JP2004087431A - Flat battery - Google Patents

Flat battery Download PDF

Info

Publication number
JP2004087431A
JP2004087431A JP2002250303A JP2002250303A JP2004087431A JP 2004087431 A JP2004087431 A JP 2004087431A JP 2002250303 A JP2002250303 A JP 2002250303A JP 2002250303 A JP2002250303 A JP 2002250303A JP 2004087431 A JP2004087431 A JP 2004087431A
Authority
JP
Japan
Prior art keywords
battery
electrode terminal
shaft core
thin
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002250303A
Other languages
Japanese (ja)
Inventor
Etsuo Ogami
大上 悦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002250303A priority Critical patent/JP2004087431A/en
Publication of JP2004087431A publication Critical patent/JP2004087431A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flat battery that has a shaft core joined to an electrode terminal in which durability of the foil state electrode terminal has been improved and wherein region of the battery sheath which is contacted at least to the electrode terminal is wound around the shaft core. <P>SOLUTION: This is the flat battery 10, power generation element 109 being housed in the battery sheaths 106, 107, and a positive electrode terminal 104 connected to the electrode of the power generation element is led from the outer peripheral brim of the battery sheaths, and it has the shaft core 200 joined to the battery sheaths 106, 107 electrode terminal 104, 105, and at least the region of the battery sheaths 106, 107 is wound around the shaft core 200. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【技術分野】
本発明は、電池外装内に発電要素が収容され、箔状の電極端子を有する薄型二次電池に関する。
【0002】
【背景技術】
薄型電池は、小型軽量であるため、これを複数接続して組電池にすることで高電圧化および高容量化することができる(たとえば特開平9−259859号公報参照)。
【0003】
しかしながら、上記特開平9−259859号公報に開示された薄型電池では、正極端子や負極端子がアルミニウム箔や銅箔などの箔状端子で構成されているため、複数の薄型電池の端子間を接続して組電池を構成すると、振動等により当該端子に作用する応力が端子と電池外装との界面に集中し、電極端子の破断や電池外装からの剥離が生ずる問題があった。
【0004】
【発明の開示】
本発明は、箔状電極端子の耐久性を向上させることを目的とする。
【0005】
本発明によれば、電池外装内に発電要素が収容され、前記発電要素の電極に接続された電極端子が前記電池外装の外周縁から導出された薄型電池であって、前記電極端子に接合された軸芯を有し、少なくとも前記電極端子に接触した前記電池外装の領域が、前記軸芯に巻き付けられた薄型電池が提供される(請求項1参照)。
【0006】
電池外装から外周縁から導出する電極端子を軸芯に接合し、当該軸芯を中心に電池外装を巻き付けて、薄型電池の電池外装から電極端子が導出する部位(以下、単に端子導出部位ともいう。)の強度を向上させることにより、応力集中による電極端子の破断や電池外装からの剥離を緩和することが可能となり、電極端子の耐久性が向上すると共に薄型電池の延命が可能となる。
【0007】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
【0008】
図1(A)は本発明の実施形態における薄型電池の全体を示す平面図、図1(B)は図1(A)のII−II線に沿う断面図、図2(A)は本発明の実施形態における軸芯を取り付ける前の薄型電池の端子導出部の部分平面図、図2(B)は図2(A)のIII−III線に沿う断面図、図3(A)は本発明の実施形態における軸芯を取り付けた薄型電池の端子導出部の部分平面図であり、図3(B)は図3(A)のIV−IV線に沿う断面図、図4(A)は従来の薄型電池の端子導出部の部分平面図であり、図4(B)は図4(A)のV−V線に沿う断面図である。図1は一つの薄型電池(単位電池)を示し、この薄型電池10を複数積層することにより所望の電圧、容量の組電池が構成される。
【0009】
まず、図1を参照しながら、本発明の実施形態に係る薄型電池10の全体構成について説明すると、本例の薄型電池10はリチウム系の薄型二次電池であり、2枚の正極板101と、5枚のセパレータ102と、2枚の負極板103と、正極端子104と、負極端子105と、上部電池外装106と、下部電池外装107と、特に図示しない電解質とから構成されている。このうちの正極板101,セパレータ102,負極板103および電解質を特に発電要素109と称する。なお、正極板101,セパレータ102,負極板103の枚数には何ら限定されず、1枚の正極板101,3枚のセパレータ102,1枚の負極板104でも発電要素109を構成することができ、必要に応じて正極板、負極板およびセパレータの枚数を選択して構成することができる。
【0010】
発電要素109を構成する正極板101は、金属酸化物などの正極活物質に、カーボンブラックなどの導電材と、ポリ四フッ化エチレンの水性ディスパージョンなどの接着剤とを、重量比でたとえば100:3:10の割合で混合したものを、正極側集電体としてのアルミニウム箔などの金属箔の両面に塗着、乾燥させ、圧延したのち所定の大きさに切断したものである。なお、上記のポリ四フッ化エチレンの水性ディスパージョンの混合比率は、その固形分である。
【0011】
正極活物質としては、例えばニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、コバルト酸リチウム(LiCoO)などのリチウム複合酸化物や、カルコゲン(S、Se、Te)化物を挙げることができる。
【0012】
発電要素109を構成する負極板103は、例えば非晶質炭素、難黒鉛化炭素、易黒鉛化炭素、または黒鉛などのように、正極活物質のリチウムイオンを吸蔵および放出する負極活物質に、有機物焼成体の前駆体材料としてのスチレンブタジエンゴム樹脂粉末の水性ディスパージョンをたとえば固形分比100:5で混合し、乾燥させたのち粉砕することで、炭素粒子表面に炭化したスチレンブタジエンゴムを担持させたものを主材料とし、これに、アクリル樹脂エマルジョンなどの結着剤をたとえば重量比100:5で混合し、この混合物を、負極側集電体としてのニッケル箔或いは銅箔などの金属箔の両面に塗着、乾燥させ、圧延したのち所定の大きさに切断したものである。
【0013】
特に負極活物質として非晶質炭素や難黒鉛化炭素を用いると、充放電時における電位の平坦特性に乏しく放電量にともなって出力電圧も低下するので、通信機器や事務機器の電源には不向きであるが、電気自動車等の電源として用いると急激な出力低下がないので有利である。
【0014】
また、発電要素109のセパレータ102は、上述した正極板101と負極板103との短絡を防止するもので、電解質を保持する機能を備えてもよい。セパレータ102は、例えばポリエチレン(PE)やポリプロピレン(PP)などのポリオレフィン等から構成される、厚さが25μm〜50μmの微多孔性膜であり、過電流が流れると、その発熱によって膜の空孔が閉塞され電流を遮断する機能をも有する。
【0015】
なお、本発明に係るセパレータ102は、ポリオレフィンなどの単層膜にのみ限られず、ポリプロピレン層をポリエチレン層でサンドイッチした三層構造や、ポリオレフィン微多孔膜と有機不織布などを積層したものも用いることができる。セパレータ102を複層化することで、過電流の防止機能、電解質保持機能およびセパレータの形状維持(剛性向上)機能などの諸機能を付与することができる。また、セパレータ102の代わりにゲル電解質又は真性ポリマー電解質等を用いることもできる。
【0016】
以上の発電要素109は、上から正極板101と負極板103とが交互に、且つ当該正極板101と負極板102との間にセパレータ102が位置するような順序で積層され、さらに、その最上部及び最下部にセパレータ102が一枚ずつ積層されている。そして、2枚の正極板101のそれぞれは、正極側集電部104aを介して、金属箔製の正極端子104に接続される一方で、2枚の負極板103は、負極側集電部105aを介して、同じく金属箔製の負極端子105に接続されている。なお、正極端子104も負極端子105も電気化学的に安定した金属材料であれば特に限定されないが、正極端子104としてはアルミニウムやアルミニウム合金などを挙げることができ、負極端子105としてはニッケル、銅またはステンレスなどを挙げることができる。また、本例の正極側集電部104aも負極側集電部105aの何れも、正極板104および負極板105の集電体を構成するアルミニウム箔やニッケル箔、銅箔を延長して構成されているが、別途の材料や部品により当該集電部104a,105aを構成することもできる。
【0017】
発電要素109は、上部電池外装106及び下部電池外装107により封止されている。これら上部電池外装106および下部電池外装107は、例えばポリエチレンやポリプロピレンなどの樹脂フィルムや、アルミニウムなどの金属箔の両面をポリエチレンやポリプロピレンなどの樹脂でラミネートした、樹脂−金属薄膜ラミネート材など、柔軟性を有する材料で形成されている。特に、電池外装106,107の内面を構成する樹脂フィルムを、電解質に対する耐薬品性に優れ、外周縁のヒートシール性にも優れた、たとえばポリエチレン、ポリプロピレン、アイオノマー樹脂等により構成するとともに、中間にたとえばアルミニウム箔やステンレス箔などの可撓性及び強度に優れた金属箔を介在させ、電池外装106,107の外面を構成する樹脂フィルムを、電気絶縁性に優れたたとえばポリアミド系樹脂、ポリエステル系樹脂等で構成することができる。
【0018】
そして、これらの上部電池外装106及び下部電池外装107によって、上述した発電要素109、正極側集電部104a、正極端子104の一部、負極側集電部105aおよび負極端子105の一部を包み込み、当該電池外装106、107により形成される空間に、有機液体溶媒に過塩素酸リチウム、ホウフッ化リチウム等のリチウム塩を溶質とした液体電解質を注入したのち、上部電池外装106及び下部電池外装107の外周縁を熱融着などの方法により封止する。
【0019】
有機液体溶媒として、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)などのエステル系溶媒を挙げることができるが、本発明の有機液体溶媒はこれにのみ限定されることなく、エステル系溶媒に、γ−ブチラクトン(γ−BL)、ジエトシキエタン(DEE)等のエーテル系溶媒その他を混合、調合した有機液体溶媒も用いることができる。
【0020】
同図に示されるように、封止された電池外装106、107の一方の端部から、正極端子104が導出するが、正極端子104の厚さ分だけ上部電池外装106と下部電池外装107との接合部に隙間が生じるので、薄型電池10内の封止性を維持するために、当該正極端子104と電池外装106、107とが接触する部分に、ポリエチレンやポリプロピレンから構成されたシールフィルムを熱融着などの方法により介在させることもできる。
【0021】
同様に、封止された電池外装106、107の他方の端部からは、負極端子105が導出するが、ここにも正極端子104側と同様に、当該負極端子105と電池外装106、107とが接触する部分にシールフィルムを介在させることもできる。なお、正極端子104および負極端子105の何れにおいても、シールフィルムは電池外装106、107の内面を構成する樹脂と同系統の樹脂から構成することが熱融着性の点から望ましい。
【0022】
図2に示すように、本発明の実施形態に係る薄型電池10の正極端子104は、電池外装106、107から距離L分導出している。これに対して、図4に示す従来の薄型電池10’においては、電池外装106’、107’からの正極端子104’の導出距離は、距離Lより大きな距離L’となっている(L<L’)。即ち、本発明の実施形態に係る薄型電池10は、従来の薄型電池10’と比較して、電池外装106、107から正極端子104が導出する距離が小さくなっており、正極端子104に接触する電池外装106、107の面積が増えている。なお、この距離Lは、正極端子104が軸芯200の円周の一部と接合するのに十分な面積を確保することが出来る距離である。特に図示しないが、負極端子105側の端子導出部においても同様に、電池外装106、107から距離Lだけ負極端子105が導出している。
【0023】
このように、電極端子の軸芯に接合されていない領域を、より大きな面積の電池外装に接触させて覆うことにより、端子導出部の強度を向上させることが可能となる。
【0024】
また、図2及び図3に示すように、例えば金属などの導電性の材料からなる円柱形状の軸芯200が、本発明の実施形態における薄型電池10の正極端子104に溶接等で接合されており、軸芯200と正極端子104とが電気的に接続されている。当該軸芯200の長さは、電池外装106、107の横方向(図2(A)において上下方向)の長さより若干大きな長さを有しており、その太さは薄型電池10の厚さよりも小さな直径を有している。なお、当該軸芯の断面形状は、円形状に限定されず例えば三角、四角、多角形状でも良い。軸芯200の正極端子104への接合において、電池外装106、107が巻き付いた際に当該軸芯200の一方の端部が電池外装106、107から導出しないように軸芯200が正極端子104に対して配置される。即ち、図2において、軸芯200の一方の端部(図2(A)において下側の端部)が、薄型電池10の電池外装106、107の一方の長辺(図2(A)において下側の長辺)の延長線上に位置するような配置で、軸芯200が正極端子104に接合される。当該薄型電池10を用いて組電池を構成するために複数の薄型電池10同士を電気的に接続する場合には、電池外装106、107から導出する軸芯200の他方の端部同士を接続すれば良い。特に図示しないが、負極端子105側の端子導出部においても同様に、円柱形状の軸芯200が負極端子105に接合され、当該軸芯200を中心に電池外装106、107が巻き付けられており、当該巻き付けられた軸芯200の一方の端部のみが電池外装106、107から導出している。
【0025】
このように、軸芯の一方の端部のみを電池外装から導出させることにより、導電部の露出面積を縮小させて短絡事故の防止が図れると共に、薄型電池の絶縁性を向上させることが可能となる。
【0026】
そして、図3に示すように、軸芯200に接合された正極端子104と、当該正極端子104の接触している領域の電池外装106、107とは、軸芯200を中心として巻き付けられる。軸芯200に巻き付けられた電池外装106、107の領域の直径Tは、薄型電池10の厚さTに実質的に等しくなる。特に図示しないが、負極端子105側の端子導出部においても同様に、軸芯200に巻き付けられた電池外装106、107の領域の直径が、薄型電池10の厚さTに実質的に等しくなっている。
【0027】
このように、巻き付けた電池外装の直径と薄型電池の厚さとを実質的に等しくすることにより、当該薄型電池の体積密度を向上させることが可能となる。
【0028】
以上のように、電極端子に軸芯を接合し、電極端子及び当該電極端子に接触した電池外装を軸芯に巻き付けることにより、端子導出部位の強度を向上させ、応力集中による電極端子の破断や電池外装からの剥離を緩和することが可能となり、電極端子の耐久性が向上すると共に薄型電池の延命が可能となる。
【0029】
なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
【図面の簡単な説明】
【図1】図1(A)は本発明の実施形態における薄型電池の全体を示す平面図であり、図1(B)は図1(A)のII−II線に沿う断面図である。
【図2】図2(A)は本発明の実施形態における軸芯を取り付ける前の薄型電池の端子導出部の部分平面図であり、図2(B)は図2(A)のIII−III線に沿う断面図である。
【図3】図3(A)は本発明の実施形態における軸芯を取り付けた薄型電池の端子導出部の部分平面図であり、図3(B)は図3(A)のIV−IV線に沿う断面図である。
【図4】図4(A)は従来の薄型電池の端子導出部の部分平面図であり、図4(B)は図4(A)のV−V線に沿う断面図である。
【符号の説明】
10…薄型電池
101…正極板
102…セパレータ
103…負極板
104…正極端子
104a…正極側集電部
105…負極端子
105a…負極側集電部
106…上部電池外装
107…下部電池外装
109…発電要素
200…軸芯
[0001]
【Technical field】
The present invention relates to a thin secondary battery having a power generation element housed in a battery exterior and having a foil-like electrode terminal.
[0002]
[Background Art]
Since a thin battery is small and lightweight, it is possible to increase the voltage and the capacity by connecting a plurality of thin batteries to form an assembled battery (see, for example, JP-A-9-259859).
[0003]
However, in the thin battery disclosed in Japanese Patent Application Laid-Open No. 9-259859, since the positive electrode terminal and the negative electrode terminal are formed by foil terminals such as aluminum foil and copper foil, the terminals of a plurality of thin batteries are connected. When the battery pack is constructed in such a manner, stress acting on the terminal due to vibration or the like is concentrated on the interface between the terminal and the battery exterior, and there is a problem that the electrode terminal is broken or separated from the battery exterior.
[0004]
DISCLOSURE OF THE INVENTION
An object of the present invention is to improve the durability of a foil electrode terminal.
[0005]
According to the present invention, a power generation element is housed in a battery exterior, and the electrode terminal connected to the electrode of the power generation element is a thin battery derived from an outer peripheral edge of the battery exterior, and is joined to the electrode terminal. A thin battery having a shaft core and at least a region of the battery exterior in contact with the electrode terminal is wound around the shaft core (see claim 1).
[0006]
An electrode terminal derived from the outer periphery from the battery exterior is joined to a shaft core, the battery exterior is wound around the axis, and a portion where the electrode terminal is derived from the battery exterior of the thin battery (hereinafter, also simply referred to as a terminal lead portion). By improving the strength of (1), it is possible to alleviate breakage of the electrode terminal due to stress concentration and separation from the battery exterior, thereby improving the durability of the electrode terminal and extending the life of the thin battery.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0008]
1A is a plan view showing the entire thin battery according to an embodiment of the present invention, FIG. 1B is a cross-sectional view taken along line II-II of FIG. 1A, and FIG. 2B is a partial plan view of the terminal lead-out portion of the thin battery before the shaft core is mounted in the embodiment, FIG. 2B is a cross-sectional view taken along the line III-III of FIG. 2A, and FIG. FIG. 3B is a partial plan view of a terminal lead-out portion of the thin battery to which the shaft core according to the embodiment is attached, FIG. 3B is a cross-sectional view taken along line IV-IV of FIG. 3A, and FIG. FIG. 4B is a partial plan view of a terminal lead-out portion of the thin battery of FIG. 4B, and FIG. 4B is a cross-sectional view taken along the line VV of FIG. FIG. 1 shows one thin battery (unit battery), and an assembled battery having a desired voltage and capacity is formed by stacking a plurality of the thin batteries 10.
[0009]
First, the overall configuration of a thin battery 10 according to an embodiment of the present invention will be described with reference to FIG. 1. The thin battery 10 of this example is a lithium-based thin secondary battery, and includes two positive plates 101 and It comprises five separators 102, two negative electrode plates 103, a positive electrode terminal 104, a negative electrode terminal 105, an upper battery exterior 106, a lower battery exterior 107, and an electrolyte (not shown). Among these, the positive electrode plate 101, the separator 102, the negative electrode plate 103, and the electrolyte are particularly referred to as a power generation element 109. The number of the positive electrode plate 101, the separator 102, and the negative electrode plate 103 is not limited at all, and the power generating element 109 can be constituted by one positive electrode plate 101, three separators 102, and one negative electrode plate 104. The number of the positive electrode plate, the negative electrode plate, and the number of separators can be selected as necessary.
[0010]
The positive electrode plate 101 constituting the power generation element 109 is formed by adding a conductive material such as carbon black and an adhesive such as an aqueous dispersion of polytetrafluoroethylene to a positive electrode active material such as a metal oxide in a weight ratio of, for example, 100%. : A mixture of 3:10 was applied to both sides of a metal foil such as an aluminum foil as a positive electrode current collector, dried, rolled, and then cut into a predetermined size. The mixing ratio of the aqueous dispersion of polytetrafluoroethylene is the solid content.
[0011]
Examples of the positive electrode active material include lithium composite oxides such as lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and lithium cobaltate (LiCoO 2 ), and chalcogenide (S, Se, Te) compounds. Can be.
[0012]
The negative electrode plate 103 constituting the power generation element 109 is formed of, for example, an amorphous carbon, a non-graphitizable carbon, a graphitizable carbon, or a negative electrode active material that occludes and releases lithium ions of a positive electrode active material, such as graphite. An aqueous dispersion of styrene-butadiene rubber resin powder as a precursor material for the organic fired body is mixed at, for example, a solid content ratio of 100: 5, dried, and then pulverized to carry carbonized styrene-butadiene rubber on the carbon particle surfaces. The main material is mixed with a binder such as an acrylic resin emulsion at a weight ratio of 100: 5, for example, and this mixture is used as a metal foil such as a nickel foil or a copper foil as a negative electrode current collector. Is dried, rolled, and then cut into a predetermined size.
[0013]
In particular, when amorphous carbon or non-graphitizable carbon is used as the negative electrode active material, the flatness of the potential during charge and discharge is poor, and the output voltage decreases with the amount of discharge, so it is not suitable for the power supply of communication equipment and office equipment. However, when used as a power source for an electric vehicle or the like, there is no sharp drop in output, which is advantageous.
[0014]
Further, the separator 102 of the power generation element 109 prevents short-circuit between the positive electrode plate 101 and the negative electrode plate 103 described above, and may have a function of retaining an electrolyte. The separator 102 is a microporous film having a thickness of 25 μm to 50 μm, which is made of, for example, a polyolefin such as polyethylene (PE) or polypropylene (PP). Is also closed and has a function of interrupting the current.
[0015]
Note that the separator 102 according to the present invention is not limited to a single-layer film of polyolefin or the like, and may be a three-layer structure in which a polypropylene layer is sandwiched by a polyethylene layer, or a laminate of a polyolefin microporous film and an organic nonwoven fabric. it can. By forming the separator 102 into multiple layers, various functions such as a function of preventing an overcurrent, a function of retaining an electrolyte, and a function of maintaining the shape of the separator (improving rigidity) can be provided. Further, a gel electrolyte, an intrinsic polymer electrolyte, or the like can be used instead of the separator 102.
[0016]
The above-described power generating elements 109 are stacked such that the positive electrode plate 101 and the negative electrode plate 103 are alternately arranged from the top and in such an order that the separator 102 is located between the positive electrode plate 101 and the negative electrode plate 102. One separator 102 is stacked on each of the upper and lower parts. Each of the two positive plates 101 is connected to a metal foil positive terminal 104 via a positive current collector 104a, while the two negative plates 103 are connected to a negative current collector 105a. Is connected to the negative electrode terminal 105 also made of metal foil. Note that the positive electrode terminal 104 and the negative electrode terminal 105 are not particularly limited as long as they are electrochemically stable metal materials. Examples of the positive electrode terminal 104 include aluminum and an aluminum alloy. Or stainless steel. In addition, both the positive-side current collector 104a and the negative-side current collector 105a of the present example are configured by extending an aluminum foil, a nickel foil, and a copper foil constituting the current collector of the positive electrode plate 104 and the negative electrode plate 105. However, the current collectors 104a and 105a can be formed of separate materials and components.
[0017]
The power generation element 109 is sealed by the upper battery outer case 106 and the lower battery outer case 107. The upper battery casing 106 and the lower battery casing 107 are made of a flexible material such as a resin film of polyethylene or polypropylene or a resin-metal thin film laminated material in which both surfaces of a metal foil such as aluminum are laminated with a resin such as polyethylene or polypropylene. Is formed of a material having: In particular, the resin films constituting the inner surfaces of the battery casings 106 and 107 are made of, for example, polyethylene, polypropylene, ionomer resin, etc., which are excellent in chemical resistance to the electrolyte and excellent in the heat sealing property of the outer peripheral edge. For example, a resin film constituting the outer surfaces of the battery casings 106 and 107 is formed by interposing a metal foil having excellent flexibility and strength such as an aluminum foil or a stainless steel foil. And so on.
[0018]
The upper battery exterior 106 and the lower battery exterior 107 enclose the above-described power generation element 109, the positive-side current collector 104a, a part of the positive terminal 104, and the negative-side current collector 105a and a part of the negative terminal 105. After injecting a liquid electrolyte containing a lithium salt such as lithium perchlorate or lithium borofluoride in an organic liquid solvent into a space formed by the battery casings 106 and 107, an upper battery casing 106 and a lower battery casing 107 are formed. Is sealed by a method such as heat fusion.
[0019]
Examples of the organic liquid solvent include ester solvents such as propylene carbonate (PC), ethylene carbonate (EC), and dimethyl carbonate (DMC). However, the organic liquid solvent of the present invention is not limited thereto. An organic liquid solvent obtained by mixing and preparing an ether-based solvent such as γ-butylactone (γ-BL), diethoxyethane (DEE) or the like with an ester-based solvent can also be used.
[0020]
As shown in the figure, the positive electrode terminal 104 is led out from one end of the sealed battery outer casings 106 and 107, and the upper battery outer casing 106 and the lower battery outer casing 107 have a thickness corresponding to the thickness of the positive electrode terminal 104. In order to maintain the sealing property in the thin battery 10, a sealing film made of polyethylene or polypropylene is provided at a portion where the positive electrode terminal 104 and the battery casings 106 and 107 are in contact with each other. It can also be interposed by a method such as heat fusion.
[0021]
Similarly, a negative electrode terminal 105 is led out from the other end of the sealed battery outer casings 106 and 107. Here, similarly to the positive terminal 104 side, the negative electrode terminal 105 and the battery outer casings 106 and 107 are connected. A seal film may be interposed in a portion where the contact is made. In both the positive electrode terminal 104 and the negative electrode terminal 105, it is desirable that the seal film is made of the same resin as the resin forming the inner surfaces of the battery exteriors 106 and 107 from the viewpoint of heat-fusibility.
[0022]
As shown in FIG. 2, the positive electrode terminal 104 of the thin battery 10 according to the embodiment of the present invention is extended from the battery exteriors 106 and 107 by a distance L. On the other hand, in the conventional thin battery 10 'shown in FIG. 4, the lead-out distance of the positive electrode terminal 104' from the battery casings 106 'and 107' is a distance L 'larger than the distance L (L < L '). That is, in the thin battery 10 according to the embodiment of the present invention, the distance that the positive terminal 104 is led out from the battery exteriors 106 and 107 is smaller than that of the conventional thin battery 10 ′, and the thin battery 10 contacts the positive terminal 104. The areas of the battery exteriors 106 and 107 have been increased. The distance L is a distance that can secure a sufficient area for the positive electrode terminal 104 to be joined to a part of the circumference of the shaft core 200. Although not particularly shown, the negative electrode terminal 105 is also drawn out from the battery exteriors 106 and 107 by a distance L at the terminal lead-out portion on the negative electrode terminal 105 side.
[0023]
As described above, by covering a region that is not joined to the axis core of the electrode terminal by contacting the battery exterior having a larger area, the strength of the terminal lead portion can be improved.
[0024]
As shown in FIGS. 2 and 3, for example, a cylindrical shaft core 200 made of a conductive material such as metal is joined to the positive electrode terminal 104 of the thin battery 10 according to the embodiment of the present invention by welding or the like. The shaft core 200 and the positive electrode terminal 104 are electrically connected. The length of the shaft core 200 is slightly larger than the length of the battery casings 106 and 107 in the horizontal direction (vertical direction in FIG. 2A), and the thickness is greater than the thickness of the thin battery 10. Also have a small diameter. The sectional shape of the shaft core is not limited to a circular shape, but may be, for example, a triangular, square, or polygonal shape. In joining the shaft core 200 to the positive electrode terminal 104, the shaft core 200 is connected to the positive electrode terminal 104 so that one end of the shaft core 200 does not come out of the battery housings 106 and 107 when the battery sheaths 106 and 107 are wound. Placed against That is, in FIG. 2, one end of the shaft core 200 (the lower end in FIG. 2A) is connected to one long side of the battery exteriors 106 and 107 of the thin battery 10 (in FIG. 2A). The shaft core 200 is joined to the positive electrode terminal 104 in an arrangement such that it is located on an extension of the lower long side). When a plurality of thin batteries 10 are electrically connected to each other to form an assembled battery using the thin batteries 10, the other ends of the shaft cores 200 extending from the battery exteriors 106 and 107 are connected to each other. Good. Although not particularly shown, in the terminal lead-out portion on the negative electrode terminal 105 side, similarly, a cylindrical shaft core 200 is joined to the negative electrode terminal 105, and the battery exteriors 106 and 107 are wound around the shaft core 200, Only one end of the wound shaft core 200 extends out of the battery casings 106 and 107.
[0025]
In this way, by leading only one end of the shaft core out of the battery exterior, it is possible to reduce the exposed area of the conductive portion, thereby preventing a short circuit accident, and improve the insulation of the thin battery. Become.
[0026]
Then, as shown in FIG. 3, the positive electrode terminal 104 joined to the shaft core 200 and the battery casings 106 and 107 in a region where the positive electrode terminal 104 is in contact are wound around the shaft core 200. The diameter T 1 of the region of the battery casings 106 and 107 wound around the shaft core 200 becomes substantially equal to the thickness T 2 of the thin battery 10. Although not shown, also in the terminal lead-out portion of the negative terminal 105 side, the diameter of the region of the battery case 106 and 107 wound around the shaft core 200 is substantially equal to the thickness T 2 of the thin battery 10 ing.
[0027]
As described above, by making the diameter of the wound battery exterior substantially equal to the thickness of the thin battery, the volume density of the thin battery can be improved.
[0028]
As described above, by joining the axis core to the electrode terminal and winding the electrode terminal and the battery exterior in contact with the electrode terminal around the axis core, the strength of the terminal lead-out portion is improved, and the electrode terminal may be broken due to stress concentration. It is possible to alleviate the detachment from the battery exterior, improve the durability of the electrode terminals, and extend the life of the thin battery.
[0029]
The embodiments described above are described for facilitating the understanding of the present invention, and are not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
[Brief description of the drawings]
FIG. 1A is a plan view showing an entire thin battery according to an embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along line II-II in FIG. 1A.
FIG. 2A is a partial plan view of a terminal lead-out portion of a thin battery before mounting a shaft core in an embodiment of the present invention, and FIG. 2B is a III-III of FIG. 2A. It is sectional drawing which follows a line.
FIG. 3 (A) is a partial plan view of a terminal lead-out portion of a thin battery to which a shaft core is attached according to an embodiment of the present invention, and FIG. 3 (B) is a line IV-IV of FIG. 3 (A). FIG.
4 (A) is a partial plan view of a terminal lead-out portion of a conventional thin battery, and FIG. 4 (B) is a cross-sectional view taken along line VV of FIG. 4 (A).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Thin battery 101 ... Positive electrode plate 102 ... Separator 103 ... Negative electrode plate 104 ... Positive terminal 104a ... Positive current collector 105 ... Negative terminal 105a ... Negative current collector 106 ... Upper battery exterior 107 ... Lower battery exterior 109 ... Power generation Element 200: Shaft core

Claims (9)

電池外装内に発電要素が収容され、前記発電要素の電極に接続された電極端子が前記電池外装の外周縁から導出された薄型電池であって、
前記電極端子に接合された軸芯を有し、
少なくとも前記電極端子に接触した前記電池外装の領域が、前記軸芯に巻き付けられた薄型電池。
A thin battery in which a power generation element is housed in a battery exterior and an electrode terminal connected to an electrode of the power generation element is led out from an outer peripheral edge of the battery exterior,
Having a shaft core joined to the electrode terminal,
A thin battery in which at least a region of the battery exterior in contact with the electrode terminal is wound around the shaft core.
前記軸芯は、前記軸芯に巻き付いた前記電池外装の一方の端部のみから導出している請求項1記載の薄型電池。The thin battery according to claim 1, wherein the shaft core is derived from only one end of the battery exterior wound around the shaft core. 前記軸芯に巻き付いた前記電池外装の直径が、前記薄型電池の厚さに実質的に等しい請求項1又は2記載の薄型電池。The thin battery according to claim 1, wherein a diameter of the battery casing wound around the shaft core is substantially equal to a thickness of the thin battery. 前記電極端子は、前記軸芯に接合されていない領域が前記電池外装に覆われている請求項1〜3の何れかに記載の薄型電池。The thin battery according to any one of claims 1 to 3, wherein a region of the electrode terminal that is not joined to the shaft core is covered with the battery exterior. 前記発電要素は、リチウムイオン電池である請求項1〜4の何れかに記載の薄型電池。The thin battery according to claim 1, wherein the power generation element is a lithium ion battery. 前記発電要素の正極活物質がリチウム成分を含む請求項1〜5の何れかに記載の薄型電池。The thin battery according to any one of claims 1 to 5, wherein the positive electrode active material of the power generation element includes a lithium component. 前記発電要素の正極活物質がマンガン酸リチウムまたはニッケル酸リチウムを含む請求項6記載の薄型電池。The thin battery according to claim 6, wherein the positive electrode active material of the power generation element includes lithium manganate or lithium nickelate. 前記発電要素の負極活物質が非晶質炭素を含む請求項1〜7の何れかに記載の薄型電池。The thin battery according to any one of claims 1 to 7, wherein the negative electrode active material of the power generation element includes amorphous carbon. 前記発電要素のセパレータの厚さが25μm〜50μmである請求項1〜8の何れかに記載の薄型電池。The thin battery according to any one of claims 1 to 8, wherein the separator of the power generation element has a thickness of 25 m to 50 m.
JP2002250303A 2002-08-29 2002-08-29 Flat battery Pending JP2004087431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002250303A JP2004087431A (en) 2002-08-29 2002-08-29 Flat battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002250303A JP2004087431A (en) 2002-08-29 2002-08-29 Flat battery

Publications (1)

Publication Number Publication Date
JP2004087431A true JP2004087431A (en) 2004-03-18

Family

ID=32057168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002250303A Pending JP2004087431A (en) 2002-08-29 2002-08-29 Flat battery

Country Status (1)

Country Link
JP (1) JP2004087431A (en)

Similar Documents

Publication Publication Date Title
JP2000003726A (en) Lithium secondary battery
JP2007066806A (en) Bipolar battery
JP2004047262A (en) Thin battery and battery pack
JP2004095402A (en) Laminate battery, modular battery pack, battery pack and vehicle provided therewith
JP4182858B2 (en) Secondary battery and assembled battery
JP3687632B2 (en) Thin battery
JP4670275B2 (en) Bipolar battery and battery pack
JP3797311B2 (en) Thin battery support device and assembled battery including the same
JP2004047239A (en) Thin battery, battery pack, modular battery pack and vehicle installed therewith
JP2005251617A (en) Secondary battery and battery pack
JP4182856B2 (en) Secondary battery, assembled battery, composite assembled battery, vehicle, and manufacturing method of secondary battery
JP3711962B2 (en) Thin battery
JP2004055346A (en) Battery pack, composite battery pack, and vehicle mounting it
JP3702868B2 (en) Thin battery
JP2004171954A (en) Laminated secondary battery, battery pack module comprising multiple laminated secondary batteries, battery pack comprising multiple set battery modules, and electric automobile with either battery mounted
JP2011086483A (en) Laminated secondary battery
JP3579227B2 (en) Thin rechargeable battery
JP2006236775A (en) Secondary battery
JP4178428B2 (en) Battery with metal resin laminated film as a case
JP2005129393A (en) Secondary battery
JP4052127B2 (en) Thin battery support structure, assembled battery and vehicle
JP5509592B2 (en) Bipolar secondary battery
JP2002222666A (en) Lithium secondary cell
JP3818244B2 (en) Thin battery
JP2004039577A (en) Thin battery, battery pack, compound battery pack, and vehicle