JP2004080928A - Gate drive circuit for voltage drive type semiconductor device - Google Patents

Gate drive circuit for voltage drive type semiconductor device Download PDF

Info

Publication number
JP2004080928A
JP2004080928A JP2002239055A JP2002239055A JP2004080928A JP 2004080928 A JP2004080928 A JP 2004080928A JP 2002239055 A JP2002239055 A JP 2002239055A JP 2002239055 A JP2002239055 A JP 2002239055A JP 2004080928 A JP2004080928 A JP 2004080928A
Authority
JP
Japan
Prior art keywords
voltage
circuit
gate
semiconductor device
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002239055A
Other languages
Japanese (ja)
Other versions
JP4099703B2 (en
Inventor
Koji Maruyama
丸山 宏二
Kiyoaki Sasagawa
笹川 清明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002239055A priority Critical patent/JP4099703B2/en
Publication of JP2004080928A publication Critical patent/JP2004080928A/en
Application granted granted Critical
Publication of JP4099703B2 publication Critical patent/JP4099703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Power Conversion In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gate drive circuit that suppresses application of an overvoltage caused by the imbalance of a shared voltage, arising from the difference in the turn-off timing of each device or the like, when constituting an arm of a power converter by series-connecting the arm to a voltage drive type semiconductor device, prevents the element from causing device breakage, and prevents accidents caused by short circuit breakage from expanding to a sound device. <P>SOLUTION: In the gate drive circuit of the voltage drive type semiconductor device, a monitoring period is set for monitoring the on/off-signal, which is indicated to the gate drive circuit from the outside, from the time the signal is turned to off-signal. When an overvoltage determining circuit OV determines overvoltage during the monitoring period, an IGBT is on-operated again in an active region, by controlling the VGE of the IGBT to a voltage near a threshold by using the gate voltage control circuit VG. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、各アームに電圧駆動型半導体素子を直列接続してなる電力変換装置における電圧駆動型半導体素子のゲート駆動回路に関する。
【0002】
【従来の技術】
図4は、電圧変換装置で高電圧化を図るために、IGBT(絶縁ゲートバイポーラトランジスタ)を各アームに直列接続した場合の従来例で、IGBTを直列接続したインバータ1相分の回路を示す。
【0003】
図示のように、この回路はIGBTQ1,Q2(上アーム)とQ3,Q4(下アーム)、電圧Edの直流電源、検出抵抗Rb1〜Rb4などから構成される。
【0004】
また、GDU1〜GDU4はQ1〜Q4のゲート駆動回路で、具体的には例えば図5に示すように、IGBTをオン,オフさせるための駆動回路としてのトランジスタTR1,TR2、ゲート抵抗Rg(on),Rg(off)およびゲート電圧制御回路VG、過電圧判別回路OVなどから構成される。
【0005】
一般的に、図6の動作波形図に示すようにQ1がターンオフ動作を開始してから、時間Δtだけ遅れてQ2がターンオフ動作を開始した場合、すなわち、IGBTを直列接続して運転するときに、例えば図6に示すように、ゲート電圧VGEのタイミングばらつき等により、IGBTのターンオフタイミングに違いが生じると、各IGBTの電圧分担にアンバランスが発生する。これは、Q1が早くオフしてしまうと、Q2はオンしているため、Q1だけに電圧が印加されてしまうためである。
【0006】
図7は、上述の電圧分担のアンバランスを解消することができる図4,図5に示した回路における動作波形図である。
【0007】
いま、Q1が先にターンオフすると、Q1のコレクタ−エミッタ間電圧VCEが上昇を始め、検出抵抗Rb1によって検出された電圧が過電圧レベルに達すると、過電圧判別回路OVにてQ1のコレクタ−エミッタ間電圧VCEが過電圧と判断される。これにより、ゲート電圧制御回路VGが動作し、ゲート駆動回路GDU1の出力すなわちゲート−エミッタ間電圧VGEをIGBTのしきい値付近の電圧に制御することで、Q1を活性領域で再オンさせる。Q1が再オンするとQ1のコレクタ−エミッタ間電圧VCEが下降し、Q1に過電圧が印加されるのを防止することができる。なお、外部から指令されるオン・オフ信号に基づくIGBTの通常のオン動作の際には、ゲート電圧制御回路VGからのゲート電圧指令値により、ゲート駆動回路GDU1の出力すなわちゲート−エミッタ間電圧VGEを、例えば図5に示すように+15ボルト(P15)付近の電圧にすることで、Q1を飽和領域でオンさせる。
【0008】
【発明が解決しようとする課題】
IGBTを直列接続して用いる場合、上述の如くゲート−エミッタ間電圧VGEを制御することにより、ターンオフタイミングがずれたときの電圧分担のアンバランスによる過電圧印加やそれに伴う素子破壊を防ぐことが可能である。
【0009】
しかしながら、直列接続された各IGBTのうち、いずれか1個のIGBTが何らかの要因で素子破壊(短絡破壊)を起こした場合には、他の健全なIGBTにおいて、上述の如くゲート−エミッタ間電圧VGEの制御により再オン動作が継続して行われるという問題がある。
【0010】
図8は、図4に示した従来の回路におけるQ1〜Q4のうち、Q1が短絡破壊を起こしたときの動作波形例を示している。
【0011】
Q1,Q2のターンオフ時、Q1に短絡破壊が発生すると、直流電源の電圧Edが全てQ2に印加される。これにより、過電圧判別回路OVにてQ2のコレクタ−エミッタ間電圧VCEが過電圧と判断され、ゲート電圧制御回路VGによりゲート−エミッタ間電圧VGEをIGBTのしきい値付近の電圧に制御することで、Q1を活性領域で再オンさせる。この再オン動作は継続して行われるため、Q2に過大な損失責務が発生し、Q2も素子破壊する可能性がある。また、Q2の再オン動作継続中に、下アームのQ3,Q4がオンになった時点でアーム短絡に陥るなど、Q1の素子破壊に伴う事故が拡大する恐れがある。この問題点は、素子破壊時の保護を高速に行うことが困難であるために生ずる問題点である。
【0012】
従って、この発明の課題は上述の問題点を解決し、この種の電圧駆動型半導体素子の保護と素子破壊に伴う事故の拡大を防止する該素子のゲート駆動回路を提供することにある。
【0013】
【課題を解決するための手段】
このような課題を解決するために、この発明では、各アームに電圧駆動型半導体素子を直列接続してなる電力変換装置において、各電圧駆動型半導体を飽和領域または活性領域でオンさせる、若しくはオフさせるゲート電圧指令値を生成するゲート電圧制御回路と、当該電圧駆動型半導体素子に前記それぞれのゲート電圧指令値に基づくゲート電圧を供給する駆動回路と、この電圧駆動型半導体素子に印加される電圧を検出し過電圧か否かを判断する過電圧判別回路と、予め定める監視期間を設定する期間設定回路とを設け、通常は外部から指令されるオン・オフ信号がオン信号のときには当該電圧駆動型半導体素子を飽和領域でオン動作をさせ、前記オン・オフ信号がオン信号からオフ信号に替ったときから前記監視期間中にこの電圧駆動型半導体素子に過電圧が印加されたときには該電圧駆動型半導体素子を活性領域で再オン動作をさせることで、直列接続されたいずれかの電圧駆動型半導体素子に素子破壊(短絡破壊)が発生した場合、他の健全な電圧駆動型半導体素子の再オン動作の継続およびそれに伴う素子破壊を防止するようにしている。
【0014】
【発明の実施の形態】
図1は、この発明の実施の形態を示す電力変換装置の回路構成図であり、図4に示した従来例構成と同一機能を有するものには同一符号を付している。
【0015】
すなわち、図1の回路構成が図4の回路構成と異なる点はゲート駆動回路GDU1〜GDU4に代えて、この発明のゲート駆動回路GDU1a〜GDU4aを備えていることである。
【0016】
図2は、図1に示したゲート駆動回路GDU1a〜GDU4aの詳細回路構成図であり、GDU1〜GDU4と同一機能であるIGBTをオン,オフさせるための駆動回路としてのトランジスタTR1,TR2、ゲート抵抗Rg(on),Rg(off)およびゲート電圧制御回路VG、過電圧判別回路OVの他に、タイマ,アンド素子から構成される期間設定回路が付加されている。
【0017】
図3は、図1,図2に示した回路における動作波形図である。
【0018】
先ず、Q1,Q2に外部から指令されるオン・オフ信号がオン信号からオフ信号に変化すると、前記タイマ出力は論理「H」レベルとなり、この論理「H」レベルは所定の監視期間ΔT0 の間継続する。ここで、先述の図8に示した動作波形図と同様に、Q1に短絡破壊が発生すると、直流電源の電圧EdがQ2に印加され、これにより、検出抵抗Rb2を介した過電圧判別回路OVにてQ2のコレクタ−エミッタ間電圧VCEが過電圧と判断され、ゲート電圧制御回路VGによりゲート−エミッタ間電圧VGEをIGBTのしきい値付近の電圧に制御することで、Q1を活性領域で再オンさせる。しかし、前記タイマ出力は所定の監視期間(ΔT0 )を経過後に、論理「L」レベルとなり、前記アンド素子出力も論理「L」レベルとなって、Q2の再オン動作を停止することができる。この後、全てのIGBTをオフする保護動作を行えばよく、高速保護動作が困難な期間の過電圧判別回路OVおよびゲート電圧制御回路VGによる再オン継続動作および下アームIGBTQ3,Q4のオンによるアーム短絡等の事故の拡大を防止することができる。
【0019】
なお、図2に示したこの発明のゲート駆動回路は、通常動作時においても過電圧判別回路OVおよびゲート電圧制御回路VGによる再オン動作期間を限定するものであるが、前記タイマの監視期間(ΔT0 )を、例えば10マイクロ秒程度に設定することにより、先述のターンオフタイミング差による各IGBTの電圧分担アンバランスに対して、問題なく過電圧の抑制を行うことが可能である。
【0020】
また、各アームのIGBTの直列数が3以上でも、1個のIGBTの短絡破壊により、他の健全なIGBTが継続して再オン動作をする可能性があるが、この発明のゲート駆動回路では、前記期間設定回路により再オン継続動作およびアーム短絡を防止することができる。
【0021】
【発明の効果】
この発明によれば、各アームに電圧駆動型半導体素子が直列接続される電力変換装置で、これらの電圧駆動型半導体素子の過電圧発生時には該素子のゲート電圧をしきい値付近の活性領域の電圧にすることにより、この過電圧抑制を行い、且つ、素子故障時にはこれに伴う事故の拡大を防止することができる。
【図面の簡単な説明】
【図1】この発明の実施の形態を示す電力変換装置の回路構成図
【図2】図1の部分詳細回路構成図
【図3】図1,図2の回路の動作を説明する波形図
【図4】従来例を示す電力変換装置の回路構成図
【図5】図4の部分詳細回路構成図
【図6】図4,図5の回路の動作を説明する波形図
【図7】図4,図5の回路の動作を説明する波形図
【図8】図4,図5の回路の動作を説明する波形図
【符号の説明】
Q1〜Q4…IGBT、Rb1〜Rb4…検出抵抗、Ed…直流電源の電圧、GDU1〜GDU4…ゲート駆動回路、GDU1a〜GDU4a…ゲート駆動回路、OV…過電圧判別回路、VG…ゲート電圧制御回路。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gate drive circuit for a voltage-driven semiconductor device in a power converter in which a voltage-driven semiconductor device is connected to each arm in series.
[0002]
[Prior art]
FIG. 4 shows a conventional example in which an IGBT (insulated gate bipolar transistor) is connected in series to each arm in order to increase the voltage in the voltage converter, and shows a circuit for one phase of an inverter in which IGBTs are connected in series.
[0003]
As shown, this circuit includes IGBTs Q1, Q2 (upper arm) and Q3, Q4 (lower arm), a DC power supply of voltage Ed, detection resistors Rb1 to Rb4, and the like.
[0004]
GDU1 to GDU4 are gate drive circuits for Q1 to Q4. Specifically, for example, as shown in FIG. 5, transistors TR1 and TR2 as drive circuits for turning on and off the IGBT, and a gate resistor Rg (on) , Rg (off), a gate voltage control circuit VG, an overvoltage determination circuit OV, and the like.
[0005]
Generally, as shown in the operation waveform diagram of FIG. 6, when Q2 starts turn-off operation with a delay of time Δt after Q1 starts turn-off operation, ie, when IGBTs are connected in series and operated. For example, as shown in FIG. 6, when a difference in the turn-off timing of the IGBT occurs due to a timing variation of the gate voltage VGE or the like, an imbalance occurs in the voltage sharing of each IGBT. This is because if Q1 is turned off earlier, Q2 is turned on, so that a voltage is applied only to Q1.
[0006]
FIG. 7 is an operation waveform diagram in the circuits shown in FIGS. 4 and 5 which can eliminate the above-described imbalance in voltage sharing.
[0007]
Now, when Q1 turns off first, the collector-emitter voltage VCE of Q1 starts to rise, and when the voltage detected by the detection resistor Rb1 reaches the overvoltage level, the collector-emitter voltage of Q1 is detected by the overvoltage determination circuit OV. VCE is determined to be overvoltage. As a result, the gate voltage control circuit VG operates to control the output of the gate drive circuit GDU1, that is, the gate-emitter voltage VGE to a voltage near the threshold value of the IGBT, thereby turning on Q1 again in the active region. When Q1 is turned on again, the collector-emitter voltage VCE of Q1 decreases, and it is possible to prevent an overvoltage from being applied to Q1. Note that, during a normal ON operation of the IGBT based on an ON / OFF signal commanded from the outside, the output of the gate drive circuit GDU1, that is, the gate-emitter voltage VGE is supplied by the gate voltage command value from the gate voltage control circuit VG. To a voltage near +15 volts (P15) as shown in FIG. 5, for example, to turn on Q1 in the saturation region.
[0008]
[Problems to be solved by the invention]
When the IGBTs are connected in series, by controlling the gate-emitter voltage VGE as described above, it is possible to prevent overvoltage application due to imbalance in voltage sharing when the turn-off timing is shifted and element destruction accompanying the overvoltage. is there.
[0009]
However, if any one of the IGBTs connected in series causes element destruction (short-circuit destruction) due to some cause, the gate-emitter voltage VGE in the other healthy IGBTs as described above. There is a problem that the re-ON operation is continuously performed by the control of.
[0010]
FIG. 8 shows an example of an operation waveform when Q1 of Q1 to Q4 in the conventional circuit shown in FIG. 4 causes short-circuit breakdown.
[0011]
When short-circuit breakdown occurs in Q1 when Q1 and Q2 are turned off, the voltage Ed of the DC power supply is all applied to Q2. As a result, the collector-emitter voltage VCE of Q2 is determined as an overvoltage by the overvoltage determination circuit OV, and the gate-emitter voltage VGE is controlled to a voltage near the threshold of the IGBT by the gate voltage control circuit VG. Q1 is turned on again in the active region. Since this re-ON operation is performed continuously, an excessive loss obligation occurs in Q2, and there is a possibility that Q2 may be destroyed. Further, while the restart operation of Q2 is continued, the short circuit of the arm occurs when Q3 and Q4 of the lower arm are turned on. This problem arises because it is difficult to perform high-speed protection when the element is destroyed.
[0012]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a gate drive circuit for such a voltage-driven semiconductor device, which protects the device and prevents an increase in accidents due to device destruction.
[0013]
[Means for Solving the Problems]
In order to solve such a problem, according to the present invention, in a power converter in which a voltage-driven semiconductor element is connected in series to each arm, each voltage-driven semiconductor is turned on or off in a saturation region or an active region. A gate voltage control circuit that generates a gate voltage command value to be driven, a drive circuit that supplies a gate voltage based on the respective gate voltage command values to the voltage driven semiconductor element, and a voltage applied to the voltage driven semiconductor element. And a period setting circuit for setting a predetermined monitoring period. Usually, when an on / off signal commanded from the outside is an on signal, the voltage-driven semiconductor is provided. The element is turned on in a saturation region, and the voltage drive is performed during the monitoring period from when the on / off signal is changed from an on signal to an off signal. When an overvoltage is applied to a semiconductor element, the voltage-driven semiconductor element is turned on again in the active region, thereby causing an element destruction (short-circuit destruction) in one of the series-connected voltage-driven semiconductor elements. Further, the continuation of the re-ON operation of another sound voltage-driven semiconductor device and the accompanying destruction of the device are prevented.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a circuit configuration diagram of a power conversion device according to an embodiment of the present invention. Components having the same functions as those of the conventional configuration shown in FIG. 4 are denoted by the same reference numerals.
[0015]
That is, the circuit configuration of FIG. 1 is different from the circuit configuration of FIG. 4 in that gate drive circuits GDU1a to GDU4a of the present invention are provided instead of the gate drive circuits GDU1 to GDU4.
[0016]
FIG. 2 is a detailed circuit configuration diagram of the gate drive circuits GDU1a to GDU4a shown in FIG. 1, and includes transistors TR1 and TR2 as drive circuits for turning on and off an IGBT having the same function as the GDU1 to GDU4, and a gate resistor. In addition to Rg (on), Rg (off), the gate voltage control circuit VG, and the overvoltage determination circuit OV, a period setting circuit including a timer and an AND element is added.
[0017]
FIG. 3 is an operation waveform diagram in the circuits shown in FIGS.
[0018]
First, on-off signal is commanded from the outside to the Q1, Q2 is the change from the ON signal to the OFF signal, the timer output is a logic "H" level, the logic "H" level of the predetermined monitoring period [Delta] T 0 Continue for a while. Here, similarly to the operation waveform diagram shown in FIG. 8 described above, when a short-circuit breakdown occurs in Q1, the voltage Ed of the DC power supply is applied to Q2, whereby the overvoltage determination circuit OV via the detection resistor Rb2 is applied. As a result, the collector-emitter voltage VCE of Q2 is determined to be an overvoltage, and the gate-emitter voltage VGE is controlled to a voltage near the threshold of the IGBT by the gate voltage control circuit VG, thereby turning on Q1 again in the active region. . However, after a predetermined monitoring period (ΔT 0 ) has elapsed, the timer output goes to the logic “L” level, and the AND element output also goes to the logic “L” level, so that the restart operation of Q2 can be stopped. . Thereafter, a protection operation for turning off all the IGBTs may be performed, and a re-continuation operation by the overvoltage determination circuit OV and the gate voltage control circuit VG during a period during which the high-speed protection operation is difficult, and an arm short circuit due to the ON of the lower arms IGBTs Q3 and Q4. It is possible to prevent the accident from spreading.
[0019]
The gate drive circuit of the present invention shown in FIG. 2 limits the restart operation period by the overvoltage determination circuit OV and the gate voltage control circuit VG even during the normal operation, but the monitoring period (ΔT By setting 0 ) to, for example, about 10 microseconds, overvoltage can be suppressed without any problem with respect to the voltage sharing imbalance of each IGBT due to the aforementioned turn-off timing difference.
[0020]
Further, even if the number of series IGBTs in each arm is 3 or more, there is a possibility that another healthy IGBT will continue to turn on again due to short-circuit breakdown of one IGBT. However, in the gate drive circuit of the present invention, The period setting circuit can prevent the re-continuation operation and the arm short circuit.
[0021]
【The invention's effect】
According to the present invention, in a power converter in which voltage-driven semiconductor elements are connected in series to each arm, when an overvoltage occurs in these voltage-driven semiconductor elements, the gate voltage of the elements is changed to a voltage in an active region near a threshold. By doing so, it is possible to suppress the overvoltage and prevent the occurrence of an accident accompanying the failure in the event of an element failure.
[Brief description of the drawings]
1 is a circuit configuration diagram of a power converter showing an embodiment of the present invention; FIG. 2 is a partial detailed circuit configuration diagram of FIG. 1; FIG. 3 is a waveform diagram illustrating the operation of the circuits of FIGS. FIG. 4 is a circuit configuration diagram of a power converter showing a conventional example. FIG. 5 is a partial detailed circuit configuration diagram of FIG. 4. FIG. 6 is a waveform diagram illustrating the operation of the circuits of FIG. 4 and FIG. 8 is a waveform diagram for explaining the operation of the circuit of FIG. 5, and FIG. 8 is a waveform diagram for explaining the operation of the circuit of FIGS.
Q1 to Q4: IGBT, Rb1 to Rb4: detection resistor, Ed: DC power supply voltage, GDU1 to GDU4: gate drive circuit, GDU1a to GDU4a: gate drive circuit, OV: overvoltage discrimination circuit, VG: gate voltage control circuit.

Claims (1)

各アームに電圧駆動型半導体素子を直列接続してなる電力変換装置において、
各電圧駆動型半導体を飽和領域または活性領域でオンさせる、若しくはオフさせるゲート電圧指令値を生成するゲート電圧制御回路と、当該電圧駆動型半導体素子に前記それぞれのゲート電圧指令値に基づくゲート電圧を供給する駆動回路と、この電圧駆動型半導体素子に印加される電圧を検出し過電圧か否かを判断する過電圧判別回路と、予め定める監視期間を設定する期間設定回路とを設け、
通常は外部から指令されるオン・オフ信号がオン信号のときには当該電圧駆動型半導体素子を飽和領域でオン動作をさせ、前記オン・オフ信号がオン信号からオフ信号に替ったときから前記監視期間中にこの電圧駆動型半導体素子に過電圧が印加されたときには該電圧駆動型半導体素子を活性領域で再オン動作をさせるようにしたことを特徴とする電圧駆動型半導体素子のゲート駆動回路。
In a power conversion device having a voltage-driven semiconductor element connected in series to each arm,
A gate voltage control circuit that generates a gate voltage command value for turning on or off each voltage-driven semiconductor in a saturation region or an active region, and applying a gate voltage based on the respective gate voltage command values to the voltage-driven semiconductor device. A drive circuit to be supplied, an overvoltage determination circuit that detects a voltage applied to the voltage-driven semiconductor element and determines whether the voltage is an overvoltage, and a period setting circuit that sets a predetermined monitoring period,
Normally, when the on / off signal commanded from the outside is an on signal, the voltage-driven semiconductor device is turned on in a saturation region, and the monitoring is performed when the on / off signal is changed from an on signal to an off signal. A gate drive circuit for a voltage-driven semiconductor device, wherein when an overvoltage is applied to the voltage-driven semiconductor device during a period, the voltage-driven semiconductor device is turned on again in an active region.
JP2002239055A 2002-08-20 2002-08-20 Gate drive circuit for voltage driven semiconductor device Expired - Fee Related JP4099703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002239055A JP4099703B2 (en) 2002-08-20 2002-08-20 Gate drive circuit for voltage driven semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002239055A JP4099703B2 (en) 2002-08-20 2002-08-20 Gate drive circuit for voltage driven semiconductor device

Publications (2)

Publication Number Publication Date
JP2004080928A true JP2004080928A (en) 2004-03-11
JP4099703B2 JP4099703B2 (en) 2008-06-11

Family

ID=32022264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002239055A Expired - Fee Related JP4099703B2 (en) 2002-08-20 2002-08-20 Gate drive circuit for voltage driven semiconductor device

Country Status (1)

Country Link
JP (1) JP4099703B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009132560A1 (en) * 2008-04-29 2009-11-05 Han Lasheng A period time-sharing control circuit
CN112152392A (en) * 2019-06-27 2020-12-29 朋程科技股份有限公司 Alternator and rectifier device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009132560A1 (en) * 2008-04-29 2009-11-05 Han Lasheng A period time-sharing control circuit
CN112152392A (en) * 2019-06-27 2020-12-29 朋程科技股份有限公司 Alternator and rectifier device
CN112152392B (en) * 2019-06-27 2021-05-18 朋程科技股份有限公司 Alternator and rectifier device

Also Published As

Publication number Publication date
JP4099703B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
JP4432215B2 (en) Semiconductor switching element gate drive circuit
JP3883925B2 (en) Power semiconductor element drive circuit
JP4349398B2 (en) Switching element driving apparatus and switching element driving method
JP2000232347A (en) Gate circuit and gate circuit control method
JP5927739B2 (en) Semiconductor device
US7983013B2 (en) Operating and controlling insulated gate bipolar transistors in high speed failure mode situations
JP6350214B2 (en) Drive device
JP4161737B2 (en) Method and apparatus for driving semiconductor device
JP4479570B2 (en) Switching circuit with protection function and protection circuit
JPH1051285A (en) Drive circuit for voltage controlled transistor
JP2008193717A (en) Method and apparatus for driving semiconductor device
JP2002330593A (en) Electric power converter
JPH07226663A (en) Transistor drive circuit
JP2002300016A (en) Gate drive means and gate drive circuit
JP2004080928A (en) Gate drive circuit for voltage drive type semiconductor device
JP3833688B2 (en) Inverter device
JP6070003B2 (en) Semiconductor drive device
JP7205636B2 (en) Overcurrent protection circuit and switching circuit
JP2001045742A (en) Power mos drive circuit
JP3724255B2 (en) Gate drive circuit for voltage driven semiconductor device
JPWO2021048973A5 (en)
JP3918778B2 (en) Protection circuit
JPH10335999A (en) Gate-drive circuit having overcurrent protective function
JP2003338743A (en) Drive circuit for power device
JP3863337B2 (en) Gate driver and power conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040914

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070829

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080221

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080305

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110328

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120328

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120328

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees