JP2004086995A - Holder of magnetic transfer device - Google Patents

Holder of magnetic transfer device Download PDF

Info

Publication number
JP2004086995A
JP2004086995A JP2002246940A JP2002246940A JP2004086995A JP 2004086995 A JP2004086995 A JP 2004086995A JP 2002246940 A JP2002246940 A JP 2002246940A JP 2002246940 A JP2002246940 A JP 2002246940A JP 2004086995 A JP2004086995 A JP 2004086995A
Authority
JP
Japan
Prior art keywords
holder
transfer
side holder
slave medium
master carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2002246940A
Other languages
Japanese (ja)
Inventor
Akihito Kamatani
鎌谷 彰人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2002246940A priority Critical patent/JP2004086995A/en
Priority to US10/646,707 priority patent/US20040040668A1/en
Publication of JP2004086995A publication Critical patent/JP2004086995A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the holder of a magnetic transfer device which enhances the quality of a transfer signal by raising adhesiveness while using shock absorbing material in close adhesion with a slave medium and master carriers and also prevent a misregistration and generation of dust and realizes the improving of durability of the master carriers, etc. <P>SOLUTION: In a holder 10 which makes master carriers 3, 4 carrying transfer information and a slave medium 2 which receives transference to be closely adhered with each other while being confronted with each other in an internal space which is to be opened and closed between one-side holder 5 and other-side holder 6 which perform approaching and separating movement, shock absorbing material 8 having an elastic characteristic is provided on the pressuring inside of at least one holder of the one-side holder 5 and the other-side holder 6 and the deformation amount of the pressuring direction of the material 8 when adhesion pressurization is made to be 5 μm to 500 μm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、情報が担持されたマスター担体からスレーブ媒体へ磁気転写する磁気転写装置において、上記マスター担体とスレーブ媒体とを内部空間に収容し密着させるホルダーに関するものである。
【0002】
【従来の技術】
本発明の対象とする磁気転写は、少なくとも表層に磁性層を有するサーボ信号等の転写パターンが凹凸形状あるいは埋め込み構造で形成されたマスター担体(パターンドマスター)を、磁気記録部を有するスレーブ媒体と密着させた状態で、転写用磁界を印加してマスター担体に担持した情報に対応する磁化パターンをスレーブ媒体に転写記録するものである。この磁気転写の一例としては、例えば特開昭63−183623号、特開平10−40544号、特開平10−269566号、特開2001−256644等に開示されている。
【0003】
上記スレーブ媒体がハードディスクまたは高密度フレキシブルディスクのような円盤状媒体の場合には、このスレーブ媒体の片面または両面に円盤状のマスター担体を密着させた状態で、その片側または両側に電磁石装置、永久磁石装置による磁界印加装置を配設して転写用磁界を印加する。
【0004】
この磁気転写における転写品質を高めるためには、スレーブ媒体とマスター担体とをいかに均一に密着させることが重要な課題である。つまり密着不良があると、磁気転写が起こらない領域が生じ、磁気転写が起こらないとスレーブ媒体に転写された磁気情報に信号抜けが発生して信号品位が低下し、記録した信号がサーボ信号の場合にはトラッキング機能が十分に得られずに信頼性が低下するという問題がある。また、上記密着面には塵埃が介在しないことも重要であり、塵埃が付着していると、付着部を中心とし周辺に及ぶ範囲までマスター担体とスレーブ媒体の密着が確保できず、信号抜けが発生して信号品位が低下する。
【0005】
【発明が解決しようとする課題】
ところで、上記のような磁気転写では、マスター担体およびスレーブ媒体を、接離移動する片側ホルダーと他側ホルダーとを備えるホルダーの内部空間に収容して対峙密着させるものであるが、マスター担体とスレーブ媒体とを全面にわたって密着させるため、ホルダーの押圧内面に弾性材による緩衝材を設置し、この緩衝材を介してマスター担体またはスレーブ媒体の裏面を押圧し、この緩衝材によりマスター担体とスレーブ媒体との密着面に均等に密着力を作用させて密着性を向上することが提案されている。
【0006】
しかし、従来では上記緩衝材としては発泡ウレタン等の非常に柔軟な材料が使用されていたため、マスター担体とスレーブ媒体との密着加圧時にマスター担体が面方向に動いて位置決め精度が低下する問題があった。
【0007】
つまり、ホルダーの内面に設置した緩衝材にマスター担体を、例えば画像処理方式によってホルダーの基準位置に対し高精度に位置決め保持し、ホルダーを閉じて上記マスター担体を他方のホルダーに位置決め保持したスレーブ媒体に押圧密着させる両面同時転写または片面転写方式では、非常に柔軟な緩衝材が加圧時の圧力によって大きく変形し、その変形の密着面と平行な成分によりマスター担体の中心位置がずれて、スレーブ媒体との中心位置が変化し、スレーブ媒体に記録された信号の位置精度が低下することになる。例えば、サーボ信号の許容芯ずれ量は、一般的に50μm〜100μmであり、これを越えた位置ずれが生じると所望のサーボトラック機能が得られない恐れがある。
【0008】
上記の位置ずれの対策として、マスター担体の内径または外径を保持する位置決め部材を使用する手段があるが、加圧時には緩衝材が大きく圧縮変形することから、押圧に応じてマスター担体が軸方向に移動し、位置決め部材とマスター担体との間にこすれが生じるために、マスター担体の摩耗による寿命低下や、摩耗粉が密着面に付着して転写信号品位が低下するなどの発塵問題を招く恐れがあった。
【0009】
また、一方のホルダー内面に設置したマスター担体にスレーブ媒体を、例えば画像処理方式によってマスター担体に対し高精度に位置決めセットし、他方のホルダー内面に設置した緩衝材でスレーブ媒体の裏面を押圧して密着させるようにした片面転写方式の場合には、同様に非常に柔軟な緩衝材が加圧時の圧力によって大きく変形してスレーブ媒体が面方向にずれ、マスター担体との中心位置が変化し、転写記録された信号の位置精度が低下することになる。
【0010】
本発明はこのような問題に鑑みなされたもので、緩衝材を使用してマスター担体とスレーブ媒体との密着性を高めて転写信号品位を向上するとともに、位置ずれおよび発塵防止、マスター担体の耐久性の向上等を実現するようにした磁気転写装置のホルダーを提供することを目的とするものである。
【0011】
【課題を解決するための手段】
本発明の磁気転写装置のホルダーは、接離移動する片側ホルダーと他側ホルダーとの間に開閉される内部空間に、転写情報を担持したマスター担体と転写を受けるスレーブ媒体とを収容して対峙密着させる磁気転写装置のホルダーにおいて、前記片側ホルダーと他側ホルダーの少なくとも一方の押圧内面に、弾性特性を有する緩衝材を備え、密着時における前記緩衝材の加圧方向の変形量が、5μm〜500μmであることを特徴とするものである。
【0012】
前記緩衝材の弾性率(ヤング率)が、5MPa〜200MPaであるものが好適である。前記緩衝材は、押圧部分の厚みばらつきが100μm以下であることが望ましい。また、前記緩衝材は、吸引用の穴を備えていてもよい。
【0013】
上記緩衝材の最適な変形量は、ホルダーの緩衝材を保持する押圧内面の平面度と、他方のホルダーの押圧内面の平面度との合計以上であることが好ましい。また、緩衝材の最適な弾性率は、使用する弾性材の厚み、厚みばらつき、ホルダーの製作精度、転写時の加圧力等の要因によって決まる。
【0014】
緩衝材の材料としては、ウレタンゴムやNBR(ニトリルブタジエンゴム)等の弾性材が使用できる。この弾性材にフッ素等を含浸させると、表面摩擦係数が小さくなり、発塵がさらに抑制できる。緩衝材は、射出成形、ウォータージェット加工、冷間加工等により、所望の形状に加工される。
【0015】
ここで、上記の「加圧時」とは、マスター担体とスレーブ媒体とを密着させるために両者間に密着力を印加したときであり、少なくとも転写用磁界を印加した状態である。この密着力の印加は、機械的な外圧の印加方式、ホルダー内部の真空吸引による圧力印加方式、両者の併用方式などがある。また、「変形量」とは、圧力印加前後の緩衝材の厚み変化量であり、同じ変形量を得るためには、厚いものでは弾性率を高め、薄いものではこれより弾性率が低いものとなり、緩衝材の厚みに関係なく変形量を5〜500μmの範囲に設定するものである。
【0016】
一方、前記ホルダーに対するマスター担体の位置決めは、両者の位置決めマークをCCD等で撮影した画像処理によって合わせる方式、位置決め部材によって合わせる方式などが適宜採用可能である。
【0017】
なお、スレーブ媒体の両面にマスター担体を密着させて両面同時に磁気転写を行う場合と、スレーブ媒体の片面にマスター担体を密着させて片面転写を行い、必要に応じて両面逐次転写を行う場合とがあり、緩衝材はホルダーの両側押圧内面の片方または両方に設置するもので、両面転写では片方で不十分な場合に両方に、片面転写では片方に緩衝材を設置することで良好な結果が得られた。また、両面同時転写の場合には緩衝材に一方または両方のマスター担体を保持しておくもので、そのための吸引用の穴を備え、この穴を介してマスター担体の裏面を吸引保持するのが好適である。その際、ホルダーに対して緩衝材を同時に吸引保持するようにしてもよい。また、緩衝材はホルダーに接着等によって固着してもよく、マスター担体も緩衝材に接着等によって固着保持してもよい。
【0018】
【発明の効果】
本発明によれば、ホルダーの少なくとも一方の押圧内面にマスター担体とスレーブ媒体に密着力を印加する緩衝材を備え、この緩衝材の加圧時の加圧方向の変形量を5μm〜500μmとしたことにより、緩衝材の変形でマスター担体とスレーブ媒体とを全面で均等に密着させることができ、しかも、その変形量は5〜500μmと少なく、マスター担体もしくはスレーブ媒体の面方向への移動が少なく、両者の位置決めを高精度に維持することができ、転写信号品位および位置精度が良好であるとともに、コスレによる発塵およびマスター担体の寿命低下が抑制できる。
【0019】
また、密着時の面方向の位置ずれを抑制したことにより、スレーブ媒体の中心軸とマスター担体上のパターンの中心軸を高精度に合わせた状態での磁気転写が可能となる。つまり、画像手段等を用いてホルダーとマスター担体またはマスター担体とスレーブ媒体との位置決めを高精度に行った後に、密着力を印加した際に、緩衝材の変形にともなってマスター担体またはスレーブ媒体が面方向に大きく移動すると、位置決め精度の低下を招き、転写記録された信号の位置精度が低下するのを防止できる。
【0020】
さらに、加圧時の緩衝材の変形量が少なく、位置決め部材を使用した場合のこすれによる発塵が少ないことで転写信号品位の低下を抑制するとともに、マスター担体の摩耗を低減して耐久性の向上が図れる。
【0021】
【発明の実施の形態】
以下、図面に示す実施の形態に基づいて本発明を詳細に説明する。図1は一実施形態にかかる磁気転写装置のホルダーの開状態を示す概略断面図である。なお、各図は模式図であり各部の寸法は実際とは異なる比率で示している。
【0022】
図1に示す磁気転写装置のホルダー10は、両面同時磁気転写を行うものであり、接離移動可能な左側の片側ホルダー5と右側の他側ホルダー6とを備え、両者の接近に伴い外周のシール部7により密閉形成される内部空間に、スレーブ媒体2、両側のマスター担体3,4を配置して中心位置を合わせた状態でスレーブ媒体2とマスター担体3,4とを対峙密着させる。ここで対峙密着とは、接触密着、ごく僅かな隙間を空けて対峙することの双方の何れかを指すものとする。
【0023】
片側ホルダー5の基準となる押圧内面5aには、スレーブ媒体2の片面にサーボ信号等の情報を転写する一方のマスター担体3およびスレーブ媒体2を保持する。他側ホルダー6の押圧内面6aには、弾性材によるシート状の緩衝材8を備え、この緩衝材8にスレーブ媒体2の他面にサーボ信号等の情報を転写する他方のマスター担体4を保持する。
【0024】
つまり、前記片側ホルダー5は円盤状で、マスター担体3の外径より大きい円形状の押圧内面5aの中央部に、マスター担体3の大きさに対応する範囲に吸引穴5bが開口され、この吸引穴5bに連通するエア通路5cが片側ホルダー5内に設置され、支持軸5dを通して外部に設置された不図示の真空ポンプに接続され、吸引圧の導入によりマスター担体3の裏面を吸着により保持する。
【0025】
一方、他側ホルダー6も円盤状で、マスター担体4の外径より大きい押圧内面6aには緩衝材8の厚みに相当する深さの凹部が形成され、その凹部面には多数の吸引穴6bが開口され、この吸引穴6bに連通するエア通路6cが他側ホルダー6内に設置され、支持軸6dを通して外部に設置された不図示の真空ポンプに接続される。また、緩衝材8には、上記内面6aの吸引穴6bの一部と連通する吸引用の穴8aが貫通開口されて、エア吸引が行われる。これにより、エア通路6cに導入された真空圧の一部により緩衝材8を他側ホルダー6の内面6aに吸着保持し、緩衝材8の穴8aを通した真空圧の残部により緩衝材8の表面にマスター担体4を吸着保持する。
【0026】
なお、他側ホルダー6への緩衝材8の装着は、吸引保持に代えて、接着剤によって内面6aに固着するようにしてもよい。マスター担体4の緩衝材8への保持も接着剤を使用して行ってもよい。その際には、緩衝材8への穴8aの形成は不要となる。
【0027】
また、他側ホルダー6の外周に設置されたシール部7はリング状であり、他側ホルダー6の外周面に突設されたフランジ6eに装着されて、弾性部材7aを介して軸方向(接離方向)にその変形量だけ移動可能である。このシール部7の端面にはOリングによる端面シール材7bを備え、片側ホルダー5の内面5aに圧接して内部空間の開閉シールを行う。また、シール部7の内周面にはOリングによる周面シール材7cを備え、他側ホルダー6の外周面との間の摺動シールを行う。
【0028】
片側ホルダー5および他側ホルダー6の背面の中心位置には、それぞれ支持軸5d,6dが突設され、不図示の装置本体に支持されている。この片側ホルダー5および他側ホルダー6は図示しない回転機構に連係されて磁気転写時に支持軸5d,6dを中心に一体に回転駆動される。
【0029】
なお、図示していないが、磁気転写装置は、ホルダー10内の内部空間のエアを真空吸引し内部を減圧状態として密着力を得る真空吸引手段と、ホルダー10を回転させつつ転写用磁界を印加する磁界印加装置とを備える。
【0030】
上記真空吸引手段によりホルダー10の内部空間を所定の真空度に制御し、スレーブ媒体2とマスター担体3,4とが所定の密着圧力となるように設定されると共に、両者の密着面のエア抜きが行われ、密着性が高められる。
【0031】
なお、上記密着力の印加のために、真空吸引手段に加えてまたはこれに代えて、ホルダー10を外部から機械的に加圧する押圧手段を備えてもよい。この押圧手段は加圧シリンダを備え、その押圧ロッドの先端がホルダー10の支持軸5dまたは6dに所定の押圧荷重を印加するように構成すればよい。
【0032】
前記片側ホルダー5および他側ホルダー6の少なくとも一方が軸方向(図で左右方向)に移動可能に支持され、両ホルダー5,6が互いに接離移動可能であり、図1に示すような分離状態からの接近移動に伴い、シール部7の端面シール材7bが片側ホルダー5の内面5aに圧接して内部空間を閉じる。この密閉後に、内部空間を真空吸引手段により減圧すると共に、他側ホルダー6をさらに押圧する。これに伴い緩衝材8が変形しつつスレーブ媒体2の両面にマスター担体3,4を所定の加圧力で密着させる。
【0033】
上記押圧密着時に、その加圧力による緩衝材8の加圧方向の変形量は、5μm〜500μmの範囲となるように材質、厚み等が設定されている。
【0034】
緩衝材8は均等に圧力を加えるためのもので、弾性特性を有する材料により円盤シート状に形成される。弾性特性を有する材料としては、ウレタンゴムやNBR(ニトリルブタジエンゴム)等が使用できる。この弾性材にフッ素等を含浸させると、表面摩擦係数が小さくなり、発塵がさらに抑制できる。緩衝材8は、射出成形、ウォータージェット加工、冷間加工等により、所望の形状に加工される。
【0035】
前記緩衝材8の弾性率(ヤング率)は、5MPa〜200MPaである。また、緩衝材8の、マスター担体4を押圧する部分の厚みばらつきが100μm以下である。すなわち、厚い部分と薄い部分との差が100μm以下となるように均一な厚みに形成される。
【0036】
上記緩衝材8の最適な変形量は、他側ホルダー6の緩衝材8を保持する内面6aの平面度と、片側ホルダー5の内面5aの平面度との合計以上となるように設定する。この緩衝材8の最適な弾性率は、上記変形量に対応し、使用する弾性材の厚み、厚みばらつき、ホルダーの製作精度、転写時の加圧力等の要因によって決まる。
【0037】
一方、片側ホルダー5および他側ホルダー6に対するマスター担体3,4の位置決めは、位置決めマークをCCD等で撮影した画像処理によって合わせる方式、位置決め部材によって合わせる方式などが適宜採用可能である。
【0038】
なお、緩衝材8は他側ホルダー6に加えて、片側ホルダー5の内面5aにも設置してもよい。これらはスレーブ媒体2とマスター担体3,4の厚み、剛性等の関係に応じ、より高い密着性が得られるように設定され、片側で十分な場合と、両側に設置する方がよい場合とがある。両側に設置して両方のマスター担体3,4を吸着保持する場合には、それぞれに吸引用の穴を形成する。
【0039】
スレーブ媒体2は、両面または片面に磁気記録部(磁性層)が形成されたハードディスク、高密度フレキシブルディスクなどの円盤状磁気記録媒体が使用される。その磁気記録部は塗布型磁気記録層あるいは金属薄膜型磁気記録層で構成される。
【0040】
マスター担体3,4は円盤状ディスクに形成されている。このマスター担体3は、基板上に形成された微細凹凸パターンに磁性体が被覆されてなり、この面がスレーブ媒体2に密着される転写パターンが形成された転写情報担持面となる。これと反対側の面が両ホルダー5,6に吸着保持される。マスター担体3,4の基板としては、ニッケル、シリコン、石英板、ガラス、アルミニウム、合金、セラミックス、合成樹脂等を使用する。凹凸パターンの形成は、スタンパー法等によって行われる。磁性体の形成は、磁性材料を真空蒸着法、スパッタリング法、イオンプレーティング法等の真空成膜手段、メッキ法などにより成膜する。面内記録と垂直記録とで、ほぼ同様のマスター担体3,4が使用される。
【0041】
転写用磁界および必要に応じて初期磁界を印加する不図示の磁界印加装置は、面内記録の場合には、例えば、スレーブ媒体2の半径方向に延びるギャップを有するコアにコイルが巻き付けられたリング型ヘッド電磁石がホルダー10の両側に配設されてなり、両側で同じ方向にトラック方向と平行に発生させた転写用磁界を印加する。ホルダー10を回転させて、スレーブ媒体2とマスター担体3,4の全面に転写用磁界を印加する。磁界印加装置を回転移動させるように設けてもよい。磁界印加装置は、片側にのみ配設するようにしてもよく、永久磁石装置を両側または片側に配設してもよい。また、垂直記録の場合の磁界印加装置は、極性の異なる電磁石または永久磁石をホルダー10の両側に配置し、垂直方向に転写用磁界を発生させて印加する。部分的に磁界を印加するものでは、ホルダー10を移動させるか磁界を移動させて全面の磁気転写を行う。
【0042】
次に、磁気転写工程を説明する。上記磁気転写装置のホルダー10では、同じマスター担体3,4により複数のスレーブ媒体2に対する磁気転写を行うものであり、まず片側ホルダー5および他側ホルダー6にマスター担体3,4を位置を合わせて保持させておく。
【0043】
この他側ホルダー6と片側ホルダー5とを離間した開状態で、予め面内方向または垂直方向の一方に初期磁化したスレーブ媒体2を中心位置を合わせてセットした後、他側ホルダー6を片側ホルダー5に接近移動させる。
【0044】
そして、ホルダー10の内部空間を閉じた後に、真空吸引手段により内部空間のエア排出を行って減圧し、内部を所定の真空度とすると共に、さらに他側ホルダー6を作動させる。スレーブ媒体2にマスター担体4が接触し、真空度に応じて作用する外力(大気圧)による圧力で、緩衝材8を介して片側ホルダー5に向けてスレーブ媒体2とマスター担体3,4とに均一かつ平行に密着力を加え、所定の密着圧力で密着させる。
【0045】
その後、ホルダー10の両側に磁界印加装置を接近させ、ホルダー10を回転させつつ磁界印加装置によって初期磁化とほぼ反対方向に転写用磁界を印加し、マスター担体3の転写パターンに応じた磁化パターンをスレーブ媒体2の磁気記録部に転写記録する。
【0046】
上記磁気転写時に印加された転写用磁界は、マスター担体3,4の転写パターンにおけるスレーブ媒体2と密着した磁性体による凸部パターンに吸い込まれ、面内記録の場合にはこの部分の初期磁化は反転せずその他の部分の初期磁化が反転し、垂直記録の場合にはこの部分の初期磁化が反転しその他の部分の初期磁化は反転しない結果、スレーブ媒体2にはマスター担体3,4の転写パターンに応じた磁化パターンが転写記録される。
【0047】
本実施形態によれば、スレーブ媒体2の両面にマスター担体3,4を密着させる際に、片方のマスター担体4を緩衝材8を介して変形量が5〜500μmとなる密着力で均一に押圧し、緩衝材8の変形でマスター担体3,4とスレーブ媒体2との接触面を一致させて密着させ、スレーブ媒体2とマスター担体3,4間に隙間ができることなく全面で均等に密着させることができ、マスター担体3,4に形成された転写パターンに正確に対応した磁化パターンをスレーブ媒体2に転写記録することができる。また、緩衝材8に過大な変形がなくマスター担体4の面方向へのずれが小さく、転写記録信号の位置ずれが許容芯ずれ量の範囲内に収まり、均一密着による転写品質が良好で、信頼性の高い磁気転写が行える。さらに、位置決め部材を使用した際にも、緩衝材8の変形量が少ないことから、加圧方向へのマスター担体4の移動量が小さく、位置決め部材とのこすれによる発塵、耐久性低下が抑制できる。
【0048】
図2は他の実施形態のホルダー20を示す開状態の断面図である。この実施形態は、スレーブ媒体2の片面にマスター担体3を対峙密着させて片面逐次転写を行うものである。
【0049】
本実施形態のホルダー20は、接離移動可能な片側ホルダー15と他側ホルダー16とを備え、両者の接近に伴い外周のシール部7により密閉形成される内部空間に、スレーブ媒体2、マスター担体3を配置して中心位置を合わせた状態でスレーブ媒体2とマスター担体3とを対峙密着させる。
【0050】
片側ホルダー15は、前実施形態の片側ホルダー5と同様の構成であり、その基準となる押圧内面15aには、スレーブ媒体2の片面にサーボ信号等の情報を転写するマスター担体3およびスレーブ媒体2を保持する。他側ホルダー16の押圧内面16aには、弾性材によるシート状の緩衝材18を備え、この緩衝材18で上記スレーブ媒体2の裏面を押圧する。
【0051】
つまり、片側ホルダー15は円盤状で、マスター担体3の外径より大きい円形状の押圧内面15aの中央部に、マスター担体3の大きさに対応する範囲に吸引穴15bが開口され、この吸引穴15bに連通するエア通路15cが片側ホルダー15内に設置され、支持軸15dを通して外部に設置された不図示の真空ポンプに接続され、吸引圧の導入によりマスター担体3の裏面を吸着により保持する。
【0052】
一方、他側ホルダー16も円盤状で、スレーブ媒体2の外径より大きい押圧内面16aには緩衝材18の厚みに相当する深さの凹部が形成され、その凹部面には吸引穴16bが開口され、この吸引穴16bに連通するエア通路16cが他側ホルダー16内に設置され、支持軸16dを通して外部に設置された不図示の真空ポンプに接続される。この緩衝材18には吸引用の穴は形成されていないもので、エア通路16cに導入された真空圧により、緩衝材18を内面16aに吸着保持する。なお、他側ホルダー16への緩衝材18の装着は、吸引保持に代えて、接着剤によって内面16aに固着するようにしてもよい。
【0053】
また、他側ホルダー16の外周に設置されたシール部7は前実施形態と同様であり、他側ホルダー16の外周面に突設されたフランジ16eに装着されてなり、端面シール材7bおよび周面シール材7cを備え、片側ホルダー15の内面15aとの開閉シールおよび他側ホルダー16の外周面との摺動シールを行う。
【0054】
片側ホルダー15および他側ホルダー16の背面の中心位置には、それぞれ支持軸15d,16dが突設され、不図示の装置本体に支持され、図示しない回転機構に連係されて磁気転写時に回転駆動される。
【0055】
前記片側ホルダー15および他側ホルダー16の少なくとも一方が互いに接離移動可能であり、図2に示すような分離状態からの接近移動に伴い、内部空間を閉じた密閉後に、内部空間を真空吸引手段により減圧すると共に、緩衝材18が変形しつつスレーブ媒体2の片面にマスター担体3を所定の加圧力で密着させる。
【0056】
上記押圧密着時に、その加圧力による緩衝材18の加圧方向の変形量は、5μm〜500μmの範囲となるように材質、厚み等が設定されている。この緩衝材18は前実施形態のものと同様である。
【0057】
なお、緩衝材18は他側ホルダー16に加えて、片側ホルダー15の内面15aにも設置してよいが、上記のように片側ホルダー15の内面15aを基準面とし、この基準面に向けてマスター担体3およびスレーブ媒体2を押圧する他側ホルダー16の押圧内面16aに緩衝材18を設置するのが好適である。
【0058】
その他は前述の実施形態と同様であり、このホルダー20では、同じマスター担体3により複数のスレーブ媒体2に対する磁気転写を行うもので、まず片側ホルダー15にマスター担体3を位置を合わせて保持させておく。他側ホルダー16と片側ホルダー15とを離間した開状態で、予め面内方向または垂直方向の一方に初期磁化したスレーブ媒体2を中心位置を合わせてセットした後、他側ホルダー16を片側ホルダー15に接近移動させる。
【0059】
そして、ホルダー10の内部空間を閉じ密閉した後に、真空吸引手段により内部空間のエア排出を行って減圧し、内部を所定の真空度とすると共に、さらに他側ホルダー16を作動させる。スレーブ媒体2に緩衝材18が接触し、真空度に応じて作用する外力(大気圧)による圧力で、この緩衝材18を介して片側ホルダー15に向けてスレーブ媒体2とマスター担体3とに均一かつ平行に密着力を加え、所定の密着圧力で密着させる。その後、同様に磁界印加装置によって初期磁化とほぼ反対方向に転写用磁界を印加し、磁気転写を行う。
【0060】
上記実施形態によれば、密着加圧時の緩衝材18の変形量が5〜500μmであるため、均一密着に必要な弾性特性を得る一方、過大な変形によるスレーブ媒体2の面方向へのずれが小さく、転写記録信号の位置ずれが許容芯ずれ量の範囲内に収まり、均一密着による転写品質が良好で、信頼性の高い磁気転写が行える。
【図面の簡単な説明】
【図1】本発明の一つの実施形態にかかる磁気転写装置のホルダーの開状態を示す概略断面図
【図2】他の実施形態にかかる磁気転写装置のホルダーの開状態を示す概略断面図
【符号の説明】
10,20   ホルダー
2  スレーブ媒体
3,4   マスター担体
5,15   片側ホルダー
5a,15a  押圧内面
6,16   他側ホルダー
6a,16a  押圧内面
7  シール部
8,18   緩衝材
8a  吸引用の穴
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a holder for accommodating and closely contacting the master carrier and the slave medium in an internal space in a magnetic transfer apparatus for magnetic transfer from a master carrier carrying information to a slave medium.
[0002]
[Prior art]
The magnetic transfer that is the subject of the present invention includes a master carrier (patterned master) in which a transfer pattern such as a servo signal having a magnetic layer at least on the surface layer is formed in a concavo-convex shape or an embedded structure, and a slave medium having a magnetic recording unit. In a state of being in close contact, a magnetic field for transfer is applied to transfer and record a magnetization pattern corresponding to information carried on the master carrier onto the slave medium. Examples of this magnetic transfer are disclosed in, for example, JP-A 63-183623, JP-A 10-40544, JP-A 10-269656, JP-A 2001-256644, and the like.
[0003]
When the slave medium is a disk-like medium such as a hard disk or a high-density flexible disk, an electromagnet device, a permanent magnet is attached to one or both sides of the slave medium in a state where a disk-like master carrier is in close contact with one or both sides. A magnetic field applying device using a magnet device is provided to apply a transfer magnetic field.
[0004]
In order to improve the transfer quality in this magnetic transfer, it is an important issue how the slave medium and the master carrier are in close contact with each other. In other words, if there is poor adhesion, there will be areas where magnetic transfer will not occur, and if magnetic transfer does not occur, signal loss will occur in the magnetic information transferred to the slave medium, the signal quality will deteriorate, and the recorded signal will be In this case, there is a problem that the tracking function cannot be sufficiently obtained and the reliability is lowered. Also, it is important that no dust is present on the contact surface. If dust adheres, the master carrier and the slave medium cannot be secured from the center of the attachment part to the periphery, and signal loss may not occur. Occurs and the signal quality deteriorates.
[0005]
[Problems to be solved by the invention]
By the way, in the magnetic transfer as described above, the master carrier and the slave medium are accommodated in the internal space of the holder including the one-side holder and the other-side holder that move toward and away from each other, and are in close contact with each other. In order to bring the medium into close contact with the entire surface, a buffer material made of an elastic material is installed on the pressing inner surface of the holder, and the back surface of the master carrier or the slave medium is pressed through the buffer material. It has been proposed to improve the adhesion by applying an adhesion force evenly to the adhesion surface.
[0006]
However, since a very flexible material such as urethane foam has been used as the cushioning material in the past, there is a problem that the positioning accuracy is lowered due to the master carrier moving in the surface direction when the master carrier and the slave medium are in close contact pressure. there were.
[0007]
That is, a slave medium in which the master carrier is positioned and held with high accuracy with respect to the reference position of the holder by, for example, an image processing method on the buffer material installed on the inner surface of the holder, and the master carrier is closed and positioned on the other holder. In the double-sided simultaneous transfer or single-sided transfer method that presses and adheres to the surface, a very flexible cushioning material is greatly deformed by the pressure during pressurization, and the center position of the master carrier shifts due to the component parallel to the contact surface of the deformation, and the slave The center position with respect to the medium changes, and the position accuracy of the signal recorded on the slave medium decreases. For example, the allowable misalignment amount of the servo signal is generally 50 μm to 100 μm, and if the positional deviation exceeds this, there is a possibility that a desired servo track function cannot be obtained.
[0008]
As a countermeasure against the above-mentioned positional deviation, there is a means that uses a positioning member that holds the inner diameter or outer diameter of the master carrier. However, the buffer material is greatly compressed and deformed during pressurization. Since the rubbing occurs between the positioning member and the master carrier, the life of the master carrier is reduced, and dust generation problems such as deterioration of the transfer signal due to wear powder adhering to the contact surface are caused. There was a fear.
[0009]
In addition, the slave medium is positioned and set with high accuracy with respect to the master carrier on the master carrier installed on the inner surface of one holder, for example, and the back surface of the slave medium is pressed with a cushioning material installed on the inner surface of the other holder. In the case of the single-sided transfer system that is in close contact, the very flexible cushioning material is greatly deformed by the pressure at the time of pressurization, the slave medium is displaced in the surface direction, the center position with the master carrier is changed, The positional accuracy of the transferred and recorded signal is lowered.
[0010]
The present invention has been made in view of such a problem. The buffer material is used to improve the adhesion between the master carrier and the slave medium to improve the quality of the transfer signal. It is an object of the present invention to provide a holder for a magnetic transfer apparatus that realizes improvement in durability and the like.
[0011]
[Means for Solving the Problems]
The holder of the magnetic transfer apparatus according to the present invention accommodates the master carrier carrying the transfer information and the slave medium receiving the transfer in the internal space opened and closed between the one-side holder that moves toward and away from the other-side holder. In the holder of the magnetic transfer device to be in close contact, at least one pressing inner surface of the one side holder and the other side holder is provided with a buffer material having elastic characteristics, and the amount of deformation in the pressurizing direction of the buffer material at the time of close contact is 5 μm to It is 500 μm.
[0012]
The elastic material (Young's modulus) of the buffer material is preferably 5 MPa to 200 MPa. As for the said buffer material, it is desirable for the thickness variation of a press part to be 100 micrometers or less. Further, the cushioning material may include a suction hole.
[0013]
The optimal amount of deformation of the cushioning material is preferably equal to or greater than the sum of the flatness of the pressing inner surface holding the buffering material of the holder and the flatness of the pressing inner surface of the other holder. Further, the optimum elastic modulus of the cushioning material is determined by factors such as the thickness of the elastic material to be used, variation in thickness, manufacturing accuracy of the holder, pressure applied during transfer, and the like.
[0014]
As the material of the buffer material, an elastic material such as urethane rubber or NBR (nitrile butadiene rubber) can be used. When this elastic material is impregnated with fluorine or the like, the surface friction coefficient is reduced, and dust generation can be further suppressed. The buffer material is processed into a desired shape by injection molding, water jet processing, cold processing, or the like.
[0015]
Here, “at the time of pressurization” refers to a state in which an adhesion force is applied between the master carrier and the slave medium so that at least a transfer magnetic field is applied. Application of the adhesion force includes a mechanical external pressure application method, a pressure application method by vacuum suction inside the holder, and a combination method of both. Also, the “deformation amount” is the amount of change in the thickness of the buffer material before and after pressure application. To obtain the same deformation amount, the elastic modulus is increased for thick ones and the elastic modulus is lower for thin ones. The amount of deformation is set in the range of 5 to 500 μm regardless of the thickness of the buffer material.
[0016]
On the other hand, for positioning the master carrier with respect to the holder, a method of aligning both positioning marks by image processing taken by a CCD or the like, a method of aligning by a positioning member, and the like can be appropriately employed.
[0017]
There are cases where the master carrier is brought into close contact with both sides of the slave medium and magnetic transfer is performed simultaneously on both sides, and when the master carrier is brought into close contact with one side of the slave medium and single-sided transfer is carried out, and double-sided sequential transfer is carried out as necessary. Yes, the cushioning material is installed on one or both of the inner pressing surfaces on both sides of the holder.If one side is insufficient for double-sided transfer, good results can be obtained by installing the cushioning material on one side for single-sided transfer. It was. In the case of double-sided simultaneous transfer, one or both master carriers are held in a buffer material, and a suction hole for that purpose is provided, and the back surface of the master carrier is sucked and held through this hole. Is preferred. At that time, the cushioning material may be sucked and held simultaneously with respect to the holder. Further, the buffer material may be fixed to the holder by adhesion or the like, and the master carrier may be fixedly held to the buffer material by adhesion or the like.
[0018]
【The invention's effect】
According to the present invention, at least one pressing inner surface of the holder is provided with a buffer material that applies an adhesion force to the master carrier and the slave medium, and the amount of deformation in the pressing direction when the buffer material is pressed is set to 5 μm to 500 μm. As a result, the deformation of the buffer material allows the master carrier and the slave medium to be evenly adhered over the entire surface, and the deformation amount is as small as 5 to 500 μm, and the movement of the master carrier or the slave medium in the surface direction is small. The positioning of the two can be maintained with high accuracy, the transfer signal quality and the positional accuracy are good, and the generation of dust and the decrease in the life of the master carrier can be suppressed.
[0019]
Further, by suppressing the positional deviation in the surface direction at the time of close contact, magnetic transfer can be performed in a state where the central axis of the slave medium and the central axis of the pattern on the master carrier are matched with high accuracy. In other words, after the positioning of the holder and the master carrier or the master carrier and the slave medium with high accuracy using image means or the like, when the adhesion force is applied, the master carrier or the slave medium is moved along with the deformation of the buffer material. If it moves greatly in the surface direction, the positioning accuracy is lowered, and it is possible to prevent the position accuracy of the transferred and recorded signal from being lowered.
[0020]
In addition, the amount of deformation of the cushioning material during pressurization is small, and dust generation due to rubbing when using a positioning member is small, so that the deterioration of the transfer signal quality is suppressed, and the wear of the master carrier is reduced, resulting in durability. Improvement can be achieved.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings. FIG. 1 is a schematic cross-sectional view showing an open state of a holder of a magnetic transfer apparatus according to an embodiment. Each figure is a schematic diagram, and the dimensions of each part are shown in proportions different from actual ones.
[0022]
A holder 10 of the magnetic transfer apparatus shown in FIG. 1 performs double-sided simultaneous magnetic transfer, and includes a left-side holder 5 and a right-side other holder 6 that can move toward and away from each other. The slave medium 2 and the master carriers 3 and 4 are brought into close contact with each other in a state in which the slave medium 2 and the master carriers 3 and 4 on both sides are arranged in the internal space hermetically formed by the seal portion 7 and the center positions are aligned. Here, facing contact refers to either contact contact or facing with a very small gap.
[0023]
One master carrier 3 and slave medium 2 for transferring information such as servo signals to one side of the slave medium 2 are held on the pressing inner surface 5 a serving as a reference of the one-side holder 5. The pressing inner surface 6 a of the other side holder 6 is provided with a sheet-like cushioning material 8 made of an elastic material, and the other master carrier 4 for transferring information such as a servo signal to the other side of the slave medium 2 is held on the cushioning material 8. To do.
[0024]
That is, the one-side holder 5 has a disk shape, and a suction hole 5b is opened in the center of the circular pressing inner surface 5a larger than the outer diameter of the master carrier 3 in a range corresponding to the size of the master carrier 3. An air passage 5c communicating with the hole 5b is installed in the one-side holder 5, connected to a vacuum pump (not shown) installed outside through the support shaft 5d, and holds the back surface of the master carrier 3 by suction by introducing suction pressure. .
[0025]
On the other hand, the other-side holder 6 is also disk-shaped, and a concave portion having a depth corresponding to the thickness of the buffer material 8 is formed on the pressing inner surface 6a larger than the outer diameter of the master carrier 4, and a plurality of suction holes 6b are formed on the concave surface. The air passage 6c communicating with the suction hole 6b is installed in the other holder 6 and connected to a vacuum pump (not shown) installed outside through the support shaft 6d. In addition, a suction hole 8a communicating with a part of the suction hole 6b of the inner surface 6a is opened through the buffer material 8, and air suction is performed. Thereby, the buffer material 8 is adsorbed and held on the inner surface 6a of the other holder 6 by a part of the vacuum pressure introduced into the air passage 6c, and the remaining portion of the vacuum pressure through the hole 8a of the buffer material 8 The master carrier 4 is adsorbed and held on the surface.
[0026]
The mounting of the cushioning material 8 on the other side holder 6 may be fixed to the inner surface 6a with an adhesive instead of sucking and holding. The master carrier 4 may be held on the buffer material 8 by using an adhesive. In that case, formation of the hole 8a to the shock absorbing material 8 becomes unnecessary.
[0027]
Further, the seal portion 7 installed on the outer periphery of the other holder 6 has a ring shape, is attached to a flange 6e protruding from the outer peripheral surface of the other holder 6, and is axially (contacted) via the elastic member 7a. It is possible to move in that direction by the amount of deformation. An end face sealing material 7b made of an O-ring is provided on the end face of the seal portion 7, and the inner space is opened and closed by being pressed against the inner face 5a of the one-side holder 5. Further, the inner peripheral surface of the seal portion 7 is provided with a peripheral surface sealing material 7 c using an O-ring, and performs a sliding seal with the outer peripheral surface of the other holder 6.
[0028]
Support shafts 5d and 6d project from the center positions of the back surfaces of the one-side holder 5 and the other-side holder 6 and are supported by an apparatus body (not shown). The one-side holder 5 and the other-side holder 6 are linked to a rotation mechanism (not shown) and are driven to rotate integrally around the support shafts 5d and 6d during magnetic transfer.
[0029]
Although not shown, the magnetic transfer device applies a magnetic field for transfer while rotating the holder 10 and a vacuum suction means for vacuuming the air in the internal space of the holder 10 to obtain a close contact with the inside in a reduced pressure state. And a magnetic field applying device.
[0030]
The internal space of the holder 10 is controlled to a predetermined degree of vacuum by the vacuum suction means, and the slave medium 2 and the master carriers 3 and 4 are set to have a predetermined contact pressure, and air is released from both contact surfaces. Is performed to improve the adhesion.
[0031]
In addition to or instead of the vacuum suction means, a pressing means for mechanically pressurizing the holder 10 from the outside may be provided in order to apply the adhesion force. The pressing means may include a pressure cylinder, and the tip of the pressing rod may be configured to apply a predetermined pressing load to the support shaft 5d or 6d of the holder 10.
[0032]
At least one of the one-side holder 5 and the other-side holder 6 is supported so as to be movable in the axial direction (left-right direction in the figure), and both the holders 5 and 6 are movable toward and away from each other, as shown in FIG. With the approaching movement from the end portion, the end surface sealing material 7b of the seal portion 7 is pressed against the inner surface 5a of the one-side holder 5 to close the inner space. After this sealing, the internal space is decompressed by the vacuum suction means, and the other side holder 6 is further pressed. Accordingly, the buffer material 8 is deformed, and the master carriers 3 and 4 are brought into close contact with both surfaces of the slave medium 2 with a predetermined pressure.
[0033]
The material, thickness, and the like are set so that the amount of deformation in the pressurizing direction of the buffer material 8 due to the applied pressure during the press contact is in the range of 5 μm to 500 μm.
[0034]
The cushioning material 8 is for applying pressure evenly, and is formed into a disk sheet shape from a material having elastic characteristics. As a material having elastic characteristics, urethane rubber, NBR (nitrile butadiene rubber), or the like can be used. When this elastic material is impregnated with fluorine or the like, the surface friction coefficient is reduced, and dust generation can be further suppressed. The buffer material 8 is processed into a desired shape by injection molding, water jet processing, cold processing, or the like.
[0035]
The elastic modulus (Young's modulus) of the buffer material 8 is 5 MPa to 200 MPa. Moreover, the thickness dispersion | variation of the part which presses the master support | carrier 4 of the buffer material 8 is 100 micrometers or less. That is, it is formed in a uniform thickness so that the difference between the thick part and the thin part is 100 μm or less.
[0036]
The optimal amount of deformation of the cushioning material 8 is set to be equal to or greater than the sum of the flatness of the inner surface 6 a that holds the cushioning material 8 of the other holder 6 and the flatness of the inner surface 5 a of the one-side holder 5. The optimum elastic modulus of the cushioning material 8 corresponds to the amount of deformation described above, and is determined by factors such as the thickness of the elastic material to be used, variation in thickness, manufacturing accuracy of the holder, and pressure applied during transfer.
[0037]
On the other hand, for positioning the master carriers 3 and 4 with respect to the one-side holder 5 and the other-side holder 6, a method of aligning positioning marks by image processing photographed by a CCD or the like, a method of aligning by positioning members, and the like can be appropriately employed.
[0038]
The cushioning material 8 may be installed on the inner surface 5 a of the one-side holder 5 in addition to the other-side holder 6. These are set so as to obtain higher adhesion depending on the relationship between the thickness of the slave medium 2 and the master carriers 3 and 4, rigidity, etc., and there are cases where it is sufficient on one side and cases where it is better to install on both sides. is there. In the case where both master carriers 3 and 4 are adsorbed and held on both sides, a suction hole is formed in each.
[0039]
As the slave medium 2, a disk-shaped magnetic recording medium such as a hard disk having a magnetic recording portion (magnetic layer) formed on both sides or one side, a high-density flexible disk, or the like is used. The magnetic recording part is composed of a coating type magnetic recording layer or a metal thin film type magnetic recording layer.
[0040]
The master carriers 3 and 4 are formed in a disk-shaped disk. The master carrier 3 is a transfer information carrying surface on which a fine concavo-convex pattern formed on a substrate is coated with a magnetic material, and this surface is formed with a transfer pattern in close contact with the slave medium 2. The opposite surface is sucked and held by both holders 5 and 6. As the substrates of the master carriers 3 and 4, nickel, silicon, quartz plate, glass, aluminum, alloy, ceramics, synthetic resin or the like is used. The formation of the concavo-convex pattern is performed by a stamper method or the like. The magnetic material is formed by depositing a magnetic material by a vacuum film forming means such as a vacuum deposition method, a sputtering method or an ion plating method, a plating method or the like. Almost the same master carriers 3 and 4 are used for in-plane recording and perpendicular recording.
[0041]
In the case of in-plane recording, a magnetic field application device (not shown) that applies a transfer magnetic field and, if necessary, an initial magnetic field is, for example, a ring in which a coil is wound around a core having a gap extending in the radial direction of the slave medium 2 The mold head electromagnet is disposed on both sides of the holder 10 and applies a transfer magnetic field generated in parallel to the track direction in the same direction on both sides. The holder 10 is rotated to apply a transfer magnetic field to the entire surface of the slave medium 2 and the master carriers 3 and 4. You may provide so that a magnetic field application apparatus may be rotationally moved. The magnetic field application device may be disposed only on one side, or the permanent magnet device may be disposed on both sides or one side. In the case of perpendicular recording, the magnetic field application apparatus arranges electromagnets or permanent magnets having different polarities on both sides of the holder 10 to generate and apply a transfer magnetic field in the vertical direction. In the case of applying a magnetic field partially, the entire surface is magnetically transferred by moving the holder 10 or moving the magnetic field.
[0042]
Next, the magnetic transfer process will be described. The holder 10 of the magnetic transfer device performs magnetic transfer to the plurality of slave media 2 by the same master carrier 3, 4. First, the master carrier 3, 4 is aligned with the one side holder 5 and the other side holder 6. Keep it.
[0043]
In the open state in which the other side holder 6 and the one side holder 5 are separated, the slave medium 2 that has been initially magnetized in advance in one of the in-plane direction and the vertical direction is set with the center position aligned, and then the other side holder 6 is set to the one side holder. Move close to 5.
[0044]
Then, after closing the inner space of the holder 10, the air is discharged from the inner space by the vacuum suction means to reduce the pressure so that the inside has a predetermined degree of vacuum and the other side holder 6 is further operated. The master carrier 4 comes into contact with the slave medium 2 and is applied to the slave medium 2 and the master carriers 3 and 4 through the buffer material 8 toward the one-side holder 5 by pressure due to an external force (atmospheric pressure) acting according to the degree of vacuum. Apply a close contact force evenly and in parallel, and close contact with a predetermined contact pressure.
[0045]
Thereafter, a magnetic field application device is brought close to both sides of the holder 10, and a magnetic field for transfer is applied in a direction almost opposite to the initial magnetization by the magnetic field application device while rotating the holder 10, and a magnetization pattern corresponding to the transfer pattern of the master carrier 3 is formed. Transfer recording is performed on the magnetic recording portion of the slave medium 2.
[0046]
The magnetic field for transfer applied during the magnetic transfer is sucked into the convex pattern of the magnetic material in close contact with the slave medium 2 in the transfer pattern of the master carriers 3 and 4, and in the case of in-plane recording, the initial magnetization of this portion is The initial magnetization of the other part is reversed without being reversed, and in the case of perpendicular recording, the initial magnetization of this part is reversed and the initial magnetization of the other part is not reversed. A magnetization pattern corresponding to the pattern is transferred and recorded.
[0047]
According to the present embodiment, when the master carriers 3 and 4 are brought into close contact with both surfaces of the slave medium 2, the one master carrier 4 is uniformly pressed through the cushioning material 8 with a close contact force with a deformation amount of 5 to 500 μm. Then, the contact surfaces of the master carriers 3 and 4 and the slave medium 2 are brought into close contact with each other by deformation of the buffer material 8, and the slave media 2 and the master carriers 3 and 4 are adhered evenly over the entire surface without a gap. Thus, a magnetization pattern accurately corresponding to the transfer pattern formed on the master carriers 3 and 4 can be transferred and recorded on the slave medium 2. Further, the buffer material 8 is not excessively deformed and the deviation in the surface direction of the master carrier 4 is small, the positional deviation of the transfer recording signal is within the range of the allowable misalignment, the transfer quality by the uniform contact is good, and the reliability is high. High performance magnetic transfer. Furthermore, even when the positioning member is used, the amount of deformation of the cushioning material 8 is small, so the amount of movement of the master carrier 4 in the pressurizing direction is small, and dust generation and durability deterioration due to rubbing with the positioning member can be suppressed. .
[0048]
FIG. 2 is a cross-sectional view of the holder 20 according to another embodiment in an open state. In this embodiment, the master carrier 3 is brought into close contact with one side of the slave medium 2 to perform one-sided sequential transfer.
[0049]
The holder 20 of the present embodiment includes a one-side holder 15 and an other-side holder 16 that can move toward and away from each other, and the slave medium 2 and the master carrier are formed in an internal space that is hermetically sealed by the outer peripheral seal portion 7 as they approach each other. The slave medium 2 and the master carrier 3 are brought into close contact with each other in a state in which the center position is adjusted by arranging 3.
[0050]
The one-side holder 15 has the same configuration as the one-side holder 5 of the previous embodiment, and the master carrier 3 and the slave medium 2 that transfer information such as a servo signal to one side of the slave medium 2 are provided on the pressing inner surface 15a serving as a reference. Hold. The pressing inner surface 16 a of the other side holder 16 is provided with a sheet-like buffer material 18 made of an elastic material, and the buffer material 18 presses the back surface of the slave medium 2.
[0051]
That is, the one-side holder 15 has a disk shape, and a suction hole 15b is opened in the center of the circular pressing inner surface 15a larger than the outer diameter of the master carrier 3 in a range corresponding to the size of the master carrier 3. An air passage 15c communicating with 15b is installed in the one-side holder 15 and connected to a vacuum pump (not shown) installed outside through a support shaft 15d, and the back surface of the master carrier 3 is held by suction by introducing suction pressure.
[0052]
On the other hand, the other side holder 16 is also disk-shaped, and a concave portion having a depth corresponding to the thickness of the buffer material 18 is formed on the pressing inner surface 16a larger than the outer diameter of the slave medium 2, and a suction hole 16b is opened on the concave surface. An air passage 16c communicating with the suction hole 16b is installed in the other holder 16 and connected to a vacuum pump (not shown) installed outside through the support shaft 16d. The buffer material 18 is not formed with a suction hole, and the buffer material 18 is sucked and held on the inner surface 16a by the vacuum pressure introduced into the air passage 16c. The mounting of the cushioning material 18 on the other side holder 16 may be fixed to the inner surface 16a with an adhesive instead of sucking and holding.
[0053]
Further, the seal portion 7 installed on the outer periphery of the other side holder 16 is the same as that of the previous embodiment, and is attached to the flange 16e protruding from the outer peripheral surface of the other side holder 16, and the end surface sealing material 7b and the peripheral portion are sealed. A surface sealing material 7 c is provided, and an open / close seal with the inner surface 15 a of the one-side holder 15 and a sliding seal with the outer peripheral surface of the other-side holder 16 are performed.
[0054]
Support shafts 15d and 16d project from the center positions of the back surfaces of the one-side holder 15 and the other-side holder 16, and are supported by an apparatus body (not shown), and are linked to a rotation mechanism (not shown) to be rotated during magnetic transfer. The
[0055]
At least one of the one-side holder 15 and the other-side holder 16 can move toward and away from each other, and the internal space is vacuum-sucked after the internal space is closed and closed with the approaching movement from the separated state as shown in FIG. In addition, the master carrier 3 is brought into close contact with one surface of the slave medium 2 with a predetermined pressure while the buffer material 18 is deformed.
[0056]
The material, thickness, and the like are set so that the amount of deformation in the pressurizing direction of the buffer material 18 by the applied pressure during the press-contact is in the range of 5 μm to 500 μm. This buffer material 18 is the same as that of the previous embodiment.
[0057]
The buffer material 18 may be installed on the inner surface 15a of the one-side holder 15 in addition to the other-side holder 16. However, as described above, the inner surface 15a of the one-side holder 15 is used as a reference surface, and the master is directed toward this reference surface. It is preferable to install the buffer material 18 on the pressing inner surface 16a of the other side holder 16 that presses the carrier 3 and the slave medium 2.
[0058]
The rest is the same as that of the above-described embodiment, and this holder 20 performs magnetic transfer to the plurality of slave media 2 by the same master carrier 3. First, the master carrier 3 is held in a single-side holder 15 in alignment. deep. In the open state in which the other-side holder 16 and the one-side holder 15 are separated, the slave medium 2 that has been initially magnetized in advance in one of the in-plane direction and the vertical direction is set with the center position aligned, and then the other-side holder 16 is set to the one-side holder 15 Move closer to.
[0059]
After the inner space of the holder 10 is closed and sealed, air is discharged from the inner space by the vacuum suction means to reduce the pressure, the inside is set to a predetermined degree of vacuum, and the other side holder 16 is further operated. The buffer medium 18 comes into contact with the slave medium 2 and is uniformly applied to the slave medium 2 and the master carrier 3 toward the one-side holder 15 through the buffer material 18 by pressure due to an external force (atmospheric pressure) acting according to the degree of vacuum. In addition, a close contact force is applied in parallel, and contact is made with a predetermined contact pressure. Thereafter, similarly, a magnetic field for transfer is applied in a direction almost opposite to the initial magnetization by the magnetic field application device, and magnetic transfer is performed.
[0060]
According to the above embodiment, since the deformation amount of the buffer material 18 at the time of contact pressure is 5 to 500 μm, the elastic characteristic necessary for uniform contact is obtained, while the displacement in the surface direction of the slave medium 2 due to excessive deformation. Is small, the positional deviation of the transfer recording signal is within the range of the allowable misalignment amount, the transfer quality by uniform contact is good, and the magnetic transfer with high reliability can be performed.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an open state of a holder of a magnetic transfer apparatus according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view showing an open state of a holder of a magnetic transfer apparatus according to another embodiment. Explanation of symbols]
10, 20 Holder 2 Slave medium 3, 4 Master carrier 5, 15 One side holder 5 a, 15 a Press inner surface 6, 16 Other side holder 6 a, 16 a Press inner surface 7 Seal portion 8, 18 Buffer material 8 a Suction hole

Claims (4)

接離移動する片側ホルダーと他側ホルダーとの間に開閉される内部空間に、転写情報を担持したマスター担体と転写を受けるスレーブ媒体とを収容して対峙密着させる磁気転写装置のホルダーにおいて、
前記片側ホルダーと他側ホルダーの少なくとも一方の押圧内面に、弾性特性を有する緩衝材を備え、密着時における前記緩衝材の加圧方向の変形量が、5μm〜500μmであることを特徴とする磁気転写装置のホルダー。
In the holder of the magnetic transfer device that accommodates the master carrier carrying the transfer information and the slave medium that receives the transfer in an internal space opened and closed between the one-side holder that moves toward and away from the other side holder,
A magnetic material characterized in that at least one pressing inner surface of the one side holder and the other side holder is provided with a buffer material having an elastic property, and the amount of deformation of the buffer material in the pressurizing direction at the time of close contact is 5 μm to 500 μm. Transfer device holder.
前記緩衝材の弾性率が、5MPa〜200MPaであることを特徴とする請求項1に記載の磁気転写装置のホルダー。The holder of the magnetic transfer device according to claim 1, wherein an elastic modulus of the buffer material is 5 MPa to 200 MPa. 前記緩衝材は、押圧部分の厚みばらつきが100μm以下であることを特徴とする請求項1に記載の磁気転写装置のホルダー。The holder of the magnetic transfer device according to claim 1, wherein the buffer material has a thickness variation of a pressing portion of 100 μm or less. 前記緩衝材は、吸引用の穴を備えたことを特徴とする請求項1に記載の磁気転写装置のホルダー。The holder of the magnetic transfer apparatus according to claim 1, wherein the cushioning material includes a suction hole.
JP2002246940A 2002-08-27 2002-08-27 Holder of magnetic transfer device Abandoned JP2004086995A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002246940A JP2004086995A (en) 2002-08-27 2002-08-27 Holder of magnetic transfer device
US10/646,707 US20040040668A1 (en) 2002-08-27 2003-08-25 Holder for magnetic transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002246940A JP2004086995A (en) 2002-08-27 2002-08-27 Holder of magnetic transfer device

Publications (1)

Publication Number Publication Date
JP2004086995A true JP2004086995A (en) 2004-03-18

Family

ID=32054702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002246940A Abandoned JP2004086995A (en) 2002-08-27 2002-08-27 Holder of magnetic transfer device

Country Status (1)

Country Link
JP (1) JP2004086995A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1956592A2 (en) 2007-02-09 2008-08-13 Fujifilm Corporation Transfer apparatus, transfer method, recording medium, and magnetic recording apparatus
EP1962284A2 (en) 2007-02-09 2008-08-27 Fujifilm Corporation Transfer method, transfer apparatus, and recording medium
US7710672B2 (en) 2004-09-15 2010-05-04 Fujifilm Corporation Magnetic transfer holder unit, transfer apparatus, method of manufacturing a transfer medium, and magnetic recording medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7710672B2 (en) 2004-09-15 2010-05-04 Fujifilm Corporation Magnetic transfer holder unit, transfer apparatus, method of manufacturing a transfer medium, and magnetic recording medium
EP1956592A2 (en) 2007-02-09 2008-08-13 Fujifilm Corporation Transfer apparatus, transfer method, recording medium, and magnetic recording apparatus
EP1962284A2 (en) 2007-02-09 2008-08-27 Fujifilm Corporation Transfer method, transfer apparatus, and recording medium
US7804654B2 (en) 2007-02-09 2010-09-28 Fujifilm Corporation Transfer method, transfer apparatus, and recording medium

Similar Documents

Publication Publication Date Title
JP3727603B2 (en) Magnetic transfer device holder
JP2004086995A (en) Holder of magnetic transfer device
US20040040668A1 (en) Holder for magnetic transfer device
JP4053450B2 (en) Magnetic transfer method
US7312940B2 (en) Magnetic transfer apparatus
JP3775589B2 (en) Magnetic transfer device
US6914736B2 (en) Magnetic transfer apparatus including a holder having at least one flexible flat plate portion
JP2004079027A (en) Holder of magnetic transfer device
JP2004103113A (en) Holder for magnetic transfer device
JP4188926B2 (en) Magnetic transfer apparatus and magnetic transfer method
EP1336958A2 (en) Magnetic transfer apparatus
JP2004206759A (en) Magnetic transfer apparatus
JP2006059460A (en) Magnetic transfer device
US6924951B2 (en) Magnetic transfer apparatus
JP2008300032A (en) Magnetic transfer device and magnetic transfer method
JP2004310809A (en) Transfer holder of magnetic transfer device
JP2004030746A (en) Magnetic transfer device
JP2003281714A (en) Holder for magnetic transfer device
JP2004103111A (en) Holder for magnetic transfer device
JP2003281715A (en) Magnetic transfer device
JP2003242639A (en) Magnetic transfer apparatus
JP2004134012A (en) Magnetic transfer device
JP2004030747A (en) Magnetic transfer method
JP2006065899A (en) Magnetic transfer apparatus
JP2004030745A (en) Magnetic transfer device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20070327