JP2004083997A - Vertical type chemical vapor deposition system and deposition method using this system - Google Patents

Vertical type chemical vapor deposition system and deposition method using this system Download PDF

Info

Publication number
JP2004083997A
JP2004083997A JP2002246706A JP2002246706A JP2004083997A JP 2004083997 A JP2004083997 A JP 2004083997A JP 2002246706 A JP2002246706 A JP 2002246706A JP 2002246706 A JP2002246706 A JP 2002246706A JP 2004083997 A JP2004083997 A JP 2004083997A
Authority
JP
Japan
Prior art keywords
substrate
base plate
chemical vapor
airflow
transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002246706A
Other languages
Japanese (ja)
Other versions
JP4478376B2 (en
Inventor
Hitoshi Ikeda
池田 均
Masashi Kikuchi
菊池 正志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2002246706A priority Critical patent/JP4478376B2/en
Publication of JP2004083997A publication Critical patent/JP2004083997A/en
Application granted granted Critical
Publication of JP4478376B2 publication Critical patent/JP4478376B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chemical vapor growth system which can surely perform deposition by a chemical vapor deposition process with compact and simple system configuration in correspondence to upsizing of a substrate and a deposition method using the same. <P>SOLUTION: The vertical type chemical vapor growth system which performs deposition to the substrate 8 in an approximately upright state is constituted by mounting the inside of a first deposition chamber 3 with a plurality of conveyance rollers 23 which are provided with vertical type conveyance base plates 11 disposed with air flow apertures 20a, 20b and 20c at prescribed intervals over the entire surface rotationally movably around axes 21 in the substrate conveyance direction at the bottom ends of the conveyance base plates and perform substrate conveyance by supporting the bottom end edge of the substrate 8 along the substrate conveyance direction at the top and bottom ends of the conveyance base plates. The base plates 11 are inclined around the axes in such a manner that the substrate supporting surfaces 11s of the base plates 11 come to top surfaces. In addition, the substrate 8 is carried onto the surface 11s in the state of performing air flow toward the surfaces 11s of the base plates 11 by the apertures 20a, 20b and 20c. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、縦型化学気相成長装置及びこの装置を用いた成膜方法に関する。近年の基板大型化及び薄型化傾向に伴い、基板を略直立させた状態で搬送及び成膜を行うことが可能な縦型化学気相成長装置の利点が評価されている。
【0002】
【従来の技術】
従来、真空室内において化学気相成長法による成膜を行う際は、取り扱い上の利便性から水平に載置した基板に対して搬送や成膜を行うものが一般的であった。
【0003】
ところで、近年、液晶ディスプレイや太陽電池が大型化する傾向が顕著となり、これに伴って成膜用に1m級大型基板の実用化開発が進められている。このような大型基板を従来の水平方式により取り扱うと種々の問題に直面することになる。例えば、基板の大型化や薄型化により、水平載置された基板にはその自重により撓みや反りが生じやすく、膜厚や平坦性において精密な成膜を行うことが困難である。また、特に、トレイ搬送によるものとすると搬送キャリアなどの部品点数が多いうえ、トレイ部分にも膜が付着したりしてパーティクル発生の一因となる。さらに、基板面積に対応して成膜装置構造が大型になり相当の占有スペースを確保する必要がある。
【0004】
【発明が解決しようとする課題】
これに対し、縦型方式は水平方式のものに比べて搬送基板の安定性に不安がある。そして、不安定な状態の基板を扱うことは上記した基板大型化とも相俟って、成膜工程の歩留り低下の要因となる。
【0005】
本発明は、上記問題点に鑑み、基板の大型化に対応してコンパクトで簡素な装置構成で、確実に化学気相成長法による成膜を行うことが可能な化学気相成長装置及びこれを用いた成膜方法を提供することを課題としている。
【0006】
【課題を解決するための手段】
上記課題を解決するため、本発明の化学気相成長装置は、略直立した状態の基板に対して成膜を行う縦型化学気相成長装置において、真空室内に、全面に亘って所定間隔で複数のエアフロー孔を配設した縦型搬送ベースプレートを、このプレートの基板支持面が上面となる傾倒姿勢で配置し、また、プレート下端部の基板搬送方向に沿って基板の下端縁を支持して基板搬送を行う複数の搬送ローラを取り付けて構成した。
【0007】
これにより、装置を縦型として設置床面の省スペース化が可能となり、また、水平搬送と異なり基板の撓みなどの問題も回避できる。即ち、エアフローを生じさせた傾倒姿勢の搬送ベースプレート上で、搬送ローラにより基板搬送を行うことができる。さらに、基板の接触面がその下端部の搬送ローラ接触部に限定され、トレイ搬送時のようなパーティクル発生を抑制することができる。
【0008】
そして、上記のような傾倒姿勢とするために、搬送ベースプレートを、このプレート下端部の基板搬送方向の軸線回りに傾動可能とする。これにより、搬送ベースプレートの傾倒姿勢を任意に変更することが可能となる。
【0009】
この装置を用い、最初に、縦型搬送ベースプレートの基板支持面が上面となるように搬送ベースプレートを軸線回りに傾倒させると共に複数のエアフロー孔により搬送ベースプレートの基板支持面方向にエアフローを行った状態で、搬送ベースプレートの基板支持面上に前記基板を搬入する第1工程と、次に、エアフローを停止した後に、基板を支持したまま搬送ベースプレートを軸線回りに傾動して基板を直立させ、直立状態の基板に対して成膜を行う第2工程とを順次行う成膜方法が可能となる。これにより、パーティクルの発生を抑制して搬送された基板に対して固定成膜を行うことができる。そして、この成膜方法は、例えば、プラズマ化学気相成長装置やスパッタ成膜装置に用いることができる。
【0010】
この場合、第1工程のエアフローは、配設位置が上側のエアフロー孔より下側のエアフロー孔において小流量であるように調整すると、エアフローによる搬送ベースプレートからの乖離距離を確実に確保できるので基板搬送がよりスムーズになる。
【0011】
そして、第2工程における搬送ベースプレートの直立時に、複数のエアフロー孔により、第1工程、即ち、搬送時とは逆に、基板を搬送ベースプレート方向に吸引すると、直立した基板は搬送ベースプレートに吸着されて保持されるので、上記の固定成膜を確実に行うことができる。
【0012】
また、このような装置を用い、傾倒姿勢とした搬送ベースプレートの基板支持面方向に、複数のエアフロー孔によりエアフローを行った状態で、基板支持面上を通過する基板に対して成膜を行うことが可能である。これにより、搬送中の基板に対して通過成膜を行うことができ、上記した固定成膜に比べタクトタイムを短縮し、さらに装置の稼働率を向上した成膜工程が実現する。このような成膜方法は、気密室を必要としない、例えば、触媒化学気相成長法に用いることができる。
【0013】
【発明の実施の形態】
図1はインライン式に構成された縦型触媒化学気相成長装置(Cat−CVD装置)の上面断面図である。このインラインCVD装置は、仕込ポジション1、仕込室2、第1成膜室3、第2成膜室4、取出室5、取出ポジション6の各ユニットが直線的に配列されて構成される。各ユニットは仕切弁7a〜7eにより隔離される一方、仕切弁をすべて開放すると、各ユニットが連結方向に中空状に連通し、その中空空間を通過して搬送基板を順に搬送できる。
【0014】
縦型装置の利点の一つは、上記したように省スペースが可能となることであり、本装置においては、この利点をさらに活用し、対称位置にある一対の基板8a、8bに対して同時に成膜を行うことができるように構成されている。
【0015】
本装置の各ユニットにおいては、仕込ポジション1内に、基板8a、8bのそれぞれを収納し、回動軸9a、9b回りに回動可能としたカセット10a、10bが対向して配置されている。また、第1成膜室3は、触媒化学気相成長法による成膜を行うために、内部にヒータを内在した搬送ベースプレート11a、11bを配設し、これらに載置される基板8a、8bに対向する位置に複数の触媒線12a、12bが上下方向に結線されて設けられている。第2成膜室4は、第1成膜室3と同一の構造で構成されており、搬送ベースプレート13a、13b及び触媒線14a、14bを備えている。そして、取出ポジション6においては、仕込ポジション1と同様に、回動軸15a、15b回りに回動可能としたカセット16a、16bが対向して配置されている。
【0016】
なお、上記の搬送ベースプレート11a、11bや搬送ベースプレート13a、13b、及び、仕込室2の搬送ベースプレート17や取出室5の搬送ベースプレート18は、仕込ポジション1や取出ポジション6の場合と異なり、真空下仕様のものを用いる必要がある。
【0017】
もちろん上記以外にも各ユニットでの作動を行うため、図外のポンプユニット、電源盤、操作盤、加熱電源盤、給排水盤、反応ガス導入機構(第1成膜室3、第2成膜室4用)及び真空排気機構なども搭載されている。
【0018】
このようにして構成されるインライン式縦型CVD装置を用いて搬送基板8に対して触媒化学気相成長法による成膜を行うに際しては、図外のクリーンルームで調整されたガラス基板8a、8bを仕込ポジション1のカセット10a、10bに収納した後に、カセット10a、10b内から、それぞれ成膜を行う基板8a、8bのみを取出し、回動軸9a、9b回りに回動させて略直立させ、基板8a、8bを縦型状態とし、そのまま搬送ベースプレート10cに受渡しを行う。
【0019】
このようにして、縦型状態のまま基板8a、8bを仕込室2内の搬送ベースプレート17に搬送し、仕切弁7aを閉鎖して仕込室2内を真空排気して所定の圧力状態とする。そして、あらかじめ所定の真空状態に保たれている第1成膜室3内に縦型状態の基板8a、8bを搬送する。さらに、搬送ベースプレート11a、11b内のヒータによる加熱及び触媒線12a、12bの作用により、導入される反応ガスを反応させて、基板8a、8bの表面上に、その反応生成物から成る薄膜の成膜を行う。
【0020】
所望の成膜が終了した基板8a、8bは、仕切弁7cの開閉により縦型状態で第2成膜室4内に搬送され、今度は、搬送ベースプレート13a、13b内のヒータによる加熱及び触媒線14a、14bの作用により、その反応生成物から成る第2の成膜を行う。
【0021】
そして、基板8a、8bを取出室5に縦型状態のまま搬送し、仕切弁7dの閉鎖により密室とした取出室5の真空状態を徐々に大気圧に戻し、仕切弁7eを介して基板8a、8bを取出ポジション6に搬送する。取出ポジション6では、搬送ベースプレート16cから受け渡されて、縦型状態でカセット16a、16bに収納された搬入基板8a、8bが、各回動軸15a、15bを回動することにより、カセット16a、16b内で水平状態となり、その後の取出しに備える。
【0022】
このように基板8a、8bは、仕込ポジション1から取出ポジション6までの工程間、常にトレイ無しで縦型状態を保って搬送及び成膜が行われる。上記したように、基板を縦型で取り扱うことは、基板の大型化への対応や装置全体の省スペースの点で有利であるが、一方で、搬送基板の安定性に注意する必要がある。
【0023】
このため、本発明の化学気相成長装置は、図2に示す搬送機構により搬送基板の安定性を向上させている。即ち、図2の搬送機構は、縦型搬送ベースプレート11の略上中下の各位置にエアフロー孔20a〜20cを設けている。さらに、このような上中下位置から成る一連のエアフロー孔を、プレート11の全面に亘って、基板搬送方向に所定間隔で並べて設けている。また、搬送ベースプレート11の下端部は、基板搬送方向の軸線21回りに所定角度で回動が可能な回転機構22が設けられ、さらに、搬送ベースプレート11に支持される基板8の搬送を行うための図外の駆動機構により駆動可能な搬送ローラ23が基板搬送方向の複数箇所に軸支されて設けられている。そして、上中下位置から成る一連のエアフロー孔20a〜20cは、搬送ベースプレート11内で軸線21に連なるエアフローライン24にそれぞれ連結されている。なお、エアフローライン24は、図2に示すように、回転機構22の軸線21部より、大気側外部に導かれ、エアフローガス導入ライン25に連なるバルブ26、及び、吸着用ポンプ27に連なるバルブ28に接続される。
【0024】
上記の搬送機構において、エアフロー孔20a〜20cや回転機構22は、搬送ローラ23による支持だけでは確保し得ない搬送基板8の縦型状態の安定性を向上させるものである。即ち、基板8の搬送時には、搬送ベースプレート11を回転機構22により直立状態より角度θだけ傾倒させると共に、エアフロー孔20a〜20cから搬送ベースプレート11の支持面11s方向にエアフローを行う。このようにすることにより、搬送ローラ23に支持されて搬送される基板8は、支持面11sとの間に形成されるエア層から成るバッファ層をクッションとして、傾倒した搬送ベースプレート11に立て掛けられた姿勢となって安定性が増すと同時に、エアフロー孔20a〜20cからのエアフローにより支持面11sとの摺動を回避してスムーズに搬送されることになる。
【0025】
このとき、エアフロー孔20a〜20cからのエアフローの流量は、上方位置にあるエアフロー孔ほど大流量であることが望ましい。搬送時の基板8と搬送ベースプレート11との間の空隙は上方ほど離間が大きくなるので、これに対応して基板8を離間させるため大きな力が必要となるからである。
【0026】
また、エアフロー孔20a〜20cは、図2における装置外部のエアフローガス導入ライン25及び吸着用ポンプ27の排気機構の作動に使用される。即ち、エアフローガス導入ライン25により、搬送ベースプレート11の基板8側とその反対側とで差圧を生じさせ、これにより、エアフローが得られる。さらに、吸着用ポンプ27を作動させることにより、逆に基板8を搬送ベースプレート11に吸着させることができる。これは、例えば、成膜時に基板8を搬送ベースプレート11に固定する際に有用である。
【0027】
即ち、図1のインライン式CVD装置の運転に際して、第1成膜室3及び第2成膜室4などの真空下仕様の搬送ベースプレート11a、11b、13a、13bとして、図2の搬送機構を用い、それぞれ基板8a、8bの搬送時には、エアフローを支持面11s方向に流通させ、傾倒した状態(傾角θ)で基板8a、8bの搬送に備える。また、仕込ポジション1及び取出ポジション6は、ガス導入機構のみを備えた大気圧下仕様の搬送ベースプレート10c及び16cを備え、基板8a、8bの搬送時に、エアフローを支持面11s方向に流通させ、傾倒した状態(傾角θ)で基板8a、8bの搬送に備える。そして、仕込室2及び取出室5では、ガス導入機構のみを備えた真空下仕様の搬送ベースプレート17、18を用い、エアフローを支持面11s方向に流通させ、傾倒した状態(傾角θ)で基板8a、8bの搬送に備える。
【0028】
そして、基板8a、8bに対する成膜時には、エアフローで無く、基板8a、8bを真空吸着させて直立させる。このように、搬送ベースプレート11、13を傾動させることにより基板8の状況(搬送若しくは成膜)に対応することが可能となる。
【0029】
上記の搬送機構を用いた成膜方法の第1の態様を図3に示す。図3は、図1のインライン式CVD装置における第1成膜室3の略断面図である。搬送ベースプレート11a側は、回転機構22aにより傾倒されると共に、エアフロー孔20a〜20cから基板8a方向にエアフローが発生されており、この状態で基板8aが搬送ローラ23a上に支持されて搬送される。一方、搬送ベースプレート11b側は、回転機構22bにより直立すると共に、基板8bは、エアフロー孔30a〜30cから排気吸収されて搬送ベースプレート11bに吸着されており、この状態で、触媒線12bの作用による触媒気相成長による成膜が行われる。搬送ベースプレート11bに支持された基板8bは直立して、基板8bの全面が触媒線12bと等距離に位置することになり、このようにして成膜の均等性を確保することができる。
【0030】
なお、本実施の態様では、上下方向に結線された触媒線12の張力確保のため、触媒線12a、12bにバネ構造31a、31bを設けている。また、複数から成る触媒線12により、基板8全面への均一な成膜を行えるように、X軸駆動系32、Y軸駆動系33及びベローズ34により揺動可能な揺動ステージ35を備えている。
【0031】
図3において本実施の第1の態様は、触媒化学気相成長のための装置構成を図示したが、この縦型構造は、上記用途に限定されるものではなく、例えば、プラズマCVD装置やスパッタリング装置などにも適用可能である。
【0032】
次に、上記搬送機構を用いた成膜方法の第2の態様を図4に示す。装置構成は図3と同一であるが、搬送状態の基板8aのみならず成膜工程中の基板8bも傾倒状態とした。基板8bを直立させず傾倒状態のまま触媒化学気相成長による成膜工程を行うのは、第1の態様の固定成膜と異なり、基板8bに対して通過成膜を行うためである。本態様では、基板8a側でエアフローを行い、基板8を移動させながら成膜を行っている。したがって、装置運転時のタクトタイムが短縮され、インライン式装置本来の高い稼働率維持の実現が可能となる。このような通過成膜法は、特に触媒化学気相成長法において有用である。
【0033】
さらに、搬送ベースプレート内にヒータを設けて基板を加熱する場合において、エアフローによる、基板間のエア層(バッファ層)により、基板への熱入出の効率が良くなる。そして、それだけでなく、固定成膜時に、基板を真空吸着させることにより、触媒線からの基板への熱入力に対し、基板の冷却効率が良くなる。
【0034】
【発明の効果】
以上の説明から明らかなように、本発明の化学気相成長装置は、搬送ベースプレートに設けたエアフロー孔と回転機構とにより、縦型状態の基板の安定性を確保できるので、縦型装置本来の利点、即ち、基板の大型化や装置全体のコンパクト化に対応可能である。
【0035】
また、この化学気相成長装置は、固定成膜及び通過成膜のいずれにも用いることができるので、化学気相成長方法に限らず、必要に応じて成膜方法の変更に対応可能である。
【図面の簡単な説明】
【図1】インライン式Cat−CVD装置の上面断面図
【図2】本発明の化学気相成長装置の搬送機構
【図3】本発明の第1の態様
【図4】本発明の第2の態様
【符号の説明】
3 第1成膜室、
4 第2成膜室
8a、8b 基板
11a、11b、13a、13b、17、18
搬送ベースプレート(真空下仕様)
10c、16c  搬送ベースプレート(大気圧下仕様)
11s 基板支持面
20a〜20c、30a〜30c エアフロー孔
21a、21b 軸線
22a、22b 回転機構
23a、23b 搬送ローラ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vertical chemical vapor deposition apparatus and a film forming method using the apparatus. With the recent trend toward larger and thinner substrates, the advantage of a vertical chemical vapor deposition apparatus capable of carrying and forming a film while the substrate is substantially upright has been evaluated.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, when a film is formed by a chemical vapor deposition method in a vacuum chamber, it is common to carry or form a film on a horizontally placed substrate for convenience in handling.
[0003]
By the way, in recent years, the tendency for liquid crystal displays and solar cells to become large has become remarkable, and with this, practical development of 1 m class large substrates for film formation has been promoted. If such a large substrate is handled by a conventional horizontal method, various problems will be encountered. For example, as a substrate becomes larger and thinner, a substrate placed horizontally tends to be bent or warped due to its own weight, and it is difficult to perform precise film formation in terms of film thickness and flatness. In particular, if it is performed by tray conveyance, the number of components such as a conveyance carrier is large, and a film adheres to the tray portion, which contributes to generation of particles. Further, the structure of the film forming apparatus becomes large corresponding to the substrate area, and it is necessary to secure a considerable occupied space.
[0004]
[Problems to be solved by the invention]
On the other hand, the vertical type is more concerned about the stability of the transfer substrate than the horizontal type. Handling an unstable substrate, together with the above-described increase in the size of the substrate, causes a reduction in the yield of the film forming process.
[0005]
In view of the above problems, the present invention provides a chemical vapor deposition apparatus capable of reliably performing film formation by a chemical vapor deposition method with a compact and simple apparatus configuration corresponding to an increase in the size of a substrate, and It is an object to provide a film forming method used.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, a chemical vapor deposition apparatus of the present invention is a vertical chemical vapor deposition apparatus that forms a film on a substantially upright substrate, in a vacuum chamber, at predetermined intervals over the entire surface. A vertical transfer base plate provided with a plurality of airflow holes is arranged in a tilted posture in which the substrate support surface of the plate is the upper surface, and supports the lower edge of the substrate along the substrate transfer direction at the lower end of the plate. A plurality of transport rollers for transporting the substrate were mounted.
[0007]
This makes it possible to save space on the installation floor by using the apparatus as a vertical type, and to avoid problems such as bending of the substrate unlike horizontal conveyance. That is, the substrate can be transported by the transport roller on the transport base plate in the inclined position where the air flow is generated. Furthermore, the contact surface of the substrate is limited to the contact portion of the transport roller at the lower end thereof, and it is possible to suppress the generation of particles as in tray transport.
[0008]
In order to achieve the above-described tilting posture, the transport base plate can be tilted around the axis of the lower end of the plate in the substrate transport direction. This makes it possible to arbitrarily change the tilting posture of the transport base plate.
[0009]
Using this device, first, the carrier base plate is tilted around the axis so that the substrate support surface of the vertical carrier base plate is on the upper surface, and airflow is performed in the direction of the substrate support surface of the carrier base plate by a plurality of airflow holes. A first step of loading the substrate onto the substrate support surface of the transport base plate, and then, after stopping the airflow, tilting the transport base plate around the axis while supporting the substrate to erect the substrate, A film forming method in which the second step of forming a film on a substrate is sequentially performed becomes possible. This makes it possible to perform fixed film formation on the transported substrate while suppressing generation of particles. This film forming method can be used, for example, in a plasma chemical vapor deposition apparatus or a sputter film forming apparatus.
[0010]
In this case, when the airflow in the first step is adjusted so that the disposition position is small at the airflow hole below the upper airflow hole, the distance from the conveyance base plate due to the airflow can be ensured, so that the substrate conveyance Will be smoother.
[0011]
Then, when the transfer base plate is upright in the second step, the substrate is sucked in the direction of the transfer base plate by the plurality of airflow holes in the first step, that is, contrary to the transfer, and the upright substrate is sucked by the transfer base plate. Since it is held, the above-described fixed film formation can be reliably performed.
[0012]
In addition, using such an apparatus, film formation is performed on a substrate passing over the substrate support surface in a state where airflow is performed through a plurality of airflow holes in the direction of the substrate support surface of the transfer base plate in a tilted posture. Is possible. As a result, it is possible to perform the pass-through film formation on the substrate being transported, so that the tact time is shortened as compared with the above-described fixed film formation, and a film formation process in which the operation rate of the apparatus is improved is realized. Such a film forming method can be used for, for example, a catalytic chemical vapor deposition method that does not require an airtight chamber.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a top sectional view of an in-line vertical catalytic chemical vapor deposition apparatus (Cat-CVD apparatus). This in-line CVD apparatus is configured such that units of a charging position 1, a charging chamber 2, a first film forming chamber 3, a second film forming chamber 4, an extracting chamber 5, and an extracting position 6 are linearly arranged. While each unit is isolated by the gate valves 7a to 7e, when all the gate valves are opened, each unit communicates in a hollow shape in the connecting direction, and the transfer substrate can be sequentially transferred through the hollow space.
[0014]
One of the advantages of the vertical device is that space can be saved as described above. In this device, this advantage is further utilized to simultaneously apply a pair of substrates 8a and 8b at symmetric positions. It is configured so that film formation can be performed.
[0015]
In each unit of the present apparatus, cassettes 10a and 10b which accommodate the substrates 8a and 8b respectively and are rotatable around the rotation shafts 9a and 9b are arranged in the loading position 1 so as to face each other. In addition, the first film forming chamber 3 is provided with transfer base plates 11a and 11b having heaters therein for performing film formation by the catalytic chemical vapor deposition method, and the substrates 8a and 8b mounted on these are provided. A plurality of catalyst wires 12a, 12b are provided in a position facing the vertical direction and connected in the vertical direction. The second film forming chamber 4 has the same structure as the first film forming chamber 3, and includes transport base plates 13a and 13b and catalyst wires 14a and 14b. At the unloading position 6, similarly to the charging position 1, the cassettes 16a and 16b rotatable around the rotating shafts 15a and 15b are arranged to face each other.
[0016]
The transfer base plates 11a and 11b, the transfer base plates 13a and 13b, and the transfer base plate 17 of the loading chamber 2 and the transfer base plate 18 of the unloading chamber 5 are different from those in the loading position 1 and the unloading position 6 in that they are designed under vacuum. Need to be used.
[0017]
Of course, in addition to the above, each unit operates, so a pump unit (not shown), a power panel, an operation panel, a heating power panel, a water supply / drain panel, a reaction gas introduction mechanism (the first film forming chamber 3, the second film forming chamber, etc.) 4) and a vacuum exhaust mechanism.
[0018]
When a film is formed on the transfer substrate 8 by the catalytic chemical vapor deposition method using the in-line vertical CVD apparatus configured as described above, the glass substrates 8a and 8b adjusted in a clean room (not shown) are used. After being stored in the cassettes 10a and 10b at the loading position 1, only the substrates 8a and 8b on which films are to be formed are taken out from the cassettes 10a and 10b, respectively, and rotated about the rotation shafts 9a and 9b to be substantially upright. 8a and 8b are set in a vertical state, and are directly delivered to the transport base plate 10c.
[0019]
In this manner, the substrates 8a and 8b are transported to the transport base plate 17 in the charging chamber 2 in the vertical state, the gate valve 7a is closed, and the charging chamber 2 is evacuated to a predetermined pressure state. Then, the substrates 8a and 8b in the vertical state are transported into the first film forming chamber 3 which is kept in a predetermined vacuum state in advance. Further, the reaction gas introduced is caused to react by heating by heaters in the transport base plates 11a and 11b and by the action of the catalyst wires 12a and 12b to form a thin film made of the reaction product on the surfaces of the substrates 8a and 8b. Perform the membrane.
[0020]
The substrates 8a and 8b on which the desired film formation has been completed are transferred into the second film formation chamber 4 in a vertical state by opening and closing the gate valve 7c. This time, heating by the heaters in the transfer base plates 13a and 13b and catalyst lines are performed. By the action of 14a and 14b, a second film made of the reaction product is formed.
[0021]
Then, the substrates 8a and 8b are transported to the extraction chamber 5 in a vertical state, and the vacuum state of the extraction chamber 5 which is closed by closing the gate valve 7d is gradually returned to the atmospheric pressure, and the substrates 8a and 8b are closed via the gate valve 7e. , 8b to the take-out position 6. At the unloading position 6, the carry-in substrates 8a, 8b delivered from the transport base plate 16c and stored in the cassettes 16a, 16b in a vertical state rotate the respective rotating shafts 15a, 15b, thereby rotating the cassettes 16a, 16b. Inside, ready for subsequent removal.
[0022]
As described above, the substrates 8a and 8b are transported and formed while maintaining the vertical state without a tray during the process from the loading position 1 to the unloading position 6. As described above, handling a substrate in a vertical type is advantageous in terms of responding to an increase in the size of the substrate and saving space in the entire apparatus, but it is necessary to pay attention to the stability of the transfer substrate.
[0023]
Therefore, in the chemical vapor deposition apparatus of the present invention, the stability of the transfer substrate is improved by the transfer mechanism shown in FIG. That is, the transport mechanism shown in FIG. 2 has airflow holes 20a to 20c provided at substantially upper, middle, and lower positions of the vertical transport base plate 11. Further, a series of airflow holes having such upper, middle, and lower positions are provided at predetermined intervals in the substrate transport direction over the entire surface of the plate 11. The lower end of the transport base plate 11 is provided with a rotation mechanism 22 that can rotate at a predetermined angle around an axis 21 in the substrate transport direction, and further for transporting the substrate 8 supported by the transport base plate 11. A transport roller 23 that can be driven by a drive mechanism (not shown) is provided at a plurality of locations in the substrate transport direction so as to be pivotally supported. A series of airflow holes 20a to 20c formed at upper, middle, and lower positions are connected to airflow lines 24 connected to the axis 21 in the transport base plate 11, respectively. As shown in FIG. 2, the air flow line 24 is guided from the axis 21 of the rotation mechanism 22 to the outside of the atmosphere, and is connected to a valve 26 connected to an air flow gas introduction line 25 and a valve 28 connected to an adsorption pump 27. Connected to.
[0024]
In the transport mechanism described above, the air flow holes 20a to 20c and the rotation mechanism 22 improve the stability of the transport substrate 8 in the vertical state, which cannot be secured only by the support of the transport roller 23. That is, when the substrate 8 is transferred, the transfer base plate 11 is tilted by the angle θ from the upright state by the rotating mechanism 22, and the air flows from the airflow holes 20 a to 20 c in the direction of the support surface 11 s of the transfer base plate 11. In this way, the substrate 8 supported and transported by the transport rollers 23 is leaned against the inclined transport base plate 11 using the buffer layer formed of the air layer formed between the substrate 8 and the support surface 11s as a cushion. At the same time, the posture is increased, and the stability is increased. At the same time, the air flow from the air flow holes 20a to 20c avoids the sliding with the support surface 11s, and the air is smoothly conveyed.
[0025]
At this time, it is desirable that the flow rate of the airflow from the airflow holes 20a to 20c is larger as the airflow hole is located at a higher position. This is because the gap between the substrate 8 and the transport base plate 11 at the time of transport becomes larger upward, and accordingly, a large force is required to separate the substrate 8.
[0026]
The air flow holes 20a to 20c are used for operating the air flow gas introduction line 25 and the exhaust mechanism of the suction pump 27 outside the apparatus in FIG. That is, a differential pressure is generated between the substrate 8 side of the transfer base plate 11 and the opposite side thereof by the airflow gas introduction line 25, whereby an airflow is obtained. Further, by operating the suction pump 27, the substrate 8 can be sucked to the transfer base plate 11 on the contrary. This is useful, for example, when fixing the substrate 8 to the transport base plate 11 during film formation.
[0027]
That is, when the in-line type CVD apparatus of FIG. 1 is operated, the transfer mechanism of FIG. 2 is used as the transfer base plates 11a, 11b, 13a, and 13b of a vacuum specification such as the first film formation chamber 3 and the second film formation chamber 4. At the time of transporting the substrates 8a and 8b, respectively, the airflow is circulated in the direction of the support surface 11s to prepare for the transport of the substrates 8a and 8b in a tilted state (tilt angle θ). Further, the loading position 1 and the unloading position 6 are provided with transport base plates 10c and 16c under atmospheric pressure having only a gas introduction mechanism, and when transporting the substrates 8a and 8b, circulate the airflow in the direction of the support surface 11s and tilt. In this state (inclination angle θ), the substrate 8a, 8b is prepared for conveyance. In the loading chamber 2 and the unloading chamber 5, the air flow is circulated in the direction of the support surface 11s using the transfer base plates 17 and 18 provided with only the gas introduction mechanism and under vacuum, and the substrate 8a is tilted (tilt angle θ). , 8b.
[0028]
Then, at the time of film formation on the substrates 8a and 8b, the substrates 8a and 8b are vacuum-adsorbed and erect, instead of airflow. By tilting the transfer base plates 11 and 13 in this manner, it is possible to cope with the situation of the substrate 8 (transfer or film formation).
[0029]
FIG. 3 shows a first embodiment of a film forming method using the above-described transport mechanism. FIG. 3 is a schematic sectional view of the first film forming chamber 3 in the in-line type CVD apparatus of FIG. The transport base plate 11a is tilted by the rotating mechanism 22a, and an airflow is generated from the airflow holes 20a to 20c in the direction of the substrate 8a. In this state, the substrate 8a is supported on the transport rollers 23a and transported. On the other hand, the transport base plate 11b is erected by the rotation mechanism 22b, and the substrate 8b is exhausted and absorbed from the airflow holes 30a to 30c and is adsorbed to the transport base plate 11b. A film is formed by vapor phase growth. The substrate 8b supported by the transport base plate 11b stands upright, and the entire surface of the substrate 8b is positioned at the same distance as the catalyst wire 12b. Thus, uniformity of film formation can be secured.
[0030]
In the present embodiment, spring structures 31a and 31b are provided on the catalyst wires 12a and 12b in order to secure the tension of the catalyst wires 12 connected in the vertical direction. In addition, an X-axis drive system 32, a Y-axis drive system 33, and a swing stage 35 that can swing with a bellows 34 are provided so that uniform film formation can be performed on the entire surface of the substrate 8 by the plurality of catalyst wires 12. I have.
[0031]
In FIG. 3, the first embodiment of the present invention illustrates an apparatus configuration for catalytic chemical vapor deposition, but this vertical structure is not limited to the above-mentioned application. It is also applicable to devices and the like.
[0032]
Next, a second embodiment of the film forming method using the above-described transport mechanism is shown in FIG. The configuration of the apparatus is the same as that of FIG. 3, but not only the substrate 8a in the transport state but also the substrate 8b in the film forming process is tilted. The reason why the film formation step by catalytic chemical vapor deposition is performed while the substrate 8b is not upright and in an inclined state is to perform the pass-through film formation on the substrate 8b, unlike the fixed film formation of the first embodiment. In this embodiment, the film is formed while moving the substrate 8 by performing an air flow on the substrate 8a side. Therefore, the takt time during operation of the apparatus is shortened, and it is possible to maintain the high operation rate inherent in the in-line apparatus. Such a pass-through film forming method is particularly useful in catalytic chemical vapor deposition.
[0033]
Further, in the case where a substrate is heated by providing a heater in the transfer base plate, the efficiency of heat input / output to / from the substrate is improved by an air layer (buffer layer) between the substrates due to airflow. In addition, by vacuum-adsorbing the substrate at the time of fixed film formation, the cooling efficiency of the substrate is improved with respect to heat input from the catalyst wire to the substrate.
[0034]
【The invention's effect】
As is clear from the above description, the chemical vapor deposition apparatus of the present invention can secure the stability of the substrate in the vertical state by the airflow holes and the rotation mechanism provided in the transfer base plate, so that the original Advantages, that is, it is possible to cope with an increase in the size of the substrate and a reduction in the size of the entire apparatus.
[0035]
Further, since this chemical vapor deposition apparatus can be used for both fixed film formation and pass-through film formation, it is not limited to the chemical vapor deposition method, and can respond to changes in the film formation method as necessary. .
[Brief description of the drawings]
FIG. 1 is a top cross-sectional view of an in-line Cat-CVD apparatus. FIG. 2 is a transport mechanism of a chemical vapor deposition apparatus of the present invention. FIG. 3 is a first embodiment of the present invention. FIG. Aspect [Explanation of symbols]
3 First film forming chamber,
4 Second film forming chambers 8a, 8b Substrates 11a, 11b, 13a, 13b, 17, 18
Transfer base plate (under vacuum)
10c, 16c Transport base plate (atmospheric pressure specification)
11s Substrate support surfaces 20a to 20c, 30a to 30c Airflow holes 21a, 21b Axis lines 22a, 22b Rotary mechanisms 23a, 23b Transport rollers

Claims (6)

略直立した状態の基板に対して成膜を行う縦型化学気相成長装置において、真空室内に、全面に亘って所定間隔で複数のエアフロー孔を配設した縦型搬送ベースプレートを、該プレートの基板支持面が上面となる傾倒姿勢で配置し、前記プレート下端部の基板搬送方向に沿って前記基板の下端縁を支持して基板搬送を行う複数の搬送ローラを取り付けたことを特徴とする縦型化学気相成長装置。In a vertical chemical vapor deposition apparatus for forming a film on a substrate in a substantially upright state, a vertical transfer base plate having a plurality of airflow holes arranged at predetermined intervals over the entire surface in a vacuum chamber is provided with the vertical transfer base plate. Vertically characterized in that the substrate supporting surface is arranged in an inclined position with the upper surface thereof, and a plurality of transport rollers for transporting the substrate while supporting the lower edge of the substrate along the substrate transport direction at the lower end of the plate are attached. Type chemical vapor deposition equipment. 前記搬送ベースプレートを、該プレート下端部の基板搬送方向の軸線回りに傾動可能としたことを特徴とする請求項1に記載の縦型化学気相成長装置。The vertical chemical vapor deposition apparatus according to claim 1, wherein the transfer base plate can be tilted around an axis in a substrate transfer direction at a lower end portion of the plate. 請求項2に記載の縦型化学気相成長装置を用いる成膜方法において、最初に、前記縦型搬送ベースプレートの基板支持面が上面となるように該搬送ベースプレートを前記軸線回りに傾倒させると共に前記複数のエアフロー孔により前記搬送ベースプレートの基板支持面方向にエアフローを行った状態で、前記搬送ベースプレートの基板支持面上に前記基板を搬入する第1工程と、次に、前記エアフローを停止した後に、前記基板を支持したまま前記搬送ベースプレートを前記軸線回りに傾動して前記基板を直立させ、該直立状態の基板に対して成膜を行う第2工程とから成ることを特徴とする成膜方法。3. A film forming method using the vertical chemical vapor deposition apparatus according to claim 2, wherein the transport base plate is first tilted around the axis so that a substrate supporting surface of the vertical transport base plate is an upper surface. A first step of loading the substrate onto the substrate support surface of the transport base plate while airflow is being performed in the direction of the substrate support surface of the transport base plate by the plurality of airflow holes, and then, after stopping the air flow, A second step of tilting the transport base plate around the axis while supporting the substrate to erect the substrate, and forming a film on the substrate in the upright state. 前記第1工程のエアフローは、配設位置が上側のエアフロー孔より下側のエアフロー孔において小流量であることを特徴とする請求項3に記載の成膜方法。4. The method according to claim 3, wherein the airflow in the first step has a small flow rate in an airflow hole provided at a position below the upper airflow hole. 5. 前記第2工程における搬送ベースプレートの直立時に、前記複数のエアフロー孔により、前記基板を前記搬送ベースプレート方向に吸引することを特徴とする請求項3または4に記載の成膜方法。5. The film forming method according to claim 3, wherein the substrate is sucked in the direction of the transfer base plate by the plurality of airflow holes when the transfer base plate is erected in the second step. 請求項1または2に記載の縦型化学気相成長装置を用いる成膜方法において、前記傾倒姿勢とした搬送ベースプレートの基板支持面方向に、前記複数のエアフロー孔によりエアフローを行った状態で、前記基板支持面上を通過する基板に対して成膜を行うことを特徴とする成膜方法。3. The film formation method using the vertical chemical vapor deposition apparatus according to claim 1, wherein the airflow is performed by the plurality of airflow holes in a direction of the substrate supporting surface of the transfer base plate in the inclined posture. 4. A film forming method, wherein a film is formed on a substrate passing over a substrate supporting surface.
JP2002246706A 2002-08-27 2002-08-27 Vertical chemical vapor deposition apparatus and film forming method using the apparatus Expired - Fee Related JP4478376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002246706A JP4478376B2 (en) 2002-08-27 2002-08-27 Vertical chemical vapor deposition apparatus and film forming method using the apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002246706A JP4478376B2 (en) 2002-08-27 2002-08-27 Vertical chemical vapor deposition apparatus and film forming method using the apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008110775A Division JP2008202146A (en) 2008-04-21 2008-04-21 Vertical type chemical vapor deposition system, and film deposition method using the system

Publications (2)

Publication Number Publication Date
JP2004083997A true JP2004083997A (en) 2004-03-18
JP4478376B2 JP4478376B2 (en) 2010-06-09

Family

ID=32054527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002246706A Expired - Fee Related JP4478376B2 (en) 2002-08-27 2002-08-27 Vertical chemical vapor deposition apparatus and film forming method using the apparatus

Country Status (1)

Country Link
JP (1) JP4478376B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281776A (en) * 2004-03-30 2005-10-13 Kyocera Corp Film deposition method by heating body cvd device and heating body cvd method
JP2006143462A (en) * 2004-11-25 2006-06-08 Ulvac Japan Ltd Vertical base board carrying mechanism and base board carrying device having this mechanism
WO2007123032A1 (en) 2006-04-19 2007-11-01 Ulvac, Inc. Vertical substrate conveyance device and film deposition equipment
JP2008202146A (en) * 2008-04-21 2008-09-04 Ulvac Japan Ltd Vertical type chemical vapor deposition system, and film deposition method using the system
JP2009108391A (en) * 2007-10-31 2009-05-21 Ulvac Japan Ltd Film deposition system and film deposition method
JP2010006545A (en) * 2008-06-26 2010-01-14 Ihi Corp Branch levitation conveyor and substrate levitation conveying system
US7678198B2 (en) * 2004-08-12 2010-03-16 Cardinal Cg Company Vertical-offset coater
CN102315148A (en) * 2010-06-30 2012-01-11 上方能源技术(杭州)有限公司 Substrate conveying device and substrate conveying method for coating purpose
KR20130009554A (en) * 2011-07-13 2013-01-23 주식회사 원익아이피에스 Substrate tray handling apparatus and deposition apparatus comprising the same, and substrate tray handling method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4583061B2 (en) * 2004-03-30 2010-11-17 京セラ株式会社 Heating element CVD equipment
JP2005281776A (en) * 2004-03-30 2005-10-13 Kyocera Corp Film deposition method by heating body cvd device and heating body cvd method
US8906206B2 (en) 2004-08-12 2014-12-09 Cardinal Cg Company Vertical-offset coater and methods of use
US7678198B2 (en) * 2004-08-12 2010-03-16 Cardinal Cg Company Vertical-offset coater
JP2006143462A (en) * 2004-11-25 2006-06-08 Ulvac Japan Ltd Vertical base board carrying mechanism and base board carrying device having this mechanism
JP4582628B2 (en) * 2004-11-25 2010-11-17 株式会社アルバック Vertical substrate transfer mechanism and substrate transfer apparatus equipped with the same
WO2007123032A1 (en) 2006-04-19 2007-11-01 Ulvac, Inc. Vertical substrate conveyance device and film deposition equipment
JP2009108391A (en) * 2007-10-31 2009-05-21 Ulvac Japan Ltd Film deposition system and film deposition method
JP2008202146A (en) * 2008-04-21 2008-09-04 Ulvac Japan Ltd Vertical type chemical vapor deposition system, and film deposition method using the system
JP2010006545A (en) * 2008-06-26 2010-01-14 Ihi Corp Branch levitation conveyor and substrate levitation conveying system
CN102315148A (en) * 2010-06-30 2012-01-11 上方能源技术(杭州)有限公司 Substrate conveying device and substrate conveying method for coating purpose
KR20130009554A (en) * 2011-07-13 2013-01-23 주식회사 원익아이피에스 Substrate tray handling apparatus and deposition apparatus comprising the same, and substrate tray handling method
KR101688199B1 (en) 2011-07-13 2016-12-21 주식회사 원익아이피에스 Substrate tray handling apparatus and deposition apparatus comprising the same, and substrate tray handling method

Also Published As

Publication number Publication date
JP4478376B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP4856308B2 (en) Substrate processing apparatus and via chamber
JP4888917B2 (en) Vertical substrate transfer apparatus and film forming apparatus
JP2002203885A (en) Inter-back type apparatus for processing substrate
US20060245852A1 (en) Load lock apparatus, load lock section, substrate processing system and substrate processing method
TWI232242B (en) Substrate processing apparatus and processing method
JP2009105081A (en) Substrate processing apparatus
US20100272550A1 (en) Substrate holding mechanism, substrate delivering/receiving mechanism, and substrate processing apparatus
JP6190645B2 (en) Substrate transfer method
TW201027784A (en) Advanced platform for processing crystalline silicon solar cells
JP2003059999A (en) Treating system
JP3629371B2 (en) Film forming apparatus and film forming method
JP2002057203A (en) Substrate processing device
JP5192719B2 (en) Heating apparatus and substrate processing apparatus
JP4478376B2 (en) Vertical chemical vapor deposition apparatus and film forming method using the apparatus
JP2008202146A (en) Vertical type chemical vapor deposition system, and film deposition method using the system
KR20090124118A (en) Substrate processing system
JP2003109996A (en) Substrate transfer chamber and substrate treatment device
JP2003258058A (en) Substrate treatment device operating method
JP2005340425A (en) Vacuum treatment device
KR20190002415A (en) Apparatus for processing a substrate, a processing system for processing a substrate, and a method for servicing an apparatus for processing a substrate
KR101066979B1 (en) Apparatus to Sputter
JP2004006665A (en) Vacuum processing device
JP4383636B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JP4197111B2 (en) Vertical catalytic chemical vapor deposition apparatus and film forming method using the apparatus
KR101028409B1 (en) Semi-batch type process module and atomic layer deposition apparatus having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

R150 Certificate of patent or registration of utility model

Ref document number: 4478376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160319

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees