶縁膜を形成し、凹部の周辺の転送領域上に転送電極を形成し、凹部に導電材を埋めて読み出しゲート部を形成することにより、凹部を埋めた導電材から成る読み出しゲート部の周辺に転送領域及び転送電極が配置される。さらに、半導体層の転送電極及び導電材のない部分にセンサ部を形成することにより、センサ部は凹部以外に形成され、センサ部と転送領域との間に凹部を埋めた導電材から成る読み出しゲート部が配置される。
【0030】
本発明の固体撮像素子の製造方法は、光電変換を行う複数のセンサ部と、センサ部で光電変換された信号電荷を読み出す読み出しゲート部と、読み出しゲート部により読み出された信号電荷を転送する転送領域及びこの転送領域の転送を制御する転送電極から成る転送レジスタとを有する固体撮像素子を製造する際に、半導体層内にイオン注入により転送領域を形成する工程と、半導体層の表面に絶縁膜を形成する工程と、絶縁膜上の少なくとも転送レジスタ及び読み出しゲート部となる部分に転送電極を形成する工程と、半導体層の転送電極のない部分を半導体の選択成長により隆起させる工程と、半導体層の隆起させた部分にイオン注入によりセンサ部を形成する工程とを有するものである。
【0031】
上述の本発明の固体撮像素子の製造方法によれば、半導体層内にイオン注入により転送領域を形成し、半導体層の表面に絶縁膜を形成し、絶縁膜上の少なくとも転送レジスタ及び読み出しゲート部となる部分に転送電極を形成し、半導体層の転送電極のない部分を半導体の選択成長により隆起させ、この隆起させた部分にイオン注入によりセンサ部を形成することにより、センサ部の表面は、転送電極のある転送領域及び読み出しゲート部の半導体層の表面よりも高く形成される。即ち半導体層に凹部を形成した場合と同様に、転送領域の表面がセンサ部の表面よりも深く形成された構造となる。
【0032】
【発明の実施の形態】
本発明の一実施の形態として、固体撮像素子の概略構成図を図1及び図2に示す。図1は平面図、図2は図1のA−Aにおける断面図である。この固体撮像素子1は、本発明をCCD固体撮像素子に適用したものである。
【0033】
図1に示すように、この固体撮像素子は、フォトダイオードから成る多数のセンサ部11がマトリクス状に配置されている。センサ部11の各列の一側には、センサ部11の列方向(図中V方向)に伸びるCCD構造の垂直転送レジスタ13が配置されている。
そして、各センサ部11の左側には、垂直転送レジスタ13との間に読み出しゲート部12が配置されている。一方、各センサ部11の右側には垂直転送レジスタ13との間にチャネルストップ領域14が形成されている。
垂直転送レジスタ13の先には、センサ部11の行方向(図中H方向)に伸びるCCD構造の水平転送レジスタ15が配置され、水平転送レジスタ15の一方の端部にアンプ部16と出力端子17が形成されている。
【0034】
センサ部11付近の断面構造は、図2に示すように、例えば半導体基板或いは半導体基板とその上の半導体エピタキシャル層により構成される半導体基体1内に、それぞれn型不純物領域2、p型の正電荷蓄積領域3、p型半導体ウエル領域4、n型の転送チャネル領域5、読み出しゲート部12、チャネルストップ領域14がそれぞれ不純物の拡散により形成されている。
このうち、n型不純物領域2とp型の正電荷蓄積領域3とによりセンサ部(受光部)11が構成され、p型半導体ウエル領域4とn型の転送チャネル領域5とその上方の後述する転送電極7とからCCD構造の垂直転送レジスタ13が構成される。
センサ部11は画素となるもので、このセンサ部11で光電変換が行われる。
【0035】
また、半導体基体1より上方にはゲート絶縁膜6を介して転送電極7が形成され、この転送電極7は、読み出しゲート部12及び垂直転送レジスタ13及びチャネルストップ領域14上に形成されている。
【0036】
尚、転送電極7より上方には、図示しないが従来のCCD固体撮像素子と同様に、遮光膜やその他必要に応じてカラーフィルタやオンチップレンズ等の各層が形成される。
【0037】
本実施の形態は、特に、読み出しゲート部12の一部及び垂直転送レジスタ13において、半導体基体1に凹部10が形成され、この半導体基体1に形成された凹部10を埋めて転送電極7が形成されている。
即ち、転送電極7が、読み出しゲート部12の一部及び垂直転送レジスタ13において、センサ部11等他の部分の半導体基体1の表面よりも埋め込まれている。
【0038】
従って、転送電極7が半導体基体1の凹部10に埋め込まれていることにより、図13に示した構造と比較して、垂直転送レジスタ13や読み出しゲート部12の表面積が増えることになるため、その分取り扱い電荷量を確保することができる。
また、実効的な読み出しゲート部12のゲート長も確保することができる。
【0039】
さらに、転送チャネル領域5が半導体基体1の凹部10の下に形成されているため、センサ部11の正電荷蓄積領域3よりも深い位置に転送チャネル領域5がある。
これにより、読み出しゲート部12により電荷を読み出す経路を、図3の矢印Eで示すように、ある程度深い位置に置くことができるため、センサ部11のp形不純物(p++)の拡散の影響を受けにくくなり、読み出しやすくなると考えられる。
【0040】
上述の本実施の形態の固体撮像素子21によれば、半導体基体1に凹部10が形成され、この凹部10の形成された部分に転送チャネル領域5が設けられていることにより、センサ部11の表面よりも転送チャネル領域5の表面が深い位置になることから、転送チャネル領域5がセンサ部11の正電荷蓄積領域3よりも深い位置になっている。
これにより、センサ部11から転送チャネル領域5への信号電荷の読み出しの経路が、例えば図3の矢印Eで示すように下方に向かうようになり、正電荷蓄積領域3のp型不純物が製造時に拡散して読み出しゲート部12側にかかっていても、信号電荷の読み出しの経路Eがこの拡散した部分を通らないようにすることができるため、正電荷蓄積領域3のp型不純物の拡散の影響によって信号電荷の読み出しが妨げられる問題を解決することができる。
従って、読み出しゲート部12による信号電荷の読み出しを容易にして、読み出しゲート部12の特性を確保し、転送電極7に印加する読み出し電圧の改善を図ることができる。
【0041】
また、本実施の形態の固体撮像素子21によれば、読み出しゲート部12の表面が、半導体基体1に形成された凹部10の斜面となっているため、転送電極7と対向する部分の長さ、即ちセンサ部11から転送チャネル領域5までの実効的な読み出しゲート長が、従来の固体撮像素子の構成よりも長くなる。
これにより、読み出しゲート部12の取り扱い電荷量を確保することができると共に、実効的な読み出しゲート長を充分確保して、読み出しゲート部12の特性を確保することが可能になる。
【0042】
同様に、転送チャネル領域5の表面も、その一部が凹部10の斜面となっているため、その分転送チャネル領域5の表面積が増えて、転送チャネル領域5の取り扱い電荷量を確保することができる。
【0043】
即ち、固体撮像素子21の画素の縮小化を図っても、電荷の読み出しを問題なく行うと共に、取り扱い電荷量や各部の特性を確保することができる。
従って、固体撮像素子21の画素を縮小化して、固体撮像素子21の多画素化や縮小化を図ることができる。そして、固体撮像素子21の縮小化により、1枚のウエハから得られる固体撮像素子21を増やして、製造コストの低減を図ることが可能になる。
さらに、固体撮像素子21を備えた固体撮像装置やカメラ等の装置において、素子21の多画素化による装置の高解像度化や、素子の縮小化による装置の小型化を実現することができる。
【0044】
さらに、転送電極7が半導体基体1に一部埋め込まれた構造となっているため、図13に示した従来の構成と比較して、転送電極7の上面の高さを低くすることができ、また転送電極7より上方に設けられる遮光膜や、カラーフィルタ、オンチップレンズ等の各層を従来の構成よりも低くして、固体撮像素子の総厚さを薄くすることができる。
これにより、入射光がセンサ部11に達するまでの経路のアスペクト比(幅に対する高さの比)を従来の固体撮像素子の構造よりも低減することができることから、斜めに入射する光を遮光膜等にけられることなくセンサ部11に到達するようにできるため、光の利用効率や感度を向上することができる。さらに、スミアの発生を抑制することができる。
このため、斜めに入射した光がセンサ部11に到達するように例えばセンサ部11とオンチップレンズとの間に層内レンズを形成する必要がなくなる。
【0045】
本実施の形態の固体撮像素子は、例えば次のようにして製造することができる。
まず、図4Aに示すように、半導体基体1に対してエッチングを行って、凹部10を形成する。この凹部10は、読み出しゲート部12となる部分と、垂直転送レジスタ13となる部分と、チャネルストップ領域14となる部分とに対応して形成されている。
【0046】
次に、半導体基体1に対して、不純物(n型不純物或いはp型不純物)のイオン注入を行い、注入した不純物の拡散を行って、p型半導体ウエル領域4、転送チャネル領域5、読み出しゲート部12、並びにチャネルストップ領域14を、それぞれ半導体基体1内に形成する。
続いて、図4Bに示すように、半導体基体1の表面を熱酸化することにより、ゲート絶縁膜6を形成する。このとき、半導体基体1の凹部10の表面も、同様に熱酸化されて絶縁膜6が形成される。
【0047】
次に、表面を覆って、転送電極7を構成する導電膜を形成する。これにより、半導体基体1の凹部10を含んで、この凹部10を埋めるように導電膜が形成される。
そして、図4Cに示すように、この導電膜をパターニングして、半導体基体1の凹部10を含むようなパターンに転送電極7を形成する。
【0048】
続いて、転送電極7をマスクとして、半導体基体1にイオン注入を行って、センサ部11を構成するn型不純物領域2及びp型の正電荷蓄積領域3を形成する。
その後は、表面を覆って絶縁膜を形成し、その上に遮光膜を形成する。さらに層間絶縁膜を形成して、必要に応じてカラーフィルタやオンチップレンズ等の各層を形成する。
このようにして、図2に示した本実施の形態の固体撮像素子21を製造することができる。
【0049】
次に、本発明の固体撮像素子の他の実施の形態の概略構成図(断面図)を図5に示す。
本実施の形態の固体撮像素子22は、特に転送電極7の上面とセンサ部11の上面とが、ほぼ同一面上にあるように平坦化されている。
また、半導体基体1に形成された凹部10は、読み出しゲート部12及びチャネルストップ領域14のみに斜面を有し、転送チャネル領域5には斜面を有していない。
尚、図中8は、平坦化した後に表面に形成した熱酸化膜(絶縁膜)を示す。
その他の構成は、図2に示した先の実施の形態の固体撮像素子21と同様であるので、同一符号を付して重複説明を省略する。
【0050】
本実施の形態の固体撮像素子22によれば、半導体基体1に凹部10が形成され、この凹部10の形成された部分に転送チャネル領域5が設けられていることにより、先の実施の形態と同様に、転送チャネル領域5がセンサ部11の正電荷蓄積領域3よりも深い位置になる。
これにより、先の実施の形態と同様に、正電荷蓄積領域3のp型不純物の拡散の影響によって電荷の読み出しが妨げられる問題を解決し、読み出しゲート部12の特性を確保し、転送電極7に印加する読み出し電圧の改善を図ることができる。
【0051】
また、本実施の形態の固体撮像素子22によれば、読み出しゲート部12の表面が、半導体基体1に形成された凹部10の斜面となっているため、転送電極7と対向する部分の長さ、即ちセンサ部11から転送チャネル領域5までの実効的な読み出しゲート長が、従来の固体撮像素子の構成よりも長くなる。
これにより、読み出しゲート部12の取り扱い電荷量を確保すること、読み出しゲート部12の特性を確保することが可能になる。
【0052】
即ち、固体撮像素子22の画素の縮小化を図っても、電荷の読み出しを問題なく行うと共に、取り扱い電荷量や各部の特性を確保することができる。
従って、固体撮像素子22の画素の縮小化によって、固体撮像素子22の多画素化や縮小化を図り、1枚のウエハから得られる固体撮像素子22を増加させて製造コストを低減すると共に、固体撮像素子22を備えた固体撮像装置やカメラ等の装置において、高解像度化や小型化を図ることが可能になる。
【0053】
さらに、本実施の形態の固体撮像素子22によれば、特に半導体基体1に転送電極7が完全に埋め込まれて、転送電極7の上面がセンサ部11の上面とほぼ同一面となるように平坦化されているため、半導体基体1の表面から上方にある各部に関して少なくとも転送電極7の厚さの影響がなくなる。これにより、遮光膜や、さらにその上のオンチップフィルタ及びオンチップレンズ等の各層も容易に作製することができる。また、各層の高さを従来の構成よりも大幅に低くして、固体撮像素子の総厚さを薄くすることができる。さらに、各層の膜厚均一性を向上し、製造ムラの低減を図ることができる。
従って、入射光がセンサ部11に達するまでの経路のアスペクト比(高さ/幅)を従来の固体撮像素子の構造よりも低減して、光の利用効率や感度を大幅に向上することができる。また、スミアの発生を抑制することができる。さらに、オンチップレンズを半導体基体1の表面に近づけて設けることができるため、シェーディング特性が改善される。
このことから、固体撮像素子の画素を縮小することが容易になるため、固体撮像素子のさらなる小型化や多画素化を図ることが可能になる。
【0054】
本実施の形態の固体撮像素子22は、例えば次のように製造することができる。
基本的には、先の実施の形態の固体撮像素子21の製造方法と同様な方法で製造することができる。
ただし、転送電極7を形成する工程では、表面を覆って電極膜(導電膜)を形成した後、パターニングを行う代わりに表面の平坦化工程、例えばCMP(化学的機械的研磨)法による研磨加工を行って、電極膜の半導体基体1の表面から突出した部分を除去する。
【0055】
まず、半導体基体1に対してエッチングを行って、それぞれ読み出しゲート部12、転送チャネル領域5、チャネルストップ領域14となる部分に対応して、凹部10を形成する。この場合、凹部10は、読み出しゲート部12となる部分とチャネルストップ領域14となる部分が斜面となっている。
【0056】
次に、半導体基体1に対して、不純物のイオン注入を行い、注入した不純物の拡散を行って、p型半導体ウエル領域4、転送チャネル領域5、読み出しゲート部12、並びにチャネルストップ領域14を、それぞれ半導体基体1内に形成する。
続いて、半導体基体1の表面を熱酸化することにより、ゲート絶縁膜6を形成する。このとき、半導体基体1の凹部10の表面も、同様に熱酸化されて絶縁膜6が形成される。ここまでの工程は、凹部10の形状を除けば図4A及び図4Bと同様である。
【0057】
次に、図6に示すように、成長或いは堆積により、表面を覆って電極膜7Xを形成する。
その後、表面の平坦化工程(例えば研磨加工)を行って、上面がほぼセンサ部11となる部分の上面と同一面となる転送電極7を形成する。尚、センサ部11となる部分のゲート絶縁膜6は、平坦化工程において除去される。
次に、熱酸化により、転送電極7の表面及びセンサ部11となる部分の半導体基体1の表面に熱酸化膜8を形成する。
続いて、転送電極7をマスクとして、半導体基体1にイオン注入を行って、センサ部11を構成するn型不純物領域2及びp型の正電荷蓄積領域3を形成する。
その後は、熱酸化膜8の上に、直接又は絶縁膜を介して、遮光膜を形成する。さらに、層間絶縁膜等を形成して、必要に応じてカラーフィルタやオンチップレンズ等の各層を形成する。
このようにして、図5に示した本実施の形態の固体撮像素子22を製造することができる。
【0058】
尚、上述の各実施の形態では、半導体基体1の凹部10が斜面(平面)を有する構成となっているが、水平面(底面)と垂直面(側面)とを有する構成や、傾斜した曲面を有する構成としてもよい。これらの場合も、垂直面や傾斜した曲面が形成された部分において、その部分の表面積を増やして取り扱い電荷量を増やすことができる。
その場合の実施の形態を次に示す。
【0059】
図13に示した従来の構成では、CCD固体撮像素子の単位セルの小型化に伴い、垂直転送レジスタの容量を増大する必要が生じることに対応して、図15に示すように、垂直転送レジスタ63のp型半導体ウエル領域54の最小ポテンシャル位置(図15中破線で示す)54Aを、半導体基体51−ゲート絶縁膜56の界面付近に近づけることにより容量を増大させている。その一方、センサ部61では、センサ部61内で発生する暗電流を減らすために、最小ポテンシャル位置(図15中破線で示す)52Aを半導体基体51−ゲート絶縁膜56の界面から遠ざけるようにしている。
【0060】
このように、垂直転送レジスタ63のp型半導体ウエル領域54の最小ポテンシャル位置54Aとセンサ部61の最小ポテンシャル位置52Aとが、表面からの深さに違いがあることにより、この違いが大きくなりこれら最小ポテンシャル位置54A,52Aが離れてしまうと、センサ部61から垂直転送レジスタ63への電荷の読み出しに必要な電圧が上昇してしまう。
しかし、これら最小ポテンシャル位置54A,52Aの深さを同一にしようとすると、垂直転送レジスタ63の容量を減らしてしまう、或いはセンサ部61の暗電流を悪化させてしまうという問題を生じることになる。
【0061】
この問題を解決する構成として、本発明の固体撮像素子の別の実施の形態の概略構成図(断面図)を図7に示す。
本実施の形態の固体撮像素子23は、図5に示した固体撮像素子22と同様に、転送電極7の上面とセンサ部11の上面とが、ほぼ同一面上にあるように平坦化されている。
本実施の形態では、特に半導体基体1に形成された凹部10が、読み出しゲート部12、転送チャネル領域5、チャネルストップ領域14にまたがる底面を有し、両端に垂直面を有している。そして、この凹部10内にゲート絶縁膜6を介して、転送電極7が形成されている。
尚、この図7では、絶縁膜8上に形成された遮光膜9を示している。
【0062】
本実施の形態では、半導体基体1に転送電極7が完全に埋め込まれて、転送電極7の上面がセンサ部11の上面とほぼ同一面となるように平坦化されているため、さらに図7に示すように、p型半導体ウエル領域4の最小ポテンシャル位置4Aとセンサ部11の最小ポテンシャル位置2Aとが、半導体基体1の表面からほぼ同じ深さになっている。これにより、前述した読み出し電圧の上昇の問題を解決することができる。
【0063】
尚、図7では、垂直転送レジスタ13のp型半導体ウエル領域4の最小ポテンシャル位置4Aとセンサ部11の最小ポテンシャル位置2Aとが、半導体基体1の表面からほぼ同じ深さになっているが、必ずしも同じほぼ深さになっていなくても、半導体基体1の表面からの深さが近くなるようにすればよい。
好ましくは、垂直転送レジスタ13のp型半導体ウエル領域4の最小ポテンシャル位置4Aの半導体基体1の表面からの深さが、センサ部11の最小ポテンシャル位置2Aの半導体基体1の表面からの深さの50〜150%の範囲内にあるようにする。
【0064】
その他の構成は、図5に示した先の実施の形態の固体撮像素子22と同様であるので、同一符号を付して重複説明を省略する。
【0065】
本実施の形態の固体撮像素子23によれば、半導体基体1に凹部10が形成され、この凹部10の形成された部分に転送チャネル領域5が設けられていることにより、先の実施の形態と同様に、転送チャネル領域5がセンサ部11の正電荷蓄積領域3よりも深い位置になる。
これにより、先の実施の形態と同様に、正電荷蓄積領域3のp型不純物の拡散の影響によって電荷の読み出しが妨げられる問題を解決し、読み出しゲート部12の特性を確保し、転送電極7に印加する読み出し電圧の改善を図ることができる。
【0066】
また、本実施の形態の固体撮像素子23によれば、特に半導体基体1に転送電極7が完全に埋め込まれて、転送電極7の上面がセンサ部11の上面とほぼ同一面となるように平坦化されているため、半導体基体1の表面から上方にある各部に関して少なくとも転送電極7の厚さの影響がなくなる。これにより、遮光膜9や、さらにその上のオンチップフィルタ及びオンチップレンズ等の各層も容易に作製することができる。また、各層の高さを従来の構成よりも大幅に低くして、固体撮像素子の総厚さを薄くすることができる。さらに、各層の膜厚均一性を向上し、製造ムラの低減を図ることができる。
従って、入射光がセンサ部11に達するまでの経路のアスペクト比(高さ/幅)を従来の固体撮像素子の構造よりも低減して、光の利用効率(集光性)や感度を大幅に向上することができる。また、スミアの発生を抑制することができる。さらに、オンチップレンズを半導体基体1の表面に近づけて設けることができるため、シェーディング特性が改善される。
【0067】
このことから、固体撮像素子の画素を縮小することが容易になるため、固体撮像素子のさらなる小型化や多画素化を図ることが可能になる。
従って、固体撮像素子23の画素の縮小化によって、固体撮像素子23の多画素化や縮小化を図り、1枚のウエハから得られる固体撮像素子23を増加させて製造コストを低減すると共に、固体撮像素子23を備えた固体撮像装置やカメラ等の装置において、高解像度化や小型化を図ることが可能になる。
【0068】
さらに、本実施の形態の固体撮像素子23によれば、垂直転送レジスタ13の最小ポテンシャル位置即ちp型半導体ウエル領域4の最小ポテンシャル位置4Aが、センサ部11の最小ポテンシャル位置2Aと、半導体基体1の表面からの深さがほぼ同一となっているため、読み出し電圧を低減することができる。
そして、垂直転送レジスタ13の容量を低下させてしまったり、センサ部11の暗電流を増大させてしまったりすることなく、読み出し電圧を低減することができるため、特性が良好であり、かつ読み出し電圧の小さい固体撮像素子を構成することができる。
【0069】
尚、先に示した各実施の形態の固体撮像装置21,22においても、転送電極7を半導体基体1の表面よりも深い位置に配置しているので、センサ部11及び垂直転送レジスタ13の不純物の分布を調整することにより、同様に垂直転送レジスタ13のp型半導体ウエル領域4の最小ポテンシャルの位置4Aをセンサ部11の最小ポテンシャル位置2Aと半導体基体1の表面からほぼ同じ深さにする、もしくは深さを近く(センサ部11の最小ポテンシャル位置2Aの50〜150%)することが可能である。
即ち、転送電極7が半導体基体1に完全に埋め込まれている構成でも、転送電極7の一部が半導体基体1に埋め込まれている構成でも、いずれも垂直転送レジスタ13のp型半導体ウエル領域4の最小ポテンシャルの位置4Aをセンサ部11の最小ポテンシャル位置2Aと半導体基体1の表面からほぼ同じ深さにする、もしくは深さを近くすることが可能である。
【0070】
本実施の形態の固体撮像素子23は、例えば次のように製造することができる。
基本的には、先の実施の形態の固体撮像素子22の製造方法と同様な方法で製造することができる。
【0071】
まず、図8Aに示すように、半導体基体1に対してエッチングを行って、それぞれ読み出しゲート部12、転送チャネル領域5、チャネルストップ領域14となる部分に対応した凹部10を形成する。この場合、凹部10は、両端面が垂直面であり、その間が水平な底面となっている。
【0072】
次に、図8Bに示すように、半導体基体1に対して、不純物のイオン注入を行い、注入した不純物の拡散を行って、p型半導体ウエル領域4、転送チャネル領域5、読み出しゲート部12、並びにチャネルストップ領域14を、それぞれ半導体基体1内に形成する。
続いて、図8Cに示すように、半導体基体1の表面を熱酸化することにより、ゲート絶縁膜6を形成する。このとき、半導体基体1の凹部10の表面も、同様に熱酸化されて絶縁膜6が形成される。
【0073】
次に、成長或いは堆積により、表面を覆って電極膜を形成する。
その後、図9Dに示すように、表面の平坦化工程(例えばCMP(化学的機械的研磨)法等の研磨加工)を行って、転送電極7を形成する。
尚、先の実施の形態の固体撮像素子22の製造工程の説明では、上面がほぼセンサ部11となる部分の上面と同一面となる転送電極7を形成するようにして、センサ部11となる部分のゲート絶縁膜6が平坦化工程において除去されていたが、この図9Dは平坦化工程の後も、センサ部11となる部分のゲート絶縁膜6を残した場合を示している。
【0074】
次に、センサ部11に開口を有するマスクを用いて、半導体基体1にイオン注入を行って、図9Eに示すように、センサ部11を構成するn型不純物領域2及びp型の正電荷蓄積領域3を形成する。
さらに、図9Fに示すように、表面にシリコン酸化膜8を形成した後、シリコン酸化膜8の上に遮光膜9を形成する。
さらに、層間絶縁膜等を形成して、必要に応じてカラーフィルタやオンチップレンズ等の各層を形成する。
このようにして、図7に示した本実施の形態の固体撮像素子23を製造することができる。
【0075】
尚、上述した各実施の形態のように半導体基体1をエッチングして凹部10を形成する代わりに、逆にセンサ部11側をエピタキシャル成膜(選択成長)させることにより隆起させてもよい。
その場合には、例えば転送電極7をマスクとして、または別途センサ部11となる部分に開口を形成したフォトレジストをマスクとして、センサ部11において半導体層を選択成長させる。その後、センサ部11を構成する半導体領域2,3を形成するイオン注入を行う。
【0076】
即ち図10Aに示すように、p型半導体ウエル領域4、n型の転送チャネル領域5、読出しゲート部12、チャネルストップ領域14の各不純物領域を半導体基体1に形成し、半導体基体1表面のゲート絶縁膜6を形成し、転送電極7を読出しゲート部12、垂直転送レジスタ13、チャネルストップ領域14に対応する部分に形成する。ここまでは、従来の構成と同様の製造工程を採る。
【0077】
その後、センサ部となる部分のゲート絶縁膜6を除去し、転送電極7または別途形成したフォトレジストをマスクとして、半導体層を選択成長させ、その後、図10Bに示すように、選択成長層1Xに、センサ部11を構成するn型不純物領域2及びp型の正電荷蓄積領域3をイオン注入により形成する。
この場合、n型不純物領域2は、選択成長層1Xと元の半導体基体1とに跨って形成されている。
この後は、遮光膜や、層間絶縁膜、さらに必要に応じてカラーフィルタやオンチップレンズ等の各層を形成する。
【0078】
このようにしても、上述の各実施の形態の固体撮像素子21,22,23と同様に、転送チャネル領域5の表面がセンサ部11の表面よりも深く形成され、転送チャネル領域がセンサ部の正電荷蓄積領域よりも深い位置にある構造を形成することができる。
【0079】
続いて、本発明のさらに他の実施の形態として、固体撮像素子の概略構成図を図11に示す。
本実施の形態の固体撮像素子31は、半導体基体1の読み出しゲート部12のみに凹部33が形成され、この凹部33内に導電膜(導電材)32が埋め込まれている。
導電膜32が埋め込まれた凹部33は、転送チャネル領域5よりも深い位置まで形成されている。導電膜32には、例えば電極材(例えばアモルファスシリコン、多結晶シリコン、SiGe等)を用いることができる。
【0080】
また、読出しゲート部12の導電膜32と半導体基体1との間には、ゲート絶縁膜6を兼ねる絶縁膜が形成されている。
読出しゲート部12の導電膜32があるため、転送電極7は通常の構成とは異なり、転送電極7は垂直転送レジスタ13及びチャネルストップ領域14のみに対応して形成されている。
【0081】
さらに、読み出しゲート部12の導電膜32と転送電極7との間は、互いに絶縁膜34により電気的に分離されている。このように互いに分離して、導電膜32と転送電極7とにそれぞれ異なる電位を印加することが可能となるように構成することが望ましい。
【0082】
その他の構成は、図13に示した従来の固体撮像素子の構造と同様になっている。転送チャネル領域5の上面は、センサ部11の上面と同じく、半導体基体1の表面となっている。
【0083】
本実施の形態の固体撮像素子31によれば、読み出しゲート部12の導電膜32の中を通って、電荷がセンサ部11から垂直転送レジスタ13に移動する。
これにより、読み出しゲート部が半導体層である従来の構成と比較して読み出しゲート部12の特性が飛躍的に向上する。即ち読み出しゲート部12が導電膜32であることにより、電荷の移動がスムーズであり、またセンサ部11の正電荷蓄積領域3のp型不純物が導電膜32の一部に拡散しても導電膜32のその他の部分で容易に電荷が移動するのでp型不純物の拡散の影響を低減することができる。
従って、読み出し電圧を高くする必要がなくなり、読み出しゲート部12の特性を確保することができる。
【0084】
即ち、本実施の形態の固体撮像素子31によれば、固体撮像素子31の画素の縮小化を図っても、電荷の読み出しを容易に行うと共に、読み出しゲート部の特性を確保することができる。
従って、固体撮像素子31の画素を縮小化して、固体撮像素子31の多画素化や縮小化を図ることができる。そして、固体撮像素子31の縮小化により、1枚のウエハから得られる固体撮像素子31を増やして、製造コストの低減を図ることが可能になる。
さらに、固体撮像素子31を備えた固体撮像装置やカメラ等の装置において、素子31の多画素化による装置の高解像度化や、素子の縮小化による装置の小型化を実現することができる。
【0085】
本実施の形態の固体撮像素子31は、例えば次のようにして製造することができる。
【0086】
まず、半導体基体1の読み出しゲート部12となる部分に、例えばエッチングにより凹部33を形成する。
次に、半導体基体1に、不純物のイオン注入により、p型半導体ウエル領域4、転送チャネル領域5、及びチャネルストップ領域14をそれぞれ形成する。
続いて、半導体基体1の表面に、例えば熱酸化等により、ゲート絶縁膜を兼ねる絶縁膜6を形成する。このとき、半導体基体1の凹部33の表面にも絶縁膜6が形成される。
次に、転送チャネル領域5及びチャネルストップ領域14上の部分の絶縁膜6上に、転送電極7を形成する。ここまでの状態を図12に示す。
【0087】
その後、転送電極7の表面の熱酸化或いは薄い絶縁膜の成膜により、転送電極7を覆って絶縁膜34を形成する。
次に、半導体基体1の凹部33を埋めるように導電膜32を形成する。この導電膜32をパターニングして読み出しゲート部12とする。
【0088】
続いて、半導体基体1に、イオン注入によりセンサ部11のn型不純物領域2及びp型の正電荷蓄積領域3を形成する。このとき、転送電極7及び導電膜32をイオン注入のマスクとしてもよいし、これらの膜7,32とは別にマスクを形成してもよい。
その後は、層間絶縁膜、遮光膜、さらに必要に応じてカラーフィルタやオンチップレンズを形成する。
このようにして、図11に示した本実施の形態の固体撮像素子31を製造することができる。
【0089】
尚、本実施の形態において、読み出しゲート部12の導電膜32と、転送電極7とを同じ材料で構成することも可能である。
さらに、同じ材料で構成し、同一工程で同時に形成することも可能である。例えば凹部33を埋めて全面的に電極材を成膜し、これをパターニングして導電膜32と転送電極7をそれぞれ形成する。同一工程で形成することにより、固体撮像素子の製造工程数を低減することができる利点を有する。
これらの構成においても、読み出しゲート部12の導電膜32と転送電極7との間を絶縁分離して、導電膜32と転送電極7とにそれぞれ異なる電位を印加することが可能となるように構成することが望ましい。
【0090】
上述の各実施の形態では、CCD固体撮像素子に本発明を適用したが、その他の構成にも本発明を適用することができる。
例えばCCD構造以外の電荷転送部(転送レジスタ)を有するCCD固体撮像素子にも、同様に本発明を適用することができる。
【0091】
また、図1に示したようにセンサ部11がマトリクス状に形成された構成だけでなく、例えばいわゆるラインセンサのように、一列のセンサ部と1つの電荷転送部(転送レジスタ)との組を単位とした構成にも本発明を適用することができる。
【0092】
尚、本発明における半導体層は、その材料や膜構造が特に限定されるものではなく、上述した半導体基体(半導体基板、或いは半導体基板及びその上の半導体エピタキシャル層等)以外の構成も可能であり、例えば絶縁基板上に形成された半導体層をも含むものである。
【0093】
本発明は、上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲でその他様々な構成が取り得る。
【0094】
【発明の効果】
上述の本発明によれば、読み出しゲート部の特性を向上して、画素縮小に伴う読み出しゲート部の特性等の劣化を防ぐことができる。
これにより、読み出し電圧を低減して、消費電力を低減することができる。
【0095】
特に、半導体層の転送領域の表面をセンサ部の表面よりも深く形成したときは、センサ部に対する転送電極の高さや、転送電極より上層のカラーフィルタやオンチップレンズ等の高さを低くすることができる。これにより、センサ部に入射する光の経路のアスペクト比(幅に対する高さの比)を小さくすることができる。これにより、斜めに入射した光が遮光膜等にけられることなくセンサ部に到達するようになって、光の利用効率や感度を向上させ、スミアを抑制することができる。このため、斜めに入射した光がセンサ部に達するように例えば層内レンズを形成する必要がなくなる。
【0096】
さらに、半導体層に凹部を形成して、この凹部に転送領域及び読み出しゲート部を形成する構成としたときには、凹部の斜面や垂直面により、転送領域又は読み出しゲート部において、表面積を増やして取り扱い電荷量を増やすことができると共に、さらに読み出しゲート部においては、そのゲート長を長くして読み出し特性を向上することが可能になる。
【0097】
即ち本発明により、固体撮像素子の多画素化や縮小化のために単位画素を縮小したことによる各種特性の劣化を防ぐことができ、基本特性を維持したまま多画素化、縮小化を実現することができる。
そして、固体撮像素子の縮小化により、1枚のウエハからの収率を増やして、製造コストの低減を図ることが可能になる。
【0098】
従って、本発明によれば、固体撮像素子を搭載した装置(カメラ等)において、素子の多画素化による装置の高解像度化や、素子の縮小化による装置の小型化を実現することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態の固体撮像素子の概略構成図(平面図)である。
【図2】図1のA−Aにおける断面図である。
【図3】図2の構成における電荷の読み出し時の電荷の移動経路を説明する図である。
【図4】A〜C 図1及び図2の固体撮像素子の製造工程を示す工程図である。
【図5】本発明の他の実施の形態の固体撮像素子の概略構成図(断面図)である。
【図6】図5の固体撮像素子の製造工程を示す工程図である。
【図7】本発明の別の実施の形態の固体撮像素子の概略構成図(断面図)である。
【図8】A〜C 図7の固体撮像素子の製造工程を示す工程図である。
【図9】D〜F 図7の固体撮像素子の製造工程を示す工程図である。
【図10】A、B 半導体層を選択成長させる場合の製造工程を示す工程図である。
【図11】本発明のさらに他の実施の形態の固体撮像素子の概略構成図(断面図)である。
【図12】図11の固体撮像素子の製造工程を示す工程図である。
【図13】従来のCCD固体撮像素子の概略構成図(断面図)である。
【図14】図13の構成における電荷の読み出し時の電荷の移動経路を説明する図である。
【図15】図13の構成における最小ポテンシャル位置の関係を示す図である。
【符号の説明】
1 半導体基体、2 n型不純物領域、3 正電荷蓄積領域、5 転送チャネル領域、6 ゲート絶縁膜、7 転送電極、9 遮光膜、10,33 凹部、11センサ部、12 読み出しゲート部、13 垂直転送レジスタ、14 チャネルストップ領域、15 水平転送レジスタ、21,22,23,31 固体撮像素子、32 導電膜
Claims (9)
- 光電変換を行う複数のセンサ部と、
上記センサ部で光電変換された信号電荷を読み出す読み出しゲート部と、
上記読み出しゲート部により読み出された上記信号電荷を転送する転送領域及び該転送領域の転送を制御する転送電極から成る転送レジスタとを有し、
上記転送レジスタの上記転送領域及び上記センサ部が、半導体層内に形成され、
上記半導体層は、上記転送領域の表面が、上記センサ部の表面よりも深く形成されている
ことを特徴とする固体撮像素子。 - 少なくとも上記転送領域を含む上記半導体層の表面に凹部が形成され、上記凹部を埋めるように上記転送電極が形成されていることを特徴とする請求項1に記載の固体撮像素子。
- 上記転送電極の表面と、上記センサ部の表面とがほぼ同一平面になるように平坦化されていることを特徴とする請求項2に記載の固体撮像素子。
- 上記センサ部の上記半導体層は、半導体の選択成長により、上記転送領域を含む部分よりも厚く形成されていることを特徴とする請求項1に記載の固体撮像素子。
- 上記転送レジスタの最小ポテンシャル位置の上記半導体層の表面からの距離が、上記センサ部の最小ポテンシャル位置の上記半導体層の表面からの距離の50%〜150%の範囲にあることを特徴とする請求項1に記載の固体撮像素子。
- 光電変換を行う複数のセンサ部と、
上記センサ部で光電変換された信号電荷を読み出す読み出しゲート部と、
上記読み出しゲート部により読み出された上記信号電荷を転送する転送領域及び該転送領域の転送を制御する転送電極から成る転送レジスタとを有し、
上記転送レジスタの上記転送領域及び上記センサ部が、半導体層内に形成され、
上記転送領域と上記センサ部との間の上記半導体層に凹部が形成され、
上記凹部内に埋め込まれた導電膜により、上記読み出しゲート部が構成されている
ことを特徴とする固体撮像素子。 - 光電変換を行う複数のセンサ部と、
上記センサ部で光電変換された信号電荷を読み出す読み出しゲート部と、
上記読み出しゲート部により読み出された上記信号電荷を転送する転送領域及び該転送領域の転送を制御する転送電極から成る転送レジスタとを有する固体撮像素子を製造する方法であって、
半導体層の表面に凹部を形成する工程と、
上記半導体層の上記凹部の下に、イオン注入により上記転送領域を形成する工程と、
上記半導体層の表面に絶縁膜を形成する工程と、
上記絶縁膜上に、上記凹部を埋めるように上記転送電極を形成する工程と、
上記半導体層の上記転送電極のない部分に、イオン注入により上記センサ部を形成する工程とを少なくとも有し、
上記凹部は、上記転送領域及び上記読み出しゲート部を含むように形成する
ことを特徴とする固体撮像素子の製造方法。 - 光電変換を行う複数のセンサ部と、
上記センサ部で光電変換された信号電荷を読み出す読み出しゲート部と、
上記読み出しゲート部により読み出された上記信号電荷を転送する転送領域及び該転送領域の転送を制御する転送電極から成る転送レジスタとを有する固体撮像素子を製造する方法であって、
上記読み出しゲート部となる部分の半導体層の表面に凹部を形成する工程と、上記半導体層の上記凹部の周辺に、イオン注入により上記転送領域を形成する工程と、
上記半導体層の表面に絶縁膜を形成する工程と、
上記絶縁膜上の上記凹部の周辺の上記転送領域上に、上記転送電極を形成する工程と、
上記凹部に導電材を埋めて、上記読み出しゲート部を形成する工程と、
上記半導体層の上記転送電極及び上記導電材のない部分に、イオン注入により上記センサ部を形成する工程とを有する
ことを特徴とする固体撮像素子の製造方法。 - 光電変換を行う複数のセンサ部と、
上記センサ部で光電変換された信号電荷を読み出す読み出しゲート部と、
上記読み出しゲート部により読み出された上記信号電荷を転送する転送領域及び該転送領域の転送を制御する転送電極から成る転送レジスタとを有する固体撮像素子を製造する方法であって、
上記半導体層内に、イオン注入により上記転送領域を形成する工程と、
上記半導体層の表面に絶縁膜を形成する工程と、
上記絶縁膜上の少なくとも上記転送レジスタ及び上記読み出しゲート部となる部分に、上記転送電極を形成する工程と、
上記半導体層の上記転送電極のない部分を、半導体の選択成長により隆起させる工程と、
上記半導体層の隆起させた部分に、イオン注入により上記センサ部を形成する工程とを有する
ことを特徴とする固体撮像素子の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002223554A JP2004087514A (ja) | 2002-06-24 | 2002-07-31 | 固体撮像素子及びその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002183451 | 2002-06-24 | ||
JP2002223554A JP2004087514A (ja) | 2002-06-24 | 2002-07-31 | 固体撮像素子及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004087514A true JP2004087514A (ja) | 2004-03-18 |
Family
ID=32071580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002223554A Pending JP2004087514A (ja) | 2002-06-24 | 2002-07-31 | 固体撮像素子及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004087514A (ja) |
-
2002
- 2002-07-31 JP JP2002223554A patent/JP2004087514A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4224036B2 (ja) | フォトダイオード領域を埋め込んだイメージセンサ及びその製造方法 | |
KR100875812B1 (ko) | 저장 게이트 화소 구조의 제조 방법 | |
JP4384113B2 (ja) | Cmosイメージセンサ | |
JP5231890B2 (ja) | 固体撮像装置とその製造方法 | |
JP4473240B2 (ja) | Cmosイメージセンサの製造方法 | |
JP2001291858A (ja) | 固体撮像素子及びその製造方法 | |
JP4228887B2 (ja) | 固体撮像素子およびその製造方法 | |
TW201119017A (en) | Solid-state imaging device, manufacturing method of the same, and electronic apparatus | |
TWI493696B (zh) | 在影像感測器中光偵測器之隔離 | |
US8487357B2 (en) | Solid state imaging device having high sensitivity and high pixel density | |
KR20210049103A (ko) | 고체 촬상 소자 | |
JP5962155B2 (ja) | 固体撮像装置、固体撮像装置の製造方法、及び、電子機器 | |
TW201036152A (en) | Shallow trench isolation regions in image sensors | |
JP4174468B2 (ja) | 光電変換装置及び撮像システム | |
JP2004039832A (ja) | 光電変換装置及びその製造方法 | |
JP2005294554A (ja) | 固体撮像素子およびその製造方法 | |
JP2004273640A (ja) | 固体撮像素子及びその製造方法 | |
JP4587187B2 (ja) | Cmos型光電変換装置及び撮像システム | |
JP3544175B2 (ja) | 半導体装置を用いた固体撮像装置及びカメラ | |
JP2004281499A (ja) | 固体撮像素子および固体撮像素子の製造方法 | |
JP5478871B2 (ja) | 光電変換装置、撮像システム、及び光電変換装置の製造方法 | |
TWI525801B (zh) | 具有經摻雜之傳輸閘極的影像感測器 | |
JPH08255888A (ja) | 固体撮像装置およびその製造方法 | |
JP5030323B2 (ja) | 固体撮像素子 | |
JP2004087514A (ja) | 固体撮像素子及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050518 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071206 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071211 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080408 |