JP5509592B2 - Bipolar secondary battery - Google Patents

Bipolar secondary battery Download PDF

Info

Publication number
JP5509592B2
JP5509592B2 JP2008334682A JP2008334682A JP5509592B2 JP 5509592 B2 JP5509592 B2 JP 5509592B2 JP 2008334682 A JP2008334682 A JP 2008334682A JP 2008334682 A JP2008334682 A JP 2008334682A JP 5509592 B2 JP5509592 B2 JP 5509592B2
Authority
JP
Japan
Prior art keywords
secondary battery
teeth
elastic body
current collector
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008334682A
Other languages
Japanese (ja)
Other versions
JP2010157417A (en
Inventor
拓哉 木下
賢司 保坂
良一 仙北谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008334682A priority Critical patent/JP5509592B2/en
Publication of JP2010157417A publication Critical patent/JP2010157417A/en
Application granted granted Critical
Publication of JP5509592B2 publication Critical patent/JP5509592B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、双極型二次電池、および、これを含む組電池および車両に関する。   The present invention relates to a bipolar secondary battery, and an assembled battery and a vehicle including the same.

近年、大気汚染や地球温暖化に対処するため、二酸化炭素量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池の開発が盛んに行われている。   In recent years, in order to cope with air pollution and global warming, reduction of the amount of carbon dioxide has been strongly desired. In the automobile industry, there is a great expectation for reducing carbon dioxide emissions by introducing electric vehicles (EV) and hybrid electric vehicles (HEV), and the development of secondary batteries for motor drive that holds the key to commercialization of these is thriving. Has been done.

モータ駆動用二次電池としては、携帯電話やノートパソコン等に使用される民生用リチウムイオン二次電池と比較して極めて高い出力特性、および高いエネルギを有することが求められている。したがって、全ての電池の中で最も高い理論エネルギを有するリチウムイオン二次電池(一つの二次電池を単電池と称する)を直列に積層した双曲型二次電池が注目を集めており、現在急速に開発が進められている。   As a secondary battery for driving a motor, it is required to have extremely high output characteristics and high energy as compared with a consumer lithium ion secondary battery used for a mobile phone, a notebook personal computer or the like. Therefore, a hyperbolic secondary battery in which lithium ion secondary batteries having the highest theoretical energy among all the batteries (one secondary battery is called a single battery) are stacked in series is attracting attention. Development is progressing rapidly.

双極型二次電池は、各単電池が製造バラツキによりその内部抵抗や容量等にバラツキを有することから、これを直列に接続したときに各単電池が分担する電圧にバラツキが生じる。単電池の分担電圧のバラツキが発生すると、分担電圧の大きな単電池に過大な負荷がかかり、当該分担電圧が大きい単電池から劣化が進行し、双極型二次電池全体としての寿命が当該分担電圧の大きい単電池によって制限されてしまうことがある。このため、各単電池の電圧をモニタし、分担電圧を均等にするための制御をすることが望ましい。   Bipolar secondary batteries have variations in their internal resistance, capacity, etc. due to manufacturing variations, and therefore, when they are connected in series, there is variation in the voltage shared by each single cell. When a variation in the shared voltage of a single cell occurs, an excessive load is applied to the single cell with a large shared voltage, the deterioration proceeds from the single cell with the large shared voltage, and the life of the bipolar secondary battery as a whole is the shared voltage. May be limited by large single cells. For this reason, it is desirable to monitor the voltage of each unit cell and perform control to equalize the shared voltage.

従来は、各単電池の電圧をモニタするために、積層された各集電体間に櫛型形状の配線基板の歯の部分を挿入して、該歯の部分と各集電体とを接触させて電気的に接続し、該配線基板の柄の部分から各集電体の電圧を取り出していた(特許文献1)。
特開2008−160060号公報
Conventionally, in order to monitor the voltage of each unit cell, a tooth portion of a comb-shaped wiring board is inserted between each stacked current collector, and the tooth portion and each current collector are brought into contact with each other. The voltage of each current collector was taken out from the handle portion of the wiring board (Patent Document 1).
JP 2008-160060 A

しかし、該配線基板の歯の先端部分は、集電体と接続するために導電材料を被覆した絶縁材料を除去して導電材料を露出させている。そのため、導電材料を露出した該先端部分と、導電材料が露出していない部分との間で段差が生じており、該段差の影響で該歯の先端部分と集電体との接触面積が十分とれず両者の接着の振動耐久性を劣化させる可能性がある。   However, the tips of the wiring board teeth are exposed by removing the insulating material covering the conductive material in order to connect to the current collector. Therefore, a step is generated between the tip portion where the conductive material is exposed and a portion where the conductive material is not exposed, and the contact area between the tip portion of the tooth and the current collector is sufficient due to the step. There is a possibility of deteriorating the vibration durability of the adhesion between the two.

上記課題を解決するために、本発明に係る双極型二次電池は、集電体と、配線基板と、導電性弾性体を有する。配線基板は、積層された集電体間に挿入され、対向した前記集電体のいずれか一方とそれぞれ電気的に接続された複数の歯と、複数の歯を支持し前記複数の歯の電位を出力する出力端を有する柄と、を備える。配線基板の歯は導電材料が絶縁材料で被覆された基部と導電材料が露出した先端部とからなり、前記先端部と前記基部とが前記集電体間に挿入され、歯と集電体は、歯の先端部と集電体との間に設けられた導電性弾性体を介して電気的に接続される。前記導電性弾性体は表面に導電性を有する接着層を有し、前記歯の前記導電材料を被覆する前記絶縁材料の厚さは、前記導電性弾性体の厚さより薄く、前記先端部と前記集電体とは、前記接着層により前記導電性弾性体と接着されることで電気的に接続される。
In order to solve the above problems, a bipolar secondary battery according to the present invention includes a current collector, a wiring board, and a conductive elastic body. The wiring board is inserted between the stacked current collectors, and has a plurality of teeth electrically connected to any one of the opposed current collectors, and supports the plurality of teeth, and the potentials of the plurality of teeth A handle having an output end for outputting. The teeth of the wiring board are composed of a base portion where the conductive material is coated with an insulating material and a tip portion where the conductive material is exposed, and the tip portion and the base portion are inserted between the current collectors. And electrically connected via a conductive elastic body provided between the tip of the tooth and the current collector. The conductive elastic body has a conductive adhesive layer on the surface, and the thickness of the insulating material covering the conductive material of the teeth is smaller than the thickness of the conductive elastic body, The current collector is electrically connected by being bonded to the conductive elastic body by the adhesive layer.

本発明に係る双極型二次電池によれば、集電体と配線基板の歯の先端部との間に導電性弾性体を設ける。これにより、前記段差の影響を低減して集電体と配線基板との接触面積を十分確保するとともに、導電性弾性体に振動を吸収させることができるため、振動耐久性を向上させることができる。   According to the bipolar secondary battery of the present invention, the conductive elastic body is provided between the current collector and the tip of the tooth of the wiring board. Thereby, the influence of the step is reduced to ensure a sufficient contact area between the current collector and the wiring board, and vibration can be absorbed by the conductive elastic body, so that vibration durability can be improved. .

以下に、本発明に係る双極型二次電池、これを複数接続した組電池、および、これらを搭載した車両について実施形態により詳細に説明する。   Hereinafter, a bipolar secondary battery according to the present invention, an assembled battery in which a plurality of the secondary batteries are connected, and a vehicle equipped with these batteries will be described in detail by embodiments.

まず、双極型二次電池について、双極型のリチウムイオン二次電池(以下、双極型二次電池と称する)を例に簡単に説明する。なお、以下参照する図面では、双極型二次電池の構成要素の形状、厚さ等を誇張しているが、これは発明の理解を容易にするためである。   First, a bipolar secondary battery will be briefly described by taking a bipolar lithium ion secondary battery (hereinafter referred to as a bipolar secondary battery) as an example. In the drawings to be referred to below, the shape, thickness and the like of the constituent elements of the bipolar secondary battery are exaggerated for the purpose of facilitating understanding of the invention.

図1は、双極型二次電池の外観図である。図2は、図1に示す双極型二次電池の断面図である。   FIG. 1 is an external view of a bipolar secondary battery. FIG. 2 is a cross-sectional view of the bipolar secondary battery shown in FIG.

図1に示すように、双極型二次電池100は、たとえば、長方形状の扁平な形状を有し、その両側部からそれぞれ電力を取り出すための正極タブ110Aおよび負極タブ110Bが引き出される。発電要素120は、双極型二次電池100の外装材(たとえば、ラミネートフィルム)130によって包まれ、その周囲は熱融着されており、正極タブ110Aおよび負極タブ110Bを引き出した状態で密封される。   As shown in FIG. 1, the bipolar secondary battery 100 has, for example, a rectangular flat shape, and a positive electrode tab 110 </ b> A and a negative electrode tab 110 </ b> B for taking out electric power from both sides thereof are drawn out. The power generation element 120 is wrapped with an exterior material (for example, a laminate film) 130 of the bipolar secondary battery 100, and the periphery thereof is heat-sealed, and is sealed with the positive electrode tab 110A and the negative electrode tab 110B pulled out. .

図2に示すように、双極型二次電池100の発電要素120は、正極活物質層210と、負極活物質層220とが集電体230のそれぞれの面に形成された双極型二次電池用電極200を複数有する。各双極型二次電池用電極は、電解質層240を介して積層されて発電要素120を形成する。隣接する正極活物質層210、電解質層240および負極活物質層220は、一つの単電池層100を構成する。したがって、双極型二次電池100は、単電池層200が積層されてなる構成を有する。また、各集電体230のそれぞれ対向する面の外周には、隣接する集電体230間を絶縁するためのシール部材250を設ける。   As shown in FIG. 2, the power generation element 120 of the bipolar secondary battery 100 includes a bipolar secondary battery in which a positive electrode active material layer 210 and a negative electrode active material layer 220 are formed on each surface of a current collector 230. A plurality of electrodes 200 are provided. Each bipolar secondary battery electrode is stacked via the electrolyte layer 240 to form the power generation element 120. The adjacent positive electrode active material layer 210, electrolyte layer 240, and negative electrode active material layer 220 constitute one unit cell layer 100. Therefore, the bipolar secondary battery 100 has a configuration in which the single battery layers 200 are stacked. In addition, a seal member 250 for insulating between adjacent current collectors 230 is provided on the outer periphery of the opposing surface of each current collector 230.

以下、本発明の実施形態に係る双極型二次電池の各部材について説明する。   Hereinafter, each member of the bipolar secondary battery according to the embodiment of the present invention will be described.

[双極型二次電池用電極]
双極型二次電池用電極は、集電体230と、その表面に設けた活物質層210、220とを有する。より詳しくは、一つの集電体の片面に正極活物質層210を、他方の面に負極活物質層220を有する。各活物質層は活物質を含み、必要に応じてその他の添加剤をさらに含む。
[Electrode for bipolar secondary battery]
The electrode for a bipolar secondary battery has a current collector 230 and active material layers 210 and 220 provided on the surface thereof. More specifically, the positive electrode active material layer 210 is provided on one surface of one current collector, and the negative electrode active material layer 220 is provided on the other surface. Each active material layer contains an active material, and further contains other additives as necessary.

正極活物質層は正極活物質を含む。正極活物質としては、例えば、LiMnやLiNiO等のリチウム−遷移金属酸化物、リチウム−遷移金属リン酸化合物、リチウム−遷移金属硫酸化合物が挙げられる。場合によっては、2種以上の正極活物質が併用されてもよい。上記以外の正極活物質が用いられてもよい。 The positive electrode active material layer includes a positive electrode active material. Examples of the positive electrode active material include lithium-transition metal oxides such as LiMn 2 O 4 and LiNiO 2 , lithium-transition metal phosphate compounds, and lithium-transition metal sulfate compounds. In some cases, two or more positive electrode active materials may be used in combination. A positive electrode active material other than the above may be used.

負極活物質層は負極活物質を含む。負極活物質としては、例えば、グラファイト、ソフトカーボン、ハードカーボン等の炭素材料、上述したようなリチウム−遷移金属化合物、金属材料、リチウム−金属合金材料が挙げられる。場合によっては、2種以上の負極活物質が併用されてもよい。上記以外の負極活物質が用いられてもよい。   The negative electrode active material layer includes a negative electrode active material. Examples of the negative electrode active material include carbon materials such as graphite, soft carbon, and hard carbon, lithium-transition metal compounds as described above, metal materials, and lithium-metal alloy materials. In some cases, two or more negative electrode active materials may be used in combination. Negative electrode active materials other than those described above may be used.

正極および負極の活物質層に含まれるそれぞれの活物質の平均粒子径は特に制限されないが、好ましくは0.01〜100μmであり、より好ましくは1〜50μmである。ただし、この範囲を外れる形態が採用されてもよい。   The average particle diameter of each active material contained in the active material layers of the positive electrode and the negative electrode is not particularly limited, but is preferably 0.01 to 100 μm, more preferably 1 to 50 μm. However, a form outside this range may be adopted.

[電解質層]
電解質層を構成する電解質に特に制限はなく、液体電解質、ならびに高分子ゲル電解質および高分子固体電解質等のポリマー電解質を用いることができる。
[Electrolyte layer]
There is no restriction | limiting in particular in the electrolyte which comprises an electrolyte layer, Polymer electrolytes, such as a liquid electrolyte, a polymer gel electrolyte, and a polymer solid electrolyte, can be used.

液体電解質は、可塑剤である有機溶媒に支持塩であるリチウム塩が溶解した形態を有する。可塑剤として用いられる有機溶媒としては、例えば、エチレンカーボネート(EC)やプロピレンカーボネート(PC)等のカーボネート類が挙げられる。また、支持塩(リチウム塩)としては、LiN(SO、LiN(SOCF、LiPF、LiBF、LiClO、LiAsF、LiSOCF等の電極の活物質層に添加されうる化合物を同様に用いることができる。 The liquid electrolyte has a form in which a lithium salt as a supporting salt is dissolved in an organic solvent as a plasticizer. Examples of the organic solvent used as the plasticizer include carbonates such as ethylene carbonate (EC) and propylene carbonate (PC). As the supporting salt (lithium salt), LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) 2, LiPF 6, LiBF 4, LiClO 4, LiAsF 6, LiSO 3 CF 3 and the like of the electrode A compound that can be added to the active material layer can be similarly used.

一方、ポリマー電解質は、電解液を含むゲル電解質と、電解液を含まない高分子固体電解質に分類される。ゲル電解質は、リチウムイオン伝導性を有するマトリックスポリマーに、上記の液体電解質が注入されてなる構成を有する。リチウムイオン伝導性を有するマトリックスポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、およびこれらの共重合体等が挙げられる。かようなマトリックスポリマーには、リチウム塩等の電解質塩がよく溶解しうる。高分子固体電解質は、上記のマトリックスポリマーに支持塩(リチウム塩)が溶解してなる構成を有し、可塑剤である有機溶媒を含まない。したがって、電解質層が高分子固体電解質から構成される場合には電池からの液漏れの心配がなく、電池の信頼性が向上しうる。   On the other hand, the polymer electrolyte is classified into a gel electrolyte containing an electrolytic solution and a polymer solid electrolyte containing no electrolytic solution. The gel electrolyte has a configuration in which the above liquid electrolyte is injected into a matrix polymer having lithium ion conductivity. Examples of the matrix polymer having lithium ion conductivity include polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof. In such a matrix polymer, an electrolyte salt such as a lithium salt can be well dissolved. The polymer solid electrolyte has a structure in which a supporting salt (lithium salt) is dissolved in the matrix polymer, and does not include an organic solvent that is a plasticizer. Therefore, when the electrolyte layer is composed of a polymer solid electrolyte, there is no fear of liquid leakage from the battery, and the battery reliability can be improved.

高分子ゲル電解質や高分子固体電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発揮しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。   A matrix polymer of a polymer gel electrolyte or a polymer solid electrolyte can exhibit excellent mechanical strength by forming a crosslinked structure. In order to form a crosslinked structure, thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam polymerization, etc. are performed on a polymerizable polymer (for example, PEO or PPO) for forming a polymer electrolyte using an appropriate polymerization initiator. A polymerization treatment may be performed.

なお、電解質層が液体電解質やゲル電解質から構成される場合には、電解質層にセパレータを用いてもよい。セパレータの具体的な形態としては、例えば、ポリエチレンやポリプロピレン等のポリオレフィンからなる微多孔膜が挙げられる。   In addition, when an electrolyte layer is comprised from a liquid electrolyte or a gel electrolyte, you may use a separator for an electrolyte layer. Specific examples of the separator include a microporous film made of polyolefin such as polyethylene or polypropylene.

[シール部材]
双極型二次電池100においては、通常、各集電体230のそれぞれ対向する面の外周、すなわち、各単電池層200の周囲にシール部材250を設ける。このシール部材250は、電池内で隣り合う集電体230同士が接触することや、発電要素120における単電池層200の端部のわずかな不揃い等に起因する短絡が起こることを防止する目的で設ける。シール部材250を設けることにより、長期間の信頼性および安全性が確保され、高品質の双極型二次電池100を提供しうる。
[Seal member]
In the bipolar secondary battery 100, the seal member 250 is usually provided on the outer periphery of the opposing surface of each current collector 230, that is, around each single cell layer 200. The sealing member 250 is used for the purpose of preventing short circuit caused by contact between adjacent current collectors 230 in the battery or slight unevenness of the end of the single cell layer 200 in the power generation element 120. Provide. By providing the seal member 250, long-term reliability and safety are ensured, and a high-quality bipolar secondary battery 100 can be provided.

シール部材250の材料としては、絶縁性、固体電解質の脱落に対するシール性や外部からの水分の透湿に対するシール性(密封性)、電池動作温度下での耐熱性を有するものを用いる。例えば、ウレタン樹脂、エポキシ樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリイミド樹脂、ゴムを用いうる。なかでも、耐蝕性、耐薬品性、作り易さ(製膜性)、経済性等の観点から、ポリエチレン樹脂やポリプロピレン樹脂を好適に用いうる。   As the material of the seal member 250, a material having insulating properties, a seal property against dropping of the solid electrolyte, a seal property (sealing property) against moisture permeation from the outside, and a heat resistance at a battery operating temperature is used. For example, urethane resin, epoxy resin, polyethylene resin, polypropylene resin, polyimide resin, and rubber can be used. Among these, polyethylene resins and polypropylene resins can be suitably used from the viewpoints of corrosion resistance, chemical resistance, ease of production (film forming properties), economy, and the like.

[正極タブおよび負極タブ]
電池外部に電力を取り出す目的で、電池要素120において最大電位および最小電位となる集電体230にそれぞれ電気的に接続したタブ(正極タブ110Aおよび負極タブ110B)を電池の外装材130の外部に引き出すように設ける。
[Positive electrode tab and negative electrode tab]
For the purpose of extracting power to the outside of the battery, tabs (positive electrode tab 110A and negative electrode tab 110B) that are electrically connected to the current collector 230 having the maximum potential and the minimum potential in the battery element 120 are provided outside the battery exterior member 130. Provide to pull out.

タブを構成する材料には高導電性材料を用いる。高導電性材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料を用いることが望ましい。また、軽量、耐食性、高導電性の観点からアルミニウム、銅を用いることがさらに望ましい。   A highly conductive material is used as the material constituting the tab. As the highly conductive material, it is desirable to use metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof. Further, it is more desirable to use aluminum and copper from the viewpoint of light weight, corrosion resistance, and high conductivity.

[電池外装材]
電池外装材130としては、金属缶ケースのほか、発電要素を覆うことができる、アルミニウムを含むラミネートフィルムを用いた袋状のケースを用いることができる。ラミネートフィルムとしては、例えば、ポリプロピレン、アルミニウム、ナイロンをこの順に積層してなる3層構造のラミネートフィルムを用いることができるが、これに制限されない。
[Battery exterior materials]
As the battery exterior member 130, a bag-like case using a laminate film containing aluminum that can cover the power generation element can be used in addition to a metal can case. As the laminate film, for example, a laminate film having a three-layer structure in which polypropylene, aluminum, and nylon are laminated in this order can be used, but is not limited thereto.

次に、本発明に係る双極型二次電池について詳細に説明する。   Next, the bipolar secondary battery according to the present invention will be described in detail.

図3は、本発明の実施形態に係る双極型二次電池の断面図の一部(発電要素と配線基板)を示した図である。   FIG. 3 is a view showing a part (a power generation element and a wiring board) of a sectional view of the bipolar secondary battery according to the embodiment of the present invention.

図3に示すように、発電要素120は、電池を構成する最小単位である単電池層200が集電体230を介して複数積層されることで構成される。したがって、集電体230は単電池層200を介して積層される。櫛型形状を有する配線基板300は、その歯301の部分が積層された集電体間に挿入し、対向した集電体230のいずれか一方とそれぞれ電気的に接続する。配線基板300の出力端302aは複数の歯301に対応した数の出力端子302bを有し、複数の歯301それぞれと配線により個々に接続する。   As shown in FIG. 3, the power generation element 120 is configured by stacking a plurality of unit cell layers 200, which are minimum units constituting a battery, via a current collector 230. Therefore, the current collector 230 is stacked via the single battery layer 200. The wiring substrate 300 having a comb shape is inserted between the current collectors in which the portions of the teeth 301 are stacked, and electrically connected to any one of the opposing current collectors 230. The output end 302a of the wiring board 300 has a number of output terminals 302b corresponding to the plurality of teeth 301, and is individually connected to each of the plurality of teeth 301 by wiring.

配線基板300は、上述したように、複数の歯301とこれを支持する柄302とからなる櫛型の形状を有し、各集電体230と電気的に接続されたことで、各集電体230から配線基板300の歯301にそれぞれ印加された電圧をそれぞれ別個に出力端302aから出力することができる。これにより、積層された各集電体の電圧を配線基板の出力端302aから双極型二次電池の外装材の外に取り出すことができる。すなわち、各単電池200の電圧を外装材の外からモニタすることができる。   As described above, the wiring board 300 has a comb-like shape including a plurality of teeth 301 and a handle 302 that supports the teeth 301, and is electrically connected to each current collector 230. The voltages applied from the body 230 to the teeth 301 of the wiring board 300 can be separately output from the output end 302a. Thereby, the voltage of each laminated | stacked collector can be taken out from the exterior material of a bipolar secondary battery from the output end 302a of a wiring board. That is, the voltage of each unit cell 200 can be monitored from outside the exterior material.

図4は、本実施形態に係る双極型二次電池の断面図の一部を示す図であって、図3の太線A内の部分の拡大図である。   FIG. 4 is a diagram showing a part of a cross-sectional view of the bipolar secondary battery according to the present embodiment, and is an enlarged view of a portion within a thick line A in FIG. 3.

図4に示すように、配線基板300の歯301は、先端部301aと基部301bとからなる。基部301bは、導電材料303を絶縁材料304a、304bが被覆した構造を有する。先端部301aは、絶縁材料304a、304bの一部(304b)を除去した構造を有する。そして、歯301の先端部301aの導電材料303が露出した部分と集電体230とを導電性弾性体400を介して電気的に接続する。これにより歯301と集電体230が電気的に接続される。   As shown in FIG. 4, the tooth 301 of the wiring board 300 includes a tip portion 301a and a base portion 301b. The base 301b has a structure in which a conductive material 303 is covered with insulating materials 304a and 304b. The tip portion 301a has a structure in which a part (304b) of the insulating material 304a, 304b is removed. Then, the portion of the tip 301 a of the tooth 301 where the conductive material 303 is exposed and the current collector 230 are electrically connected via the conductive elastic body 400. As a result, the teeth 301 and the current collector 230 are electrically connected.

図9は、本実施形態と異なり、導電性弾性体400を用いずに配線基板300の歯301の先端部301aと集電体230を電気的に接続させた場合を示す参考図である。上述したように、先端部301を構成するために、配線基板300の歯301の一部から絶縁材料304a、304bの一部(304b)を除去する。このため、先端部301と基部302との間には除去した絶縁材料304bの厚さ分の段差が生じる。配線基板300の歯301の先端部301aと集電体230との間に導電性弾性体を設けない場合は、図9に示すように、該段差の影響で該歯の先端部分と集電体との接触面積を十分確保することができない。また、集電体230と配線基板との間に空間が発生することで、後述するシール部材が電気的接触部分に侵入することがある。そうすると、配線基板300と集電体230との間の電気的接続を低抵抗かつ信頼性の高いものとすることが困難となる可能性がある。   FIG. 9 is a reference diagram showing a case where the tip portion 301a of the tooth 301 of the wiring board 300 and the current collector 230 are electrically connected without using the conductive elastic body 400, unlike the present embodiment. As described above, in order to configure the tip portion 301, a part (304b) of the insulating material 304a, 304b is removed from a part of the tooth 301 of the wiring board 300. For this reason, a level difference corresponding to the thickness of the removed insulating material 304 b is generated between the tip portion 301 and the base portion 302. When a conductive elastic body is not provided between the tip 301a of the tooth 301 of the wiring board 300 and the current collector 230, the tip of the tooth and the current collector are affected by the step as shown in FIG. A sufficient contact area cannot be secured. Further, since a space is generated between the current collector 230 and the wiring board, a seal member described later may enter the electrical contact portion. Then, it may be difficult to make the electrical connection between the wiring board 300 and the current collector 230 low resistance and high reliability.

本実施形態に係る双極型二次電池においては、図4に示すように、歯301の先端部301aと集電体230との間に導電性弾性体400を設け、歯301の導電材料303および集電体230を導電性弾性体400と接触(すなわち電気的に接続)させる。これにより、配線基板300の歯301と集電体230を電気的に接続させる。このような構造とすることにより、本実施形態に係る双極型二次電池は、前記段差の影響を低減して集電体と配線基板との接触面積を十分確保することができる。また、導電性弾性体に振動を吸収させることで、双極型二次電池の振動耐久性を向上させることができる。   In the bipolar secondary battery according to the present embodiment, as shown in FIG. 4, a conductive elastic body 400 is provided between the tip 301 a of the tooth 301 and the current collector 230, and the conductive material 303 of the tooth 301 and The current collector 230 is brought into contact (that is, electrically connected) with the conductive elastic body 400. Thereby, the teeth 301 of the wiring board 300 and the current collector 230 are electrically connected. By adopting such a structure, the bipolar secondary battery according to this embodiment can reduce the influence of the step and ensure a sufficient contact area between the current collector and the wiring board. Further, the vibration durability of the bipolar secondary battery can be improved by causing the conductive elastic body to absorb the vibration.

導電材料303としては、例えば、銅を用いることができ、絶縁材料304a、304bとしては、例えば、ポリイミドを用いることができる。ポリイミドを用いることで、双極型二次電池の耐温度性能、耐振動強度を高くし、信頼性の向上を実現することができる。   For example, copper can be used as the conductive material 303, and polyimide can be used as the insulating materials 304a and 304b, for example. By using polyimide, the temperature resistance performance and vibration resistance strength of the bipolar secondary battery can be increased, and the reliability can be improved.

ここで、配線基板300の歯301の導電材料303を被覆する絶縁材料304bの厚さは、導電性弾性体400の厚さより薄いことが望ましい。これにより、集電体と配線基板との接触面積を十分に確保することができ、低抵抗で信頼性の高い電気的接続を実現することができる。   Here, the thickness of the insulating material 304 b that covers the conductive material 303 of the teeth 301 of the wiring board 300 is desirably smaller than the thickness of the conductive elastic body 400. As a result, a sufficient contact area between the current collector and the wiring board can be ensured, and electrical connection with low resistance and high reliability can be realized.

歯301の導電材料303および集電体230を導電性弾性体400と接触させるために、シール部材250を利用することができる。すなわち、一般的に、双極型二次電池は、電池内で隣り合う集電体230同士が接触すること等を防止するために、各集電体230のそれぞれ対向する面の外周にシール部材(接着剤)250を設ける。そこで、シール部材250を利用して、シール部材250が歯301の先端部301を覆った構造とすることで、歯301の導電材料および集電体230と導電性弾性体400との接触を維持することができる。このような構造は、配線基板をシール部材250でモールドする工程において、歯301の導電材料303および集電体230を導電性弾性体400と接触させた状態で、シール部材250をモールドすることにより実現できる。具体的には、歯301の先端部301に設けた導電性弾性体400と集電体230を導電性両面テープで貼り付け、歯301の周囲をシール部材でモールドして固定する。これにより、電圧モニタ用の配線基板300と双極型二次電池の各単電池200との間で、簡便で安価かつ強固な電気的接続を実現できる。   In order to bring the conductive material 303 and the current collector 230 of the tooth 301 into contact with the conductive elastic body 400, the seal member 250 can be used. That is, in general, in the bipolar secondary battery, in order to prevent the adjacent current collectors 230 in the battery from coming into contact with each other, a seal member ( Adhesive) 250 is provided. Therefore, the seal member 250 is used to make the seal member 250 cover the tip portion 301 of the tooth 301, thereby maintaining the contact between the conductive material of the tooth 301 and the current collector 230 and the conductive elastic body 400. can do. Such a structure is obtained by molding the seal member 250 in a state where the conductive material 303 of the teeth 301 and the current collector 230 are in contact with the conductive elastic body 400 in the process of molding the wiring board with the seal member 250. realizable. Specifically, the conductive elastic body 400 and the current collector 230 provided at the tip 301 of the tooth 301 are attached with a conductive double-sided tape, and the periphery of the tooth 301 is molded and fixed with a seal member. Thereby, simple, inexpensive and strong electrical connection can be realized between the wiring board 300 for voltage monitoring and each unit cell 200 of the bipolar secondary battery.

導電性弾性体400は、熱融着または熱硬化といった方法で配線基板300および集電体230と接着する。シール部材250は、集電体230と電解質層(セパレータ)240との間に配置され、配線基板300を覆って、電解質層240と集電体230とを接着する。これにより、集電体230と配線基板300(すなわち、配線基板300の歯301の先端部301a)の接着部に絶縁体であるシール部材や気体が入りこまない構造を実現し、集電体230と配線基板300との接触を維持することができる。また、配線基板300の導電材料303と導電性弾性体400との間、および、導電性弾性体400と集電体230との間には接着力があるので、振動時に応力集中などによるはがれが発生することを防止し、信頼性の高い電気的接続を維持することができる。   The conductive elastic body 400 is bonded to the wiring board 300 and the current collector 230 by a method such as heat fusion or thermosetting. The seal member 250 is disposed between the current collector 230 and the electrolyte layer (separator) 240, covers the wiring substrate 300, and adheres the electrolyte layer 240 and the current collector 230. As a result, a structure in which a sealing member or gas as an insulator does not enter the bonding portion between the current collector 230 and the wiring substrate 300 (that is, the tip portion 301a of the tooth 301 of the wiring substrate 300) is realized. And the contact with the wiring board 300 can be maintained. Further, since there is an adhesive force between the conductive material 303 and the conductive elastic body 400 of the wiring board 300 and between the conductive elastic body 400 and the current collector 230, peeling due to stress concentration during vibration is caused. Generation | occurrence | production can be prevented and a reliable electrical connection can be maintained.

また、前述したように、配線基板300の歯301の先端部301aと基部301bの境界には段差を生じているが、振動導入時には、このような段差に曲げが集中し断線しやすくなる。しかし、シール部材250のモールド工程において該段差の部分がシール部材でモールドされて補強されるため、曲げの集中、ひいては断線を防止することができ、信頼性の高い電気的接続を実現できる。   Further, as described above, a step is formed at the boundary between the tip portion 301a and the base portion 301b of the tooth 301 of the wiring board 300, but when the vibration is introduced, bending is concentrated on such a step and breakage is likely to occur. However, in the molding process of the seal member 250, the stepped portion is molded and reinforced by the seal member, so that concentration of bending and eventually disconnection can be prevented, and highly reliable electrical connection can be realized.

導電性弾性体400は、その融点がシール部材250の融点または熱硬化温度よりも高いものを使用することが望ましい。これにより、配線基板300をシール部材250でモールドする工程で熱可塑性の導電性弾性体400が溶解することがなく、導電性弾性体400と集電体230間、導電性弾性体400と配線基板300間に空間が生じないので、シール部材250が電気的接触部分に侵入することを防止することができ、低抵抗で信頼性の高い電気的接続を実現できる。また、導電性弾性体400は、弾性を有するため、振動を吸収する。従って、導電性弾性体400を用いることにより、双極型二次電池の振動耐久性を向上させることができる。導電性弾性体400としては、例えば、ゴムにカーボンを分散させた導電性ゴムシートを用いることができる。   It is desirable to use a conductive elastic body 400 whose melting point is higher than the melting point or thermosetting temperature of the sealing member 250. Accordingly, the thermoplastic conductive elastic body 400 is not dissolved in the process of molding the wiring board 300 with the sealing member 250, and the conductive elastic body 400 and the wiring board are connected between the conductive elastic body 400 and the current collector 230. Since there is no space between 300, the seal member 250 can be prevented from entering the electrical contact portion, and a low-resistance and highly reliable electrical connection can be realized. Further, since the conductive elastic body 400 has elasticity, it absorbs vibration. Therefore, by using the conductive elastic body 400, the vibration durability of the bipolar secondary battery can be improved. As the conductive elastic body 400, for example, a conductive rubber sheet in which carbon is dispersed in rubber can be used.

図5は、本実施形態に係る双極型二次電池の他の例を示す図である。   FIG. 5 is a diagram showing another example of the bipolar secondary battery according to the present embodiment.

図5に示すように、対向した集電体230間に配線基板300の歯301を挿入し、一方の集電体230と、歯301の先端部301aの露出させた導電材料303とを導電性弾性体400を介して電気的に接続させる。このとき、導電性弾性体400の表面に、導電性かつ粘着性を有する接着層500を設け、配線基板300の歯301の先端部301aと導電性弾性体400とを接着層500を介して電気的に接続させる。また、集電体230と導電性弾性体400とを接着層500を介して電気的に接続させる。これにより、配線基板300の歯301と集電体230とを電気的に接続させている。   As shown in FIG. 5, the teeth 301 of the wiring board 300 are inserted between the opposing current collectors 230, and one of the current collectors 230 and the conductive material 303 exposed at the tip 301 a of the teeth 301 are electrically conductive. Electrical connection is made via the elastic body 400. At this time, a conductive and adhesive adhesive layer 500 is provided on the surface of the conductive elastic body 400, and the tips 301 a of the teeth 301 of the wiring substrate 300 and the conductive elastic body 400 are electrically connected via the adhesive layer 500. Connect. In addition, the current collector 230 and the conductive elastic body 400 are electrically connected through the adhesive layer 500. Thereby, the teeth 301 of the wiring board 300 and the current collector 230 are electrically connected.

このように、導電性弾性体400の表面に接着層500を有するものを用いることにより、熱可塑性樹脂や熱硬化性樹脂を使う場合に必要な、接続のための熱処理工程が不要とすることができ、コスト削減を実現できる。また、配線基板300の歯301の周囲をシール材でモールドしているので、導電性弾性体400、配線基板300の歯301、集電体230、の相互間に気体が侵入して接触不良を起こすことを防止できる。   As described above, the use of the conductive elastic body 400 having the adhesive layer 500 eliminates the need for a heat treatment step for connection, which is necessary when a thermoplastic resin or a thermosetting resin is used. Cost reduction. In addition, since the periphery of the teeth 301 of the wiring board 300 is molded with a sealant, gas enters between the conductive elastic body 400, the teeth 301 of the wiring board 300, and the current collector 230, resulting in poor contact. You can prevent it from happening.

ここで、導電性弾性体400の表面に設けられた接着層500は、そのガラス転移温度がシール部材250の熱硬化温度または融点より低いものを用いることが望ましい。シール部材250のモールド工程において、接着層500のガラス転移温度以上の温度でシール部材250のモールドが可能となるため、シール部材250塗布時に、接着層500と配線基板300および集電体230との間で粘着を保つことができ、シール部材250が電気的接触部分に侵入することを防止することができる。従って、シール部材250が電気的接触部分に侵入することを防止することで、低抵抗で信頼性の高い電気的接続を実現することができる。接着層500としては、例えば、アクリル系粘着剤中にカーボンファイバーを分散させた導電性両面テープを用いることができる。   Here, it is desirable that the adhesive layer 500 provided on the surface of the conductive elastic body 400 has a glass transition temperature lower than the thermosetting temperature or melting point of the seal member 250. In the molding process of the seal member 250, the seal member 250 can be molded at a temperature equal to or higher than the glass transition temperature of the adhesive layer 500. Therefore, when the seal member 250 is applied, the adhesive layer 500, the wiring board 300, and the current collector 230 are separated. Adhesion can be maintained between them, and the sealing member 250 can be prevented from entering the electrical contact portion. Therefore, by preventing the seal member 250 from entering the electrical contact portion, it is possible to realize a reliable electrical connection with low resistance. As the adhesive layer 500, for example, a conductive double-sided tape in which carbon fibers are dispersed in an acrylic pressure-sensitive adhesive can be used.

図6は、本発明に係る双極型二次電池の配線基板を示す表面図である。   FIG. 6 is a surface view showing a wiring board of a bipolar secondary battery according to the present invention.

図6に示すように、配線基板300は、歯301と柄302からなる櫛型形状を有する。歯301の部分は、導電材料が絶縁材料で被覆された構造の基部301bと、絶縁材料上で導電材料が露出した構造の先端301aと、を有してなる。配線基板300の柄302の部分は、歯301の部分を支持するとともに、複数の歯301の電圧を出力するために出力端302aを有する。出力端302aは、複数の歯301の電圧をそれぞれ出力する複数の端子302bを有する。   As shown in FIG. 6, the wiring board 300 has a comb shape composed of teeth 301 and a handle 302. The tooth 301 includes a base 301b having a structure in which a conductive material is covered with an insulating material, and a tip 301a having a structure in which the conductive material is exposed on the insulating material. The portion of the handle 302 of the wiring board 300 supports the portion of the teeth 301 and has an output end 302 a for outputting the voltages of the plurality of teeth 301. The output end 302a has a plurality of terminals 302b that output the voltages of the plurality of teeth 301, respectively.

配線基板300は、歯301の電圧を出力端302aから出力するために、歯301の先端301aから、柄302の出力端302aの出力端子302bまで個別に伸延した複数の配線(図示せず)を有することができる。配線基板300は、銅箔をポリイミドフィルムに接着してパターン整形し、パターン整形されたポリイミドフィルムで銅を覆うことで作製することができる。   In order to output the voltage of the tooth 301 from the output end 302a, the wiring board 300 has a plurality of wires (not shown) individually extended from the tip 301a of the tooth 301 to the output terminal 302b of the output end 302a of the handle 302. Can have. The wiring substrate 300 can be manufactured by bonding a copper foil to a polyimide film and shaping the pattern, and covering the copper with the patterned polyimide film.

図7は、本実施形態に係る双極型二次電池を複数接続した組電池の実施形態の外観図であって、図7のAは組電池の平面図であり、図7のBは組電池の正面図であり、図7のCは組電池の側面図である。   FIG. 7 is an external view of an embodiment of an assembled battery in which a plurality of bipolar secondary batteries according to this embodiment are connected. FIG. 7A is a plan view of the assembled battery, and FIG. 7B is an assembled battery. FIG. 7C is a side view of the assembled battery.

図7に示すように本発明の実施形態に係る組電池700は、本発明の実施形態に係る双極型二次電池が複数、直列にまたは並列に接続して装脱着可能な小型の組電池750を形成し、この装脱着可能な小型の組電池750をさらに複数、直列にまたは並列に接続して形成することもできる。   As shown in FIG. 7, the assembled battery 700 according to the embodiment of the present invention includes a small assembled battery 750 that can be attached and detached by connecting a plurality of bipolar secondary batteries according to the embodiment of the present invention in series or in parallel. It is also possible to form a plurality of small assembled batteries 750 that are detachable and connected in series or in parallel.

これにより、高体積エネルギ密度、高体積出力密度が求められる車両駆動用電源や補助電源に適した大容量、大出力を持つ組電池700を形成することができる。図7に示す組電池では、作成した装脱着可能な小型の組電池750は、バスバーのような電気的な接続手段を用いて相互に接続し、この組電池750は接続治具710を用いて複数段積層される。何個の非双極型ないし双極型二次電池を接続して組電池750を作成するか、また、何段の組電池750を積層して組電池700を作製するかは、搭載される車両(電気自動車)の電池容量や出力に応じて決めことができる。すなわち、二次電池を直列化、並列化することで電池の容量および電圧を自由に調節できる。また、低コスト化を実現することができる。   As a result, it is possible to form the assembled battery 700 having a large capacity and a large output suitable for a vehicle driving power source and an auxiliary power source that require high volume energy density and high volume power density. In the assembled battery shown in FIG. 7, the prepared small detachable assembled battery 750 is connected to each other using an electrical connection means such as a bus bar. The assembled battery 750 is connected using a connection jig 710. Multiple layers are stacked. How many non-bipolar or bipolar secondary batteries are connected to create the assembled battery 750, and how many assembled batteries 750 are stacked to produce the assembled battery 700 depends on the vehicle ( It can be determined according to the battery capacity and output of the electric vehicle. That is, the capacity and voltage of the battery can be freely adjusted by serializing and paralleling the secondary batteries. Moreover, cost reduction can be realized.

図8は、本発明の実施形態に係る双極型二次電池または組電池を搭載した電気自動車800を示す図である。本発明に係る双極型二次電池810は、図8に示すように、電気自動車800の車体中央部の座席下820に搭載しうる。座席下820に搭載すれば、車内空間およびトランクルームを広くとることができるメリットを有する。なお、本発明に係る二次電池810を搭載する場所は、座席下820に限られない。すなわち、本発明に係る二次電池は、後部トランクルームの下部や車両前方のエンジンルームにも搭載しうる。本実施形態に係るリチウムイオン電池をハイブリット車や電気自動車といった車両に用いることにより高寿命で信頼性の高い車両とすることができる。また、車両の低コスト化を実現することができる。   FIG. 8 is a diagram showing an electric vehicle 800 equipped with a bipolar secondary battery or an assembled battery according to an embodiment of the present invention. As shown in FIG. 8, the bipolar secondary battery 810 according to the present invention can be mounted under the seat 820 in the center of the vehicle body of the electric vehicle 800. When mounted under the seat 820, there is an advantage that the interior space and the trunk room can be widened. Note that the place where the secondary battery 810 according to the present invention is mounted is not limited to the under-seat 820. That is, the secondary battery according to the present invention can be mounted in a lower part of the rear trunk room or an engine room in front of the vehicle. By using the lithium ion battery according to the present embodiment for a vehicle such as a hybrid vehicle or an electric vehicle, the vehicle can have a long life and high reliability. In addition, the cost of the vehicle can be reduced.

なお、本実施形態は双極型二次電池に関するものであるが、双極型二次電池に換え単電池が並列接続された積層型二次電池に本実施形態を適用することもできる。   Although the present embodiment relates to a bipolar secondary battery, the present embodiment can also be applied to a stacked secondary battery in which single cells are connected in parallel instead of the bipolar secondary battery.

以下に、本発明の実施形態に係る双極型二次電池、これを複数接続した組電池、および、これらを搭載した車両の効果を示す。
・集電体と配線基板の歯の先端部との間に導電性弾性体を設けることで、配線基板の段差の影響を低減し、集電体と配線基板との接触面積を十分確保することで、振動耐久性向上による信頼性向上を実現できる。
・集電体と配線基板の歯の先端部との間に導電性弾性体を設けることで、導電性弾性体に振動を吸収させ、振動耐久性の向上による信頼性の向上を実現できる。
Hereinafter, effects of the bipolar secondary battery according to the embodiment of the present invention, a battery pack in which a plurality of the batteries are connected, and a vehicle equipped with these batteries are shown.
-By providing a conductive elastic body between the current collector and the tip of the wiring board teeth, the influence of the level difference of the wiring board is reduced, and a sufficient contact area between the current collector and the wiring board is secured. Therefore, it is possible to improve reliability by improving vibration durability.
-By providing a conductive elastic body between the current collector and the tip of the wiring board tooth, vibration can be absorbed by the conductive elastic body, and reliability can be improved by improving vibration durability.

双極型二次電池の外観図である。It is an external view of a bipolar secondary battery. 双極型二次電池の断面図である。It is sectional drawing of a bipolar secondary battery. 本発明の実施形態に係る双極型二次電池の断面図の一部を示した図である。It is the figure which showed a part of sectional drawing of the bipolar secondary battery which concerns on embodiment of this invention. 本実施形態に係る双極型二次電池の断面図の一部を示す拡大図である。It is an enlarged view which shows a part of sectional drawing of the bipolar secondary battery which concerns on this embodiment. 本実施形態に係る双極型二次電池の他の例の断面図の一部を示す拡大図である。It is an enlarged view which shows a part of sectional drawing of the other example of the bipolar secondary battery which concerns on this embodiment. 本実施形態に係る双極型二次電池の配線基板を示す表面図である。It is a surface view which shows the wiring board of the bipolar secondary battery which concerns on this embodiment. 本実施形態に係る双極型二次電池を複数接続した組電池の実施形態の外観図である。It is an external view of an embodiment of an assembled battery in which a plurality of bipolar secondary batteries according to this embodiment are connected. 本発明の実施形態に係る双極型二次電池または組電池を搭載した電気自動車700を示す図である。It is a figure which shows the electric vehicle 700 carrying the bipolar secondary battery or assembled battery which concerns on embodiment of this invention. 導電性弾性体を用いずに配線基板の歯の先端部と集電体を電気的に接続させた双極型二次電池を示す参考図である。FIG. 5 is a reference diagram showing a bipolar secondary battery in which a tip of a wiring board tooth and a current collector are electrically connected without using a conductive elastic body.

符号の説明Explanation of symbols

100 双極型のリチウムイオン二次電池(双極型二次電池)、
120 発電要素、
130 外装材、
200 単電池層、
210 正極活物質層、
220 負極活物質層、
230 集電体、
240 電解質層、
250 シール部材、
300 配線基板、
301 歯、
301a 先端部、
301b 基部、
302 柄、
302a 出力端、
302b 出力端子、
303 導電材料、
304a 絶縁材料、
304b 絶縁材料、
400 導電性弾性体、
500 接着層、
700 組電池、
800 電気自動車(車両)。
100 Bipolar lithium ion secondary battery (bipolar secondary battery),
120 power generation elements,
130 exterior material,
200 cell layer,
210 positive electrode active material layer,
220 negative electrode active material layer,
230 current collector,
240 electrolyte layer,
250 seal member,
300 wiring board,
301 teeth,
301a tip,
301b base,
302 handle,
302a output end,
302b output terminal,
303 conductive material,
304a insulating material,
304b insulating material,
400 conductive elastic body,
500 adhesive layer,
700 battery packs,
800 Electric car (vehicle).

Claims (5)

積層された集電体間に挿入され、対向した前記集電体のいずれか一方とそれぞれ電気的に接続された複数の歯と、前記複数の歯を支持し前記複数の歯の電位を出力する出力端を有する柄と、を備えた櫛型形状の配線基板を有し、
前記歯は導電材料が絶縁材料で被覆された基部と前記導電材料が露出した先端部とからなり、前記先端部と前記基部とが前記集電体間に挿入され、前記歯と前記集電体は、前記歯の前記先端部と前記集電体との間に設けられた導電性弾性体を介して電気的に接続され、
前記導電性弾性体は表面に導電性を有する接着層を有し、前記歯の前記導電材料を被覆する前記絶縁材料の厚さは、前記導電性弾性体の厚さより薄く、前記先端部および前記集電体は、前記接着層により前記導電性弾性体と接着されたことを特徴とする双極型二次電池。
A plurality of teeth inserted between the stacked current collectors and electrically connected to any one of the opposed current collectors, and supporting the plurality of teeth and outputting potentials of the plurality of teeth And a comb-shaped wiring board having a handle having an output end,
The tooth includes a base part in which a conductive material is coated with an insulating material and a tip part from which the conductive material is exposed. The tip part and the base part are inserted between the current collectors, and the tooth and the current collector Is electrically connected via a conductive elastic body provided between the tip of the tooth and the current collector,
The conductive elastic body has a conductive adhesive layer on a surface thereof, and the thickness of the insulating material covering the conductive material of the teeth is smaller than the thickness of the conductive elastic body, and the tip and The bipolar secondary battery, wherein the current collector is bonded to the conductive elastic body by the adhesive layer.
積層された集電体間に挿入され、対向した前記集電体のいずれか一方とそれぞれ電気的に接続された複数の歯と、前記複数の歯を支持し前記複数の歯の電位を出力する出力端を有する柄と、を備えた櫛型形状の配線基板を有し、
前記歯は導電材料が絶縁材料で被覆された基部と前記導電材料が露出した先端部とからなり、記先端部と前記基部とが前記集電体間に挿入され、前記歯と前記集電体は、前記歯の前記先端部と前記集電体との間に設けられた導電性弾性体を介して電気的に接続され、前記歯の前記導電材料を被覆する前記絶縁材料の厚さは、前記導電性弾性体の厚さより薄いことを特徴とする双曲型二次電池。
A plurality of teeth inserted between the stacked current collectors and electrically connected to any one of the opposed current collectors, and supporting the plurality of teeth and outputting potentials of the plurality of teeth And a comb-shaped wiring board having a handle having an output end,
The teeth conductive material consists of a tip where the conductive material and coated base with an insulating material is exposed, before and SL tip and the base is inserted between the current collector, the current collector and the teeth The body is electrically connected via a conductive elastic body provided between the tip of the tooth and the current collector, and the thickness of the insulating material covering the conductive material of the tooth is A hyperbolic secondary battery characterized by being thinner than the thickness of the conductive elastic body .
対向した前記集電体の外周部間に設けられたシール部材をさらに有し、
前記シール部材は前記先端部を覆ったことを特徴とする請求項1または2に記載の双極型二次電池。
A seal member provided between the outer peripheral portions of the current collectors facing each other;
Bipolar secondary battery according to claim 1 or 2, wherein the sealing member is characterized in that covers the tip.
前記導電性弾性体の融点は、前記シール部材の融点または熱硬化温度より高いことを特徴とする請求項に記載の双極型二次電池。 The bipolar secondary battery according to claim 3 , wherein a melting point of the conductive elastic body is higher than a melting point or a thermosetting temperature of the seal member. 前記接着層のガラス転移温度は、前記シール部材の融点または熱硬化温度よりも低いことを特徴とする請求項またはに記載の双極型二次電池。 The glass transition temperature of the adhesive layer, bipolar secondary battery according to claim 3 or 4, wherein the lower melting point or thermal curing temperature of the sealing member.
JP2008334682A 2008-12-26 2008-12-26 Bipolar secondary battery Active JP5509592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008334682A JP5509592B2 (en) 2008-12-26 2008-12-26 Bipolar secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008334682A JP5509592B2 (en) 2008-12-26 2008-12-26 Bipolar secondary battery

Publications (2)

Publication Number Publication Date
JP2010157417A JP2010157417A (en) 2010-07-15
JP5509592B2 true JP5509592B2 (en) 2014-06-04

Family

ID=42575166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008334682A Active JP5509592B2 (en) 2008-12-26 2008-12-26 Bipolar secondary battery

Country Status (1)

Country Link
JP (1) JP5509592B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5754002B2 (en) * 2011-03-25 2015-07-22 国立研究開発法人産業技術総合研究所 Heat-resistant flexible battery and method for manufacturing heat-resistant flexible battery
JP5917899B2 (en) 2011-11-29 2016-05-18 日産自動車株式会社 Thin battery and method of manufacturing thin battery
KR102263061B1 (en) 2014-09-15 2021-06-09 삼성전자주식회사 Flexible electrode assembly and electrochemical device having the electrode assembly

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4569020B2 (en) * 2001-03-14 2010-10-27 ソニー株式会社 Electrical connection method, electrical connection device, and electronic apparatus
KR100591432B1 (en) * 2004-05-31 2006-06-22 삼성에스디아이 주식회사 Secondary battery
JP5017843B2 (en) * 2005-10-26 2012-09-05 日産自動車株式会社 Battery module and battery pack
JP5114950B2 (en) * 2006-02-13 2013-01-09 日産自動車株式会社 Battery module, assembled battery, and vehicle equipped with these batteries
JP4902853B2 (en) * 2006-08-31 2012-03-21 早川ゴム株式会社 Resin fine particles and conductive fine particles
JP5194584B2 (en) * 2006-11-27 2013-05-08 日産自動車株式会社 Wiring substrate and stacked power storage device

Also Published As

Publication number Publication date
JP2010157417A (en) 2010-07-15

Similar Documents

Publication Publication Date Title
JP5017843B2 (en) Battery module and battery pack
JP4204237B2 (en) Lithium secondary cell and connection structure of lithium secondary cell
JP5028812B2 (en) Battery module
JP5070703B2 (en) Bipolar battery
JP6315269B2 (en) Sealed battery module and manufacturing method thereof
JP4661020B2 (en) Bipolar lithium ion secondary battery
JPH11238528A (en) Lithium secondary battery
JP2007213930A (en) Bipolar battery, battery pack and vehicle with them mounted thereon
JP2005276486A (en) Laminated battery, battery pack, and vehicle
JP4096664B2 (en) Laminated battery
JP4655593B2 (en) Bipolar battery
US20190348644A1 (en) High power battery and battery case
JP4670275B2 (en) Bipolar battery and battery pack
JP4984386B2 (en) Battery structure
JP4135474B2 (en) Laminated secondary battery, assembled battery module comprising a plurality of laminated secondary batteries, assembled battery comprising a plurality of assembled battery modules, and an electric vehicle equipped with any of these batteries
JP4042613B2 (en) Bipolar battery
JP2004031137A (en) Thin battery
JP5509592B2 (en) Bipolar secondary battery
JP2002216846A (en) Sheet-shaped cell
JP4483489B2 (en) Assembled battery
JP4617704B2 (en) Bipolar battery, battery pack, and vehicle equipped with these
JP2004171954A (en) Laminated secondary battery, battery pack module comprising multiple laminated secondary batteries, battery pack comprising multiple set battery modules, and electric automobile with either battery mounted
JP3702868B2 (en) Thin battery
JP4622294B2 (en) Bipolar battery, bipolar battery manufacturing method, assembled battery, and vehicle equipped with the same
JP2004327374A (en) Bipolar battery, method of manufacturing bipolar battery, battery pack, and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310

R151 Written notification of patent or utility model registration

Ref document number: 5509592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151