JP2004039577A - Thin battery, battery pack, compound battery pack, and vehicle - Google Patents

Thin battery, battery pack, compound battery pack, and vehicle Download PDF

Info

Publication number
JP2004039577A
JP2004039577A JP2002198109A JP2002198109A JP2004039577A JP 2004039577 A JP2004039577 A JP 2004039577A JP 2002198109 A JP2002198109 A JP 2002198109A JP 2002198109 A JP2002198109 A JP 2002198109A JP 2004039577 A JP2004039577 A JP 2004039577A
Authority
JP
Japan
Prior art keywords
battery
thin
resin layer
electrode terminal
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002198109A
Other languages
Japanese (ja)
Other versions
JP3719235B2 (en
Inventor
Kyoichi Watanabe
渡邉 恭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002198109A priority Critical patent/JP3719235B2/en
Publication of JP2004039577A publication Critical patent/JP2004039577A/en
Application granted granted Critical
Publication of JP3719235B2 publication Critical patent/JP3719235B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flat battery having a structure strong against an imposed external force. <P>SOLUTION: The flat battery having a terminal led out from an end edge of an outer periphery is constituted of two sheets of positive electrode plates 101 coated with a positive electrode active material, five separators 102 of micro-porous films, two sheets of negative electrode plates 103 coated with a negative electrode active material, positive electrode terminals 104 connected to each positive electrode plate 101, negative electrode terminals 105 connected to each negative electrode plate, an electrolyte not illustrated, and an upper part cell outer packaging member 106 and a lower part cell outer packaging member 107 to seal these above. The cell outer packaging members 106, 107 are constituted of a first resin layer located in the innermost layer, a second resin layer located in the outermost layer, and a metal layer pinched by those two layers and laminated, the first resin layer having a smaller Young's modulus than the second resin layer. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【技術分野】
本発明は、封止手段の外周部の端縁から導出する端子を有する薄型電池に関し、特に印加される振動に対して強い構造を有する薄型電池に関する。
【0002】
【背景技術】
封止手段の外周部の端縁から導出する端子を有する薄型電池の使用態様や使用条件の多様化に伴って、当該薄型電池に対して外部から印加される振動が増加する。この振動により、正極端子又は負極端子が電池外装部材から導出する部分(以下、単に端子導出部ともいう。)の剥離等により薄型電池内部に注入された電解液が漏洩し、当該薄型電池の性能低下を招く場合がある。
【0003】
【発明の開示】
本発明は、印加される外力に対して強い構造を有する薄型電池を提供することを目的とする。
【0004】
上記目的を達成するために、本発明によれば、2層の合成樹脂層に挟まれた1層の金属層を少なくとも有する封止手段を備え、正極端子及び負極端子が前記封止手段の外周部の端縁から導出する薄型電池であって、前記封止手段の最内層に位置する第1の合成樹脂層が、前記封止手段の最外層に位置する第2の合成樹脂層のヤング率より小さいヤング率を有する薄型電池が提供される(請求項1参照)。
【0005】
本発明では、電池外装部材が有する最内層の第1の合成樹脂層のヤング率を最外層の第2の合成樹脂層のヤング率より小さくなるように操作することにより、当該端子導出部の共振周波数を加振振動数から離遠させるように移行させ、共振を防止する。これにより、外部から印加される振動による端子導出部の剥離等の発生を著しく減少することが出来、印加される振動に対して強い構造を有する薄型電池とすることが可能となる。
【0006】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
第1実施形態
図1(A)は本発明の第1実施形態に係る薄型電池の全体を示す平面図、図1(B)は(A)のII−II線に沿う断面図である。図2は図1(A)のIII部の拡大断面図である。図3は図2のマス−バネ系モデルである。図4は本発明の第1実施形態に係る端子導出部での振動伝達率スペクトルを示すグラフである。図1は一つの薄型電池(単位電池)を示し、この薄型電池10を複数積層することにより所望の電圧、容量の組電池が構成される。
【0007】
まず図1を参照しながら、本発明の第1実施形態に係る薄型電池10の全体構成について説明すると、本例の薄型電池10はリチウム系の薄型二次電池であり、2枚の正極板101と、5枚のセパレータ102と、2枚の負極板103と、正極端子104と、負極端子105と、上部電池外装部材106と、下部電池外装部材107と、特に図示しない電解質とから構成されている。このうちの正極板101,セパレータ102,負極板103および電解質を特に発電要素109と称する。
【0008】
なお、正極板101,セパレータ102,負極板103の枚数には何ら限定されず、1枚の正極板101,3枚のセパレータ102,1枚の負極板104でも発電要素109を構成することができる。必要に応じて正極板、負極板およびセパレータの枚数を選択して構成することができる。
【0009】
発電要素109を構成する正極板101は、金属酸化物などの正極活物質に、カーボンブラックなどの導電材と、ポリ四フッ化エンチレンの水性ディスパージョンなどの接着剤とを、重量比でたとえば100:3:10の割合で混合したものを、正極側集電体としてのアルミニウム箔などの金属箔の両面に塗着、乾燥させ、圧延したのち所定の大きさに切断したものである。なお、上記のポリ四フッ化エチレンの水性ディスパージョンの混合比率は、その固形分である。
【0010】
正極活物質としては、例えばニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、コバルト酸リチウム(LiCoO)などのリチウム複合酸化物や、カルコゲン(S、Se、Te)化物を挙げることができる。これらの材質は薄型電池内部の発熱を比較的拡散し易く、端子への伝熱による端子の膨張による伸びを少なく出来、端子から後述する電池外装部材へ伝達する引張り応力を極力抑制することが可能となる。
【0011】
発電要素109を構成する負極板103は、例えば非晶質炭素、難黒鉛化炭素、易黒鉛化炭素、または黒鉛などのように、正極活物質のリチウムイオンを吸蔵および放出する負極活物質に、有機物焼成体の前駆体材料としてのスチレンブタジエンゴム樹脂粉末の水性ディスパージョンをたとえば固形分比100:5で混合し、乾燥させたのち粉砕することで、炭素粒子表面に炭化したスチレンブタジエンゴムを担持させたものを主材料とし、これに、アクリル樹脂エマルジョンなどの結着剤をたとえば重量比100:5で混合し、この混合物を、負極側集電体としてのニッケル箔或いは銅箔などの金属箔の両面に塗着、乾燥させ、圧延したのち所定の大きさに切断したものである。
【0012】
特に負極活物質として非晶質炭素や難黒鉛化炭素を用いると、充放電時における電位の平坦特性に乏しく放電量にともなって出力電圧も低下するので、通信機器や事務機器の電源には不向きであるが、電気自動車等の電源として用いると急激な出力低下がないので有利である。
【0013】
また、発電要素109のセパレータ102は、上述した正極板101と負極板103との短絡を防止するもので、電解質を保持する機能を備えてもよい。セパレータ102は、例えばポリエチレン(PE)やポリプロピレン(PP)などのポリオレフィン等から構成される微多孔性膜であり、過電流が流れると、その発熱によって層の空孔が閉塞され電流を遮断する機能をも有する。
【0014】
なお、本発明のセパレータ102は、ポリオレフィンなどの単層膜にのみ限られず、ポリプロピレン膜をポリエチレン膜でサンドイッチした三層構造や、ポリオレフィン微多孔膜と有機不織布などを積層したものも用いることができる。セパレータ102を複層化することで、過電流の防止機能、電解質保持機能およびセパレータの形状維持(剛性向上)機能などの諸機能を付与することができる。また、セパレータ102の代わりにゲル電解質又は真性ポリマー電解質等を用いることもできる。
【0015】
以上の発電要素109は、上から正極板101と負極板103とが交互に、且つ当該正極板101と負極板103との間にセパレータ102が位置するような順序で積層され、さらに、その最上部及び最下部にセパレータ102が一枚ずつ積層されている。そして、2枚の正極板101のそれぞれは、正極側集電部104aを介して、金属箔製の正極端子104に接続される一方で、2枚の負極板103は、負極側集電部105aを介して、同じく金属箔製の負極端子105に接続されている。なお、正極端子104も負極端子105も電気化学的に安定した金属材料であれば特に限定されないが、正極端子104としてはアルミニウムやアルミニウム合金、銅又はニッケルなどを挙げることができ、負極端子105としてはニッケル、銅、ステンレス又は鉄などを挙げることができる。これらの金属は、金属の抵抗値、線膨張係数、抵抗率において薄型電池の構成要素として特に適当であり、使用温度を変えた場合にも、端子から後述する電池外装部材へ伝達する引張り応力を極力抑制することが可能となる。また、本例の正極側集電部104aも負極側集電部105aの何れも、正極板104および負極板105の集電体を構成するアルミニウム箔やニッケル箔、銅箔、鉄箔を延長して構成されているが、別途の材料や部品により当該集電部104a,105aを構成することもできる。
【0016】
発電要素109は、上部電池外装部材106及び下部電池外装部材107(封止手段)により封止されている。本発明の第1実施形態における上部電池外装部材106は、図2に示すように、薄型電池10の内側から外側に向かって、第1の樹脂層106a、金属層106b、第2の樹脂層106cの順で3つの層106a〜106cが積層される。この3つの層106a〜106cは、上部電池外装部材106の全面に渡って積層されており、第1の樹脂層106aは、例えばポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、アイオノマーなどの耐電解液性及び熱融着性に優れた樹脂フィルムである。第2の樹脂層106cは、例えば、ポリアミド系樹脂、ポリエステル系樹脂等の電気絶縁性に優れた樹脂フィルムである。このように、電池外装部材の第1の樹脂層を、ポリプロピレン、変性ポリプロピレン、ポリエチレン、変性ポリエチレン、アイオノマーなどの樹脂で構成することにより、金属からなる正極端子又は負極端子と電池外装部材の第1の樹脂層との良好な融着性を確保することが可能となる。金属層106bは、例えば、アルミニウムなどの金属箔である。従って、上部電池外装部材106は、例えば、アルミニウムなどの金属箔の一方の面(薄型電池の内側面)をポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、アイオノマーなどの樹脂でラミネートし、他方の面(薄型電池の外側面)をポリアミド系樹脂、ポリエステル系樹脂等でラミネートした、樹脂−金属薄膜ラミネート材などの可撓性を有する材料で形成される。このように、電池外装部材が樹脂層に加えて金属層を具備することにより、電池外装部材の強度を向上させることが可能となる。なお、第2の樹脂層106cは、金属層106bの膜厚及び第1の樹脂層106aの膜厚より相対的に薄い膜厚を有しており、第1の樹脂層106aと金属層106bとによる後述する動吸振器的特性を効果的に作用させることが可能となる。
【0017】
下部電池外装部材107は、上部電池外装部材106と同様の構造のものが用いられ、図2に示すように、薄型電池10の内側から外側に向かって、第1の樹脂層107a、金属層107b、第2の樹脂層107cの順で、3つの層107a〜107cが積層される。下部電池外装部材107の第1の樹脂層107aは、上部電池外装部材106の第1の樹脂層106aと同様に、例えばポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、アイオノマーなどの耐電解液性及び熱融着性に優れた樹脂フィルムである。下部電池外装部材107の金属層107bは、上部電池外装部材106の金属層106bと同様に、例えば、アルミニウムなどの金属箔である。下部電池外装部材107の第2の樹脂層107cは、上部電池外装部材106の第2の樹脂層106cと同様に、例えばポリアミド系樹脂、ポリエステル系樹脂等の電気絶縁性に優れた樹脂フィルムである。第2の樹脂層107cは、金属層107bの膜厚及び第1の樹脂層107aの膜厚より相対的に薄い膜厚を有しており、第1の樹脂層107aと金属層107bとによる後述する動吸振器的特性を効果的に作用させることが出来る。
【0018】
さらに、これら正極端子104又は負極端子105と、電池外装部材106、107とから構成される端子導出部111は、当該端子導出部111の共振周波数を加振振動数から離遠させるように移行させ、当該端子導出部111における共振を防止するために、図3に示すような2自由度のマス−バネ系を構成している。図3のマス−バネ系モデルにおいて、薄型電池10の正極端子104又は負極端子105が質量mの第1のマス部Mに相当し、電池外装部材106、107の金属層106b、107bが質量mの第2のマス部Ma、Mbに相当する。また、上部電池外装部材106の第1の樹脂層106a及び下部電池外装部材107の第1の樹脂層107aがヤング率kの第1のバネ部K及び減衰要素Cに相当し、電池外装部材106、107の第2の樹脂層106c、107cがヤング率kの第2のバネ部Ka、Kbに相当し、第1のバネ部Kのヤング率kは、第2のバネ部Ka、Kbのヤング率kに対して5〜55%の関係にある。このように、第2のバネ部Ka、Kbを第1のバネ部Kのヤング率kより小さなヤング率kとすることにより、第1のバネ部Kである第1の樹脂層106a、107aと第2のマス部Ma、Mbである金属層106b、107bとが動吸振器的に効果的に作用して、端子導出部111のマス−バネ系の共振周波数を加振振動数から離縁させるように移行させることが可能となる。なお、第1のバネ部Kのヤング率kを第2のバネ部Ka、Kbのヤング率kに対して5%未満にすると、第1のバネ部Kと第2のバネ部Ka、Kbとの動的バネ定数の差が過剰となり、端子導出部111の構造が弱くなる可能性がある。また、第1のバネ部Kのヤング率kを第2のバネ部Ka、Kbのヤング率kに対して55%より大きくすると、ヤング率に依存する動的バネ定数の差が小さく、第2のマス部Ma、Mb及び第1のバネ部Kによる動吸振器的な作用が弱まり、端子導出部111の共振周波数の移行が困難となる。
【0019】
また、上述の正極端子104及び負極端子105は、電池外装部材106、107の金属層106b、107bの膜厚の2〜5倍の厚さを有する。ここで、正極端子104及び負極端子105の厚さを金属層106b、107bの膜厚の2倍未満とすると、当該金属層106b、107bが端子導出部111の共振周波数に与える影響が大きくなり、当該端子導出部111の共振周波数の移行が困難となる可能性がある。また、正極端子104及び負極端子105の厚さを金属層106b、107bの膜厚の5倍より大きくすると、金属層106b、107bが端子導出部111の共振周波数に与える影響が小さくなり、必要とする振動数への移行が困難になる。
【0020】
上述の2自由度のマス−バネ系における共振周波数(固有振動数)ω、ωは式1から実質的に算出することが可能である。
【0021】
【式1】

Figure 2004039577
本発明の第1実施形態に係る薄型電池の端子導出部は、完全な2自由度型マス−バネ系ではないため、上式により完全に説明することは出来ないが、上式を参考にして端子導出部における共振周波数のチューニングが可能である。なお、各層及び端子の材質の変更により、上式の質量、ヤング率を変化させて、端子導出部の共振周波数をチューニングしても良い。
【0022】
電池外装部材を構成する各層の材質、膜厚、ヤング率と、正極端子及び負極端子の材質、厚さとを操作することにより、端子導出部のマス−バネ系における一次固有振動数、二次固有振動数を任意に設定することが可能となり、当該端子導出部の共振周波数を加振振動数から離遠させるように移行させ、共振を抑制することが可能となる。
【0023】
図4は、第1実施形態に係る薄型電池の端子導出部における縦軸に加振振幅と応答振幅との比である振動伝達率、横軸に周波数の振動伝達率スペクトルを示す。同図に示すように、例えば、主たる加振振動数が約100Hz以下に特に集中する車両等での薄型電池の使用する場合において、本発明の第1実施形態に係るチューニングにより、端子導出部の共振周波数を約100Hz以上に移行させて加振振動数から離遠させることにより、加振に対する共振を防止して薄型電池を有効に活用することが可能となる。なお、加振振動数は約100Hz以下に特に限定されず、それ以上の加振振動数に対しても、上記のチューニングを行うことが可能である。
【0024】
さらに、図1に示すように、封止された電池外装106、107の一方の端部から、正極端子104が導出するが、正極端子104の厚さ分だけ上部電池外装106と下部電池外装107との接合部に隙間が生じるので、薄型電池10内の封止性を維持するために、当該正極端子104と電池外装106、107とが接触する部分に、ポリエチレンやポリプロピレン等から構成されたシールフィルムを熱融着などの方法により介在させることもできる。
【0025】
同様に、封止された電池外装106、107の他方の端部からは、負極端子105が導出するが、ここにも正極端子104側と同様に、当該負極端子105と電池外装106、107とが接触する部分にシールフィルムを介在させることもできる。なお、正極端子104および負極端子105の何れにおいても、シールフィルムは電池外装106,107を構成する樹脂と同系統の樹脂から構成することが熱融着性の点から望ましい。
【0026】
これらの電池外装部材106、107によって、上述した発電要素109、正極側集電部104a、正極端子104の一部、負極側集電部105aおよび負極端子105の一部を包み込み、当該電池外装部材106、107により形成される空間に、有機液体溶媒に過塩素酸リチウム、ホウフッ化リチウム等のリチウム塩を溶質とした液体電解質を注入したのち、上部電池外装部材106及び下部電池外装部材107の外周縁の熱融着領域110を熱プレスにより熱融着し、封止する。
【0027】
このように封止された薄型電池10は、総厚1〜10[mm]を有することが好ましい。薄型電池の厚さを10[mm]以下とすることにより、当該薄型電池内部に熱がこもりにくくなり、電池外装部材の界面に応力を伝達する可能性が低くなると共に、電池の熱劣化の影響も減少する。また、薄型電池の厚さを1[mm]以上とすることにより、十分な容量を確保することが出来、経済的な効率を高くすることが可能となる。
【0028】
有機液体溶媒として、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)などのエステル系溶媒を挙げることができるが、本発明の有機液体溶媒はこれにのみ限定されることなく、エステル系溶媒に、γ−ブチラクトン(γ−BL)、ジエトシキエタン(DEE)等のエーテル系溶媒その他を混合、調合した有機液体溶媒も用いることができる。
【0029】
以下に、上述の薄型電池を複数組み合わせることにより構成される組電池、及び当該組電池を複数組み合わせることにより構成される複合組電池について説明する。
【0030】
図5は本発明の第1実施形態に係る複数の薄型電池の接続方法を示す図であり、図5(A)は並列接続を示し、図5(B)は比較のための直列接続を示す。図6は本発明の第1実施形態に係る複数の薄型電池の他の接続方法を示す図であり、図6(A)は並列接続を示し、図6(B)は比較のための直列接続を示す。図7は本発明の第1実施形態に係る複数の薄型電池により構成される組電池の斜視図、図8(A)は図7の組電池の平面図、図8(B)は図7の組電池の正面図、図8(C)は図7の組電池の側面図、図9は図7の組電池より構成される複合組電池の斜視図、図10(A)は図9の複合組電池の平面図、図10(B)は図9の複合組電池の正面図、図10(C)は図9の複合組電池の側面図、図11は本発明の第1実施形態に係る複合組電池を車両に搭載した模式図を示す。
【0031】
上述の薄型電池10を電気的に接続して複数の薄型電池10を有する組電池20を構成する場合、特に図5(A)及び図6(A)に示す配置による2つの接続構造が、印可される外力に対してさらに強い構造を付加する。
【0032】
一つ目の接続構造は、図5(A)に示すように、第1の薄型電池10aの正極端子104と、第2の薄型電池10bの正極端子104とが同一方向に導出するような方向で、第1の薄型電池10aと第2の薄型電池10bを実質的に同一平面上に並置させる。そして、第1の薄型電池10aの正極端子104と、第2の薄型電池10bの正極端子104とを、第1のバスバー21aにより電気的に接続する。また、第1の薄型電池10aの負極端子105と第2の薄型電池10bの負極端子105とを、第2のバスバー21bにより電気的に接続する。
【0033】
二つ目の接続構造は、図6(A)に示すように、第1の薄型電池10aの正極端子104と、第2の薄型電池10bの正極端子104とが同一方向に導出するような方向で、第1の薄型電池10aの鉛直上向きの面と第2の薄型電池10bの鉛直下向きの面とを接触させて、第1の薄型電池10aと第2の薄型電池10bとを積層する。そして、第1の薄型電池10aの正極端子104と第2の薄型電池10bの正極端子104とを溶着して電気的に接続し、同様に、第1の薄型電池10aの負極端子105と第2の薄型電池10bの負極端子105とを溶着して電気的に接続する。
【0034】
図5(B)及び図6(B)に示すような直列に接続された場合、印加される外力によって、各薄型電池10a、10bの正極端子104には逆位相の捻れ(図5(B)及び図6(B)において捻れの方向を矢印により示す。)が生じるが、これに対し上記に説明した接続構造は、薄型電池10a、10bの正極端子104同士及び負極端子105同士が接続されているため、各薄型電池10a、10bに生じる応力が同位相となり、当該端子104、105に生じる捻れを極力抑えることが出来、端子と電池外装部材との間の界面に剥離が生じる可能性が低くなる。また、正極端子の金属と負極端子の金属とが異なる場合には、それに伴って、端子導出部に生ずる引張り応力も異なり界面剥離の原因になりうるが、上述の並列接続により薄型電池の端子導出部に生じる引張り応力を実質的に同等のものとすることが可能となる。
【0035】
図7及び図8(A)〜(C)は、例えば上述の2通りの接続構造を用いて並列接続された24個の薄型電池10から構成させる組電池20を示す。組電池20は、24個の薄型電池10と、組電池用端子22、23と、組電池用カバー25とから構成されている。特に図示しないが、各薄型電池10の各同極端子間は上述の接続構造でバスバー21a、21bにより並列接続されており、各正極端子104を接続する第1のバスバー21aは、組電池用カバー25から導出する略円柱形状の組電池用正極端子22に接続されている。同様に、各負極端子105を接続する第2のバスバー21bは、組電池用カバー25から導出する略円柱形状の組電池用負極端子23に接続されている。これらの接続が完了し、24個の薄型電池10が組電池用カバー25に挿入されると、当該組電池用カバー25と当該組電池20の他の構成要素との間に形成される空間に充填剤24が充填され、封止される。さらに、後述する複合組電池として薄型電池が積層された際に、薄型電池同士の振動を極力低減するために、組電池用カバー25の下面四隅に外部弾性体26が取り付けられる。
【0036】
図9及び図10(A)〜(C)は、図7に示す組電池20を電気的に接続した6個の組電池20から構成される複合組電池30を示す。図9及び図10(A)〜(C)に示すように、複合組電池30は、組電池20の端子22、23がそれぞれ同一方向に向くように積層されている。すなわち、m段目に位置する組電池20の端子22、23と、m+1段目に位置する組電池20の端子22、23とが同一方向に向くように、m段目の組電池20の上にm+1段目の組電池20が積層される(m:自然数)。そして、同一方向を向いた全ての組電池20の組電池用正極端子22を、当該複合組電池30と外部とを接続する外部接続用正極端子31で電気的に接続する。同様に、同一方向を向いた全ての組電池20の組電池用負極端子23を、外部接続用負極端子32で電気的に接続する。同図に示すように、外部接続用正極端子31は、略矩形の平板形状であり、組電池用正極端子22を挿入或いは圧入可能な直径を有する複数の端子接続用孔が加工されている。当該端子接続用孔は、積層された組電池20の組電池用正極端子22間のピッチに等しいピッチで加工されており、外部接続用負極端子32にも同様に端子接続用孔が加工されている。
【0037】
さらに、組電池用端子22、23が複合組電池30の外部に露出しないように、接続された全ての組電池用端子22、23を覆うように、絶縁性の材料の絶縁カバー33が具備されている。なお、図9において当該絶縁カバー33は、説明の便宜上、透視図により描かれており、図10には図示しない。そして、上述のように積層された6個の組電池20は、その両側面部に平板状の連結部材34で連結され、さらに固定ネジ35により締結、固定される。
【0038】
以上のように、薄型電池により所定の数を単位とした組電池を構成し、さらに当該組電池を単位として、所定の数の組電池を組み合わせて複合組電池を構成することにより、要求される容量、電圧等に適当な複合組電池を容易に得ることが可能となる。また、複雑な接続を伴うことなく複合組電池を構成するので、接続不良による、複合組電池の故障率を低減することが可能となる。さらに、複合組電池を構成する一つの薄型電池が故障或いは劣化し、当該薄型電池の交換を必要とする場合、当該薄型電池を有する組電池を容易に交換することも可能となる。
【0039】
図11は、車両1のフロア下に上述の複合組電池30を車載した例を示す模式図である。車両1の移動に伴って、車内には多くの振動が発生する。同図に示すように、上述の複合組電池30を車載することにより、当該振動により薄型電池の端子と電池外装部材との間に界面剥離が発生する可能性が著しく減少し、車両で電池を有効に活用することが可能となる。
【0040】
なお、組電池を構成する薄型電池の数、複合組電池を構成する組電池の数、組電池を構成する薄型電池の接続方式、及び複合組電池を構成する組電池の接続方式は、上述の数及び接続方式に限定されるものではなく、要求される電気容量、電圧等から適宜その数及び接続方式(直列接続、並列接続、直列並列複合接続)を設定することが出来る。
【0041】
第2実施形態
図12は本発明の第2実施形態に係る薄型電池の端子導出部の拡大断面図である。なお、図12は図1のIII部の拡大断面図に相当する。本発明の第2実施形態に係る薄型電池10は、第1実施形態の電池外装部材106、107に接着層106d、107dを新たに付与したものであり、当該薄型電池10のその他の構成要素は、第1実施形態と同様である。
【0042】
図12に示すように、上部電池外装部材106の第1の樹脂層106aと金属層106bとの間に接着層106dが新たに設けられている。同様に、下部電池外装部材107の第1の樹脂層107aと金属層107bとの間に接着層107dが新たに設けられている。当該接着層106dが非常に弱い樹脂層を形成することにより、第1の樹脂層106aと金属層106bとの動吸振器としての動的バネ特性を効率的に低減する。同様に、接着層107dが、第1の樹脂層107aと金属層107bとの動吸振器としての動的バネ特性を効率的に低減する。
【0043】
この第2実施形態に係る薄型電池を単位電池として用いて、第1実施形態と同様に当該薄型電池を複数接続した組電池、当該組電池を複数接続した複合組電池、及び当該複合組電池を車両に車載することが可能である。
【0044】
第3実施形態
図13は本発明の第3実施形態に係る端子導出部の拡大断面図であり、図14は図13の端子導出部のマス−バネ系モデルであり、図15は本発明の第3実施形態に係る端子導出部での振動伝達率スペクトルを示すグラフである。なお、図13は図1のIII部の拡大断面図に相当する。
【0045】
本発明の第3実施形態に係る薄型電池10は、第1実施形態の電池外装部材106の金属層106bと第1の樹脂層106aとの間にさらに第3の樹脂層106eを新たに付与し、同様に下部電池外装部材107の金属層107bと第1の樹脂層107aとの間にさらに第3の樹脂層107eを付与したものであり、当該薄型電池10のその他の構成要素は、第1実施形態と同様である。なお、電池外装部材106、107の第1の樹脂層106a、107aを、正極端子及び負極端子の近傍のみに配置されるシールフィルムとしても良い。
【0046】
上部電池外装部材106の3つの樹脂層106c、106a、106eのヤング率の関係は、第1の樹脂層106aのヤング率が第2の樹脂層のヤング率に対して5〜55%であり、第3の樹脂層106eのヤング率が第1の樹脂層106bのヤング率に対して90〜100%となるような関係を有している。同様に、下部電池外装部材107の3つの樹脂層107c、107a、107eのヤング率の関係は、第1の樹脂層107aのヤング率が第2の樹脂層107cのヤング率に対して5〜55%であり、第3の樹脂層107eのヤング率が第1の樹脂層107aのヤング率に対して90〜100%となるような関係を有している。
【0047】
そして、上部電池外装部材106の第3の樹脂層106eは、第1の樹脂層106aと直列接続され、図14に示すように新たな第1のバネ部K’及び減衰要素C’を形成する。同様に、下部電池外装部材107の第3の樹脂層107eは、第1の樹脂層107aと直列接続され、同図に示すように新たな第1のバネ部K’及び減衰要素C’を形成する。端子導出部111のマス−バネ系モデルにおいて、直列接続された新たな第1のバネ部K’及び減衰要素C’を形成することにより、第1の樹脂層106a、107aと金属層106b、107bとによる動吸振器としての動的バネ特性を効率的に低減する。
【0048】
特に第3の樹脂層106e、107eのヤング率が、第1の樹脂層106a、107aのヤング率に対して90〜100%となるように設定することにより、端子導出部111のマスバネ系における動的バネ特性がヤング率の低い樹脂層に一方的に依存するのを防止し、端子導出部における共振周波数の移行が容易となる。
【0049】
図15は、第3実施形態に係る薄型電池の端子導出部における縦軸に加振振幅と応答振幅との比である振動伝達率、横軸に周波数の振動伝達率スペクトルを示す。同図に示すように、例えば、主たる加振振動数が約100Hz以下に特に集中する車両等での薄型電池の使用する場合において、本発明の第3実施形態に係るチューニングにより、端子導出部の共振周波数を約100Hz以上に移行させて加振振動数から離遠させることにより、加振に対する共振を防止して薄型電池を有効に活用することが可能となる。なお、加振振動数は約100Hz以下に特に限定されず、それ以上の加振振動数に対しても、上記のチューニングを行うことが可能である。
【0050】
この第3実施形態に係る薄型電池を単位電池として用いて、第1実施形態と同様に当該薄型電池を複数接続した組電池、当該組電池を複数接続した複合組電池、及び当該複合組電池を車両に車載することが可能である。
【0051】
なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
【0052】
【実施例】
以下、本発明をさらに具体化した実施例及び比較例により本発明の効果を確認した。以下の実施例は、上述した実施形態で用いた薄型電池の効果を確認するためのものである。
【0053】
実施例1
実施例1の薄型電池は、正極端子に厚さ100μmのアルミニウム(Al)箔、負極端子に厚さ100μmの銅(Cu)箔、正極活性物質にマンガン酸リチウム(LiMnO)、負極活性物質に非結晶性炭素材、電解液にプロピレンカーボネート(PC)及びエチルメチルカーボネート(EMC)の混合液を用いた。また、第1の樹脂層に膜厚80μmのポリエチレン(PE)樹脂フィルム、金属層に膜厚40μmのアルミニウム(Al)箔、第2の樹脂層に膜厚20μmのナイロン樹脂フィルムを図2のように積層した高分子金属複合フィルムを上部電池外装部材及び下部電池外装部材として用いて縦140mm×横80mm×厚さ4mmの薄型電池を作製した。なお、第1の樹脂層のポリエチレン樹脂フィルムのヤング率は、0.08×10−10N/mであり、第2の樹脂層のナイロン樹脂フィルムのヤング率は、0.25×10−10N/mである。従って、第2の樹脂層のヤング率に対する第1の樹脂層のヤング率の比率は32%であり、正極端子及び負極端子の厚さは、金属層の膜厚に対して2.5倍となった。実施例1において作製した薄型電池の条件を表1に示す。
【0054】
【表1】
Figure 2004039577
【0055】
この薄型電池について、加速度比の測定及び平均減衰率の測定を行った。加速度比の測定は、当該薄型電池の端子の略中央部に加速度ピックアップを設定し、10Hz、50Hz、100Hzでそれぞれ強制加振したときに得られる応答振動の加速度値を測定した。この際、比較例に対する加速度値を基準にして比率を算出することにより加速度比を算出した。なお、実施例1に対する基準は後述する比較例1である。この加速度比は、その値が1.0のときは、実施例と比較例の加速度の絶対値が同一であることを示し、加速度比の値が0.0〜1.0のときは、強制加振に対して応答振動が低減したことを示し、加速度比の値が1.0以上のときは強制振動に共振して応答振動が増幅されたことを意味する。
【0056】
また、平均低減率の測定は、上述の加速度比を10〜300Hzで測定し、その低減率を平均化したものであり、数値が大きいほど、全体的に振動が低減されたことを示す。
【0057】
この結果、表2に示すように実施例1における加速度比測定では、10Hz:0.27、50Hz:0.32、100Hz:0.30となり、各加振振動数において振動の低減が確認された。また、実施例1における平均低減率の測定は約50%となり、全体として振動の低減が確認された。なお、本実施例の振動伝達スペクトルは図4に示すように、共振周波数が移行して約100Hz以上になっていることが確認され、本実施例の第1固有振動数は比較例1の第1固有振動数に対して高周波数側への移行量は約50Hz分移行した。
【0058】
【表2】
Figure 2004039577
【0059】
実施例2
実施例2の薄型電池には、実施例1と同様の正極活性物質、負極活性物質、電解液を用い、正極端子に厚さ200μmのアルミニウム(Al)箔、負極端子に厚さ200μmのニッケル(Ni)箔を用いた。また、第1の樹脂層に膜厚80μmのポリエチレン(PE)樹脂フィルム、金属層に膜厚40μmのアルミニウム(Al)箔、第2の樹脂層に膜厚20μmのナイロン樹脂フィルム、そして第1の樹脂層と金属層との界面にウレタン系接着剤の接着層を設けた図12に示すような高分子金属複合フィルムを上部電池外装部材及び下部電池外装部材として用いて縦140mm×横80mm×厚さ4mmの薄型電池を作製した。なお、第1の樹脂層のポリエチレン樹脂フィルムのヤング率は、0.08×10−10N/mであり、第2の樹脂層のナイロン樹脂フィルムのヤング率は、0.25×10−10N/mである。従って、第2の樹脂層のヤング率に対する第1の樹脂層のヤング率の比率は32%であり、正極端子及び負極端子の厚さは、金属層の膜厚に対して5.0倍となった。実施例2において作製した薄型電池の条件を表1に示す。
【0060】
この薄型電池について、第1実施例と同様の条件で、加速度比測定及び平均低減率測定を行った。その結果、表2に示すように、加速度比測定においては、基準に対して、10Hz:0.25、50Hz:0.3、100Hz:0.29となり、各加振振動数において振動の低減が確認された。また、実施例2における平均低減率測定は約40%となり、全体として振動の低減が確認された。なお、本実施例の第1固有振動数は比較例1の第1固有振動数に対して高周波数側に約60Hz分移行し、約100Hz以上に位置した。
【0061】
実施例3
実施例3の薄型電池には、実施例1と同様の正極活性物質、負極活性物質、電解液を用い、正極端子に厚さ100μmのアルミニウム(Al)箔、負極端子に厚さ100μmの鉄(Fe)箔を用いた。また、第1の樹脂層に膜厚40μmの変性ポリプロピレン(PP)、金属層に膜厚50μmのアルミニウム(Al)箔、第2の樹脂層に膜厚25μmのナイロン樹脂フィルム、そして第1の樹脂層と金属層との間に膜厚40μmのポリプロピレン(PP)樹脂フィルムの第3の樹脂層を図13に示すように積層した高分子金属複合フィルムを上部電池外装部材及び下部電池外装部材として用いて、縦140mm×横80mm×厚さ4mmの薄型電池を作製した。実施例3で作製した薄型電池の条件を表1に示す。なお、第1の樹脂層の変性ポリプロピレンのヤング率は、0.12×10−10N/mであり、第2の樹脂層のナイロン樹脂フィルムのヤング率は、0.25×10−10N/mであり、第3の樹脂層のポリプロピレンのヤング率は、0.13×10−10N/mである。従って、第2の樹脂層のヤング率に対する第1の樹脂層のヤング率の比率は48%であり、第1の樹脂層のヤング率に対する第3の樹脂層のヤング率の比率は約92%であり、正極端子及び負極端子の厚さは、金属層の膜厚に対して2.0倍となった。実施例3において作製した薄型電池の条件を表1に示す。
【0062】
この薄型電池について、第1実施例と同様の条件で、加速度比測定及び平均低減率測定を行った。その結果、表2に示すように、加速度比測定においては、基準に対して、10Hz:0.30、50Hz:0.35、100Hz:0.34となり、各加振振動数において振動の低減が確認された。また、実施例3における平均低減率測定は約45%となり、全体として振動の低減が確認された。なお、本実施例の振動伝達スペクトルは図15に示すように、共振周波数が移行して100Hz以上になっていることが確認され、本実施例の第1固有振動数は比較例2の第1共振周波数に対して高周波側に約40Hz分移行した。
【0063】
実施例4
実施例4の薄型電池には、正極端子に厚さ250μmのアルミニウム(Al)箔、負極端子に厚さ250μmのニッケル(Ni)箔を用い、その他の構成要素については実施例3と同様のものを用いて、縦140mm×横80mm×厚さ4mmの薄型電池を作製した。実施例4で作製した薄型電池の条件を表1に示す。
【0064】
この薄型電池について、第1実施例と同様の条件で、加速度比測定及び平均低減率測定を行った。その結果、表2に示すように、加速度比測定においては、基準に対して10Hz:0.27、50Hz:0.32、100Hz:0.33となり、各加振振動数において振動の低減が確認された。また、実施例4における平均低減率測定は約50%となり、全体として振動の低減が確認された。なお、本実施例の第1共振周波数は比較例2の第1共振周波数に対して高周波数側に約80Hz分移行し、100Hz以上に位置した。
【0065】
比較例1
比較例1の薄型電池は、電池外装部材の第2の樹脂層に膜厚20μm、ヤング率0.12×10−10N/mのナイロン樹脂フィルムを用い、薄型電池の他の構成要素は実施例1と同様である。なお、第2の樹脂層のヤング率に対する第1の樹脂層のヤング率の比率は約67%である。
【0066】
比較例2
比較例2の薄型電池は、電池外装部材の第2の樹脂層に膜厚25μm、ヤング率0.12×10−10N/mのナイロン樹脂フィルムを用い、薄型電池の他の構成要素は実施例3と同様である。なお、第2の樹脂層のヤング率に対する第1の樹脂層のヤング率の比率は約92%である。
【0067】
考察
実施例1〜4と比較例1、2とを比較して、共振周波数を移行させて加振周波数から離し、全体周波数において振動が低減されていることが確認され、実施例1〜4の薄型電池は印加される振動に対して強い構造を有することが明らかとなった。
【図面の簡単な説明】
【図1】図1(A)は本発明の第1実施形態に係る薄型電池の全体を示す平面図、図1(B)は(A)のII−II線に沿う断面図である。
【図2】図1(A)のIII部の拡大断面図である。
【図3】図2の端子導出部のマスバネ系モデルである。
【図4】本発明の第1実施形態に係る端子導出部での振動伝達率スペクトルを示すグラフである。
【図5】本発明の第1実施形態に係る複数の薄型電池の接続構造を示す図であり、図5(A)は並列接続を示し、図5(B)は比較のための直列接続を示す。
【図6】本発明の第1実施形態に係る複数の薄型電池の他の接続構造を示す図であり、図6(A)は並列接続を示し、図6(B)は比較のための直列接続を示す。
【図7】本発明の第1実施形態に係る複数の薄型電池により構成される組電池の斜視図である。
【図8】図8(A)は図7の組電池の平面図、図8(B)は図7の組電池の正面図、図8(C)は図7の組電池の側面図である。
【図9】図7の組電池により構成される複合組電池の斜視図である。
【図10】図10(A)は図9の複合組電池の平面図、図10(B)は図9の複合組電池の正面図、図10(C)は図9の複合組電池の側面図である。
【図11】本発明の第1実施形態に係る複合組電池を車両に搭載した模式図である。
【図12】本発明の第2実施形態に係る端子導出部の拡大断面図である。
【図13】本発明の第3実施形態に係る端子導出部の拡大断面図である。
【図14】図13のマスバネ系モデルである。
【図15】本発明の第3実施形態に係る端子導出部での振動伝達率スペクトルを示すグラフである。
【符号の説明】
1…車両
10…薄型電池
10a…第1の薄型電池
10b…第2の薄型電池
101…正極板
102…セパレータ
103…負極板
104…正極端子
105…負極端子
106…上部電池外装部材
106c…第2の樹脂層
106b…金属層
106a…第1の樹脂層
106d…接着層
106e…第3の樹脂層
107…下部電池外装部材
107c…第2の樹脂層
107b…金属層
107a…第1の樹脂層
107d…接着層
107e…第3の樹脂層
109…発電要素
110…熱融着領域
111…端子導出部
20…組電池
21a…第1のバスバー
21b…第2のバスバー
22…組電池用正極端子
23…組電池用負極端子
24…充填剤
25…組電池用カバー
26…外部弾性体
30…複合組電池
31…外部接続用正極端子
32…外部接続用負極端子
33…絶縁カバー
34…連結部材
35…固定ネジ[0001]
【Technical field】
The present invention relates to a thin battery having a terminal extending from an edge of an outer peripheral portion of a sealing means, and more particularly to a thin battery having a structure resistant to applied vibration.
[0002]
[Background Art]
With the diversification of usage modes and usage conditions of a thin battery having a terminal extending from the edge of the outer peripheral portion of the sealing means, vibration applied to the thin battery from the outside increases. Due to this vibration, the electrolyte injected into the thin battery leaks due to the peeling of a portion where the positive electrode terminal or the negative electrode terminal is led out of the battery exterior member (hereinafter, also simply referred to as a terminal lead portion), and the performance of the thin battery It may lead to a decrease.
[0003]
DISCLOSURE OF THE INVENTION
An object of the present invention is to provide a thin battery having a structure that is strong against an applied external force.
[0004]
In order to achieve the above object, according to the present invention, there is provided a sealing means having at least one metal layer sandwiched between two synthetic resin layers, and a positive electrode terminal and a negative electrode terminal are provided on the outer periphery of the sealing means. A thin battery derived from an edge of a portion, wherein the first synthetic resin layer located at the innermost layer of the sealing means has a Young's modulus of the second synthetic resin layer located at the outermost layer of the sealing means. A thin battery having a smaller Young's modulus is provided (see claim 1).
[0005]
According to the present invention, by controlling the Young's modulus of the innermost first synthetic resin layer of the battery exterior member to be smaller than the Young's modulus of the outermost second synthetic resin layer, the resonance of the terminal lead-out portion can be achieved. The frequency is shifted away from the excitation frequency to prevent resonance. Accordingly, occurrence of peeling of the terminal lead-out portion due to vibration applied from the outside can be significantly reduced, and a thin battery having a structure that is strong against applied vibration can be obtained.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1st Embodiment FIG. 1A is a plan view showing an entire thin battery according to a first embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along line II-II in FIG. It is. FIG. 2 is an enlarged sectional view of a part III in FIG. FIG. 3 shows the mass-spring system model of FIG. FIG. 4 is a graph showing a vibration transmissibility spectrum at the terminal lead-out section according to the first embodiment of the present invention. FIG. 1 shows one thin battery (unit battery), and an assembled battery having a desired voltage and capacity is formed by stacking a plurality of the thin batteries 10.
[0007]
First, the overall configuration of the thin battery 10 according to the first embodiment of the present invention will be described with reference to FIG. 1. The thin battery 10 of this example is a lithium-based thin secondary battery, and includes two positive plates 101. , Five separators 102, two negative plates 103, a positive terminal 104, a negative terminal 105, an upper battery outer member 106, a lower battery outer member 107, and an electrolyte (not shown). I have. Among these, the positive electrode plate 101, the separator 102, the negative electrode plate 103, and the electrolyte are particularly referred to as a power generation element 109.
[0008]
The number of the positive electrode plate 101, the separator 102, and the negative electrode plate 103 is not limited at all, and the power generating element 109 can be constituted by one positive electrode plate 101, three separators 102, and one negative electrode plate 104. . If necessary, the number of the positive electrode plate, the negative electrode plate, and the number of separators can be selected and configured.
[0009]
The positive electrode plate 101 constituting the power generating element 109 is composed of a positive electrode active material such as a metal oxide, a conductive material such as carbon black, and an adhesive such as an aqueous dispersion of polytetrafluoroethylene in a weight ratio of, for example, 100%. : A mixture of 3:10 was applied to both sides of a metal foil such as an aluminum foil as a positive electrode current collector, dried, rolled, and then cut into a predetermined size. The mixing ratio of the aqueous dispersion of polytetrafluoroethylene is the solid content.
[0010]
Examples of the positive electrode active material include lithium composite oxides such as lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and lithium cobaltate (LiCoO 2 ), and chalcogenide (S, Se, Te) compounds. Can be. These materials relatively easily diffuse the heat generated inside the thin battery, reduce the expansion due to the expansion of the terminal due to heat transfer to the terminal, and minimize the tensile stress transmitted from the terminal to the battery exterior member described later. It becomes.
[0011]
The negative electrode plate 103 constituting the power generation element 109 is formed of, for example, an amorphous carbon, a non-graphitizable carbon, a graphitizable carbon, or a negative electrode active material that occludes and releases lithium ions of a positive electrode active material, such as graphite. An aqueous dispersion of styrene-butadiene rubber resin powder as a precursor material for the organic fired body is mixed at, for example, a solid content ratio of 100: 5, dried, and then pulverized to carry carbonized styrene-butadiene rubber on the carbon particle surfaces. The main material is mixed with a binder such as an acrylic resin emulsion at a weight ratio of 100: 5, for example, and this mixture is used as a metal foil such as a nickel foil or a copper foil as a negative electrode current collector. Is dried, rolled, and then cut into a predetermined size.
[0012]
In particular, when amorphous carbon or non-graphitizable carbon is used as the negative electrode active material, the flatness of the potential during charge and discharge is poor, and the output voltage decreases with the amount of discharge, so it is not suitable for the power supply of communication equipment and office equipment. However, when used as a power source for an electric vehicle or the like, there is no sharp drop in output, which is advantageous.
[0013]
Further, the separator 102 of the power generation element 109 prevents short-circuit between the positive electrode plate 101 and the negative electrode plate 103 described above, and may have a function of retaining an electrolyte. The separator 102 is a microporous film made of, for example, a polyolefin such as polyethylene (PE) or polypropylene (PP). When an overcurrent flows, the heat generated by the separator 102 causes pores in the layer to be closed and cuts off the current. It also has
[0014]
Note that the separator 102 of the present invention is not limited to a single-layer film of polyolefin or the like, and a three-layer structure in which a polypropylene film is sandwiched by a polyethylene film, or a laminate of a polyolefin microporous film and an organic nonwoven fabric can also be used. . By forming the separator 102 into multiple layers, various functions such as a function of preventing an overcurrent, a function of retaining an electrolyte, and a function of maintaining the shape of the separator (improving rigidity) can be provided. Further, a gel electrolyte, an intrinsic polymer electrolyte, or the like can be used instead of the separator 102.
[0015]
The above-described power generation elements 109 are stacked in such a manner that the positive electrode plate 101 and the negative electrode plate 103 are alternately arranged from the top and the separator 102 is positioned between the positive electrode plate 101 and the negative electrode plate 103. One separator 102 is stacked on each of the upper and lower parts. Each of the two positive plates 101 is connected to a metal foil positive terminal 104 via a positive current collector 104a, while the two negative plates 103 are connected to a negative current collector 105a. Is connected to the negative electrode terminal 105 also made of metal foil. Note that the positive electrode terminal 104 and the negative electrode terminal 105 are not particularly limited as long as they are electrochemically stable metal materials. Examples of the positive electrode terminal 104 include aluminum, an aluminum alloy, copper, and nickel. May be nickel, copper, stainless steel, iron or the like. These metals are particularly suitable as components of a thin battery in terms of metal resistance, coefficient of linear expansion, and resistivity.Even when the operating temperature is changed, the tensile stress transmitted from the terminal to the battery exterior member described later is also reduced. It is possible to suppress as much as possible. Further, in each of the positive-side current collector 104a and the negative-side current collector 105a of the present example, an aluminum foil, a nickel foil, a copper foil, and an iron foil constituting the current collector of the positive electrode plate 104 and the negative electrode plate 105 are extended. However, the current collectors 104a and 105a may be formed of separate materials and components.
[0016]
The power generation element 109 is sealed by the upper battery outer member 106 and the lower battery outer member 107 (sealing means). As shown in FIG. 2, the upper battery exterior member 106 according to the first embodiment of the present invention includes a first resin layer 106a, a metal layer 106b, and a second resin layer 106c from the inside to the outside of the thin battery 10. The three layers 106a to 106c are stacked in this order. The three layers 106a to 106c are laminated over the entire surface of the upper battery exterior member 106, and the first resin layer 106a is formed of, for example, an electrolytic solution resistant material such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, and ionomer. And a resin film having excellent heat fusion properties. The second resin layer 106c is a resin film having excellent electrical insulation properties, such as a polyamide resin and a polyester resin. As described above, by forming the first resin layer of the battery exterior member from a resin such as polypropylene, modified polypropylene, polyethylene, modified polyethylene, or ionomer, the positive or negative electrode terminal made of metal and the first resin exterior member of the battery exterior member are formed. It is possible to ensure good fusion bonding with the resin layer. The metal layer 106b is, for example, a metal foil such as aluminum. Therefore, for example, the upper battery exterior member 106 is formed by laminating one surface of a metal foil such as aluminum (the inner surface of a thin battery) with a resin such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, and ionomer, and then laminating the other surface ( It is formed of a flexible material such as a resin-metal thin film laminate obtained by laminating an outer surface of a thin battery) with a polyamide resin, a polyester resin, or the like. As described above, when the battery exterior member includes the metal layer in addition to the resin layer, the strength of the battery exterior member can be improved. Note that the second resin layer 106c has a thickness relatively smaller than the thickness of the metal layer 106b and the thickness of the first resin layer 106a. This makes it possible to make the characteristics of a dynamic vibration absorber described later work effectively.
[0017]
The lower battery exterior member 107 has a structure similar to that of the upper battery exterior member 106. As shown in FIG. 2, a first resin layer 107 a and a metal layer 107 b extend from the inside to the outside of the thin battery 10. The three layers 107a to 107c are stacked in this order on the second resin layer 107c. Like the first resin layer 106a of the upper battery exterior member 106, the first resin layer 107a of the lower battery exterior member 107 is made of, for example, an electrolytic solution such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, and ionomer, and a heat-resistant material. It is a resin film with excellent fusion property. Like the metal layer 106b of the upper battery exterior member 106, the metal layer 107b of the lower battery exterior member 107 is, for example, a metal foil such as aluminum. Like the second resin layer 106c of the upper battery exterior member 106, the second resin layer 107c of the lower battery exterior member 107 is a resin film having excellent electrical insulation properties, such as a polyamide-based resin and a polyester-based resin. . The second resin layer 107c has a thickness relatively smaller than the thickness of the metal layer 107b and the thickness of the first resin layer 107a, and will be described later by the first resin layer 107a and the metal layer 107b. The dynamic vibration absorber characteristics can be effectively applied.
[0018]
Further, the terminal lead-out portion 111 composed of the positive terminal 104 or the negative terminal 105 and the battery exterior members 106 and 107 shifts the resonance frequency of the terminal lead-out portion 111 away from the excitation frequency. In order to prevent resonance in the terminal lead-out section 111, a two-degree-of-freedom mass-spring system as shown in FIG. 3 is formed. Mass of Figure 3 - in spring system model, the positive electrode terminal 104 or the negative electrode terminal 105 corresponds to a first mass portion M of the mass m 1 of the thin battery 10, a metal layer 106b of the battery outer members 106 and 107, 107 b is the mass m 2 corresponds to the second mass portions Ma and Mb. Further, the first resin layer 107a of the first resin layer 106a and a lower battery case member 107 of the upper battery case member 106 corresponds to the first spring portion K and the damping element C Young's modulus k 1, battery outer member the second resin layer 106c of the 106 and 107, 107c correspond second spring portion Ka of Young's modulus k 2, to Kb, the Young's modulus k 1 of the first spring portion K, the second spring portion Ka, Kb has a relationship of 5 to 55% with respect to Young's modulus k2. Thus, the second spring portion Ka, by a small Young's modulus k 1 than the Young's modulus k 2 of the Kb first spring portion K, the first resin layer 106a is a first spring portion K, 107a and the metal layers 106b and 107b, which are the second mass portions Ma and Mb, effectively act as a dynamic vibration absorber to separate the resonance frequency of the mass-spring system of the terminal lead-out portion 111 from the excitation frequency. It is possible to shift so that If the Young's modulus k1 of the first spring portion K is less than 5% of the Young's modulus k2 of the second spring portions Ka and Kb, the first spring portion K and the second spring portion Ka, There is a possibility that the difference between the dynamic spring constant and Kb becomes excessive, and the structure of the terminal lead-out portion 111 becomes weak. When the Young's modulus k1 of the first spring portion K is larger than 55% of the Young's modulus k2 of the second spring portions Ka and Kb, the difference in the dynamic spring constant depending on the Young's modulus is small, The action of the second mass parts Ma, Mb and the first spring part K as a dynamic vibration absorber is weakened, and it is difficult to shift the resonance frequency of the terminal lead-out part 111.
[0019]
In addition, the above-described positive electrode terminal 104 and negative electrode terminal 105 have a thickness that is 2 to 5 times the thickness of the metal layers 106 b and 107 b of the battery exterior members 106 and 107. Here, when the thickness of the positive electrode terminal 104 and the negative electrode terminal 105 is less than twice the thickness of the metal layers 106b and 107b, the influence of the metal layers 106b and 107b on the resonance frequency of the terminal lead-out portion 111 increases, There is a possibility that shifting of the resonance frequency of the terminal deriving unit 111 becomes difficult. Further, when the thickness of the positive electrode terminal 104 and the negative electrode terminal 105 is larger than five times the thickness of the metal layers 106b and 107b, the influence of the metal layers 106b and 107b on the resonance frequency of the terminal lead-out portion 111 decreases, and It becomes difficult to shift to a changing frequency.
[0020]
The resonance frequencies (natural frequencies) ω 1 and ω 2 in the above-described two-degree-of-freedom mass-spring system can be substantially calculated from Expression 1.
[0021]
(Equation 1)
Figure 2004039577
Since the terminal lead-out part of the thin battery according to the first embodiment of the present invention is not a complete two-degree-of-freedom mass-spring system, it cannot be completely described by the above equation. Tuning of the resonance frequency in the terminal lead-out section is possible. The resonance frequency of the terminal lead-out section may be tuned by changing the mass and Young's modulus of the above equation by changing the material of each layer and the terminal.
[0022]
By manipulating the material, thickness and Young's modulus of each layer constituting the battery exterior member, and the material and thickness of the positive terminal and the negative terminal, the primary natural frequency and secondary natural frequency in the mass-spring system of the terminal lead-out part The frequency can be set arbitrarily, and the resonance frequency of the terminal lead-out portion is shifted so as to be far from the excitation frequency, so that resonance can be suppressed.
[0023]
FIG. 4 shows the vibration transmissivity, which is the ratio between the excitation amplitude and the response amplitude, on the vertical axis and the vibration transmissivity spectrum of the frequency on the horizontal axis in the terminal lead-out portion of the thin battery according to the first embodiment. As shown in the figure, for example, in the case of using a thin battery in a vehicle or the like where the main excitation frequency is particularly concentrated to about 100 Hz or less, the tuning of the terminal lead-out section is performed by tuning according to the first embodiment of the present invention. By shifting the resonance frequency to about 100 Hz or more and moving away from the vibration frequency, resonance to the vibration can be prevented and the thin battery can be used effectively. Note that the excitation frequency is not particularly limited to about 100 Hz or less, and the above-mentioned tuning can be performed for the excitation frequency higher than about 100 Hz.
[0024]
Further, as shown in FIG. 1, the positive terminal 104 is led out from one end of the sealed battery outer casings 106 and 107. In order to maintain a sealing property in the thin battery 10, a seal made of polyethylene, polypropylene, or the like is provided at a portion where the positive electrode terminal 104 and the battery exteriors 106 and 107 are in contact with each other. A film can be interposed by a method such as heat fusion.
[0025]
Similarly, a negative electrode terminal 105 is led out from the other end of the sealed battery outer casings 106 and 107. Here, similarly to the positive terminal 104 side, the negative electrode terminal 105 and the battery outer casings 106 and 107 are connected. A seal film may be interposed in a portion where the contact is made. In any of the positive electrode terminal 104 and the negative electrode terminal 105, it is preferable that the seal film is formed of the same resin as the resin forming the battery casings 106 and 107 from the viewpoint of heat fusion.
[0026]
These battery exterior members 106 and 107 wrap the above-described power generation element 109, the positive-side current collector 104 a, a part of the positive terminal 104, and the negative-side current collector 105 a and a part of the negative terminal 105. After injecting a liquid electrolyte in which a lithium salt such as lithium perchlorate or lithium borofluoride is dissolved in an organic liquid solvent into a space formed by 106 and 107, the outside of the upper battery exterior member 106 and the lower battery exterior member 107 is injected. The peripheral heat-sealed region 110 is heat-sealed by a hot press and sealed.
[0027]
It is preferable that the thin battery 10 sealed in this way has a total thickness of 1 to 10 [mm]. By setting the thickness of the thin battery to 10 mm or less, heat is hardly trapped inside the thin battery, the possibility of transmitting stress to the interface of the battery exterior member is reduced, and the effect of thermal degradation of the battery is reduced. Is also reduced. Further, by setting the thickness of the thin battery to 1 mm or more, a sufficient capacity can be secured, and economic efficiency can be increased.
[0028]
Examples of the organic liquid solvent include ester solvents such as propylene carbonate (PC), ethylene carbonate (EC), and dimethyl carbonate (DMC). However, the organic liquid solvent of the present invention is not limited thereto. An organic liquid solvent obtained by mixing and preparing an ether-based solvent such as γ-butylactone (γ-BL), diethoxyethane (DEE) or the like with an ester-based solvent can also be used.
[0029]
Hereinafter, an assembled battery formed by combining a plurality of the above-described thin batteries and a composite assembled battery formed by combining a plurality of the assembled batteries will be described.
[0030]
5A and 5B are diagrams showing a method for connecting a plurality of thin batteries according to the first embodiment of the present invention. FIG. 5A shows a parallel connection, and FIG. 5B shows a series connection for comparison. . 6A and 6B are diagrams showing another connection method of the plurality of thin batteries according to the first embodiment of the present invention. FIG. 6A shows a parallel connection, and FIG. 6B shows a series connection for comparison. Is shown. FIG. 7 is a perspective view of an assembled battery including a plurality of thin batteries according to the first embodiment of the present invention, FIG. 8A is a plan view of the assembled battery of FIG. 7, and FIG. 8 (C) is a side view of the assembled battery of FIG. 7, FIG. 9 is a perspective view of a combined assembled battery including the assembled battery of FIG. 7, and FIG. 10 (A) is a composite of FIG. 10 (B) is a front view of the composite battery pack of FIG. 9, FIG. 10 (C) is a side view of the composite battery pack of FIG. 9, and FIG. 11 relates to the first embodiment of the present invention. The schematic diagram which mounted the composite battery pack in the vehicle is shown.
[0031]
When the above-described thin batteries 10 are electrically connected to form a battery pack 20 having a plurality of thin batteries 10, two connection structures with the arrangements shown in FIGS. 5A and 6A are particularly applicable. A stronger structure is added to the applied external force.
[0032]
The first connection structure is, as shown in FIG. 5A, a direction in which the positive electrode terminal 104 of the first thin battery 10a and the positive terminal 104 of the second thin battery 10b are led out in the same direction. Thus, the first thin battery 10a and the second thin battery 10b are juxtaposed substantially on the same plane. Then, the positive terminal 104 of the first thin battery 10a and the positive terminal 104 of the second thin battery 10b are electrically connected by the first bus bar 21a. The negative terminal 105 of the first thin battery 10a and the negative terminal 105 of the second thin battery 10b are electrically connected by the second bus bar 21b.
[0033]
The second connection structure is, as shown in FIG. 6A, a direction in which the positive terminal 104 of the first thin battery 10a and the positive terminal 104 of the second thin battery 10b are led out in the same direction. Then, the first thin battery 10a and the second thin battery 10b are stacked by bringing the vertically upward surface of the first thin battery 10a into contact with the vertically downward surface of the second thin battery 10b. Then, the positive terminal 104 of the first thin battery 10a and the positive terminal 104 of the second thin battery 10b are welded and electrically connected, and similarly, the negative terminal 105 of the first thin battery 10a is connected to the second terminal. The negative electrode terminal 105 of the thin battery 10b is welded and electrically connected.
[0034]
When connected in series as shown in FIG. 5 (B) and FIG. 6 (B), opposite phases of torsion are applied to the positive terminals 104 of the thin batteries 10 a and 10 b by the applied external force (FIG. 5 (B) 6B, the direction of the twist is indicated by an arrow.) On the other hand, in the connection structure described above, the positive terminals 104 and the negative terminals 105 of the thin batteries 10a and 10b are connected. Therefore, the stress generated in each of the thin batteries 10a and 10b has the same phase, the torsion generated in the terminals 104 and 105 can be suppressed as much as possible, and the possibility that the interface between the terminal and the battery exterior member is peeled is low. Become. Further, when the metal of the positive electrode terminal is different from the metal of the negative electrode terminal, the tensile stress generated in the terminal lead-out part is also different, which may cause interface delamination. It is possible to make the tensile stress generated in the portion substantially equal.
[0035]
FIGS. 7 and 8A to 8C show an assembled battery 20 including, for example, 24 thin batteries 10 connected in parallel using the above-described two connection structures. The assembled battery 20 includes 24 thin batteries 10, assembled battery terminals 22 and 23, and an assembled battery cover 25. Although not particularly shown, the same-polarity terminals of each thin battery 10 are connected in parallel by the bus bars 21a and 21b in the above-described connection structure, and the first bus bar 21a for connecting each positive electrode terminal 104 is provided with a battery pack cover. 25 is connected to a positive electrode terminal 22 for a battery assembly having a substantially cylindrical shape derived from the positive electrode terminal 25. Similarly, the second bus bar 21 b connecting each of the negative electrode terminals 105 is connected to a substantially cylindrical negative electrode terminal 23 for a battery assembly that is derived from the battery cell cover 25. When these connections are completed and the 24 thin batteries 10 are inserted into the assembled battery cover 25, the space formed between the assembled battery cover 25 and the other components of the assembled battery 20 is removed. Filler 24 is filled and sealed. Further, when thin batteries are stacked as a composite battery to be described later, external elastic bodies 26 are attached to the lower four corners of the battery pack cover 25 in order to minimize vibration between the thin batteries.
[0036]
FIGS. 9 and 10A to 10C show a composite battery pack 30 including six battery packs 20 electrically connected to the battery pack 20 shown in FIG. As shown in FIGS. 9 and 10A to 10C, the composite battery pack 30 is stacked such that the terminals 22 and 23 of the battery pack 20 face the same direction. That is, the terminals 22 and 23 of the assembled battery 20 located at the m-th stage and the terminals 22 and 23 of the assembled battery 20 located at the (m + 1) -th stage face in the same direction. Then, the assembled battery 20 of the (m + 1) th stage is stacked (m: natural number). Then, the battery pack positive terminals 22 of all the battery packs 20 facing in the same direction are electrically connected by the external connection positive terminal 31 connecting the composite battery pack 30 to the outside. Similarly, the assembled battery negative terminals 23 of all the assembled batteries 20 facing in the same direction are electrically connected by the external connection negative terminal 32. As shown in the figure, the external connection positive terminal 31 has a substantially rectangular flat plate shape, and has a plurality of terminal connection holes having a diameter capable of inserting or press-fitting the assembled battery positive terminal 22. The terminal connection holes are formed at a pitch equal to the pitch between the assembled battery positive terminals 22 of the stacked battery assembly 20, and the terminal connection holes are similarly formed in the external connection negative terminal 32. I have.
[0037]
Further, an insulating cover 33 made of an insulating material is provided to cover all the connected battery terminals 22 and 23 so that the battery terminals 22 and 23 are not exposed to the outside of the composite battery 30. ing. Note that, in FIG. 9, the insulating cover 33 is illustrated in a perspective view for convenience of description, and is not illustrated in FIG. Then, the six assembled batteries 20 stacked as described above are connected to both side surfaces thereof by flat connecting members 34, and further fastened and fixed by fixing screws 35.
[0038]
As described above, this is required by configuring a battery pack in units of a predetermined number of thin batteries and further combining the battery packs of a predetermined number in units of the battery pack to form a composite battery pack. A composite battery pack suitable for capacity, voltage, and the like can be easily obtained. In addition, since the composite battery pack is configured without complicated connection, the failure rate of the composite battery pack due to poor connection can be reduced. Furthermore, when one of the thin batteries constituting the composite battery is broken or deteriorated and the thin battery needs to be replaced, the battery having the thin battery can be easily replaced.
[0039]
FIG. 11 is a schematic diagram showing an example in which the above-described composite battery pack 30 is mounted below the floor of the vehicle 1. As the vehicle 1 moves, many vibrations are generated inside the vehicle. As shown in the figure, by mounting the above-mentioned composite battery pack 30 on the vehicle, the possibility that interfacial separation occurs between the terminal of the thin battery and the battery exterior member due to the vibration is significantly reduced. It can be used effectively.
[0040]
The number of thin batteries constituting the assembled battery, the number of assembled batteries constituting the composite battery, the connection method of the thin batteries constituting the assembled battery, and the connection method of the assembled batteries constituting the composite battery are as described above. The number and connection method are not limited, and the number and connection method (series connection, parallel connection, series / parallel composite connection) can be appropriately set based on required electric capacity, voltage, and the like.
[0041]
Second Embodiment FIG. 12 is an enlarged sectional view of a terminal lead-out portion of a thin battery according to a second embodiment of the present invention. FIG. 12 corresponds to an enlarged sectional view of a portion III in FIG. The thin battery 10 according to the second embodiment of the present invention is obtained by newly providing adhesive layers 106d and 107d to the battery exterior members 106 and 107 of the first embodiment, and other components of the thin battery 10 are as follows. , And the same as in the first embodiment.
[0042]
As shown in FIG. 12, an adhesive layer 106d is newly provided between the first resin layer 106a and the metal layer 106b of the upper battery exterior member 106. Similarly, an adhesive layer 107d is newly provided between the first resin layer 107a and the metal layer 107b of the lower battery exterior member 107. Since the adhesive layer 106d forms a very weak resin layer, the dynamic spring characteristics of the first resin layer 106a and the metal layer 106b as a dynamic vibration absorber are efficiently reduced. Similarly, the adhesive layer 107d efficiently reduces the dynamic spring characteristics of the first resin layer 107a and the metal layer 107b as a dynamic vibration absorber.
[0043]
Using the thin battery according to the second embodiment as a unit battery, as in the first embodiment, an assembled battery in which a plurality of thin batteries are connected, a composite assembled battery in which a plurality of assembled batteries are connected, and a composite assembled battery It can be mounted on a vehicle.
[0044]
Third Embodiment FIG. 13 is an enlarged sectional view of a terminal lead-out part according to a third embodiment of the present invention, and FIG. 14 is a mass-spring system model of the terminal lead-out part of FIG. 9 is a graph showing a vibration transmissibility spectrum at a terminal lead-out unit according to a third embodiment of the present invention. FIG. 13 corresponds to an enlarged sectional view of a part III in FIG.
[0045]
In the thin battery 10 according to the third embodiment of the present invention, a third resin layer 106e is additionally provided between the metal layer 106b and the first resin layer 106a of the battery exterior member 106 of the first embodiment. Similarly, a third resin layer 107e is further provided between the metal layer 107b of the lower battery exterior member 107 and the first resin layer 107a, and the other components of the thin battery 10 are the first This is the same as the embodiment. Note that the first resin layers 106a and 107a of the battery exterior members 106 and 107 may be a seal film disposed only near the positive terminal and the negative terminal.
[0046]
The relationship between the Young's modulus of the three resin layers 106c, 106a, and 106e of the upper battery exterior member 106 is such that the Young's modulus of the first resin layer 106a is 5 to 55% with respect to the Young's modulus of the second resin layer. The relationship is such that the Young's modulus of the third resin layer 106e is 90 to 100% with respect to the Young's modulus of the first resin layer 106b. Similarly, the relationship between the Young's modulus of the three resin layers 107c, 107a, and 107e of the lower battery exterior member 107 is such that the Young's modulus of the first resin layer 107a is 5 to 55 with respect to the Young's modulus of the second resin layer 107c. % So that the Young's modulus of the third resin layer 107e is 90 to 100% with respect to the Young's modulus of the first resin layer 107a.
[0047]
Then, the third resin layer 106e of the upper battery exterior member 106 is connected in series with the first resin layer 106a to form a new first spring portion K 'and a damping element C' as shown in FIG. . Similarly, the third resin layer 107e of the lower battery exterior member 107 is connected in series with the first resin layer 107a to form a new first spring portion K ′ and a damping element C ′ as shown in FIG. I do. In the mass-spring system model of the terminal lead-out section 111, by forming a new first spring section K 'and damping element C' connected in series, the first resin layers 106a and 107a and the metal layers 106b and 107b are formed. This effectively reduces the dynamic spring characteristics as a dynamic vibration absorber.
[0048]
In particular, by setting the Young's modulus of the third resin layers 106e and 107e to be 90 to 100% with respect to the Young's modulus of the first resin layers 106a and 107a, the dynamics of the terminal lead-out portion 111 in the mass spring system can be improved. The characteristic spring characteristic is prevented from being unilaterally dependent on the resin layer having a low Young's modulus, and the transition of the resonance frequency in the terminal lead-out portion is facilitated.
[0049]
FIG. 15 shows the vibration transmissibility, which is the ratio between the vibration amplitude and the response amplitude, on the vertical axis and the vibration transmissivity spectrum of the frequency on the horizontal axis in the terminal lead-out portion of the thin battery according to the third embodiment. As shown in the figure, for example, in the case of using a thin battery in a vehicle or the like whose main vibration frequency is particularly concentrated to about 100 Hz or less, the tuning of the terminal lead-out section is performed by tuning according to the third embodiment of the present invention. By shifting the resonance frequency to about 100 Hz or more and moving away from the vibration frequency, resonance to the vibration can be prevented and the thin battery can be used effectively. Note that the excitation frequency is not particularly limited to about 100 Hz or less, and the above-mentioned tuning can be performed for the excitation frequency higher than about 100 Hz.
[0050]
Using the thin battery according to the third embodiment as a unit battery, as in the first embodiment, an assembled battery in which a plurality of thin batteries are connected, a composite assembled battery in which a plurality of assembled batteries are connected, and a composite assembled battery It can be mounted on a vehicle.
[0051]
The embodiments described above are described for facilitating the understanding of the present invention, and are not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
[0052]
【Example】
Hereinafter, the effects of the present invention were confirmed by Examples and Comparative Examples that further embody the present invention. The following example is for confirming the effect of the thin battery used in the above-described embodiment.
[0053]
Example 1
The thin battery of Example 1 has an aluminum (Al) foil having a thickness of 100 μm for the positive electrode terminal, a copper (Cu) foil having a thickness of 100 μm for the negative electrode terminal, lithium manganate (LiMnO 2 ) for the positive electrode active material, and a negative electrode active material. A mixed solution of propylene carbonate (PC) and ethyl methyl carbonate (EMC) was used as an amorphous carbon material and an electrolytic solution. As shown in FIG. 2, a polyethylene (PE) resin film having a thickness of 80 μm is formed on the first resin layer, an aluminum (Al) foil having a thickness of 40 μm is formed on the metal layer, and a nylon resin film having a thickness of 20 μm is formed on the second resin layer. Using the polymer / metal composite film laminated as above as an upper battery exterior member and a lower battery exterior member, a thin battery having a length of 140 mm, a width of 80 mm, and a thickness of 4 mm was produced. The Young's modulus of the polyethylene resin film of the first resin layer was 0.08 × 10 −10 N / m 2 , and the Young's modulus of the nylon resin film of the second resin layer was 0.25 × 10 − 10 N / m 2 . Therefore, the ratio of the Young's modulus of the first resin layer to the Young's modulus of the second resin layer is 32%, and the thickness of the positive electrode terminal and the negative electrode terminal is 2.5 times the thickness of the metal layer. became. Table 1 shows the conditions of the thin battery manufactured in Example 1.
[0054]
[Table 1]
Figure 2004039577
[0055]
For this thin battery, the measurement of the acceleration ratio and the measurement of the average decay rate were performed. In the measurement of the acceleration ratio, an acceleration pickup was set at approximately the center of the terminal of the thin battery, and the acceleration value of the response vibration obtained when each of the terminals was forcibly excited at 10 Hz, 50 Hz, and 100 Hz was measured. At this time, the acceleration ratio was calculated by calculating the ratio based on the acceleration value for the comparative example. The reference for Example 1 is Comparative Example 1 described later. When the acceleration ratio is 1.0, it indicates that the absolute values of the acceleration of the embodiment and the comparative example are the same, and when the value of the acceleration ratio is 0.0 to 1.0, It indicates that the response vibration has been reduced in response to the excitation. When the value of the acceleration ratio is 1.0 or more, it means that the response vibration has been amplified by resonating with the forced vibration.
[0056]
In the measurement of the average reduction rate, the above-described acceleration ratio was measured at 10 to 300 Hz, and the reduction rates were averaged. The larger the numerical value, the lower the vibration as a whole.
[0057]
As a result, as shown in Table 2, in the acceleration ratio measurement in Example 1, it was 10 Hz: 0.27, 50 Hz: 0.32, 100 Hz: 0.30, and it was confirmed that the vibration was reduced at each excitation frequency. . The measurement of the average reduction rate in Example 1 was about 50%, and it was confirmed that the vibration was reduced as a whole. As shown in FIG. 4, it was confirmed that the resonance frequency of the vibration transmission spectrum of the present example shifted to about 100 Hz or higher, and the first natural frequency of the present example was the same as that of Comparative Example 1. The shift to the higher frequency side for one natural frequency shifted by about 50 Hz.
[0058]
[Table 2]
Figure 2004039577
[0059]
Example 2
For the thin battery of Example 2, the same positive electrode active material, negative electrode active material, and electrolytic solution as in Example 1 were used, and a 200 μm thick aluminum (Al) foil was used for the positive electrode terminal, and a 200 μm thick nickel ( Ni) foil was used. In addition, a polyethylene (PE) resin film having a thickness of 80 μm for the first resin layer, an aluminum (Al) foil having a thickness of 40 μm for the metal layer, a nylon resin film having a thickness of 20 μm for the second resin layer, and a first resin layer. Using a polymer-metal composite film having an adhesive layer of a urethane-based adhesive at the interface between a resin layer and a metal layer as shown in FIG. 12 as an upper battery outer member and a lower battery outer member, 140 mm long × 80 mm wide × thick A thin battery having a thickness of 4 mm was manufactured. The Young's modulus of the polyethylene resin film of the first resin layer was 0.08 × 10 −10 N / m 2 , and the Young's modulus of the nylon resin film of the second resin layer was 0.25 × 10 − 10 N / m 2 . Therefore, the ratio of the Young's modulus of the first resin layer to the Young's modulus of the second resin layer is 32%, and the thickness of the positive electrode terminal and the negative electrode terminal is 5.0 times the thickness of the metal layer. became. Table 1 shows the conditions of the thin battery manufactured in Example 2.
[0060]
The acceleration ratio measurement and the average reduction rate measurement were performed on the thin battery under the same conditions as in the first example. As a result, as shown in Table 2, in the acceleration ratio measurement, 10 Hz: 0.25, 50 Hz: 0.3, and 100 Hz: 0.29 were obtained with respect to the reference, and the vibration was reduced at each excitation frequency. confirmed. In addition, the average reduction rate measurement in Example 2 was about 40%, and a reduction in vibration was confirmed as a whole. Note that the first natural frequency of the present example shifted by about 60 Hz to the higher frequency side with respect to the first natural frequency of Comparative Example 1, and was located at about 100 Hz or more.
[0061]
Example 3
For the thin battery of Example 3, the same positive electrode active material, negative electrode active material, and electrolytic solution as those of Example 1 were used, and a 100 μm thick aluminum (Al) foil was used for the positive electrode terminal, and a 100 μm thick iron ( Fe) foil was used. Also, a modified polypropylene (PP) having a thickness of 40 μm for the first resin layer, an aluminum (Al) foil having a thickness of 50 μm for the metal layer, a nylon resin film having a thickness of 25 μm for the second resin layer, and a first resin A polymer-metal composite film obtained by laminating a third resin layer of a polypropylene (PP) resin film having a thickness of 40 μm between the layer and the metal layer as shown in FIG. 13 is used as an upper battery outer member and a lower battery outer member. Thus, a thin battery having a length of 140 mm, a width of 80 mm, and a thickness of 4 mm was produced. Table 1 shows the conditions of the thin battery manufactured in Example 3. The modified resin of the first resin layer has a Young's modulus of 0.12 × 10 −10 N / m 2 , and the nylon resin film of the second resin layer has a Young's modulus of 0.25 × 10 −10. N / m 2 , and the Young's modulus of the polypropylene in the third resin layer is 0.13 × 10 −10 N / m 2 . Accordingly, the ratio of the Young's modulus of the first resin layer to the Young's modulus of the second resin layer is 48%, and the ratio of the Young's modulus of the third resin layer to the Young's modulus of the first resin layer is about 92%. The thickness of the positive electrode terminal and the negative electrode terminal was 2.0 times the thickness of the metal layer. Table 1 shows the conditions of the thin battery manufactured in Example 3.
[0062]
The acceleration ratio measurement and the average reduction rate measurement were performed on the thin battery under the same conditions as in the first example. As a result, as shown in Table 2, in the acceleration ratio measurement, 10 Hz: 0.30, 50 Hz: 0.35, and 100 Hz: 0.34 with respect to the reference, and the vibration was reduced at each excitation frequency. confirmed. In addition, the average reduction rate measurement in Example 3 was about 45%, and it was confirmed that the vibration was reduced as a whole. As shown in FIG. 15, it was confirmed that the resonance frequency of the vibration transmission spectrum of the present example shifted to 100 Hz or higher, and the first natural frequency of the present example was the first natural frequency of Comparative Example 2. The frequency was shifted to the high frequency side by about 40 Hz with respect to the resonance frequency.
[0063]
Example 4
The thin battery of Example 4 uses an aluminum (Al) foil with a thickness of 250 μm for the positive electrode terminal and a nickel (Ni) foil with a thickness of 250 μm for the negative electrode terminal, and the other components are the same as those in Example 3. Was used to produce a thin battery having a length of 140 mm, a width of 80 mm and a thickness of 4 mm. Table 1 shows the conditions of the thin battery manufactured in Example 4.
[0064]
The acceleration ratio measurement and the average reduction rate measurement were performed on the thin battery under the same conditions as in the first example. As a result, as shown in Table 2, in the acceleration ratio measurement, it was 10 Hz: 0.27, 50 Hz: 0.32, and 100 Hz: 0.33 with respect to the reference, and it was confirmed that the vibration was reduced at each excitation frequency. Was done. In addition, the average reduction rate measurement in Example 4 was about 50%, and a reduction in vibration was confirmed as a whole. Note that the first resonance frequency of the present example shifted to a higher frequency side by about 80 Hz from the first resonance frequency of Comparative Example 2, and was located at 100 Hz or more.
[0065]
Comparative Example 1
The thin battery of Comparative Example 1 uses a nylon resin film having a thickness of 20 μm and a Young's modulus of 0.12 × 10 −10 N / m 2 for the second resin layer of the battery exterior member. This is similar to the first embodiment. The ratio of the Young's modulus of the first resin layer to the Young's modulus of the second resin layer is about 67%.
[0066]
Comparative Example 2
The thin battery of Comparative Example 2 uses a nylon resin film having a thickness of 25 μm and a Young's modulus of 0.12 × 10 −10 N / m 2 for the second resin layer of the battery exterior member. This is the same as the third embodiment. The ratio of the Young's modulus of the first resin layer to the Young's modulus of the second resin layer is about 92%.
[0067]
Consideration By comparing Examples 1 to 4 with Comparative Examples 1 and 2, it was confirmed that the resonance frequency was shifted away from the excitation frequency and the vibration was reduced at the entire frequency. It became clear that the thin batteries of Nos. 1 to 4 have a structure that is strong against applied vibration.
[Brief description of the drawings]
FIG. 1A is a plan view showing an entire thin battery according to a first embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along line II-II of FIG.
FIG. 2 is an enlarged sectional view of a part III in FIG.
FIG. 3 is a mass spring system model of a terminal lead-out unit of FIG. 2;
FIG. 4 is a graph showing a vibration transmissibility spectrum at a terminal lead-out section according to the first embodiment of the present invention.
5A and 5B are diagrams showing a connection structure of a plurality of thin batteries according to the first embodiment of the present invention. FIG. 5A shows a parallel connection, and FIG. 5B shows a series connection for comparison. Show.
6A and 6B are diagrams showing another connection structure of the plurality of thin batteries according to the first embodiment of the present invention, wherein FIG. 6A shows a parallel connection, and FIG. 6B shows a series connection for comparison. Indicates a connection.
FIG. 7 is a perspective view of an assembled battery including a plurality of thin batteries according to the first embodiment of the present invention.
8A is a plan view of the battery pack of FIG. 7, FIG. 8B is a front view of the battery pack of FIG. 7, and FIG. 8C is a side view of the battery pack of FIG. .
FIG. 9 is a perspective view of a composite battery pack including the battery pack of FIG. 7;
10 (A) is a plan view of the composite battery pack of FIG. 9, FIG. 10 (B) is a front view of the composite battery pack of FIG. 9, and FIG. 10 (C) is a side view of the composite battery pack of FIG. FIG.
FIG. 11 is a schematic diagram illustrating a state where the composite battery pack according to the first embodiment of the present invention is mounted on a vehicle.
FIG. 12 is an enlarged sectional view of a terminal lead-out portion according to a second embodiment of the present invention.
FIG. 13 is an enlarged sectional view of a terminal lead-out portion according to a third embodiment of the present invention.
FIG. 14 is a mass spring system model of FIG. 13;
FIG. 15 is a graph showing a vibration transmissibility spectrum at a terminal lead-out part according to a third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Vehicle 10 ... Thin battery 10a ... First thin battery 10b ... Second thin battery 101 ... Positive electrode plate 102 ... Separator 103 ... Negative electrode plate 104 ... Positive electrode terminal 105 ... Negative electrode terminal 106 ... Upper battery exterior member 106c ... Second Resin layer 106b metal layer 106a first resin layer 106d adhesive layer 106e third resin layer 107 lower battery exterior member 107c second resin layer 107b metal layer 107a first resin layer 107d ... adhesive layer 107e ... third resin layer 109 ... power generation element 110 ... heat fusion region 111 ... terminal lead-out part 20 ... assembled battery 21a ... first bus bar 21b ... second bus bar 22 ... assembled battery positive terminal 23 ... Negative electrode terminal 24 for battery assembly Filler 25 Cover for battery assembly 26 Elastic body 30 Composite battery 31 Positive terminal for external connection 32 Negative terminal 33 for external connection Insulation cover 34 ... connecting member 35 ... fixing screw

Claims (20)

2層の合成樹脂層に挟まれた1層の金属層を少なくとも有する封止手段を備え、
正極端子及び負極端子が前記封止手段の外周部の端縁から導出する薄型電池であって、
前記封止手段の最内層に位置する第1の合成樹脂層が、前記封止手段の最外層に位置する第2の合成樹脂層のヤング率より小さいヤング率を有する薄型電池。
Sealing means having at least one metal layer sandwiched between two synthetic resin layers,
A thin battery in which a positive electrode terminal and a negative electrode terminal are derived from an edge of an outer peripheral portion of the sealing means,
A thin battery in which the first synthetic resin layer located at the innermost layer of the sealing means has a Young's modulus smaller than that of the second synthetic resin layer located at the outermost layer of the sealing means.
前記第2の合成樹脂層が、前記封止手段が有する合成樹脂層及び金属層の中で最も薄い膜厚を有する請求項1記載の薄型電池。2. The thin battery according to claim 1, wherein the second synthetic resin layer has the smallest thickness among the synthetic resin layer and the metal layer included in the sealing unit. 3. 前記第1の合成樹脂層が、前記第2の合成樹脂層のヤング率に対して5〜55%のヤング率を有する請求項1又は2記載の薄型電池。The thin battery according to claim 1, wherein the first synthetic resin layer has a Young's modulus of 5 to 55% with respect to the Young's modulus of the second synthetic resin layer. 前記正極端子及び負極端子が、前記金属層の膜厚に対して2〜5倍の厚さを有する請求項1〜3の何れかに記載の薄型電池。The thin battery according to any one of claims 1 to 3, wherein the positive electrode terminal and the negative electrode terminal have a thickness 2 to 5 times the thickness of the metal layer. 前記金属層と前記第1の合成樹脂層との間に接着層をさらに有する請求項1〜4の何れかに記載の薄型電池。The thin battery according to claim 1, further comprising an adhesive layer between the metal layer and the first synthetic resin layer. 前記封止手段が、前記金属層と前記第1の合成樹脂層との間に第3の樹脂層をさらに有する請求項1〜5の何れかに記載の薄型電池。The thin battery according to any one of claims 1 to 5, wherein the sealing means further includes a third resin layer between the metal layer and the first synthetic resin layer. 前記第3の合成樹脂層が、前記第1の合成樹脂層のヤング率に対して90〜100%のヤング率を有する請求項6記載の薄型電池。The thin battery according to claim 6, wherein the third synthetic resin layer has a Young's modulus of 90 to 100% with respect to the Young's modulus of the first synthetic resin layer. 前記第1の合成樹脂層が、ポリプロピレン、変性ポリプロピレン、ポリエチレン、変性ポリエチレン、アイオノマーからなる群より選ばれる材料を有する請求項1〜7の何れかに記載の薄型電池。The thin battery according to any one of claims 1 to 7, wherein the first synthetic resin layer has a material selected from the group consisting of polypropylene, modified polypropylene, polyethylene, modified polyethylene, and ionomer. 前記正極端子が、アルミニウム、鉄、及びニッケルからなる群より選ばれる一又はそれ以上の成分を含む請求項1〜8の何れかに記載の薄型電池。The thin battery according to any one of claims 1 to 8, wherein the positive electrode terminal includes one or more components selected from the group consisting of aluminum, iron, and nickel. 前記負極端子が、鉄、ニッケル、及び銅からなる群より選ばれる一又はそれ以上の成分を含む請求項1〜9の何れかに記載の薄型電池。The thin battery according to any one of claims 1 to 9, wherein the negative electrode terminal includes one or more components selected from the group consisting of iron, nickel, and copper. 1〜10mmの厚さを有する請求項1〜10の何れかに記載の薄型電池。The thin battery according to claim 1, having a thickness of 1 to 10 mm. 正極として機能する正極活性物質を有し、
前記正極活性物質が、リチウム複合酸化物である請求項1〜11の何れかに記載の薄型電池。
Having a positive electrode active material that functions as a positive electrode,
The thin battery according to claim 1, wherein the positive electrode active material is a lithium composite oxide.
前記リチウム複合酸化物が、リチウム−マンガン系複合酸化物である請求項12記載の薄型電池。The thin battery according to claim 12, wherein the lithium composite oxide is a lithium-manganese composite oxide. 負極として機能する負極活性物質を有し、
前記負極活性物質が、炭素系材料である請求項1〜13の何れかに記載の薄型電池。
Having a negative electrode active material that functions as a negative electrode,
The thin battery according to any one of claims 1 to 13, wherein the negative electrode active material is a carbon-based material.
前記炭素系材料が、非結晶性炭素材である請求項14記載の薄型電池。The thin battery according to claim 14, wherein the carbon-based material is an amorphous carbon material. 請求項1〜15の何れかに記載の薄型電池を電気的に接続した複数の薄型電池と、
一の前記薄型電池の正極端子又は負極端子の一方と、他の前記薄型電池の同極端子又は他極端子の一方とを電気的に接続した複数の接続手段と、を有する組電池であって、
前記一の薄型電池の正極端子と前記他の薄型電池の同極端子とが同方向となるように、前記一の薄型電池の側方に前記他の薄型電池が並置され、
一の前記接続手段により、前記一の薄型電池の正極端子と、前記他の薄型電池の同極端子とを電気的に接続し、
他の前記接続手段により、前記一の薄型電池の負極端子と、前記他の薄型電池の同極端子とを電気的に接続した少なくとも2以上の前記薄型電池を含む組電池。
A plurality of thin batteries electrically connected to the thin batteries according to any one of claims 1 to 15,
A battery pack comprising: a plurality of connection means electrically connecting one of a positive electrode terminal or a negative electrode terminal of one of the thin batteries and one of the same or another electrode terminal of another of the thin batteries. ,
The other thin batteries are juxtaposed beside the one thin battery so that the positive terminal of the one thin battery and the same terminal of the other thin battery are in the same direction,
The one connecting means electrically connects the positive electrode terminal of the one thin battery and the same electrode terminal of the other thin battery,
An assembled battery including at least two or more thin batteries in which a negative electrode terminal of the one thin battery and a same-polarity terminal of the other thin battery are electrically connected by another connecting means.
請求項1〜15の何れかに記載の薄型電池を電気的に接続した複数の薄型電池を有する組電池であって、
一の前記薄型電池の正極端子と他の前記薄型電池の同極端子とが同方向となるように、前記一の薄型電池の鉛直方向上部に前記他の薄型電池を積層し、
前記一の薄型電池の正極端子と、前記他の薄型電池の同極端子とを電気的に接続し、
前記一の薄型電池の負極端子と、前記他の薄型電池の同極端子とを電気的に接続した少なくとも2以上の前記薄型電池を含む組電池。
An assembled battery comprising a plurality of thin batteries electrically connected to the thin batteries according to any one of claims 1 to 15,
The other thin battery is stacked on the upper part in the vertical direction of the one thin battery so that the positive electrode terminal of the one thin battery and the same electrode terminal of the other thin battery are in the same direction,
The positive electrode terminal of the one thin battery and the same electrode terminal of the other thin battery are electrically connected,
An assembled battery including at least two or more thin batteries in which a negative electrode terminal of the one thin battery and a same-polarity terminal of the other thin battery are electrically connected.
請求項16又は17記載の組電池を電気的に接続した複数の組電池を有する複合組電池であって、
前記各組電池が、外部と電気的に接続する組電池用正極端子及び組電池用負極端子を有し、
一の前記組電池の組電池用正極端子又は組電池用負極端子の一方と、他の前記組電池の組電池用他極端子とを電気的に接続した少なくとも2以上の前記組電池を含む複合組電池。
A composite battery pack comprising a plurality of battery packs electrically connected to the battery pack according to claim 16,
Each of the assembled batteries has an assembled battery positive terminal and an assembled battery negative terminal that are electrically connected to the outside,
A composite including at least two or more of the assembled batteries in which one of the assembled battery positive electrode terminal or the assembled battery negative terminal is electrically connected to the assembled battery other electrode terminal of the other assembled battery. Battery pack.
請求項16又は17記載の組電池を電気的に接続した複数の組電池を有する復号組電池であって、
前記各組電池が、外部と電気的に接続する組電池用正極端子及び組電池用負極端子を有し、
一の前記組電池の組電池用正極端子と、他の前記組電池の組電池用負極端子とを電気的に接続し、
前記一の組電池の組電池用負極端子と、前記他の組電池の組電池用負極端子とを電気的に接続した少なくとも2以上の前記組電池を含む複合組電池。
A decoding battery pack comprising a plurality of battery packs electrically connected to the battery pack according to claim 16 or 17,
Each of the assembled batteries has an assembled battery positive terminal and an assembled battery negative terminal that are electrically connected to the outside,
The battery pack positive electrode terminal of one of the battery packs is electrically connected to the battery pack negative electrode terminal of the other battery pack,
A composite battery pack including at least two or more of the battery packs, wherein the battery pack negative electrode terminal of the one battery pack and the battery pack negative electrode terminal of the other battery pack are electrically connected.
請求項18又は19に記載の複合組電池を車載した車両。A vehicle on which the composite battery pack according to claim 18 or 19 is mounted.
JP2002198109A 2002-07-08 2002-07-08 Thin battery, assembled battery, composite assembled battery and vehicle Expired - Lifetime JP3719235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002198109A JP3719235B2 (en) 2002-07-08 2002-07-08 Thin battery, assembled battery, composite assembled battery and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002198109A JP3719235B2 (en) 2002-07-08 2002-07-08 Thin battery, assembled battery, composite assembled battery and vehicle

Publications (2)

Publication Number Publication Date
JP2004039577A true JP2004039577A (en) 2004-02-05
JP3719235B2 JP3719235B2 (en) 2005-11-24

Family

ID=31705650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002198109A Expired - Lifetime JP3719235B2 (en) 2002-07-08 2002-07-08 Thin battery, assembled battery, composite assembled battery and vehicle

Country Status (1)

Country Link
JP (1) JP3719235B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016275A (en) * 2007-07-06 2009-01-22 Nissan Motor Co Ltd Secondary battery, battery pack, and vehicle
JP2009259739A (en) * 2008-04-21 2009-11-05 Sumitomo Electric Ind Ltd Electrical parts, nonaqueous electrolyte battery, and lead wire and sealing container used for them
KR100985606B1 (en) 2007-05-24 2010-10-05 닛산 지도우샤 가부시키가이샤 Current collector for nonaqueous solvent secondary battery, and electrode and battery, which use the current collector
WO2011155249A1 (en) * 2010-06-07 2011-12-15 日産自動車株式会社 Structure for reinforcing panel of car body
WO2011158662A1 (en) * 2010-06-15 2011-12-22 東レフィルム加工株式会社 Laminate material for secondary battery container and process for production thereof, and secondary battery container
JP5022222B2 (en) * 2005-09-13 2012-09-12 日本電気株式会社 Insulating cover and film-covered electrical device assembly
CN114184971A (en) * 2022-02-10 2022-03-15 河南电池研究院有限公司 Method for accurately detecting short circuit cell after lamination of lithium ion battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353501A (en) * 1999-06-11 2000-12-19 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2001093482A (en) * 1999-09-20 2001-04-06 Dainippon Printing Co Ltd Wrapping material for polymer battery
JP2002042775A (en) * 2000-07-28 2002-02-08 Toshiba Corp Nonaqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353501A (en) * 1999-06-11 2000-12-19 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2001093482A (en) * 1999-09-20 2001-04-06 Dainippon Printing Co Ltd Wrapping material for polymer battery
JP2002042775A (en) * 2000-07-28 2002-02-08 Toshiba Corp Nonaqueous electrolyte secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5022222B2 (en) * 2005-09-13 2012-09-12 日本電気株式会社 Insulating cover and film-covered electrical device assembly
KR100985606B1 (en) 2007-05-24 2010-10-05 닛산 지도우샤 가부시키가이샤 Current collector for nonaqueous solvent secondary battery, and electrode and battery, which use the current collector
JP2009016275A (en) * 2007-07-06 2009-01-22 Nissan Motor Co Ltd Secondary battery, battery pack, and vehicle
JP2009259739A (en) * 2008-04-21 2009-11-05 Sumitomo Electric Ind Ltd Electrical parts, nonaqueous electrolyte battery, and lead wire and sealing container used for them
WO2011155249A1 (en) * 2010-06-07 2011-12-15 日産自動車株式会社 Structure for reinforcing panel of car body
CN102933451A (en) * 2010-06-07 2013-02-13 日产自动车株式会社 Structure for reinforcing panel of car body
US9033405B2 (en) 2010-06-07 2015-05-19 Nissan Motor Co., Ltd. Structure for reinforcing panel of car body
WO2011158662A1 (en) * 2010-06-15 2011-12-22 東レフィルム加工株式会社 Laminate material for secondary battery container and process for production thereof, and secondary battery container
CN114184971A (en) * 2022-02-10 2022-03-15 河南电池研究院有限公司 Method for accurately detecting short circuit cell after lamination of lithium ion battery
CN114184971B (en) * 2022-02-10 2024-01-26 河南电池研究院有限公司 Method for accurately detecting short-circuit battery cells after lamination of lithium ion battery

Also Published As

Publication number Publication date
JP3719235B2 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP5699559B2 (en) Non-aqueous electrolyte battery
JP5830953B2 (en) Secondary battery, battery unit and battery module
JP4726896B2 (en) Cathode material for non-aqueous electrolyte lithium ion battery and battery using the same
US20130177787A1 (en) Current collector and nonaqueous secondary battery
EP1953861A1 (en) Cell structure, battery and vehicle mounted with those
JP2005116482A (en) Thin battery, battery pack, composite battery pack and vehicle
JP4852882B2 (en) Secondary battery and method for manufacturing secondary battery
JP2004055348A (en) Battery pack, composite battery pack, and vehicle
JP2004047239A (en) Thin battery, battery pack, modular battery pack and vehicle installed therewith
JP3573141B2 (en) Thin batteries, assembled batteries, composite assembled batteries and vehicles
JP4182856B2 (en) Secondary battery, assembled battery, composite assembled battery, vehicle, and manufacturing method of secondary battery
JP3711962B2 (en) Thin battery
JP3797311B2 (en) Thin battery support device and assembled battery including the same
JP2004055346A (en) Battery pack, composite battery pack, and vehicle mounting it
JP5937969B2 (en) Non-aqueous secondary battery
JP2006059717A (en) Separator for battery
JP2004031137A (en) Thin battery
JP3719235B2 (en) Thin battery, assembled battery, composite assembled battery and vehicle
JP6048477B2 (en) Method for producing non-aqueous electrolyte battery
JP2011086483A (en) Laminated secondary battery
JP4586357B2 (en) Lithium ion battery
JP2006244833A (en) Lithium secondary battery and manufacturing method of the same
JP3852110B2 (en) Thin battery and manufacturing method thereof
JP2013098102A (en) Cylindrical wound type battery
JP2005166353A (en) Secondary battery, battery pack, composite battery pack, vehicle, and manufacturing method of secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050829

R150 Certificate of patent or registration of utility model

Ref document number: 3719235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term